高考数学基础教材(艺术生用)
艺术生高考数学专题讲义:考点24 基本不等式及其应用
![艺术生高考数学专题讲义:考点24 基本不等式及其应用](https://img.taocdn.com/s3/m/063ceaaba8956bec0875e3aa.png)
称为
a,b
的几何平均数
.
因此基本不等式可叙述为两个非
负数的算术平均数不小于它们的几何平均数;也可以叙述为两个正数的等差中项不小于它们的等比中
项.
3.基本不等式的几个常见变形
(1) a + b ≥ 2 ab (a,b > 0).
(2)
x+
1 x
≥ 2(x > 0),ab
+
a b
≥ 2(a,b 同号 ).
.
【题型练2-4】若 0 < x <
3 2
,则 y = x(3 - 2x) 的最大值是
.
【题型练2-5】已知
f (x)
=
x+
1 x
- 2(x
<
0),则
f (x)
有
.
【题型练2-6】若 2x + 2y = 1,则 x + y 的取值范围是
.
【题型练2-7】已知 a > 0,b > 0,ln(a + b) = 0,则 ab 的最大值为
(3) 把 “1” 的表达式与所求最值的表达式相乘或相除,进而构造和或积为定值的形式;
(4) 利用基本不等式求解最值.
【题型练3-1】已知
x > 0,y
>0
且x+y=
1,则
8 x
+
2 y
的最小值为
.
【题型练3-2】已知 a > 0,b > 0,a + b = 2,则 y =
1 a
+
4 b
的最小值是
.
艺体生文化课百日突围
考点二十四 基本不等式及其应用
山东高考数学艺术生复习第一课集合与复数
![山东高考数学艺术生复习第一课集合与复数](https://img.taocdn.com/s3/m/6bda5507a7c30c22590102020740be1e650ecc9f.png)
山东高考数学艺术生复习第一课集合与复数基础知识专题训练01集合一、考试要求内容集合及其表示子集集合交集、并集、补集等级要求A√√√BC二.基础知识1、理解集合中的有关概念(1)集合中元素的特征:、、(2)集合与元素的关系用符号,表示。
(3)常用数集的符号表示:自然数集;正整数集;整数集;有理数集、实数集(4)集合的表示法:、、注意:区分集合中元素的形式:如:A{某|y某22某1};B{y|y某22某1};C{(某,y)|y某22某1};D{某|某某22某1};(5)空集是指不含任何元素的集合。
({0}、和{}的区别;0与三者间的关系)空集是任何集合的子集,是任何非空集合的真子集。
(注意:AB,讨论时不要遗忘了A的情况。
)2、集合间的关系及其运算(1)符号“,”是表示元素与集合之间关系的,立体几何中的体现点与直线(面)的关系;符号“,”是表示集合与集合之间关系的,立体几何中的体现面与直线(面)的关系(2)AB{________________};AB{________________};CUA{_______________}(3)对于任意集合A,B,则:①AB___BA;AB___BA;AB___AB;②ABA;ABA;CUABU;CUAB;3、集合中元素的个数的计算:若集合A中有n个元素,则集合A的所有不同的子集个数为_________,所有真子集的个数是__________,所有非空真子集的个数是三.基础训练1.集合A某|某3或某3,B某|某1或某4,AB_________.2.设全集I1,2,3,4,5,A1,4,则CIA______,它的子集个数是(CUM)N__________3.若U={1,2,3,4},M={1,2},N={2,3},则1,2,3,4,5,6,7,8}4.设U{5.,A{3,4,5},B{4,7,8}.则:(CUA)(CUB),(CUA)(CUB)已知全集UR,且A某|某12,B某|某26某80,则(CUA)B________四、拓展提高1.设集合P1,2,3,4,Q某某2,某R,则PQ等于()A、{1,2}B、{3,4}C、{1}D、{-2,-1,0,1,2}2.已知全集U{1,2,3,4,5,6},集合A{1,2,5},CUB{4,5,6},则集合AB()A.{1,2}B.{5}C.{1,2,3}D.{3,4,6}3.已知集合A{某|y2某1},B{y|y某2某1},则AB等于()3A.{(0,1),(1,3)}B.RC.(0,)D.[,)44.设A(某,y)y4某6,B(某,y)y3某8,则AA.(2,B()1)B.(2,2)C.(3,1)D.(4,2).5.已知集合M满足M1,21,2,3,则集合M 的个数是()A.1B.2C.3D.46.A=某某13某7,则A2Z的元素的个数.7.满足{a}M{a,b,c,d}的集合M有个8、集合A{某|a某(a6)某20}是单元素集合,则实数a=9.集合A{3,2},B{a,b},若Aa2B{2},则AB____________________.某10.已知集合M={某|ylg(1某)},集合N{y|ye,某R}(e为自然对数的底数),则MN=11..已知集合M{0,1,2},N{某|某2a,aM},则集合MN等于12.设全集为U,用集合A、B、C的交、并、补集符号表图中的阴影部分。
艺术生高考数学总复习第六章不等式推理与证明第5节合情推理与演绎推理课件
![艺术生高考数学总复习第六章不等式推理与证明第5节合情推理与演绎推理课件](https://img.taocdn.com/s3/m/8b386435e009581b6ad9eb5b.png)
A.只需要按开关 A,C 可以将四盏灯全部熄灭 B.只需要按开关 B,C 可以将四盏灯全部熄灭 C.按开关 A,B,C 可以将四盏灯全部熄灭 D.按开关 A,B,C 无法将四盏灯全部熄灭
[解析] D [根据题意,按开关 A ,2,3,4 号灯熄灭,1 号灯亮;按 开关 B ,1,2 号灯熄灭,3,4 号灯亮;按开关 C ,则 2,3,4 号灯熄灭,1
∴第五个不等式为 1+212+312+412+512+612<161.
答案:1+212+312+412+512+612<161
考点一 归纳推理(多维探究) [命题角度 1] 数式的归纳 1.(2016·山东卷)观察下列等式: sinπ3-2+sin23π-2=43×1×2; sinπ5-2+sin25π-2+sin35π-2+sin45π-2 =43×2×3;
复习课件
艺术生高考数学总复习第六章不等式推理与证明第5节合情推理与演绎推 理课件
2021/4/17
艺术生高考数学总复习第六章不等式推理与证明第5节合情 推理与演绎推理课件
高考总复习 第六章 不等式、推理与证明
第5节 合情推理与演绎推理
理
类比推理
定义
由某类事物的部分对象具有 由两类对象具有某些类似特
D.没有出错
解析:A [要分析一个演绎推理是否正确,主要观察所给的大
前提、小前提和推理形式是否都正确,只有这几个方面都正确,才能
得到这个演绎推理正确.本题中大前提:任何实数的平方都大于 0,
是不正确的.]
2.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推
理得:若定义在 R 上的函数 f(x)满足 f(-x)=f(x),记 g(x)为 f(x)的导
艺术生高考数学专题讲义:考点14 导数与函数的极值、最值
![艺术生高考数学专题讲义:考点14 导数与函数的极值、最值](https://img.taocdn.com/s3/m/0cc0506279563c1ec5da71e1.png)
考点十四导数与函数的极值、最值知识梳理1.函数的极值的定义一般地,设函数f(x)在点x0及附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0 ),就说f(x0)是函数的极大值,x0叫做函数的极大值点.如果对x0附近的所有的点,都有f(x)>f(x0 ),就说f(x0)是函数的极小值,x0叫做函数的极小值点.极大值与极小值统称为函数的极值.极大值点与极小值点统称为极值点.注意:可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,即f′(x0)=0是可导函数f(x)在x=x0处取得极值的必要不充分条件.例如函数y=x3在x=0处有y′=0,但x=0不是极值点.2.判断f(x0 )是极大、极小值的方法当函数f(x)在点x0处连续时,若x0满足f′(x0 )=0,且在x0的两侧f(x)的导数值异号,则x0是f(x)的极值点,f(x0 )是极值.如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.3.求可导函数f(x)的极值的步骤(1)确定函数的定义域,求导数f′(x) ;(2)求方程f′(x) =0的根;(3)检查f′(x)在x0两侧的符号①若f′(x)在x0两侧的符号“左正右负”,则x0为极大值点;②若f′(x)在x0两侧的符号“左负右正”,则x0为极小值点;③若f′(x)在x0两侧的符号相同,则x0不是极值点.4.函数的最值在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(1)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(2)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下:①求f(x)在(a,b)内的极值;②将f(x)的各极值与f(a),f(b)进行比较,其中最大的一个是最大值,最小的一个是最小值.5.函数的极值与最值的区别与联系极值是个“局部”概念,而函数最值是个“整体”概念.函数的极值表示函数在某一点附近的情况,是在局部对函数值的比较;函数的最值表示函数在一个区间上的情况,是对函数在整个区间上的函数值的比较.函数的极值不一定是最值,最值也不一定是极值.典例剖析题型一 利用导数求函数的极值例1 已知函数f (x )=x 3-2x 2e x.求f (x )的极大值和极小值.解析 函数f (x )的定义域为R ,f ′(x )=-x (x 2-5x +4)e x =-x (x -1)(x -4)e x ,当x 变化时,f (x )、f ′(x )的符号变化情况如下:∴f (x )的极大值为f (0)=0和f (4)=32e 4,f (x )的极小值为f (1)=-1e.变式训练 设f (x )=e x1+ax 2,其中a 为正实数.(1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围. 解析 对f (x )求导得f ′(x )=e x·1+ax 2-2ax(1+ax 2)2.①(1)当a =43时,若f ′(x )=0,则4x 2-8x +3=0,解得x 1=32,x 2=12.结合①,可知所以x 1=32是极小值点,x 2=12是极大值点.(2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0,知ax 2-2ax +1≥0在R 上恒成立,即Δ=4a 2-4a =4a (a -1)≤0,由此并结合a >0,知0<a ≤1.所以a 的取值范围为{a |0<a ≤1}.题型二 利用极值求参数例2 设f (x )=ln(1+x )-x -ax 2,若f (x )在x =1处取得极值,则a 的值为________. 答案 -14解析 由题意知,f (x )的定义域为(-1,+∞), 且f ′(x )=11+x -2ax -1=-2ax 2-(2a +1)x 1+x,由题意得:f ′(1)=0,则-2a -2a -1=0,得a =-14,又当a =-14时,f ′(x )=12x 2-12x 1+x =12x (x -1)1+x ,当0<x <1时,f ′(x )<0;当x >1时,f ′(x )>0, 所以f (1)是函数f (x )的极小值,所以a =-14.变式训练 已知x =3是函数f (x )=a ln x +x 2-10x 的一个极值点,则实数a =________. 答案 12解析 f ′(x )=a x +2x -10,由f ′(3)=a3+6-10=0,得a =12,经检验满足条件.题型三 利用导数求函数的最值例3 设函数f (x )=x +ax 2+b ln x ,曲线y =f (x )过P (1,0),且在P 点处的切线斜率为2. (1)求a ,b 的值;(2)令g (x )=f (x )-2x +2,求g (x )在定义域上的最值. 答案 (1)a =-1,b =3 (2)最大值为0,无最小值 解析 (1)f ′(x )=1+2ax +bx(x >0),又f (x )过点P (1,0),且在点P 处的切线斜率为2,∴⎩⎪⎨⎪⎧ f (1)=0,f ′(1)=2,即⎩⎪⎨⎪⎧1+a =0,1+2a +b =2.