浅谈仿射变换在解决椭圆问题中的应用

合集下载

浅议仿射变换的应用

浅议仿射变换的应用

浅议仿射变换的应用作者:姚金江朱萌来源:《科技资讯》2017年第13期摘要:变换是一种重要的数学思想。

利用变换去解决问题往往可以达到事半功倍的效果。

仿射变换是几何学中的一个重要变换,是从运动变换向射影变换的重要手段。

根据仿射变换的性质,可以把特殊图形的重要结论直接推广到一般图形,达到复杂问题的简单化求解。

关键词:仿射变换仿射不变性单比中图分类号:TP391.41 文献标识码:A 文章编号:1672-3791(2017)05(a)-0156-02仿射变换是几何学中一个基本的变换,图形在变换中保持许多不变性质和不变量;这些不变性质与不变量为人们解决复杂几何问题提供了理论根据,仿射变换基本的不变性质与不变量有:同素性不变,即把直线变成直线、点变成点;平行性不变,即把平行直线变成平行直线;共线三点的单比不变,两个三点形的面积比不变。

结论1[1] 两个多边形的面积之比是仿射不变量。

结论2[1] 两个封闭图形的面积之比是仿射不变量。

根据以上性质我们得到:三角形变为三角形(正三角形或斜三角型)、圆变为椭圆、等腰梯形变为一般梯形等。

1 应用方法正三角形、等腰梯形、圆都是特殊的几何图形,有明显的几何性质;它们的某些性质可推广到一般图形中去,并可以利用相关结论解决实际几何问题。

例如正三角形3条中线把正三角形分成6个面积相等的小三角形,根据仿射性质知道,一般三角形也有这个结论。

对于任意的一个一般三角形,在适当的仿射变换下,它可以变为正三角形。

因此,我们要证明有关三角形的结论时,若题目中的条件都是图形的仿射性质或仿射不变量,那么我们只需要证明这个结论在正三角形中成立即可。

任意的一个平行四边形,经过合适的仿射变换,它可以转换为长方形或正方形。

因此要解决关于平行四边形的符合仿射性质或数量的结论时,可以考虑正方形,只要这个结论在正方形中成立,那么它在原平行四边形当中也成立,从而使解题过程变得简单。

一般梯形在仿射变换下能转化为等腰梯形。

仿射变换在椭圆中的应用—以2道高考试题为例

仿射变换在椭圆中的应用—以2道高考试题为例

仿射变换在椭圆中的应用—以2道高考试题为例发布时间:2021-08-18T10:53:56.857Z 来源:《教学与研究》2021年11期作者:马慧燕李三平[导读] 椭圆是高中圆锥曲线中的主要内容之一,在高中数学中占据重要的地位,同时也是高考的重要考点以及学生学习的重难点。

马慧燕李三平陕西师范大学数学与统计学院西安 710062摘要:椭圆是高中圆锥曲线中的主要内容之一,在高中数学中占据重要的地位,同时也是高考的重要考点以及学生学习的重难点。

本文主要通过仿射变换,来解决与椭圆相关直线斜率、面积等问题,发现应用仿射变换比常规的解析几何方法运算更加简便,最重要的是可以大大减少运算量,这为学生在考试或高考中,节省了一定的时间。

关键词:仿射变换高考椭圆应用1.仿射变换的定义[1]如果平面上的一个点变换,把共线的任意三点变成共线的三点,并且保持三点的单比不变,则可以称该点变换为仿射变换。

仿射变换是几何学中一个基本的变换,图形在变换中保持许多不变的性质和不变量。

其中包括:同素性不变,即把直线变成直线、点变成点;平行不变性是把平行直线变成平行直线。

一般地,在仿射平面上,仿射变换的代数表达式为注:下面两个性质可以根据上述代数表达式进行相关证明,但为了后面能更好地将仿射变换应用到椭圆的具体事例中,故直接采用椭圆的代数仿射表达式进行相关的证明,以便于读者更直观的理解和应用。

2.仿射变换的性质[1]仿射变换在椭圆中的应用,主要涉及直线的斜率、图形的面积等,故下面的研究都是基于椭圆和直线,它们的方程分别为:2.1椭圆的仿射变换像是圆证明:由方程(2.1)可作如下的仿射变换x1=x/a,y1=y/b。

椭圆方程变为:x21+y21=1,该方程是坐标为原点,半径为1的单位圆。

因此,通过仿射变换可以将椭圆变换为圆,同理,也可以将圆通过仿射变换转化为椭圆,这也是本节为什么将椭圆和仿射变换结合的目的。

2.2直线在仿射变换后还是直线证明:由上述仿射变换将直线方程变为y1=ak/b x1+1,因为所做的变换是非退化的,所以a,b均不为0,故上述方程还是一个直线方程。