解得a =-1,b =3. (2)由(1)知,f (x )=x -x 2+3ln x ,其定义域为(0,+∞), ∴g (x )=2-x -x 2+3ln x ,x >0.则g ′(x )=-1-2x +3x =-(x -1)(2x +3)x .当0<x <1时,g ′(x )>0;当x >1时,g ′(x )<0.所以g (x )在(0,1)上单调递增,在(1,+∞)上单调递减. ∴g (x )的最大值为g (1)=0,g (x )没有最小值. 变式训练 已知函数f (x )=ln x -ax (a ∈R ). (1)求函数f (x )的单调区间;(2)当a >0时,求函数f (x )在[1,2]上的最小值. 解析 (1)f ′(x )=1x-a (x >0),①当a ≤0时,f ′(x )=1x -a >0,即函数f (x )的单调增区间为(0,+∞).②当a >0时,令f ′(x )=1x -a =0,可得x =1a ,当0<x <1a 时,f ′(x )=1-ax x >0;当x >1a 时,f ′(x )=1-ax x<0,故函数f (x )的单调递增区间为⎝⎛⎦⎤0,1a ,单调递减区间为⎣⎡⎭⎫1a ,+∞. (2)①当1a ≤1,即a ≥1时,函数f (x )在区间[1,2]上是减函数,所以f (x )的最小值是f (2)=ln 2-2a .②当1a ≥2,即0<a ≤12时,函数f (x )在区间[1,2]上是增函数,所以f (x )的最小值是f (1)=-a .③当1<1a <2,即12<a <1时,函数f (x )在⎣⎡⎦⎤1,1a 上是增函数,在⎣⎡⎦⎤1a ,2上是减函数.又f (2)-f (1)=ln 2-a ,所以当12<a <ln 2时,最小值是f (1)=-a ;当ln 2≤a <1时,最小值为f (2)=ln 2-2a . 综上可知,当0<a <ln 2时,函数f (x )的最小值是-a ; 当a ≥ln 2时,函数f (x )的最小值是ln 2-2a .解题要点 求函数f (x )在[a ,b ]上的最大值和最小值的步骤: (1)求函数在(a ,b )内的极值;(2)求函数在区间端点处的函数值f (a ),f (b );(3)将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.当堂练习1.已知函数y =f (x ),其导函数y =f ′(x )的图象如图所示,则y =f (x ) ________.①在(-∞,0)上为减函数② 在x =0处取极小值 ③ 在(4,+∞)上为减函数 ④ 在x =2处取极大值答案 ③解析 由f ′(x )的图象可知,f (x )在(-∞,0)上单调递增,在(0,2)上单调递减,∴f (x )在x =0处取得极大值,同理f (x )在x =2处取得极小值,故①,②,④均不正确 ,由f ′(x )的图象可知f (x )在(4,+∞)上单调递减.2.函数f (x )=(x 2-1)2+2的极值点是________.①x =1 ②x =-1 ③x =1或-1或0 ④x =0 答案 ③解析 ∵f (x )=x 4-2x 2+3,由f ′(x )=4x 3-4x =4x (x +1)(x -1)=0,得x =0或x =1或x =-1.又当x <-1时,f ′(x )<0,当-1<x <0时,f ′(x )>0,当0<x <1时,f ′(x )<0,当x >1时,f ′(x )>0, ∴x =0,1,-1都是f (x )的极值点.3. 若函数y =ax 3+bx 2取得极大值和极小值时的x 的值分别为0和13,则a 与b 的关系是________. 答案 a +2b =0解析 y ′=3ax 2+2bx ,据题意,0,13是方程3ax 2+2bx =0的两根,∴-2b 3a =13,∴a +2b =0.4.函数f (x )=xe x ,x ∈[0,4]的最大值是________.答案 1e5.若函数f (x )=x 2+ax +1在x =1处取极值,则a =________.答案 3解析 f ′(x )=x 2+2x -a(x +1)2,由f (x )在x =1处取得极值知f ′(1)=0,∴a =3.课后作业一、 填空题1.函数f (x )=x 33+x 2-3x -4在[0,2]上的最小值是________.答案 -173解析 f ′(x )=x 2+2x -3,令f ′(x )=0,得x =1(x =-3舍去), 又f (0)=-4,f (1)=-173,f (2)=-103,故f (x )在[0,2]上的最小值是f (1)=-173.2.函数f (x )=x 3-32x 2-6x 的极值点的个数是________.答案 2解析 f ′(x )=3x 2-3x -6=3(x 2-x -2)=3(x -2)(x +1).令f ′(x )=0,得x =-1或x =2.易知x =-1为f (x )的极大值点,x =2为f (x )的极小值点.故f (x )的极值点有2个. 3.函数f (x )=12x -x 3在区间[-3,3]上的最小值是________. 答案 -16解析 由f ′(x )=12-3x 2=0,得x =-2或x =2. 又f (-3)=-9,f (-2)=-16,f (2)=16,f (3)=9, ∴函数f (x )在[-3,3]上的最小值为-16.4.f (x )=e x -x (e 为自然对数的底数)在区间[-1,1]上的最大值是________. 答案 e -1解析 f ′(x )=e x -1,令f ′(x )=0,得x =0.令f ′(x )>0,得x >0,令f ′(x )<0,得x <0,则函数f (x )在(-1,0)上单调递减,在(0,1)上单调递增,f (-1)=e -1+1,f (1)=e -1,f (-1)-f (1)=1e +2-e<12+2-e<0,所以f (1)>f (-1).5.若商品的年利润y (万元)与年产量x (百万件)的函数关系式为y =-x 3+27x +123(x >0),则获得最大利润时的年产量为________. 答案 3百万件解析 依题意得,y ′=-3x 2+27=-3(x -3)(x +3),当0<x <3时,y ′>0;当x >3时,y ′<0.因此,当x =3时,该商品的年利润最大.6.已知函数f (x )=x 3+ax 2+bx -a 2-7a 在x =1处取得极大值10,则ab的值为________.答案 -23解析 由题意知,f ′(x )=3x 2+2ax +b ,f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧3+2a +b =01+a +b -a 2-7a =10,解得⎩⎪⎨⎪⎧a =-2b =1或⎩⎪⎨⎪⎧a =-6b =9,经检验⎩⎪⎨⎪⎧a =-6b =9满足题意,故a b =-23.7.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是________.(填序号)①函数f (x )有极大值f (2)和极小值f (1) ②函数f (x )有极大值f (-2)和极小值f (1) ③函数f (x )有极大值f (2)和极小值f (-2) ④函数f (x )有极大值f (-2)和极小值f (2) 答案 ④解析 由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值. 8.已知f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是________. 答案 -37解析 f ′(x )=6x 2-12x =6x (x -2),∴f (x )在(-2,0)上单调递增,在(0,2)上单调递减. ∴x =0为极大值点,也为最大值点. ∴f (0)=m =3,∴m =3. ∴f (-2)=-37,f (2)=-5. ∴最小值是-37.9.函数f (x )=x 3+ x 2-x +2在[0,2]上的最小值是________. 答案4927解析 f ′(x )=3x 3+2x -1,f ′(x )=0,x ∈[0,2],得x =13.比较f (0)=2,f (13)=4927,f (2)=12.可知最小值为4927.10.某商场从生产厂家以每件20元购进一批商品,若该商品零售价为p 元,销量Q (单位:件)与零售价p (单位:元)有如下关系:Q =8 300-170p -p 2,则该商品零售价定为__________ 元时利润最大,利润的最大值为__________. 答案 30 23 000解析 设商场销售该商品所获利润为y 元,则y =(p -20)Q =(p -20)(8 300-170p -p 2)=-p 3-150p 2+11 700p -166 000(p ≥20), ∴y ′=-3p 2-300p +11 700. 令y ′=0得p 2+100p -3 900=0,∴p =30或p =-130(舍去),则p ,y ,y ′变化关系如下表:∴当p =30时,y 取极大值为23 000元.又y =-p 3+150p 2+11 700p -166 000在(20,+∞)上只有一个极值,故也是最值. ∴该商品零售价定为每件30元,所获利润最大为23 000元.11.若y =a ln x +bx 2+x 在x =1和x =2处有极值,则a =________,b =________. 答案 -23 -16解析 y ′=ax+2bx +1.由已知⎩⎪⎨⎪⎧a +2b +1=0,a 2+4b +1=0,解得⎩⎨⎧a =-23,b =-16.二、解答题12. (2015北京文节选)设函数f (x )=x 22-k ln x ,k >0.求f (x )的单调区间和极值解析 函数的定义域为(0,+∞).由f (x )=x 22-k ln x (k >0)得f ′(x )=x -k x =x 2-kx.由f ′(x )=0解得x =k (负值舍去).f (x )与f ′(x )在区间(0,+∞)上的变化情况如下表:所以,f (x )f (x )在x =k 处取得极小值f (k )=k (1-ln k )2. 13.设函数f (x )=2x 3+3ax 2+3bx +8c 在x =1及x =2时取得极值. (1)求a 、b 的值;(2)若对于任意的x ∈[0,3],都有f (x )<c 2成立,求c 的取值范围. 解析 (1)f ′(x )=6x 2+6ax +3b ,因为函数f (x )在x =1及x =2处取得极值,则有f ′(1)=0,f ′(2)=0,即⎩⎪⎨⎪⎧6+6a +3b =0,24+12a +3b =0.解得a =-3,b =4. (2)由(1)可知,f (x )=2x 3-9x 2+12x +8c ,f ′(x )=6x 2-18x +12=6(x -1)(x -2). 当x ∈(0,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0;当x ∈(2,3)时,f ′(x )>0. 所以,当x =1时,f (x )取得极大值f (1)=5+8c ,又f (0)=8c ,f (3)=9+8c . 则当x ∈[0,3]时,f (x )的最大值为f (3)=9+8c . 因为对于任意的x ∈[0,3],有f (x )<c 2恒成立, 所以9+8c <c 2,解得c <-1或c >9, 因此c 的取值范围为(-∞,-1)∪(9,+∞).。
艺术生高考数学专题讲义:考点59 推理与证明
![艺术生高考数学专题讲义:考点59 推理与证明](https://img.taocdn.com/s3/m/029470bcdc88d0d233d4b14e852458fb770b38f6.png)