射影几何在椭圆中的应用

射影几何在椭圆中的应用

射影几何在椭圆中的应用
亲爱的小伙伴们,今天就要开始每日一题的考前冲刺啦!今天我们的主题是解析几何,给大家的锦囊妙计是利用仿射变换解决解几难题。

今天小伙伴们可以先熟悉最简单的一类,在椭圆中的应用,即拉伸变换。

利用仿射变换,可以将椭圆的有关问题转化为圆的问题,从而可以借助圆当中的一些性质解决问题,而可以借助圆当中的一些性质解决问题,使问题的解决过程大大简化,在利用仿射变换解决相关问题时,主要利用以下几个性质:
性质1变换后共线三点单比不变(即变换后三点的两个线段的比值和变换前的比值一样).
性质2变换后保持同素性和接合性(即变换前直线与曲线若相切,变换后仍相切).
性质3变换前后对应图形的面积比不变.
好,先不用在意仿射变换的定义究竟如何,来一道题目给大家展示一下如何确切地使用它吧!
说明:如果不使用仿射变换,特别是第(2)问的解答进行一定向量坐标运算才得到k的值,但利用仿射变换,再结合圆中的垂径定理,则几乎没用代数运算就得到结论,运算量大幅度降低.
在这里,使用拉伸变换最重要的地方就在于转换坐标系的时候,比例系数有没有算对。

到底是拉长了,还是缩短了,一点在原坐标系下(对应椭圆)的坐标是什么,到了新坐标系下(对应单位圆)的坐标又是什么,是我们首先要搞清楚的答案。

最后,在单位圆中算得的结果,还要乘以相应的比例系数带回椭圆之中。

小伙伴们,这个变换,你听懂了么?
课后练习:
这道题解答明天公布噢~来解题吧少年少女们!。

基于仿射变换的椭圆若干性质的研究

基于仿射变换的椭圆若干性质的研究

基于仿射变换的椭圆若干性质的研究
本文主要研究以仿射变换为基础的椭圆的性质,探讨其在图像处理、几何分析、结构数学等领域中的应用,以期深入理解其特性和潜力。

:
仿射变换是一种用来将几何图形从一个空间移动到另一个空间的一种
变换方式。

因此,研究仿射变换下椭圆的若干性质是有必要的。

椭圆
是仿射变换下直线的曲线,它具有仿射性,当其中一系列参数改变时,它也将随之改变。

然而,椭圆也具有自身的具象属性,如长短轴比例、偏心率等,所以在仿射变换之后,这些特性也会产生影响。

此外,椭
圆的两个焦点的位置也会随着变换而改变,当椭圆受到压缩和拉伸等
转换时,也会改变其焦点的位置。

总之,基于仿射变换的椭圆若干性
质研究仍然是一个重要课题,它可以深入探究几何图形在空间移动过
程中的转变规律,从而为我们展示更完整的几何图形研究背景。

“化椭为圆”解决椭圆中的面积问题

“化椭为圆”解决椭圆中的面积问题

龙源期刊网
“化椭为圆”解决椭圆中的面积问题
作者:王旭光
来源:《广东教学报·教育综合》2019年第46期
【摘要】在仿射变换下,图形的一些性质不会发生变化。

如,同素性、结合性、平行性、面积比等。

本文通过仿射变换“化椭为圆”来解决椭圆中的一些面积问题,在椭圆的教学和学习过程中,许多问题只能用解析幾何的方法来解决,计算量往往比较大,技巧也比较多。

而在解决圆的某些问题时,往往利用一些性质来处理,过程简明很多。

通过仿射变换正好可以“化椭为圆”,将椭圆中的面积问题转化到圆中来处理。

【关键词】仿射变换;椭圆;圆;面积
参考文献:
[1]吐尔洪艾尔米丁.仿射变换在椭圆面积中的应用[J].新疆师范大学大学学报(自然科学版),2009(1):44.。

浅谈仿射变换在解决椭圆问题中的应用

浅谈仿射变换在解决椭圆问题中的应用

浅谈仿射变换在解决椭圆问题中的应用文[1]介绍了在解决椭圆的某些综合问题时,可以利用仿射变换的办法,把椭圆变换为圆来进行研究,会使得问题的解决过程变得简化.笔者也结合自身的教学与解题实践,通过几道例题,浅谈一下仿射变换在解决椭圆综合问题中的一些用法。

例1已知椭圆,为坐标原点,为椭圆右顶点,若椭圆上存在点(异于点),使得,则椭圆离心率的取值范围为________.分析此题中的点满足,即点在以为直径的圆上,也即椭圆与以为直径的圆有不同于点的公共点。