考点五十九 推理与证明知识梳理1.推理(1)定义:是根据一个或几个已知的判断来确定一个新的判断的思维过程.(2)分类:推理⎩⎪⎨⎪⎧合情推理演绎推理2.合情推理合情推理包括归纳推理和类比推理.(1)归纳推理:根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都有这种属性.我们将这种推理方式称为归纳推理(简称归纳).简言之,归纳推理是由部分到整体、由个别到一般的推理.(2)类比推理:由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征,我们把这种推理过程称为类比推理(简称类比).简言之,类比推理是两类事物特征之间的推理.归纳推理和类比推理是最常见的合情推理,合情推理的结果不一定正确. 3.演绎推理(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.(2)特点:演绎推理是由一般到特殊的推理. (3)模式:三段论⎩⎪⎨⎪⎧①大前提:已知的一般原理;②小前提:所研究的特殊情况;③结论:根据一般原理,对特殊情况做出的判断.4.归纳推理与类比推理的步骤 (1)归纳推理的一般步骤:①通过观察个别情况发现某些相同特征;②从已知的相同性质中推出一个明确表述的一般性命题. (2)类比推理的一般步骤:①找出两类事物之间的相似性或一致性;②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想). 5.合情推理与演绎推理的区别:归纳和类比是常用的合情推理.从推理形式上看,归纳推理是由部分到整体、由个别到一般的推理,类比推理是由特殊到特殊的推理;而演绎推理是由一般到特殊的推理.从推理所得的结论来看,合情推理的结论不一定正确,有待进一步证明;演绎推理在大前提、小前提和推理形式都正确的前提下,得到的结论一定正确.就数学而言,演绎推理是证明数学结论、建立数学体系的重要思维过程,但数学结论、证明思路等的发现,主要靠合情推理.因此,我们不仅要学会证明,也要学会猜想.6.平面到空间中的常见类比7.直接证明有两种基本方法:综合法和分析法.(1) 综合法:从命题的条件出发,利用定义、公理、定理及运算法则,通过演绎推理,一步一步地接近要证明的结论,直到完成命题的证明.我们把这样的思维方法称为综合法.(2) 分析法:从求证的结论出发,一步一步地探索保证前一个结论成立的充分条件,直到归结为这个命题的条件,或者归结为定义、公理、定理等.我们把这样的思维方法称为分析法.8.间接证明间接证明的一种基本方法是反证法.(1)反证法:我们可以先假定命题结论的反面成立,在这个前提下,若推出的结果与定义、公理、定理相矛盾,或与命题中的已知条件相矛盾,或与假定相矛盾,从而说明命题结论的反面不可能成立,由此断定命题的结论成立.这种证明方法叫作反证法.(2)反证法的证题步骤是:①反设:假定所要证的结论不成立,而设结论的反面(否定命题)成立;(否定结论)②归谬:将“反设”作为条件,由此出发经过正确的推理,导出矛盾——与已知条件、已知的定义、公理、定理及明显的事实矛盾或自相矛盾;(推导矛盾)③立论:因为推理正确,所以产生矛盾的原因在于“反设”的谬误.既然原命题结论的反面不成立,从而肯定了原命题成立.(命题成立)典例剖析题型一 归纳推理 例1 观察下列等式1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49…照此规律,第五个等式应为_________________________________. 答案 5+6+7+8+9+10+11+12+13=81 解析 由于1=12, 2+3+4=9=32, 3+4+5+6+7=25=52, 4+5+6+7+8+9+10=49=72,所以第五个等式为5+6+7+8+9+10+11+12+13=92=81. 变式训练 (2015陕西文)观察下列等式: 1-12=12, 1-12+13-14=13+14, 1-12+13-14+15-16=14+15+16, …,据此规律,第n 个等式可为_______________________________. 答案 1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n解析 等式左边的特征:第1个等式有2项,第2个有4项,第3个有6项,且正负交错,故第n 个等式左边有2n 项且正负交错,应为1-12+13-14+…+12n -1-12n ;等式右边的特征:第1个有1项,第2个有2项,第3个有3项,故第n 个有n 项,且由前几个的规律不难发现第n 个等式右边应为1n +1+1n +2+…+12n .解题要点 (1)归纳是依据特殊现象推断出一般现象,因而由归纳所得的结论超越了前提所包含的范围;(2)归纳的前提是特殊的情况,所以归纳是立足于观察、经验或试验的基础之上的; (3)归纳推理所得结论未必正确,有待进一步证明,但对数学结论和科学的发现很有用. 题型二 类比推理例2 在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________. 答案 1∶8解析 V 1V 2=13S 1h 113S 2h 2=⎝⎛⎭⎫S 1S 2·h 1h 2=14×12=18. 变式训练 在平面上,设h a ,h b ,h c 是三角形ABC 三条边上的高,P 为三角形内任一点,P 到相应三边的距离分别为P a ,P b ,P c ,我们可以得到结论:P a h a +P b h b +P ch c =1.把它类比到空间,则三棱锥中的类似结论为______________________. 答案P a h a +P b h b +P c h c +P dh d=1 解析 设h a ,h b ,h c ,h d 分别是三棱锥A -BCD 四个面上的高,P 为三棱锥A -BCD 内任一点,P 到相应四个面的距离分别为P a ,P b ,P c ,P d , 于是可以得出结论:P a h a +P b h b +P c h c +P dh d=1.解题要点 (1)进行类比推理,应从具体问题出发,通过观察、分析、联想进行类比,提出猜想.其中找到合适的类比对象是解题的关键.(2)类比推理常见的情形有平面与空间类比;低维的与高维的类比;等差数列与等比数列类比;数的运算与向量的运算类比;圆锥曲线间的类比等. 题型三 演绎推理例3 如果函数f (x )在区间D 上是凸函数,那么对于区间D 内的任意x 1,x 2,…,x n ,都有f (x 1)+f (x 2)+…+f (x n )n ≤f ⎝⎛⎭⎫x 1+x 2+…+x n n .若y =sin x 在区间(0,π)上是凸函数,那么在△ABC中,sin A +sin B +sin C 的最大值是________. 答案332解析 由题意知,凸函数满足f (x 1)+f (x 2)+…+f (x n )n ≤f⎝⎛⎭⎫x 1+x 2+…+x n n ,又y =sin x 在区间(0,π)上是凸函数,则sin A +sin B +sin C ≤3sin A +B +C 3=3sin π3=332.题型四 综合法和分析法的应用例4 在锐角三角形ABC 中,求证:sin A +sin B +sin C >cos A +cos B +cos C . 证明:∵△ABC 为锐角三角形, ∴A +B >π2,∴A >π2-B ,∵y =sin x 在⎝⎛⎭⎫0,π2上是增函数, ∴sin A >sin ⎝⎛⎭⎫π2-B =cos B , 同理可得sin B >cos C ,sin C >cos A , ∴sin A +sin B +sin C >cos A +cos B +cos C .变式训练 设a 、b 、c 均为大于1的正数,且ab =10,求证:log a c +log b c ≥4lgc.证明:(分析法)由于a>1,b>1,c>1,故要证明log a c +log b c ≥4lgc ,只要证明lgc lga +lgclgb ≥4lgc ,即lga +lgb lga ·lgb≥4,因为ab =10,故lga +lgb =1.只要证明1lgalgb ≥4,由于a>1,b>1,故lga>0,lgb>0,所以0<lgalgb ≤⎝⎛⎭⎫lga +lgb 22=⎝⎛⎭⎫122=14,即1lgalgb ≥4成立.所以原不等式成立.解题要点 1.综合法是“由因导果”,它是从已知条件出发,顺着推证,经过一系列的中间推理,最后导出所证结论的真实性.分析法是“由果执因”,先从结论入手,由此逐步推出保证此结论成立的充分条件,而当这些判断恰恰都是已证的命题(定义、公理、定理、法则、公式等)或要证命题的已知条件时命题得证。
艺术生高考数学专题讲义考点43双曲线
![艺术生高考数学专题讲义考点43双曲线](https://img.taocdn.com/s3/m/2ae3a929b9f3f90f77c61bda.png)
考点四十三双曲线知识梳理1.双曲线的观点把平面内到两定点 F1, F 2的距离之差的绝对值等于常数 (大于零且小于 |F1F2|)的点的会合叫作双曲线.定点 F1,F 2叫作双曲线的焦点,两个焦点之间的距离叫作双曲线的焦距.用会合语言表示为:P= { M|||MF 1 |- |MF 2||= 2a} , |F1F 2|= 2c,此中 a, c为常数且 a>0 ,c>0.说明:定义中,到两定点的距离之差的绝对值小于两定点间距离特别重要.令平面内一点到两定点 F 1,F 2的距离的差的绝对值为2a(a 为常数 ),则只有当 2a<|F1F2|且 2a≠ 0 时,点的轨迹才是双曲线;若2a= |F 1F2|,则点的轨迹是以 F 1,F 2为端点的两条射线;若2a>|F1F2|,则点的轨迹不存在.2.双曲线的标准方程和几何性质x2y2y2x2标准方程a 2-b2=1a2-b2=1(a>0, b>0)(a>0, b>0)图形性范围对称性极点渐近线x≥ a 或 x≤- a, y∈R x∈R, y≤- a 或 y≥ a对称轴:坐标轴对称中心:原点A1(- a,0), A2(a,0)A1(0 ,- a), A2(0, a)b ay=± x y=± xa b质离心率实虚轴c22e=a, e∈ (1,+∞ ),此中 c= a + b线段 A1A2叫作双曲线的实轴,它的长 |A1A2|= 2a;线段 B1B2叫作双曲线的虚轴,它的长 |B1B2|= 2b;a 叫作双曲线的实半轴长,b叫作双曲线的虚半轴长a、 b、 cc2= a2+ b2(c>a>0, c>b>0)的关系说明:在双曲线的标准方程中,决定焦点地点的要素是x2或 y2的系数.若 x2系数为正,则焦点在 x 轴上,若 y2的系数为正,则焦点在y 轴上.3.双曲线与椭圆的差别(1) 定义表达式不一样:在椭圆中|PF 1|+ |PF 2|= 2a,而在双曲线中 ||PF 1|- |PF2 ||= 2a;(2) 离心率范围不一样:椭圆的离心率e ∈ (0, 1),而双曲线的离心率 e ∈ (1,+∞ ); (3) a , b , c 的关系不一样:在椭圆中 a 2=b 2+c 2,a > c ;而在双曲线中 c 2= a 2+ b 2, c >a .典例分析题型一 双曲线的定义和标准方程例 1 设双曲线 C 的两个焦点为 (- 2,0),( 2,0),一个极点是 (1,0),则 C 的方程为 ________. 答案 x 2- y 2= 1分析由题意可知,双曲线的焦点在x 轴上,且 c =2, a = 1,则 b 2= c 2- a 2= 1,所以双曲线 C 的方程为 x 2- y 2= 1.y 2 x 2 变式训练 与椭圆 C : 16+12=1 共焦点且过点 (1, 3)的双曲线的标准方程为 ________.答案y 2 - x 2= 12 2分析椭圆 y 2+ x 2= 1 的焦点坐标为 (0,- 2), (0,2),16 12223 -1= 1设双曲线的标准方程为y- x= 1(m>0, n>0),则 mn ,解得 m = n = 2.m nm + n = 422yx∴双曲线的标准方程为- =1.解题重点 求双曲线的标准方程的基本方法是定义法和待定系数法.在求解时, 注意巧设方程,能够减少议论以及计算的难度,一般来说:2222(1)x 2 y 2x 2 y 2与双曲线 a - b = 1 (a>0, b>0) 有共同渐近线的方程可表示为a -b = t (t ≠ 0) .2 2(2) 过已知两个点的双曲线方程可设为 x-y= 1 (mn>0),也可设为 Ax 2+ By 2= 1 (AB<0) ,这 m n 种形式在解题时更简易. 题型二双曲线的离心率22例 2 已知双曲线 x a 2- y3 = 1(a>0)的离心率为 2,则 a =________.答案 1分析由题, c = 2a. ∴ c 2= 4a 2,又 c 2= a 2+ 3,∴ 4a 2= a 2+ 3, a 2= 1,∵a>0,∴ a = 1.变式训练若双曲线 x 2 y 2=1 (a>0, b>0)的焦点到其渐近线的距离等于实轴长,则该双曲2- 2a b线的离心率为 ________.答案5分析22222由题意得 b =2a ,又 a + b = c ,∴ 5a = c .22 c∴e = a 2= 5,∴ e = 5. 解题重点1.注意双曲线中 a , b , c 的关系,在双曲线中c 2= a 2+ b 2, c >a .c 2 222ca + bb2. 注意离心率公式及其变式运用,e =aa 2 =a 2=1+a 2,e = c 2 2 = 1 2 .2bc - b1- c 2题型三双曲线的渐近线y 22例 3 设双曲线 C 经过点 (2, 2),且与 4 - x = 1 拥有同样渐近线,则 C 的方程为 ________; 渐近线方程为 ________.22答案x- y=1y = ±2x3 12分析设双曲线 C 的方程为y 2-x2=λ,将点 (2, 2)代入上式,得 λ=- 3,422∴C 的方程为 x - y=1,其渐近线方程为 y = ±2x.3 12已知双曲线 C :x22变式训练- y = 1 的离心率为 3,则 C 的渐近线方程为 ________.n 4- n答案y = ± 2x22=1x 轴上,∴n + 4- n= 3,分析由双曲线的方程 x - y知,双曲线的焦点在=( 3)2n4- nn∴n = 4,∴ a 2=4, b 2= 4-4= 8,进而双曲线的渐近线方程是 y =± 2x.3 3 3 32 222解题重点 1.已知双曲线方程 x2 y 2x2y 2a -b = 1,求渐近线时可直接将 1 换为 0,解方程 a - b = 0求出渐近线.2.双曲线的离心率与渐近线方程之间有着亲密的联系,两者之间能够互求.已知渐近线方程bc22 2 b 22a + b时,可得 a 的值,于是 e = a 2=a 2 = 1+ a ,所以可求出离心率e 的值;而已知离心率的值,也可求出渐近线的方程,即b= e 2- 1.但要注意,当双曲线的焦点所在的坐标轴不确a准时,上述两类问题都有两个解.当堂练习1.( 2015 广东理)已知双曲线x2y25,且其右焦点为 F 2(5,0),则双曲C:2- 2=1的离心率e=a b4线 C 的方程为 ________.x2y2答案16-9=1分析由于所求双曲线的右焦点为 F 2(5,0)且离心率为 e=c=5,所以 c= 5,a= 4, b2= c2-a4a2= 9,所以所求双曲线方程为x2- y2=1.1692.( 2015 安徽文)以下双曲线中,渐近线方程为y=±2x 的是 ________.①x2-y2222=1 ②x- y2= 1③ x2-y= 1 ④x- y2= 1 4422答案①2由双曲线渐近线方程的求法知;双曲线x2-y=1的渐近线方程为y=±2x,应选① .4x2y23. ( 2015 福建理)若双曲线 E:9-16=1 的左、右焦点分别为F1, F2,点 P 在双曲线 E 上,且 |PF1 |= 3,则 |PF 2|等于 ________.答案9分析由双曲线定义 ||PF 2|- |PF 1||= 2a,∵ |PF1|=3,∴ P 在左支上,∵ a= 3,∴ |PF 2|- |PF1|=6,∴ |PF2|= 9.x2y24.( 2015 山东文)过双曲线C:a2-b2= 1(a>0, b>0) 的右焦点作一条与其渐近线平行的直线,交 C 于点 P.若点 P 的横坐标为2a,则 C 的离心率为 ________.答案2+ 3分析把 x=2a 代入x2y2= 1;得 y=± 3b. 2- 2a b不如取 P(2a,- 3b).又∵双曲线右焦点F2的坐标为 (c,0),3b3b b∴kF 2P=.由题意,得= .c- 2a c-2a ac∴(2+3)a=c.∴双曲线 C 的离心率为 e=a= 2+ 3.2y25.( 2015 北京文)已知(2,0)是双曲线x -b2=1(b>0)的一个焦点,则b= ________.答案3分析由题意: c = 2, a = 1,由 c 2= a 2+ b 2.得 b 2= 4- 1= 3,所以 b = 3.课后作业一、 填空题2 21. ( 2015 天津文)已知双曲线 x y= 1(a > 0, b > 0 )的一个焦点为 F(2,0),且双曲线的 a 2- b 2 渐近线与圆 (x -2) 2+ y 2= 3 相切,则双曲线的方程为 ________.22y答案x -= 1x 2 y 22.( 2015 湖南文)若双曲线 a 2-b 2= 1的一条渐近线经过点 (3,- 4),则此双曲线的离心率为________.答案53分析由条件知 y =- b x 过点 (3,- 4) ,∴3b= 4,aa即 3b = 4a ,∴ 9b222 22225 = 16a,∴ 9c - 9a= 16a ,∴ 25a= 9c,∴ e = .33.( 2015 新课标 II 理)已知 A ,B 为双曲线 E 的左,右极点,点 M 在 E 上,△ ABM 为等腰三角形,且顶角为 120°,则 E 的离心率为 ________.答案 2分析如图,设双曲线 E 的方程为x 2 y 2 2- 2 = 1(a > 0,b >0),则 |AB|= 2a ,由双曲线的对称性,ab可设点 M(x 1, y 1)在第一象限内,过M 作 MN ⊥ x 轴于点 N(x 1,0),∵△ ABM 为等腰三角形,且∠ ABM = 120°,∴ |BM|= |AB|= 2a ,∠ MBN = 60°,∴ y 1=|MN|= |BM |sin ∠ MBN =2asin 60 =° 3a ,x 1= |OB|+ |BN|= a + 2acos 60 °= 2a.将点 M (x 1,222= b 2,∴ e = c=2+b 2x 2 y 2a 2y 1)的坐标代入 a - b = 1,可得 a aa = 2.4.已知中心在原点的双曲线 C 的右焦点为 F(3,0),离心率等于 3,则 C 的方程是 ________.2答案x 2 - y 2= 14 5分析由曲线 C 的右焦点为F(3,0),知 c = 3.由离心率 e = 3,知 c = 3,则 a = 2,2a 22 2故 b 2= c 2- a 2= 9- 4=5,所以双曲线C 的方程为x- y= 1.4 5x 2 y 255.已知双曲线 C :a 2- b 2= 1(a > 0, b > 0)的离心率为2 ,则 C 的渐近线方程为 ________.答案 1y = ± x2分析c5 2c 2 a 2+ b 2 522b 1 b 1 ∵ e = =2,∴ e = 2=2 =.∴ a =4b ,a = .∴渐近线方程为y = ± x = ± x.aaa42a2x 226.( 2015 新课标Ⅰ理)已知 M( x 0,y 0 )是双曲线 C : 2 - y = 1 上的一点, F 1,F 2 是 C 的两个 → →焦点,若 MF 1·MF 2<0 ,则 y 0 的取值范围是 ________.答案-3,333分析 由双曲线方程可求出 F 1,F 2 的坐标,再求出向量→→MF 1,MF 2,而后利用向量的数目积公式求解.由题意知 a = 2, b = 1, c = 3,∴ F 1(- 3, 0), F 2( 3, 0),→→∴MF 1= (- 3- x 0 ,- y 0) ,MF 2= ( 3- x 0,- y 0) .→ → 2∵MF 1·MF 2<0,∴ (- 3- x 0)( 3- x 0)+ y 0<0,即 x 20- 3+ y 20<0.2x 0222∵点 M(x 0,y 0)在双曲线上,∴- y 0= 1,即 x 0 =2+ 2y 0,2 23 3∴2+ 2y 0- 3+ y 0<0 ,∴- 3 <y 0< 3 .2 2x yA 1,7.( 2015 重庆文)设双曲线 a 2-b 2= 1(a > 0, b >0) 的右焦点是 F ,左、右极点分别是A 2,过 F 作 A 1A 2 的垂线与双曲线交于B ,C 两点,若 A 1B ⊥A 2C ,则该双曲线的渐近线的斜率为 ________.答案±1x 2 y 2b 2分析双曲线 a 2- b 2= 1 的右焦点 F(c,0),左、右极点分别为 A 1(- a,0),A 2( a,0) ,易求 B c , a ,22c ,- b 2b bC ,则 kA 2a , kA 1a,又 A 12aC =B =B 与 AC 垂直,a - ca + cb 2 b 2则有 kA 1B ·kA 2C =- 1,即 a · a=- 1,a + c a - cb 4∴ a 2 2 2b= 1,∴ a = b ,即 a = b ,∴渐近线斜率 k = ± = ±1.c 2- a 2a1 8.( 2015 新课标 II 文)已知双曲线过点(4 , 3),且渐近线方程为 y = ± x ,则该双曲线的标2准方程为 ________.x 22答案4 - y = 112分析由双曲线渐近线方程为x2y = ± x ,可设该双曲线的标准方程为4 - y = λ(λ≠0),已知该2422x 22双曲线过点 (4, 3),所以 4 - ( 3) = λ,即 λ= 1,故所求双曲线的标准方程为 4 - y = 1.29. ( 2015 天津文)双曲线x- y 2= 1 的焦距是 ______,渐近线方程是 ________________ .2答案2 3y = ± 2x2分析2222 3,渐近线方程为2由双曲线方程得 a = 2, b = 1,∴ c= 3,∴焦距为y =±x.2x 2 y 210.( 2015 湖南理)设 F 是双曲线 C :a 2- b 2= 1 的一个焦点,若 C 上存在点 P ,使线段 PF的中点恰为其虚轴的一个端点,则 C 的离心率为 ________.答案5222分析不如设 F(c,0),则由条件知P(- c , ±2b) ,代入 x2- y 2= 1 得 c2= 5,∴ e = 5.abaF 是双曲线 C : x 2-y211.(2015 新课标Ⅰ文)已知 = 1 的右焦点, P 是 C 的左支上一点,8A(0,6 6) .当△ APF 周长最小时,该三角形的面积为 ________.答案 12 6分析设左焦点为 F 1, |PF|- |PF 1|= 2a =2,∴ |PF|=2+ |PF 1|,△ APF 的周长为 |AF|+ |AP|+ |PF|= |AF|+ |AP|+ 2+ |PF 1|,△ APF 周长最小即为 |AP|+ |PF 1|最小,当 A 、 P 、 F 1 在一条直线时最小,过AF 1 的直线方程为x + y = 1.- 3 6 6与 x 2-y 2= 1 联立,解得 P 点坐标为 (-2,26),此时 S = S AF FS FPF =12 6.811二、解答题x 2y 22212.已知椭圆 D :50+ 25=1 与圆 M : x + (y - 5) = 9,双曲线 G 与椭圆 D 有同样焦点,它 的两条渐进线恰巧与圆M 相切,求双曲线G 的方程.分析 椭圆 D 的两个焦点为 F 1(- 5,0), F 2 (5,0),∴双曲线中心在原点,焦点在x 轴上,且 c=5.22设双曲线 G 的方程为x2y2a -b = 1(a > 0, b > 0),∴渐近线方程为 bx ±ay = 0 且 a 2 + b 2= 25, 又圆心 M(0,5)到两条渐近线的距离为r =3.|5a|∴b 2+ a2=3,得a =3,b =4,22∴双曲线 G 的方程为 x- y=1.9 1613.已知双曲线对于两坐标轴对称,且与圆x 2+ y 2= 10 订交于点 P(3,- 1),若此圆过点 P的切线与双曲线的一条渐近线平行,求此双曲线的方程.分析 切点为 P(3,- 1) 的圆 x 2+ y 2= 10 的切线方程是 3x - y = 10. ∵双曲线的一条渐近线与此切线平行,且双曲线对于两坐标轴对称, ∴两渐近线方程为 3x ±y = 0.设所求双曲线方程为 9x 2- y 2= λ(λ≠ 0).∵点 P(3,- 1)在双曲线上,代入上式可得λ= 80,x 2 y 2∴所求的双曲线方程为80-80=1.9。
艺术生高考数学专题讲义:考点22 一元二次不等式与简单的分式不等式的解法
![艺术生高考数学专题讲义:考点22 一元二次不等式与简单的分式不等式的解法](https://img.taocdn.com/s3/m/bbcb19c42af90242a995e5aa.png)
A. ( -∞,32 ) ∪ (2,+∞)
B. R
C.
(
3 2
,2)
D. ∅
【题型练1-2】(2015 江苏 ) 不等式 2x2 - x < 4 的解集为 ________.
【题型练1-3】不等式 -3 < 4x - 4x2 ≤ 0 的解集为 ________.
(
)
【题型练1-4】(2015 广东文 ) 不等式 -x2 - 3x + 4 > 0 的解集为 ________( 用区间表示 ).
【题型练3-6】若不等式 ax2 + bx + c > 0 的解集是 ( -4,1),则不等式 b(x2 - 1) + a(x + 3) + c > 0 的解集为 .
题型四 一元二次不等式恒成立问题 角度 1 形如 f(x) ≥ 0( f(x) ≤ 0),x ∈ R 确定参数的范围 例4. 若不等式 mx2 - 2x - 1 < 0 恒成立,则 m 的取值范围是 ________.
题型三 一元二次不等式与一元二次方程根之间关系问题 例3. 关于 x 的不等式 x2 + (a + 1)x + ab > 0 的解集是 {x|x <-1 或 x > 4},则 a + b = ________.