利用仿射变换将椭圆变换为圆,点变换为点,则点与点的纵坐标之比即为椭圆短半轴与长半轴之比.解作仿射变换,令,可得仿射坐标系,在此坐标系中,上述椭圆变换为圆,原坐标系中以为直径的圆的方程为,则,不难求得椭圆离心率.说明此题解法较多,用别的方法也不难求得本题的结果,但由上述过程我们看到,仿射变换也为我们提供了一种方便简洁的求解思路.例2已知椭圆,分别为椭圆左右焦点,过作两条互相平行的弦,分别与椭圆交于四点,若当两条弦垂直于轴时,点所形成的平行四边形面积最大,则椭圆离心率的取值范围为________.分析利用仿射变换将椭圆变换为圆,此时四点分别变换为四点,由仿射变换时变换前后对应图形的面积比不变这个性质,故将上述题目中的椭圆变换为圆时,四点所形成的平行四边形面积最大值仍在两条弦与轴垂直时取到,故只需研究在圆的一条直径上,取关于圆心对称的两点,当为多少时,能使得过的两条互相平行的弦与此直径垂直时刻,与圆的四个交点所形成的面积最大.解作仿射变换,令,可得仿射坐标系,在此坐标系中,上述椭圆变换为圆,点坐标分别为,过作两条平行的弦分别与圆交于四点.由平行四边形性质易知,三角形的面积为四点所形成的平行四边形面积的,故只需令三角形面积的最大值在弦与轴垂直时取到即可.由文[2]中的结论,易得当时,三角形面积的最大值在弦与轴垂直时取到.故此题离心率的取值范围为.说明此题的一般解法也较多,但按照常规解法则较为繁琐.而上述解法利用仿射变换把椭圆变换为圆后,由于圆中三角形面积的计算较为简便,故使得本题的解答过程大大简化。

仿射变换在椭圆中的应用

仿射变换在椭圆中的应用

仿射变换在椭圆中的应用仿射变换在椭圆中的应用仿射变换是一种将图像在平面上进行旋转、伸缩、平移和斜切等操作。

在计算机视觉和图像处理中,仿射变换被广泛应用于图像的几何变换和纹理映射等方面。

而在椭圆方面,仿射变换也有着广泛的应用。

一、椭圆的表示椭圆通常用以下标准方程进行表示:aa2+aa2=1其中,a为椭圆长轴的一半,b为椭圆短轴的一半。

通常情况下,我们可以将椭圆沿着x轴旋转一个角度θ来表示,得到以下方程:(aaaaa+aaaaa)2a2+(−aaaaa+aaaaa)2a2=1二、椭圆的仿射变换对于椭圆的仿射变换,我们首先需要明确仿射变换的定义:仿射变换是指保持两条直线的交点和两线段比例不变的线性变换。

对于椭圆的仿射变换,我们可以通过将椭圆变换为单位圆,进行仿射变换后再变回原椭圆来实现。

例如,我们要将一椭圆沿着任意角度旋转,我们可以通过矩阵运算进行仿射变换,即:变换前:(aaaaa+aaaaa)2a2+(−aaaaa+aaaaa)2a2=1 变换后:[a′a′][a′a′]=a[aa]其中,M为2x2的矩阵,其表示旋转和缩放的变换,a’和b’为旋转后的长轴和短轴。

三、椭圆的应用1. 物体跟踪物体跟踪是指在视频中跟踪物体的位置和运动轨迹。

在物体跟踪中,椭圆被广泛应用于表示物体的位置和姿态。

通过椭圆的长轴和短轴可以确定物体的大小和方向,在跟踪过程中可以根据椭圆的变化来实时更新物体的位置和姿态。

2. 图像去畸变图像畸变是指图像在拍摄或扫描过程中由于光学等原因造成的形变。

对于图像去畸变,可以通过将畸变的图像拟合为椭圆,进行仿射变换后将图像变换为正常的图像。

这种方法被广泛应用于摄像机等设备中。

总之,仿射变换在椭圆中有着广泛的应用,可以用于物体跟踪、图像去畸变等方面。

在实际应用中,需要结合具体场景和问题进行变换及其参数的优化和调整,以达到最佳效果。

仿射变换在椭圆中的应用

仿射变换在椭圆中的应用

仿射变换在椭圆中的应用椭圆是数学中一种具有特殊形状的曲线,它在许多领域中都有广泛的应用。

而仿射变换是一种能够保持平行线性质的变换,它在几何学和图像处理中也有着重要的作用。

本文将探讨仿射变换在椭圆中的应用,并介绍其中的原理和实际应用。

我们来了解一下椭圆的基本性质。

椭圆是平面上到两个定点F1和F2距离之和为常数2a的点的轨迹。

其中,F1和F2称为椭圆的焦点,a称为椭圆的半长轴。

椭圆还具有对称性,其对称轴是连接两个焦点的直线。

椭圆的形状由半长轴a和半短轴b决定,其中b是使得椭圆到两个焦点距离之和为常数2a的点的轨迹。

在几何学中,我们常常需要对椭圆进行变换,以便更好地研究其性质。

而仿射变换正是其中一种常用的变换方法。

仿射变换可以保持直线的平行性质,因此可以将椭圆变换为其他形状的曲线,同时保持其重要的几何性质。

那么,如何进行仿射变换呢?在平面几何中,仿射变换可以通过矩阵乘法来表示。

具体地说,对于平面上的一个点(x,y),其仿射变换可以表示为:x' = a*x + b*y + cy' = d*x + e*y + f其中,a、b、c、d、e、f是仿射变换的参数,它们决定了变换的具体效果。