方法总结 解决这类习题关键是理解三个二次之间的关系,一元二次函数与 x 轴交点的横坐标即为对应一 元二次方程的根,利用一元二次方程的根,结合函数图象就可以求出对应一元二次不等式.因此反过
f (x) g(x)
≥
0⇔
fg((xx))·≠g(x0),≥ 0,,
f (x) g(x)
高考艺术生数学知识点资料
![高考艺术生数学知识点资料](https://img.taocdn.com/s3/m/435dd5337dd184254b35eefdc8d376eeaeaa17d6.png)
高考艺术生数学知识点资料数学作为一门科学,不仅仅在于解决实际问题,它还涵盖了丰富的艺术性和美感。
对于高考艺术生来说,数学知识点的掌握是备战高考的必备技能之一。
本文将分享一些重要的数学知识点,旨在帮助艺术生们提高数学成绩。
一、平面几何平面几何是数学的重要组成部分,艺术生需要熟悉平面几何中的基本概念和定理。
例如,平面几何的基本元素包括点、线和面;平行线的性质,如平行线的定义、平行线的判定以及平行线的性质等。
二、三角函数三角函数是高考数学中的重点内容之一。
对于艺术生来说,熟练掌握三角函数的定义、性质以及应用是非常重要的。
例如,艺术生需要掌握正弦函数、余弦函数和正切函数的定义及其主要性质;熟练掌握三角函数的图像变换,如周期性、对称性等。
三、立体几何立体几何是另一个需要艺术生掌握的数学知识点。
立体几何涉及到平面、直线和空间的相互关系,艺术生需要了解立体几何的基本概念和定理。
例如,了解圆柱体、圆锥体、球体的定义以及它们的性质;了解立体的体积和表面积的计算方法。
四、数列与数学归纳法数列与数学归纳法是数学中的基本概念和重要工具。
艺术生需要了解数列的定义、数列的通项公式以及递推关系。
同时,数学归纳法是解决数学问题的重要工具,艺术生需要理解数学归纳法的原理和基本步骤。
五、概率与统计概率与统计是数学的实际应用领域,对于艺术生来说,了解概率与统计的基本概念和技巧是必要的。
例如,艺术生需要了解事件的概率定义、事件的互斥性和独立性;掌握统计图表的制作和解读,如直方图、折线图等。
六、函数与方程函数与方程是高中阶段数学的核心内容。
艺术生需要熟练掌握函数与方程的基本概念和运算法则。
例如,艺术生需要了解函数的定义和性质,如函数的奇偶性、单调性等;掌握方程的解的求解方法,如一元一次方程、一元二次方程等。
七、数学建模数学建模是高考数学中的重要内容,也是艺术生在数学学科中发挥艺术才能的重要阶段。
艺术生需要了解数学建模的基本概念和步骤,掌握数学建模的解题思路和方法。
黑龙江艺术生高考数学复习资料-1集合基础
![黑龙江艺术生高考数学复习资料-1集合基础](https://img.taocdn.com/s3/m/a88c09ee19e8b8f67c1cb915.png)
一、集合与简易逻辑:一、理解集合中的有关概念(1)集合中元素的特征: , , 。
(2)集合与元素的关系用符号 , 表示。
(3)常用数集的符号表示:自然数集 ;正整数集 、 ;整数集 ;有理数集 、实数集 。
(4)集合的表示法: , , 。
注意:区分集合中元素的形式:如:}12|{2++==x x y x A ;}12|{2++==x x y y B ;}12|),{(2++==x x y y x C }12|{2++==x x x x D ;},,12|),{(2Z y Z x x x y y x E ∈∈++==; }12|)',{(2++==x x y y x F ;},12|{2xy z x x y z G =++== (5)空集是指不含任何元素的集合。
(}0{、φ和}{φ的区别;0与三者间的关系) 空集是任何集合的子集,是任何非空集合的真子集。
注意:条件为B A ⊆,在讨论的时候不要遗忘了φ=A 的情况。
如:}012|{2=--=x ax x A ,如果φ=+R A ,求a 的取值。
二、集合间的关系及其运算(1)符号“∉∈,”是表示元素与集合之间关系的,立体几何中的体现 点与直线(面)的关系 ;符号“⊄⊂,”是表示集合与集合之间关系的,立体几何中的体现 面与直线(面)的关系 。
(2)_}__________{_________=B A ;____}__________{_________=B A ; _}__________{_________=A C U(3)对于任意集合B A ,,则:①A B B A ___;A B B A ___;B A B A ___;②⇔=A B A ;⇔=A B A ;⇔=U B A C U ;⇔=φB A C U ;③=B C A C U U ; )(B A C U =;(4)①若n 为偶数,则=n ;若n 为奇数,则=n ;②若n 被3除余0,则=n ;若n 被3除余1,则=n ;若n 被3除余2,则=n ;三、集合中元素的个数的计算:(1)若集合A 中有n 个元素,则集合A 的所有不同的子集个数为_________,所有真子集的个数是__________,所有非空真子集的个数是 。
2024年高三艺术生数学教学计划(精选6篇)
![2024年高三艺术生数学教学计划(精选6篇)](https://img.taocdn.com/s3/m/87f9425d4531b90d6c85ec3a87c24028905f8561.png)
2024年高三艺术生数学教学计划(精选6篇)高三艺术生数学教学计划1一、指导思想和教学目标以现代教育理论,教学大纲和考纲为指导,全面贯彻党的教育方针,深化教育改革,积极实施和推进素质教育。
不仅使学生掌握高中数学基础知识与能力,而且要全方位培养学生的创新意识,创新精神,创新能力和实践能力,争取本学年我校高三数学教学上新台阶。
二、教学计划与要求本学期为专题复习与综合考试相结合。
要精选专题,紧扣高考内容,抓紧高考热点与重点,授课时脚踏实地,讲透内容;通过测评,查漏补缺,既提高解决综合题的分析与解题能力,又能调适心理,使学生进入一个良好的心理和竞技状态三、教材分析本学期教材:高中全部必修、选修教材。
教辅资料:《名师一号专题复习大考卷》及衡水二轮复习资料.高考要求1、高考对数学的考查以知识为载体,着重考察学生的逻辑思维能力、运算能力、空间想象能力、运用数学思想方法分析问题解决问题的能力。
2、重视数学思想方法的考查,重点考查转化思想、数形结合思想、分类讨论思想、函数与方程思想。
高考数学实体的设计是以考查数学思想为主线,在知识的交汇点设计试题。
3、高考试题注重区分度,同一试题,大多没有繁杂的运算,且解法较多,不同层次的学生有不同的解法。
4、注重应用题的考查,20XX年文科试题应用有3道题,共28分。
5、注重学生创新意识的考查,注重学生创造能力的考查。
四、学情分析三班共有学生39人,四班共有学生37人。
学生基本属于知识型,相当多的同学对基础知识掌握较差,学习习惯不太好,两班学习数学的气氛不太浓,学习不够刻苦,各班都有少数尖子生,但是每个班两极分化非常严重,差生面特别广,很多学生从基础知识到学习能力都有待培养,辅差任务非常重,目前形势非常严峻。
五、具体方法措施1、进一步转变教育观念,真正做到面向全体学生,尊重学生的身心发展规律。
不能因为是复习阶段而“满堂灌”,惟恐学生吃不饱,欲速则不达。
在教学过程中处理好几个矛盾:一是讲和练的统一;二是量和内容的整合;三是自我探究和他人帮助的协调。
艺术生高考数学专题讲义:考点21 不等关系与不等式
![艺术生高考数学专题讲义:考点21 不等关系与不等式](https://img.taocdn.com/s3/m/dfc76f33b307e87100f69658.png)
考点二十一 不等关系与不等式知识梳理1.不等式在现实世界和日常生活中,既有相等关系,又存在着形形色色的不等关系,它们都是客观存在的基本数量关系,是数学研究的重要内容.在数学中,我们用不等式表示不等关系.不等式的定义:用数学符号“≠”、“>”、“<”、“≥”、“≤”连接两个实数或代数式,以表示它们之间的不等关系.含有这些不等号的式子,叫做不等式.注意:“a ≥b ”是指“a >b 或a =b ”,等价说法是“a 不小于b ”,对于“a ≥b ”而言,只要a >b 和a =b 中有一个成立,a ≥b 就成立,例如:3≥2,2≥2等都是真命题.同理,“a ≤b ”是指“a <b 或a =b ”,等价说法是“a 不大于b ”,只要a <b 和a =b 中只要有一个成立,a ≤b 就成立. 2.同向不等式我们把a >b 和c >d (或a <b 和c <d )这类不等号方向相同的不等式,叫做同向不等式. 3.实数比较大小的两大法则:作差比较和作商比较法关系法则作差比较 作商比较a >b a -b >0 a b >1(a ,b >0)或ab<1(a ,b <0) a =b a -b =0 ab=1(b ≠0) a <ba -b <0a b <1(a ,b >0)或ab>1(a ,b <0) 注意:作商比较时要分清所研究变两个变量的正负,然后根据“若a b >1,b >0,则a >b ;若ab >1,b <0则a <b )”的原则进行判断. 4.不等式的基本性质 (1)对称性:a >b ⇔b <a . (2)传递性:a >b ,b >c ⇒a >c . (3)可加性:a >b ⇒a +c >b +c .(4)可乘性:a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc . (5)加法法则:a >b ,c >d ⇒a +c >b +d . (6)乘法法则:a >b >0,c >d >0⇒ac >bd . (7)乘方法则:a >b >0⇒a n >b n (n ∈N ,n ≥2). (8)开方法则:a >b >0⇒n a >nb (n ∈N ,n ≥2). 5.不等式的倒数性质(1)a >b ,ab >0⇒1a <1b .(2)a <0<b ⇒1a <1b .(3)a >b >0,0<c <d ⇒a c >bd.注意:(1)在应用传递性时,注意等号是否传递下去,如果两个不等式中有一个带等号而另一个不带等号,那么等号是传递不过去的.如a ≤b ,b <c ⇒a <c ;(2)在乘法法则中,要特别注意“乘数c 的符号”,例如当c ≠0时,有a >b ⇒ac 2>bc 2;若无c ≠0这个条件,a >b ⇒ac 2>bc 2就是错误结论(当c =0时,取“=”).典例剖析题型一 不等关系例1 某汽车公司因发展需要需购进一批汽车,计划使用不超过1 000万元的资金购买单价分别为40万元、90万元的A 型汽车和B 型汽车,根据需要,A 型汽车至少买5辆,B 型汽车至少买6辆,写出满足上述所有不等关系的不等式.解析 设购买A 型汽车和B 型汽车分别为x 辆、y 辆, 则⎩⎪⎨⎪⎧40x +90y ≤1 000,x ≥5,y ≥6,x ,y ∈N *.即⎩⎪⎨⎪⎧4x +9y ≤100,x ≥5,y ≥6,x ,y ∈N *.变式训练 某校对高一美术生划定录取分数线,专业成绩x 不低于95分,文化课总分y 高于380分,体育成绩z 超过45分,用不等式(组)表示就是__________.(填序号)① ② ③ ④答案 ④解析 ∵x 不低于95分,∴ x ≥95. ∵y 是高于380分,∴y >380. ∵z 超过45分.∴z >45.解题要点 解题时关键是要弄懂“不超过”、“至少”、“不低于”、“超过”这些文字语言,它们与不等号的对应关系如下表:文字语言不超过,至多,小于等于不低于,至少,大于等于超过,大于,高于少于,小于,低于不等号 ≤ ≥ > <题型二 比较大小例2 比较下列各组中两个代数式的大小: (1)x 2+3与3x ; (2)x 1+x 2与12. 解析 (1)(x 2+3)-3x =x 2-3x +3=(x -32)2+34≥34>0,∴x 2+3>3x .(2) ∵x 1+x 2-12=2x -1-x 22(1+x 2)=-(x -1)22(1+x 2) ≤0,∴x 1+x 2≤12. 变式训练 已知x <1,试比较x 3-1与2x 2-2x 的大小. 解析 (x 3-1)-(2x 2-2x ) =(x -1)(x 2+x +1)-2x (x -1)=(x -1)(x 2-x +1)=(x -1)[(x -12)2+34],∵x <1,∴x -1<0.又(x -12)2+34>0,∴(x -1)[(x -12)2+34]<0,∴x 3-1<2x 2-2x .解题要点 “作差比较法”的一般步骤为: (1)作差:对要比较大小的两个式子作差;(2)变形:对差式通过通分、因式分解、配方等手段进行变形; (3)判断符号:对变形后的结果结合题设条件判断出差的符号; (4)作出结论.题型三 不等式的性质例3 (2014·四川)若a >b >0,c <d <0,则一定有__________.(填序号) ① a c >bd②a c <b d ③a d >b c④a d <bc答案 ④解析 方法一:令a =3,b =2,c =-3,d =-2,则a c =-1,bd =-1,所以①,②错误;a d =-32,b c =-23,所以a d <bc ,所以③错误.故选④.方法二:因为c <d <0,所以-c >-d >0,所以1-d >1-c>0.又a >b >0,所以a -d >b -c,所以a d <bc .故选④.变式训练 设a ,b 是非零实数,若a <b ,则下列不等式成立的是__________.(填序号) ① a 2<b 2 ②ab 2<a 2b ③1ab 2<1a 2b④b a <ab答案 ③解析 当a <0时,a 2<b 2不一定成立,故①错. 因为ab 2-a 2b =ab (b -a ),b -a >0,ab 符号不确定, 所以ab 2与a 2b 的大小不能确定,故②错. 因为1ab 2-1a 2b =a -ba 2b 2<0,所以1ab 2<1a 2b ,故③正确.④项中b a 与ab的大小不能确定.解题要点 在利用不等式的性质比较不等式时,如果可以赋值,就用赋值法,这样可使问题快速得解;如果赋值不能排除,则应通过推理判断,结合不等式的性质作出判断. 题型三 不等式的性质的应用例4 设α∈⎝⎛⎭⎫0,π2,β∈⎣⎡⎦⎤0,π2,那么2α-β3的取值范围是__________. 答案 ⎝⎛⎭⎫-π6,π 解析 由题设得0<2α<π,0≤β3≤π6,∴-π6≤-β3≤0,∴-π6<2α-β3<π.变式训练 若α,β满足⎩⎪⎨⎪⎧-1≤α+β≤1,1≤α+2β≤3,则α+3β的取值范围为________.答案 [1,7]解析 设α+3β=x (α+β)+y (α+2β)=(x +y )α+(x +2y )β.则⎩⎪⎨⎪⎧x +y =1,x +2y =3,解得⎩⎪⎨⎪⎧x =-1,y =2. ∵-1≤-(α+β)≤1,2≤2(α+2β)≤6, 两式相加,得1≤α+3β≤7. ∴α+3β的取值范围是[1,7].解题要点 在利用同向不等式相加求解表达式范围时,一般可用待定系数法.注意,如果多次利用不等式有可能扩大变量取值范围.当堂练习1.若a 、b 为实数,则“0<ab <1”是“b <1a”的__________条件.答案 既不充分也不必要解析 若0<ab <1,当a <0时,b >1a ,反之,若b <1a ,当a <0时,ab >1.故为既不充分也不必要条件.2.已知a <0,-1<b <0,那么下列不等式成立的是__________.(填序号) ① a >ab >ab 2 ② ab 2>ab >a ③ ab >a >ab 2 ④ ab >ab 2>a 答案 ④解析 ∵a <0,-1<b <0,∴ab 2-a =a (b 2-1)>0,ab -ab 2=ab (1-b )>0. ∴ab >ab 2>a .也可利用特殊值法,取a =-2,b =-12,则ab 2=-12,ab =1,从而ab >ab 2>a .故应选④.3. 设a ,b ,c ∈R ,且a >b ,则__________.(填序号) ① ac >bc ② 1a <1b ③ a 2>b 2 ④ a 3>b 3答案 ④解析 ①项中,若c 小于等于0则不成立;②项中,若a 为正数b 为负数则不成立;③项中,若a ,b 均为负数则不成立.故选④.4.若角α,β满足-π2<α<β<π,则α-β的取值范围是__________.答案 (-3π2,0)解析 ∵-π2<α<β<π,∴-π2<α<π,-π<-β<π2,∴-3π2<α-β<3π2,又α-β<0, ∴-3π2<α-β<0.5.若a 、b ∈R ,则下列不等式:①a 2+3>2a ;②a 2+b 2≥2(a -b -1);③a 5+b 5>a 3b 2+a 2b 3;④a +1a ≥2中一定成立的是__________.(填序号) 答案 ①②解析 ①a 2-2a +3=(a -1)2+2>0; ②a 2+b 2-2a +2b +2=(a -1)2+(b +1)2≥0;③a 5-a 3b 2+b 5-a 2b 3=a 3(a 2-b 2)+b 3(b 2-a 2)=(a 2-b 2)(a 3-b 3)=(a +b )(a -b )2(a 2+ab +b 2),若a =b ,则上式=0,不成立; ④若a <0,则a +1a <0.∴①②一定成立.课后作业一、 填空题1.设a ,b ∈R ,若b -|a |>0,则下列不等式中正确的是__________.(填序号) ①a -b >0 ② a +b >0 ③ a 2-b 2>0 ④ a 3+b 3<0 答案 ②解析 由b >|a |,可得-b <a <b .由a <b ,可得a -b <0,所以选项①错误.由-b <a ,可得a +b >0,所以选项②正确.由b >|a |,两边平方得b 2>a 2,则a 2-b 2<0,所以选项③错误,由-b <a ,可得-b 3<a 3,则a 3+b 3>0,所以选项④错误.2.设a <b <0,则下列不等式中不成立的是__________.(填序号) ①1a >1b ②1a -b >1a ③|a |>-b ④-a >-b 答案 ②解析 由题设得a <a -b <0,所以有1a -b <1a 成立,即1a -b >1a 不成立.3.若a >b >0,则下列不等式中一定成立的是__________.(填序号) ①a +1b >b +1a ②b a >b +1a +1 ③a -1b >b -1a ④2a +b a +2b >a b答案 ①解析 ∵a >b >0,∴1b >1a >0,∴a +1b >b +1a,选①项.4.设a ,b ∈R ,则“(a -b )·a 2<0”是“a <b ”的__________条件. 答案 充分而不必要解析 若(a -b )·a 2<0,则a ≠0,且a <b ,所以充分性成立;若a <b ,则a -b <0,当a =0时,(a -b )·a 2=0,所以必要性不成立.故“(a -b )·a 2<0”是“a <b ”的充分而不必要条件. 5.若a 、b 、c 为实数,则下列命题正确的是__________.(填序号) ①若a >b ,c >d ,则ac >bd ②若a <b <0,则a 2>ab >b 2 ③若a <b <0,则1a <1b ④若a <b <0,则b a >ab答案 ②解析 对于①,只有当a >b >0,c >d >0时,不等式才成立;③中由a <b <0,得1a >1b ,故③不正确,又b a -a b =b 2-a 2ba =(b +a )(b -a )ab ,又a <b <0,∴(b +a )(b -a )ab <0,∴b a <ab ,故④不正确;对于②,∵a <b <0,∴a 2>ab >b 2,故选②. 6.若a ,b ∈R ,下列命题中①若|a |>b ,则a 2>b 2; ②若a 2>b 2,则|a |>b ; ③若a >|b |,则a 2>b 2; ④若a 2>b 2,则a >|b |. 其中正确的是__________.(填序号) 答案 ②和③解析 条件|a |>b ,不能保证b 是正数,条件a >|b |可保证a 是正数, 故①不正确,③正确.a 2>b 2⇒|a |>|b |≥b ,故②正确,④不正确.7.已知a ,b ,c 满足c <b <a 且ac <0,则下列选项中不一定能成立的是__________.(填序号) ①c a <b a ②b -a c >0 ③b 2c <a 2c ④a -c ac <0 答案 ③解析 ∵c <b <a ,且ac <0,∴c <0,a >0,∴c a <b a ,b -a c >0,a -c ac <0,但b 2与a 2的关系不确定,故b 2c <a 2c不一定成立.选③项. 8.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是__________.(填序号) ①a 2>b 2 ②a |c |>b |c | ③1a <1b ④a c 2+1>bc 2+1答案 ④解析 方法一:(特殊值法)令a =1,b =-2,c =0,代入①,②,③,④中,可知①,②,③均错,故选④. 方法二:(直接法)∵a >b ,c 2+1>0,∴a c 2+1>bc 2+1,故选④.9.若a >b >c ,则1b -c 与1a -c的大小关系为________. 答案1a -c <1b -c解析 ∵a >b >c ,∴a -c >b -c >0,∴1a -c <1b -c.10.现给出三个不等式:①a 2+1>2a ;②a 2+b 2>2a -b -32;③7+10>3+14.其中恒成立的不等式共有________个. 答案 2解析 ①∵a 2+1-2a =(a -1)2≥0,故①不恒成立; ②a 2+b 2-2a +2b +3=(a -1)2+(b +1)2+1>0, ∴a 2+b 2>2a -b -32恒成立;③∵(7+10)2=17+270,(3+14)2=17+242, 又∵70>42, ∴17+270>17+242, ∴7+10>3+14,成立.11.若x >y ,a >b ,则在 ①a -x >b -y ,②a +x >b +y ,③ax >by ,④x -b >y -a ,⑤a y >bx 这五个式子中,恒成立的不等式的序号是__________.(写出所有恒成立的不等式的序号). 答案 ②④解析 令x =-2,y =-3,a =3,b =2, 符合题设条件x >y ,a >b ,∵a -x =3-(-2)=5,b -y =2-(-3)=5, ∴a -x =b -y ,因此①不成立. 又∵ax =-6,by =-6, ∴ax =by ,因此③也不正确. 又∵a y =3-3=-1,b x =2-2=-1,∴a y =bx,因此⑤不正确. 由不等式的性质可推 出②④成立. 二、解答题12.已知某学生共有10元钱,打算购买单价分别为0.6元和 0.7元的铅笔和练习本,根据需要,铅笔至少买7枝,练习本至少买6本.写出满足条件的不等式. 解析 设铅笔买x 枝,练习本买y 本(x ,y ∈N *),总钱数为 0.6x +0.7y ,且不大于10,∴⎩⎪⎨⎪⎧0.6x +0.7y ≤10,x ≥7,x ∈N *,y ≥6,y ∈N *.13.设x =(a +3)(a -5),y =(a +2)(a -4),试比较x 与y 的大小. 解析 ∵x -y =a 2+3a -5a -15-a 2-2a +4a +8=-7<0,∴x <y .。
艺术生高考数学--数列
![艺术生高考数学--数列](https://img.taocdn.com/s3/m/b638851bc5da50e2524d7f71.png)
高三第二轮复习专题四---------数列基本知识点一,数列的概念1、数列定义: .一般形式:1a ,2a ,3a ,…,n a ,…,简记作: .2、通项公式的定义:如果数列}{n a 的第n 项n a 与 之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式。
3、递推公式定义:如果已知数列{}n a 的第1项(或前几项),且 间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。
4、数列{n a }的前n 项和n S 与通项n a 的关系:11(1)(2)n nn S n a S S n -=⎧=⎨-⎩≥ 二,等差数列知识点1、等差数列定义:一般地,如果一个数列从 起,每一项与它的前一项的 等于同一个 ,那么这个数列就叫等差数列,这个常数叫做等差数列的 ,它通常用字母d 表示。
用递推公式表示为:1(2)n n a a d n --=≥或1(1)n n a a d n +-=≥.2、通项公式: ,可以看成关于n 的一次函数。
说明:等差数列的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列。
3、等差中项的概念:如果a ,A ,b ,那么A 叫做a 与b 的等差中项,其中2a b A +=。
即:a ,A ,b 成等差数列⇔2a b A +=或2A=a+b 。
4、等差数列的前n 和的求和公式: = ,可以看成关于n 的无常数项的二次函数。
5、等差数列的性质:(粗体为重要性质)(1)在等差数列{}n a 中,对任意m ,n N +∈,()n m a a n m d =+-,n m a a d n m-=-()m n ≠; (2)在等差数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则 ;(3)n S 是等差数列{}n a 的前n 项和,*N k ∈,则k S , ,k k S S 23-……成等差数列。
(4)若项数为偶数,设共有2n 项,则①S 奇-S 偶nd =; ② 1n n S a S a +=奇偶; (5)若项数为奇数,设共有21n -项,则①S 偶-S 奇n a a ==中;②1S n S n =-奇偶。
艺术生高考数学复习资料.大纲人教版
![艺术生高考数学复习资料.大纲人教版](https://img.taocdn.com/s3/m/5691b029443610661ed9ad51f01dc281e53a56eb.png)