通过调整这些参数,我们可以实现对椭圆的平移、旋转、缩放等变换操作。

接下来,我们将介绍仿射变换在椭圆中的具体应用。

首先是平移变换。

通过平移变换,我们可以将椭圆沿着平面上的任意方向移动一定的距离。

这在图形处理中非常有用,可以实现图像的平移和移动效果。

其次是旋转变换。

通过旋转变换,我们可以将椭圆绕着某个点旋转一定的角度。

这可以用于图像的旋转和扭曲效果,使得图像更具艺术效果。

仿射变换还可以用于椭圆的缩放和拉伸。

通过调整仿射变换的参数,我们可以改变椭圆的大小和形状,从而实现图像的缩放和形变效果。

仿射变换在椭圆中具有广泛的应用。

通过对椭圆进行平移、旋转、缩放等变换操作,我们可以改变椭圆的位置、形状和大小,从而实现各种图像处理效果。

仿射变换下一类椭圆问题的简单解法

仿射变换下一类椭圆问题的简单解法

仿射变换下一类椭圆问题的简单解法和椭圆相关的定点、定值、最值问题一直是高考的热点和重点.这类题目通常以压轴题的形式出现,并且由于计算量很大而具有很强的区分度.仿射变换可将椭圆转换为圆,而圆具有椭圆不具备的许多特殊性质,并且和圆有关的问题还可以借助初中平面几何知识解答,从而可以回避繁杂的计算,降低解题难度.因此,和椭圆相关的解析几何问题可以先转化为和圆相关的问题来研究,然后再回到椭圆中解决.本文给出仿射变换中的几个性质,再举若干例子展示其应用,旨在展示解题规律,揭示解题方法.以人教A版教材为例,课本在选修4-4中给出了坐标变换的概念:设P(x,y)是平面直角坐标系中的任意一点在坐标变换门x'=沾从>O,下,y =µy,µ> 0点P(x,y)的对应点为P'(x',y'),称中为平面直角坐标系中的伸缩变换.笔者发现,高中数学解题过程中,仿射变换常用到的性质主要包括以下四点[l]性质1A,B ,C三点在仿射变换下的对应点分别为A',B',c立若A,B,C三点共线,则A'' B',C'也三点共线,且满足对应线段的比值不变,如AB A'B'及=霆·性质2仿射变换前直线与曲线相切(相交、相离),仿射变换后直线与曲线依然相切(相交、相离).性质3直线在仿射变换前的斜率k与仿射变换后的斜率k'满足关系:k'=且k.入性质4变换前图形的面积S与变换后图形的面积s'满足关系:S'=扣s.下面我们来看一些应用(为节省篇幅和突出问题本身,部分例题作了必要的简化)..十一十叶一十。