艺术生高考数学复习资料1、1、1任意角一、【学习目标】1、将00—3600的角推广到任意角;2、理解任意角、象限角、终边相同的角的概念和含义;3、理解象限角集合、终边相同角集合、轴线角集合.<1>什么是角?角是怎么定义的?结论:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. 如图所示,一条射线的端点是O,它从起始位置OA按逆时针方向旋转到终止位置OB,形成一个角∠α,射线OA、OB分别是角α的始边和终边.注意:为了简单起见,在不引起混淆的前提下,∠α可以简记为α.<2>什么是正角?什么是负角?什么是零度角?结论:按逆时针方向旋转形成的角是正角.按顺时针方向旋转所形成的角叫负角.一条射线没有做任何旋转,我们称为零角.<3>什么是任意角?结论:这样,我们把角分为了正角、负角、零度角,我们就把角的概念推广到了任意角. 如图所示.图1中的角是一个正角,它等于750;图2中的正角为2100,负角为-1500,-6600.<1>什么是象限角?结论:我们常在直角坐标系内讨论角,为了讨论问题方便,我们使角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么,角的终边在第几象限,我们就说这个角是第几象限角.例如,图中的300角、-1200角分别是第一象限角和第三象限角.<2>将角按照上述方法放在直角坐标系中,给定一个角,就有唯一的一条终边与之对应.反之,对于直角坐标系内任意一条射线OB,以它为终边的角是否唯一?如果不唯一,那么终边相同的角有什么关系?(终边相同的角.)结论:不难发现,在图中,如果-320的终边是OB,那么3280,-3920……角的终边都是OB,并且与-32角终边相同的这些角都可以表示成-32的角与k个(k∈Z)周角的和,如3280=-320+3600(这里k=1),-3920=-320-3600(这里k=-1).设S={β|β=-32+k360,k∈Z },则3280,-3920都是S的元素,-320也是S 的元素,这里k=0.因此所有与-320角终边相同的角,连同-320在内,都是集合S的元素;反过来,集合S的任一元素显然与-320角终边相同.一般地,我们有:所有与角α终边相同的角,连同角α在内,可构成一个集合:S={β|β=α+k3600,k∈Z },即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.注意:①α为任意角;②k3600与α之间是“+”号,k3600-α可以理解为k3600+(-α).③相等的角,终边一定相同;终边相同的角不一定相等,中边相同的角有无数个,它们相差3600的整数倍;④k∈Z这一条件必不可少.练习一:教材例1、例2、例3例1.例1、在0360︒︒~X 围内,找出与95012'︒-角终边相同的角,并判定它是第几象限角.(注:0360︒︒-是指0360β︒︒≤<)例2、写出终边在y 轴上的角的集合.例3、写出终边直线在y x =上的角的集合S ,并把S 中适合不等式360α︒-≤720︒<的元素β写出来.练习二:教材第5页练习(1)、(2)(1)(口答)锐角是第几象限角?第一象限角一定是锐角吗?再分别就直角、钝角来回答这两个问题.(2)(回答)今天是星期三那么7()k k Z ∈天后的那一天是星期几?7()k k Z ∈天前的那一天是星期几?100天后的那一天是星期几?练习三:教材第5页练习(3)、(4)、(5). 【教学效果】:理解象限角、轴线角的概念. 3、知识点引申 <1>象限角集合第一象限角的集合为:{x|k3600<x<k3600+900,k ∈Z}; 第二象限角的集合为:{x|k3600+900<x<k3600+1800,k ∈Z} 第三象限角的集合为:{x|k3600+1800<x<k3600+2700,k ∈Z} 第四象限角的集合为:{x|k3600+2700<x<k3600+3600,k ∈Z} <2>轴线角的集合终边落在x 轴的非负半轴上的角的集合为{x|x=k3600,k ∈Z} 终边落在x 轴的非正半轴上的角的集合为{x|x=k3600+1800,k ∈Z} 终边落在x 轴上的角的集合为{x|x=k1800,k ∈Z}终边落在y 轴的非负半轴上的角的集合为{x|x=k3600+900,k ∈Z} 终边落在y 轴的非正半轴上的角的集合为{x|x=k3600—900,k ∈Z} 终边落在y 轴上的角的集合为{x|x=k1800+900,k ∈Z}【教学效果】:理解轴线角、象限角的集合,对以后的学习是很有用的.1、1、2弧度制一、【学习目标】1、理解弧度的概念,会熟练的进行角度与弧度的转换;2、能用弧度表示终边相同角的角;3、熟记并能熟练应用弧长公式、扇形面积公式. <1>什么叫角度制,请简要复述之.结论:角度制规定:将一个圆周分成360份,每一份叫做1度,故一周等于360度,平角等于180度,直角等于90度等等. <2>什么叫做弧度制,请简要复述之.结论:长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad ,或1弧度,或1(单位可以省略不写).如图所示:<3>半径为r 的圆的圆心与圆点重合,角α的始边与x 轴的非负半轴重合,交圆于点A ,终边与圆交于点B.请在下列表格中 填空.结论:我们知道,角有正负零角之分,它的弧度数也应该有正负零之分,如-π,-2π等等,一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定.<4>如果一个半径为r 的圆的圆心角α所对的弧长是l ,那么a 的弧度数是多少?结论:角α的弧度数的绝对值是:r l /=α,其中,l 是圆心角所对的弧长,r 是半径. 角的正负主要由角的旋转方向来决定 <5>熟记下列特殊角的弧度数:00,300,450,600,900,1200,1350,1500,1800,2100,2250,2400,2700,3000,3150,3300,3600 结论:角的概念推广以后,在弧度制下,角的集合与实数集R 之间建立了一一对应关系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.例1、按照下列要求,把'6730︒化成弧度:精确值;精确到0.001的近似值. 例2、将3.14rad 换算成角度(用度数表示,精确到0.001). 例4、利用计算器比较sin1.5和sin850的大小.注意:角度制与弧度制的换算主要抓住180rad π︒=,另外注意计算器计算非特殊角的方法.<6>利用弧度制证明下列关于扇形的公式:(1)l R α=; (2)20.5S R α=; (3)0.5S lR =.其中R 是半径,l 是弧长,(02)ααπ<<为圆心角,S 是扇形的面积. 训练题1、已知扇形的周长是6,面积是2,则扇形的中心角是多少?(2或4)2、已知扇形的周长为10cm ,面积为4cm 2,求扇形圆心角的弧度数.3、已知扇形的圆心角为72,半径等于200,求扇形的面积.4、与-15600终边相同的角的集合中,最小正角是多少?最大负角是多少?绝对值最小的角是多少?任意角的三角函数教学目的:1、 掌握任意角的正弦、余弦、正切的定义,;2、 掌握三角函数值的符号的确定方法;3、 记住三角函数的定义域、值域,诱导公式(一); 教学重点、难点重点:三角函数的定义,各三角函数值在每个象限的符号,特殊角的三角函数值难点:对三角函数的自变量的多值性的理解,三角函数的求值中符号的确定 教学过程: 一、复习引入:初中锐角的三角函数是如何定义的?在Rt △ABC 中,设A 对边为a ,B 对边为b ,C 对边为c ,锐角A 的正弦、余弦、正切依次为,,a b asinA cosA tanA c c b=== . 角推广后,这样的三角函数的定义不再适用,我们必须对三角函数重新定义。
黑龙江艺术生高考数学复习资料-4向量基础
![黑龙江艺术生高考数学复习资料-4向量基础](https://img.taocdn.com/s3/m/e1164fd3195f312b3169a515.png)
三、平面向量1.基本概念:向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。
2. 加法与减法的代数运算:(1)n n n A A A A A A A A 113221=+++- .(2)若a =(11,y x ),b =(22,y x )则a ±b =(2121,y y x x ±±). 向量加法与减法的几何表示:平行四边形法则、三角形法则。
以向量AB =a 、AD =b 为邻边作平行四边形ABCD ,则两条对角线的向量AC =a +b ,=b -a ,=a -b且有︱︱-︱︱≤︱±︱≤︱︱+︱︱.向量加法有如下规律:+=+(交换律); +(+c )=(+ )+c (结合律); +0= +(-)=0.3.实数与向量的积:实数λ与向量a 的积是一个向量。
(1)︱λa ︱=︱λ︱·︱a ︱;(2) 当λ>0时,λ与的方向相同;当λ<0时,λ与的方向相反;当λ=0时,λ=0.(3)若=(11,y x ),则λ·=(11,y x λλ). 两个向量共线的充要条件:(1) 向量b 与非零向量a 共线的充要条件是有且仅有一个实数λ,使得b =λa . (2) 若=(11,y x ),b =(22,y x )则∥b 01221=-⇔y x y x . 平面向量基本定理:若e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数1λ,2λ,使得a =1λe 1+ 2λe 2.4.P 分有向线段21P P 所成的比:设P 1、P 2是直线l 上两个点,点P 是l 上不同于P 1、P 2的任意一点,则存在一个实数λ使P P 1=λ2P P ,λ叫做点P 分有向线段21P P 所成的比。
当点P 在线段21P P 上时,λ>0;当点P 在线段21P P 或12P 的延长线上时,λ<0; 分点坐标公式:若P P 1=λ2P P ;21,,P P P 的坐标分别为(11,y x ),(y x ,),(22,y x );则⎩⎨⎧++=++=λλλλ112121x x x y y y (λ≠-1), 中点坐标公式:⎩⎨⎧+=+=222121x x x y y y .5. 向量的数量积: (1)向量的夹角:已知两个非零向量与b ,作=, =b ,则∠AOB=θ (001800≤≤θ)叫做向量与b 的夹角。
高三艺术生数学知识点
![高三艺术生数学知识点](https://img.taocdn.com/s3/m/fe959e2cf4335a8102d276a20029bd64793e6255.png)
高三艺术生数学知识点在高三阶段,作为艺术生的学生们需要加强对数学知识点的掌握,以应对高考数学的考试要求。
以下是一些高三艺术生需要重点复习的数学知识点。
1. 高中数学基础知识回顾在开始复习高三数学知识点之前,艺术生需要回顾和巩固高中数学的基础知识,包括数列、函数、图形的性质、三角函数、概率等内容。
2. 复数与向量复数是艺术生需要重点关注的数学知识点之一,包括复数的定义、运算法则、共轭复数以及与实数的关系。
此外,向量也是需要掌握的重要内容,涉及向量的表示方法、运算法则、数量积和向量积等。
3. 函数与导数函数与导数是高考数学中的重点内容,艺术生需要重点关注函数的性质、图像与变化规律、三角函数的图像与性质。
同时,导数的概念、性质、常用函数的导数以及导数的应用也是需要掌握的内容。
4. 三角函数与解三角形艺术生需要熟悉三角函数的定义、性质、常用角的三角函数值以及三角函数的图像与变化规律。
此外,解三角形的方法、定理等也需要重点复习。
5. 数列与数学归纳法数列是高考数学中的常考点,艺术生需要熟悉数列的定义、性质、通项公式、数列的极限以及等差数列、等比数列等特殊数列的特点。
同时,数学归纳法作为证明数列等式的重要方法也需要掌握。
6. 概率与统计概率与统计是高考数学考试中的一大模块,艺术生需要掌握概率的基本概念、性质,包括事件的计算、概率的计算、条件概率以及排列组合等内容。
同时,统计学的基本概念、统计量的计算、直方图、折线图、频率分布表等图表的解读也需要重点复习。
7. 解析几何解析几何是高考数学中的难点之一,艺术生需要熟悉平面直角坐标系、曲线的方程与性质、直线与圆的相交情况、双曲线与抛物线等内容。
8. 数学证明数学证明是高考数学考试中的重要环节,艺术生需要掌握证明的基本方法与思路,包括直接证明、间接证明、递推证明、反证法等常用证明方法。
总之,高三艺术生在备战高考数学中,需要全面复习数学的基础知识,并重点关注复数与向量、函数与导数、三角函数与解三角形、数列与数学归纳法、概率与统计、解析几何以及数学证明等知识点。
2024年高三艺术班数学教学计划(精选篇)