十•I "I• I "I• 十•I "I•• 十~十..十一一十·•I"I•• 十"I"I" I" I•• 十一十..十~十..十~十“十"I"I•• 十心十“十“十一十“十"I••I" I" I" I" I·+·+·(A)ab =O (B)a+b=O(C)a=b (D)a2+b2=0原解由奇函数的定义得f(—x)= -f(x) ,x ER, 即八—x)=—xi—X +a l+b=—f(x) =—x I x+a l-b.讨论可得a=b=O,即a2+b2 =0. 反之,亦可得证,选D.定义是对数学概念的确切而简要的说明,在解题过程中考虑定义就是回归问题的本质.简洁明快的解题方法,往往蕴涵在对定义的深刻理解之中.评析王老师如何“讨论可得“,笔者不得而知,想必也要费点功夫.对于解选择题,特殊值法的重要性不用多说.由奇函数性质八0)=O, 解得b=O; 而对于f(x) = x I x + a I, 由f(—a)=—f(a), 即0=-2a I a I得a=O.例7已知O为c,.ABC内一点,角A,B,C的..对边分别是a,b,c,若a OA+bOB +cOC=O, 求证心是�ABC的内心.评析在书中,王金战老师详细介绍了他经过多番努力,终于解答出这道题的经过.其实此题并不困难,考查的是向量形式的定比分点公式和角平分线逆定理.要真正看透这道题的本质,需要用到重心坐标的思想,这在笔者的《绕来绕去的向量法》中有详细叙述... .. .. ..证明 a OA +bOB +cOC =0, 即二仁b+c OAb ——>一勹十--— Cb+c OB+ OC=O, 从这个式子容易看出,b +c .. ..b -沪 C在BC上有点仄满足OD=-OB+b+c b+c oc, BD C --DC b一-=—,且OD与OA共线简而言之,延长A O交BD CBC于D,则—-=-DC b .而BD= S纽BAD=DC S凶CAD c• ADsin乙BAD Cb• ADsin乙CAD b=—(此即角平分线的性质),可得乙BAD=乙CAD.同理可证其他.参考文献[1]王金战,许永忠,李锦旭.王金战教你玩转数学:数学是怎样学好的(魅力与方法篇)[M]. 北京:北京大学出版社,2010.讨论十二次之多的方法来解决这个问题.另外,三个三角形两两相似,且没有任何已知的明确的对应关系,考生们情急之下无从下手,备感焦躁.倘若运用先排除再分类的方法,那么问题可迎刃而解.由于对应元素中,对应角是最易入手的,因此我们不妨从角入手,找到解题的突破口.解假设存在这样的点Q,使得l:c,.(1.刀,b.QOA和b.QAB中的任意两个三角形均相似.因为乙QAB=乙AOQ+乙AQO,所以乙QAB>乙AOQ,乙QAB>乙AQO.因此,要使i:c,.QOA与b.QAB相似,只能乙QAO=乙BAQ= 90勹即QA_ix轴.因b>趴故AB>0儿从而乙QOA>乙ABQ,所以只能乙AOQ=乙AQB.此时乙CQB = 90°0由QA_l X轴知QA II Y轴,故乙COQ=乙心A.故要使b.QOA与b.CQC相似,只能乙oco = 90° 或乙CQC= 90°.心当乙OCQ=90° 时,b.CQO竺b.AOQC图4八所以AQ=W=一.b4b 2由AQ2=OA•AB, 得口)=b-1. 解得b= 8士4/3.因为b>趴所以b=8+4祁.故点Q的坐标是(1,2+祁).@当乙心C=90° 时,b.OCO U) b.AOQC图5), 故岱=沿,即心=OC• AQ.yC01 A B X 01 A图4图5又002= OA• O B, 所以CX•AQ =OA•bO B, 即—•AQ =l Xb. 解得AQ=4,此时b= 17 4>么符合题意,故点Q的坐标是(1,4).综上可知,存在点Q(l,2+戎-)或Q(l,4)'使得60C0,6QOA和6QAB中的任意两个三角形均相似从解答过程中可以看到,先对6AOQ与6ABQ进行探讨,通过“外角”进行第一次排除,明确一对对应角.一般情况下,得知一对相等的角后,常常会分两种情况继续讨论.但此处通过“大边对大角”进行第二次排除,最终筛选出唯一的那一种情况.两次“排除”需要大胆的尝试,续密的逻辑思维,以及对图形敏锐的洞察,难度较大,但难而不繁.此题也显露出命题者构思的巧妙与布局的精当.继对6AOQ与6ABQ的探讨之后,再对6AOQ与6COQ进行探讨.这里的讨论方法就是先确定一组角对应相等,再分两种情况继续讨论的方法.但是,这看似轻松的讨论,因需要用到前面讨论中得到的"QA上x轴”这一结论,故而不能孤立存在.最后,通过“先排除再讨论"'把一个复杂的问题变得简单明了.,十..+ .. I.. I.. • ·-+•-+•-+·-+---+·I .. I.. I•-+·-+---+---+---+---+•-+·-+•-+•-+---+---+•-+•-+---+---+·-+·-+---+·-+·-+--令..I•-+---+·-+--I ..I• I..I·I .. I•-+·-+· (上接笫42页)点评圆中有许多优美的性质和结论,通过仿射变换可以十分完美地拓展到椭圆,蝴蝶定理只是其中的一支奇葩,有兴趣的读者不妨多多研究这类问题笔者最后要指出的是,尽管仿射变换性质的运用或许已经超出高中学生所学的知识范畴,但随着新课改的推进,越来越多的高等数学的知识与方法渗透到中学数学之中已成为不争的事实.作为一名中学教师,能从高等数学的角度剖析初等数学试题,站得高、看得远,有利于理解中学数学问题的来龙去脉,看清问题的本质[3].基于这一点,笔者认为本文的研究具有一定的现实意义.参考文献。

利用仿射变换把圆变成椭圆的例子

利用仿射变换把圆变成椭圆的例子

文章题目:利用仿射变换将圆变成椭圆的数学实例在数学和几何学中,仿射变换是一种对二维或更高维度几何形状进行变换的方法。

在本文中,我将以利用仿射变换将圆变成椭圆的实例为例,探讨仿射变换的原理和应用。

1. 圆和椭圆的基本定义圆是平面上到一个固定点的距离恒定的点的集合,这个固定点称为圆心,距离称为半径。

而椭圆是平面上到两个固定点的距离之和恒定的点的集合,这两个固定点称为焦点,距离之和称为主轴的长度。

圆和椭圆都是平面几何中常见的几何形状。

2. 仿射变换的定义和特点仿射变换是指在几何空间中保持各点共线、各线平行的变换。

它是一种特殊的线性变换,包括平移、旋转、缩放和错切等基本变换。

仿射变换具有保持原有图形形状和大小不变的性质。

3. 利用仿射变换将圆变成椭圆的过程假设我们有一个标准的圆形,即圆心在原点,半径为1。

要利用仿射变换将这个圆变成椭圆,一个简单的方法是对圆进行线性变换和平移变换。

通过线性变换改变圆的形状,使其变成一个椭圆;然后通过平移变换将椭圆的位置调整到我们需要的位置。

具体操作如下:步骤一:线性变换在二维平面上,假设我们将圆点(x, y)进行线性变换得到(x', y'),则有以下公式:x' = a * xy' = b * y其中a和b分别是水平方向和垂直方向的缩放系数。

步骤二:平移变换假设我们要将圆的位置从原点平移到另一个位置(h, k),则有以下公式:x'' = x' + hy'' = y' + k其中(h, k)为平移的距离。

通过以上线性变换和平移变换的组合,我们可以将圆形变成任意倾斜角度的椭圆,并调整椭圆的位置到我们需要的位置。

4. 仿射变换在实际应用中的意义利用仿射变换将圆变成椭圆的实例是一个简单但重要的数学问题。

在实际应用中,仿射变换被广泛应用于图像处理、计算机图形学、地图投影、物体识别和运动估计等领域。

通过对图像进行仿射变换,可以实现图像的缩放、旋转、翻转、透视和镜像等操作,从而为图像处理和计算机视觉提供了便利。

2024年高考数学专项教材上的仿射变换背景及应用(解析版)

2024年高考数学专项教材上的仿射变换背景及应用(解析版)

教材上的仿射变换背景及应用一.引例.(《人教A 版选择性必修第一册》第115页“综合应用”第9题)如图,DP ⊥x 轴,垂足为D,点M 在DP 的延长线上,且|DM ||DP |=32,当点P 在圆x 2+y 2=4上运动时,求点M 的轨迹方程,并说明轨迹的形状.二.知识与方法在椭圆x 2a2+y 2b 2=1a >b >0 中,我们运用坐标变换x =x y =a b y,则可以得到圆x 2+y 2=a 2,这种操作叫做仿射变换,运用仿射变换,可以将某些椭圆问题转化到圆中来解决,从而使得问题简化,上述变换过程有如下对应关系:项目变换前变换后点的坐标P x 0,y 0 P x 0,aby 0 直线的斜率k k =a b k图形的面积SS =a b S点与点的位置关系AB 中点为MA B 中点为M线与线的位置关系直线m 和直线n 相交直线m 和直线n 相交直线m 和直线n 平行直线m 和直线n 平行点与线的位置关系点A 在直线l 上点A 在直线l 上点A 不在直线l 上点A 不在直线l 上等倾斜程度线段长的关系AB AC=λABAC=λ总之,经过仿射变换,绝对量(如坐标、面积、斜率、线段的长等)都发生了变化,相对量(如点、线、面的位置关系,直线与椭圆的位置关系,共线线段长度之比等)却没有发生变化.提醒:①仿射变换常用于解决面积问题(尤其是一个顶点为原点的三角形面积)、斜率问题、共线线段比例问题等;②需要注意的是,仿射变换的方法一般不推荐在解答题中使用,下面通过一些实例来分析在具体问题中2024年高考数学专项教材上的仿射变换背景及应用(解析版)如何操作.三.更多案例1(2023届合肥一模)已知曲线C:x2+y2=2,从曲线C上的任意点P x,y作压缩变换x =xy =y2得到点Px ,y.(1)求点P x ,y所在的曲线E的方程;(2)设过点F-1,0的直线l交曲线E于A,B两点,试判断以AB为直径的圆与直线x=-2的位置关系,并写出分析过程.2在同一平面直角坐标系xOy中,圆x2+y2=4经过伸缩变换φ:x =xy =12y后,得到曲线C.(1)求曲线C的方程;(2)设直线l与曲线C相交于A,B两点,连接BO并延长与曲线C相交于点D,且AD=2.求△ABD面积的最大值.3(2023届广东省一模)已知点A ,点B 和点C 为椭圆C :x 2a 2+y 2b2=1(a >b >0)上不同的三个点.当点A ,点B 和点C 为椭圆的顶点时,△ABC 恰好是边长为2的等边三角形.(1)求椭圆C 标准方程;(2)若O 为原点,且满足OA +OB +OC=0,求△ABC 的面积.4(23届南京盐城一模)已知双曲线C :x 2a 2−y 2b2=1(a >0,b >0)的离心率2,直线l 1:y =2x +43与双曲线C 仅有一个公共点.(1)求双曲线C 的方程;(2)设双曲线C 的左顶点为A ,直线l 2平行于l 1,且交双曲线于M ,N 两点,求证:ΔAMN 的垂心在双曲线C 上.下证:若ΔABC 的顶点在反比例函数xy =m 的图像上,则ΔABC 的垂心也在反比例函数的图像上.5设直线l与椭圆相交于A、B两点,则△AOB的面积的最大值为.6已知椭圆C:x24+y2=1的左右顶点为A、B,P为椭圆C上不与A、B重合的动点,则直线PA、PB的斜率之积为.7已知过点M12,12的直线l与椭圆C:x24+y22=1交于A、B两点,若M恰好为AB的中点,则直线l的方程为.8已知椭圆C:x22+y2=1的A、B两点满足直线OA、OB的斜率之积为-12,其中O为原点,点P在射线OA上,且OP=2OA,若PB与椭圆交于另一点Q,则BPBQ=.