![2024年高三艺术班数学教学计划(精选篇)](https://img.taocdn.com/s3/m/e002c7c6a1116c175f0e7cd184254b35effd1a72.png)
2024年高三艺术班数学教学计划(精选篇)高三艺术班数学教学计划 1一、指导思想高三数学教学要以《全日制普通高级中学教科书》以学生的发展为本,全面复习并落实基础知识、基本技能、基本数学思想和方法,为学生进一步学习打下坚实的基础。
要坚持以人为本,强化质量的意识,务实规范求创新,科学合作求发展。
二、教学建议1、认真学习《考试说明》,研究高考试题,把握高考新动向,有的放矢,提高复习课的效率。
及时把握高考新动向,理解高考对教学的导向,以利于我们准确地把握教学的重、难点,有针对性地选配例题,优化教学设计,提高我们的复习质量。
注意20xx年高考的导向:注重能力考查,能阅读、理解对问题进行陈述的材料;能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中的数学问题,并能用数学语言正确地加以表述;能选择有效的方法和手段对新颖的信息、情境和设问进行独立的思考与探究,使问题得到解决。
高考试题无论是小题还是大题,都从不同的角度,不同的层次体现出这种能力的要求和对教学的导向。
这就要求我们在日常教学的每一个环节都要有目的地关注学生能力培养,真正提高学生的数学素养。
2、充分调动学生学习积极性,增强学生学习的自信心。
尊重学生的身心发展规律,做好高三复习的动员工作,调动学生学习积极性,因材施教,帮助学生树立学习的自信性。
3、注重学法指导,提高学生学习效率。
教师要针对学生的具体情况,进行复习的学法指导,使学生养成良好的学习习惯,提高复习的效率,让学生养成反思的习惯;养成学生善于结合图形直观思维的习惯;养成学生表述规范,按照解答题的必要步骤和书写格式答题的习惯等。
4、高度重视基础知识、基本技能和基本方法的复习。
要重视基础知识、基本技能和基本方法的落实,守住底线,这是复习的基本要求。
为此教师要了解学生,准确定位。
精选、精编例题、习题,强调基础性、典型性,注意参考教材内容和考试说明的范围和要求,做到不偏、不漏、不怪,进行有针对性的训练。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1节 常见不等式及其解法1.一元一次不等式的解法不等式ax >b (a ≠0)的解集为:当a >0时,解集为{x |x >b a }.当a <0时,解集为{x |x <b a}.Δ>0 Δ=0 Δ<0x 的情形,以便确定解集的形式.解集是解的集合,故一元二次不等式的解集一定要写成集合或区间的形式!!解不等式(高中我们能遇到的所有不等式)的通用步骤:①解方程②画图像③写解集 例1.解下列不等式:(1)2x 2+7x +3>0; (2)x 2-4x -5≤0; (3)-4x 2+18x -814≥0;(4)-12x 2+3x -5>0;(5)-2x 2+3x -2<0;(6)已知关于x 的不等式x 2+ax +b <0的解集为{x |1<x <2},求关于x 的不等式bx 2+ax +1>0的解集.例2.解下列不等式: (1)x +23-x ≥0; (2)2x -13-4x>11.已知集合P ={x |x 2-x -2≤0},Q ={x |log 2(x -1)≤1},则(∁R P )∩Q =( )A .[2,3]B .(-∞,1]∪[3,+∞)C .(2,3]D .(-∞,-1]∪(3,+∞)2.设a >0,不等式-c <ax +b <c 的解集是{x |-2<x <1},则a ∶b ∶c =( )A .1∶2∶3B .2∶1∶3C .3∶1∶2D .3∶2∶1 3.(2013·高考卷)下列选项中,使不等式x <1x<x 2成立的x 的取值围是( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞)4.若不等式mx 2+2mx -4<2x 2+4x 对任意x 均成立,则实数m 的取值围是( )A .(-2,2]B .(-2,2)C .(-∞,-2)∪[2,+∞)D .(-∞,2] 5.解下列不等式214x +≥1213x <-<6.解下列方程组213211x y x y +=⎧⎨-=⎩2214x y x y +=⎧⎨+=⎩22112y x x y =+⎧⎪⎨+=⎪⎩第2节 高考数学中的运算——对数运算对数的概念 (1)对数的定义:如果a x=N (a >0且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数(真数必为正数).当a =10时叫常用对数,记作x =lg N ;当a =e 时叫自然对数,记作x =ln N .(2)对数的常用关系式(a ,b ,c ,d 均大于0且不等于1): ①log a 1=0.②log a a =1,m a ma =log③对数恒等式:alog aN=N .④换底公式:log a b =log c b log c a , 推广log a b =1log b alog a b ·log b c ·log c d =log a d .(3)对数的运算法则:如果a >0,且a ≠1,M >0,N >0,那么: ①log a (M ·N )=log a M +log a N ; ②log a MN=log a M -log a N ; ③log a M n=n log a M (n ∈R);④log a m M n=n mlog a M=1.化简下列各式: (1)14lg 23lg5lg 5+-(2)3lglg 70lg 37+-(3) 2lg 2lg5lg 201+⋅-(4) 25941log log 27log 123235-+2(15.)计算:22log 2=________,24log 3log 32+=________.若,则________.3.方程log (1-2x )=1的解x =_________. 计算log [log (log 81)]=_________.4.有下列五个等式,其中a>0且a≠1,x>0 , y>0,其中正确的是 . ①log ()log log a a a x y x y +=⋅, ②22log ()2(log log )a a a x y x y -=-③1log log log 2aa a x x y =-, ④log log log ()a a a x y x y ⋅=⋅第3节 高考数学中的运算——三角计算一.任意角 1.角的概念角可以看成平面一条射线绕着端点从一个位置旋转到另一个位置所成的图形.2.角的表示顶点:用O 表示;始边:用OA 表示,用语言可表示为起始位置; 终边:用OB 表示,用语言可表示为终止位置.3.角的分类(1)正角:按 方向旋转形成的角;加一个角按 方向旋转. (2)负角:按 方向旋转形成的角;减一个角按 方向旋转. (3)零角:射线没有作任何旋转,称为形成一个零角.任意角大小比较: ,因此小于90°的角不一定是锐角…………4.象限角在直角坐标系中研究角时,当角的顶点与坐标原点重合,角的始边与x 轴的非负半轴重合时,角的终边在第几象限,就说这个角是第几象限角.如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.5.终边相同的角所有与角α终边相同的角,连同角α在,可构成一个集合S ={}β|β=α+k ·360°,k ∈Z ,即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.二.弧度制角度制用度作为度量单位来度量角的单位制叫做角度制,规定1度的角等于周角的1360弧度制 长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad 表示,读作弧度以弧度作为单位来度量角的单位制叫做弧度制2.任意角的弧度数与实数的对应关系正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0. 3.角的弧度数的计算如果半径为r 的圆的圆心角α所对弧的长为l ,那么,角α的弧度数的绝对值是|α|=lr. 扇形的面积公式:4.角度制与弧度制的换算 (1)角度化弧度 弧度化角度 360°=2π rad 2π rad=360° 180°=π rad π rad=180° 1°=πrad≈0.01745 rad 1 rad =(180)°≈57.30°三.任意角的三角函数1.任意角三角函数的定义将角的顶点与原点O 重合,始边与直角坐标系x 轴非负半轴重合,角的终边上任意取一点P (x ,y ),则对应角的正弦值sin α=22y x y +,余弦值cos α=22y x x + ,正切值tan α=xy,常记22y x r +=. 由此定义,求任意角的三角函数值可按以下步骤完成:常见特殊角三角函数值(利用两特殊直角三角形计算并记忆!)2.三角函数值的符号例1.根据下列条件求sin α,cos α,tan α.(1)α=-π3; (2)已知角α的终边经过点P (-3,4).(3)角α的终边经过点P (-4a,3a )(a ≠0),则sin α=________;(4)已知角α的终边过点P (5,a ),且tan α=-125,求sin α+cos α的值.2.α是第二象限角,P (x ,5)是其终边上一点,且cos α=24x ,则x 的值为( ) A . 3B .± 3C .- 3D .- 23.如果点P (sin θ+cos θ,sin θcos θ)位于第二象限,那么角θ所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限4.若角α是第二象限角,则点P (sin α,cos α)在第________象限.5.(2011·高考)已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________. 四.同角三角函数的基本关系式子成立,如sin 22α+cos 22α=1,tan 3α=sin 3αcos 3α都是成立的.2.两个公式常见变形(解题时可“知一求二”: ) sin 2α+cos 2α=1⇔sin 2α=1-cos 2α⇔cos 2α=1-sin 2α;tan α=sin αcos α⇔sin α=tanα·cos α.例1.已知tan α=43,且α是第三象限角(1)求sin α,cos α的值;(2)求6sin α-2cos α3sin α+5cos α的值.例2.(1)已知sin α-cos α=12,求sin αcos α的值.(2)已知0<α<π,sin α+cos α=15,求tan α的值.(3)已知α∈R ,sin α+2cos α=102求tan 2α.(4)已知3tan sin 2=⋅αα,求αα44cos sin +的值.五.三角函数的诱导公式诱导公式填空(1)公式一:sin(α+2k π)= , cos(α+2k π)= , tan(α+2k π)=[k ∈Z].(2)公式二:sin(π+α)= , cos(π+α)= , tan(π+α)= .(3)公式三:sin(-α)= , cos(-α)= , tan(-α)= .(4)公式四:sin(π-α)= , cos(π-α)= ,tan(π-α)= .(5)公式五:sin(π2-α)= , cos(π2-α)= , tan(π2-α)= .(6)公式六:sin(π2+α)= , cos(π2+α)= , t an(π2-α)= . 口诀记法:“奇变偶不变,符号看象限”例.已知f (α)=cos π2+α·cos 2π-α·sin -α+3π2sin -π-α·sin 3π2+α.(1)化简f (α);(2)若α是第三象限角,且cos(α-3π2)=15,求f (α)的值.1.已知sin(α-π4)=13,则cos(π4+α)的值等于( )A .223B .-233C .13D .-132.填正负号:)32sin(__)23sin(ππ-=-x x ,)32cos(__)23cos(ππ-=-x x ,)3tan(__)3tan(ππ-=-x x 第4节 正余弦定理解三角形:一般地,三角形的三个角A,B,C 和它们的三条对边a ,b ,c 叫做三角形的元素.已知三角形的几个元素求其它元素的过程叫作解三角形.2.三角形面积公式设△ABC 的三边分别为a 、b 、c ,所对的三个角分别为A 、B 、C ,其面积为S .(1)S =12ah (h 为BC 边上的高);(2)S =12absin C =12bcsin A =12acsinB (一般根据角选公式)重点考法:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.若转化为边边关系,一般通过因式分解、配方等得出边的相应关系,从而判断三角形的形状;若转化为角的三角函数间的关系,通过三角函数恒等变形,得出角的关系,从而判断出三角形的形状。