四:强化训练1已知椭圆C :x 24+y 2=1的右顶点为A ,上顶点为B ,直线y =kx k >0 与椭圆C 交于M 、N 两点,则四边形AMBN 的面积的最大值是.2已知椭圆C :x 23+y 2=1的左、右顶点分别为A 和B ,P 为椭圆C 上不与A 、B 重合的动点,过原点O 作PA 、PB 的平行线与椭圆C 交于M 、N 两点,则△MON 的面积为.3已知椭圆C :x 22+y 2=1上有点P 22,32,过P 作两条倾斜角互补的直线交椭圆C 于另外两点M 、N ,则直线MN 的斜率为.4已知A 、B 、C 是椭圆E :x 22+y 2=1上的三个动点,则△ABC 的面积的最大值为.5设A 、B 两点在椭圆C :x 22+y 2=1上,且AB 的中点为Q 22,12,若椭圆C 外的点P 满足PA 、PB 的中点都在椭圆C 上,则直线OP 的斜率为.6已知直线l :x +2y -2=0与椭圆C :x 22+y 2=1相交于点T ,O 为原点,平行于OT 的直线l 与直线l 相交于点P ,与椭圆C 相交于A 、B 两点,若PT 2=λPA ⋅PB ,则λ=.教材上的仿射变换背景及应用一.引例.(《人教A 版选择性必修第一册》第115页“综合应用”第9题)如图,DP ⊥x 轴,垂足为D ,点M 在DP 的延长线上,且|DM ||DP |=32,当点P 在圆x 2+y 2=4上运动时,求点M 的轨迹方程,并说明轨迹的形状.解析:设点M 的坐标为x ,y ,点P x 0,y 0 ,由题意可知y 0≠0,则由题可得x =x 0y =32y 0 ,即x 0=xy 0=23y ,∵点P 在圆x 2+y 2=4上运动,∴x 2+23y 2=4,(y ≠0),即点M 的轨迹方程为x 24+y 29=1,(y ≠0),点M的轨迹为椭圆,除去与x 轴的交点.这个问题就是用仿射变换把圆变换为椭圆.二.知识与方法在椭圆x 2a 2+y 2b 2=1a >b >0 中,我们运用坐标变换x =x y =a b y ,则可以得到圆x 2+y 2=a 2,这种操作叫做仿射变换,运用仿射变换,可以将某些椭圆问题转化到圆中来解决,从而使得问题简化,上述变换过程有如下对应关系:项目变换前变换后点的坐标P x 0,y 0 P x 0,a by 0 直线的斜率k k =a b k图形的面积SS =a b S点与点的位置关系AB 中点为MA B 中点为M线与线的位置关系直线m 和直线n 相交直线m 和直线n 相交直线m 和直线n 平行直线m 和直线n 平行点与线的位置关系点A 在直线l 上点A 在直线l 上点A 不在直线l 上点A 不在直线l 上等倾斜程度线段长的关系AB AC=λABAC=λ总之,经过仿射变换,绝对量(如坐标、面积、斜率、线段的长等)都发生了变化,相对量(如点、线、面的位置关系,直线与椭圆的位置关系,共线线段长度之比等)却没有发生变化.提醒:①仿射变换常用于解决面积问题(尤其是一个顶点为原点的三角形面积)、斜率问题、共线线段比例问题等;②需要注意的是,仿射变换的方法一般不推荐在解答题中使用,下面通过一些实例来分析在具体问题中如何操作.三.更多案例1(2023届合肥一模)已知曲线C :x 2+y 2=2,从曲线C 上的任意点P x ,y 作压缩变换x =xy=y2得到点Px,y.(1)求点P x ,y 所在的曲线E 的方程;(2)设过点F -1,0 的直线l 交曲线E 于A ,B 两点,试判断以AB 为直径的圆与直线x =-2的位置关系,并写出分析过程.解析:(1)由x =x y =y 2得x =x y =2y ,代入x 2+y 2=2得x 22+y 2=1,∴曲线E 的方程为x 22+y 2=1.(2)由题知,当直线l 的斜率存在时,设l :y =k x +1 ,由x 22+y 2=1y =k x +1 消去y 整理得,1+2k 2x 2+4k 2x +2k 2-2=0.设A x 1,y 1,B x 2,y 2,则x 1+x 2=-4k21+2k 2x 1x 2=2k 2-21+2k 2,∴以AB 为直径的圆的圆心横坐标为-2k 21+2k 2.又∵AB =1+k 2x 1-x 2 =1+k 2x 1+x 2 2-4x 1x 2=1+k 2-4k 21+2k 22-4⋅2k 2-21+2k 2=221+k 2 1+2k 2,∴以AB 为直径的圆的半径为R =21+k 2 1+2k 2,圆心到直线x =-2的距离为d =2-2k 21+2k 2=2k 2+21+2k 2,d -R =2k 2+21+2k 2-21+k 2 1+2k 2=2-2 1+k 21+2k 2>0,即d >R ,∴以AB 为直径的圆与直线x =-2相离.当直线l 的斜率不存在时,易知以AB 为直径的圆的半径为22,圆的方程是x +1 2+y 2=12,该圆与直线x =-2相离.综上可知,以AB 为直径的圆与直线x =-2相离.2在同一平面直角坐标系xOy 中,圆x 2+y 2=4经过伸缩变换φ:x =xy =12y 后,得到曲线C .(1)求曲线C 的方程;(2)设直线l 与曲线C 相交于A ,B 两点,连接BO 并延长与曲线C 相交于点D ,且AD =2.求△ABD 面积的最大值.解析:(1)设圆x 2+y 2=4上任意一点M x ,y 经过伸缩变换ω:x =xy =12y得到对应点M x ,y .将x =x ,y=2y 代入x 2+y 2=4,得x 2+2y 2=4,化简得x 24+y 2=1.∴曲线C 的方程为x 24+y 2=1;(2)△ABD 面积得最大值为2.3(2023届广东省一模)已知点A ,点B 和点C 为椭圆C :x 2a 2+y 2b2=1(a >b >0)上不同的三个点.当点A ,点B 和点C 为椭圆的顶点时,△ABC 恰好是边长为2的等边三角形.(1)求椭圆C 标准方程;(2)若O 为原点,且满足OA +OB +OC=0,求△ABC 的面积.解析1:(仿射变换)考虑变换φ:x =x y =a b y ,则在φ的作用下椭圆x2a 2+y 2b2=1对应圆x 2+y 2=a 2,则在压缩变换下,x O y 平面对应封闭图形面积S 是原来xOy 平面上封闭图形面积S 的a b 倍,即S =abS .设点A ,B ,C 分别对应点A ,B ,C , 由O 为ΔA B C 的重心,又O 为ΔA B C的外心,从而ΔA B C 为正三角形.易得圆x 2+y 2=a 2的内接正三角形的面积为定值S ΔP AB=334a 2⋅S ΔP ABS ΔPAB =ab从而S ΔPAB =b a S ΔP AB=334ab 为定值.一般地,已知ΔABC 是椭圆x 2a 2+y 2b2=1(a >b >0)的内接三角形,若其重心恰为椭圆的中心O ,那么ΔABC 的面积为定值,即S ΔABC =334ab4(23届南京盐城一模)已知双曲线C :x 2a 2−y 2b2=1(a >0,b >0)的离心率2,直线l 1:y =2x +43与双曲线C 仅有一个公共点.(1)求双曲线C 的方程;(2)设双曲线C 的左顶点为A ,直线l 2平行于l 1,且交双曲线于M ,N 两点,求证:ΔAMN 的垂心在双曲线C 上.下证:若ΔABC 的顶点在反比例函数xy =m 的图像上,则ΔABC 的垂心也在反比例函数的图像上.证明:由于点A 、B 在反比例函数xy =m (m ≠0)的图像上,所以x A y A =m ,x B y B =m .故y A −y B =m x A −m x B =m (x B −x A )x A x B ,则k AB =y A −y B x A −x B =−mx A x B =−y A y B m.由于k AB =−mx A x B ,则过点C 与直线AB 垂直的直线l C 的斜率为x A x B m,所以l C 为.x A x B x -my =x A x B x C-my C同理,过点B 且与直线AC 垂直的直线l B 为x A x C x −my =x A x B x C −my B .联立l B 、l C 的方程解得x H =m y B -y C x A x B -x C =m 2x A x B x C ,y H =x A x B x C m 2=-m 2y A y B y C .故x H y H =m ,即垂心H 也在反比例函数图象上.5设直线l 与椭圆相交于A 、B 两点,则△AOB 的面积的最大值为.解法1:直接法当直线l 的斜率不存在时,设其方程为x =t -a <t <a 且t ≠0联立x =tx 2a2+y 2b2=1解得:y =±ba a 2-t 2,所以S △AOB =12⋅2b a a 2-t 2⋅t =b a a 2-t 2 t 2≤b a ⋅a 2-t 2+t 22=ab 2C :x 2a 2+y 2b2=1a >b >0 ,当且仅当a 2-t 2=t 2,即t =22a 时取等号,所以S △AOB max =ab2当直线l 斜率存在时,设其方程为y =kx +m m ≠0 ,设A x 1,y 1 ,B x 2,y 2 ,联立y =kx +mx 2a2+y 2b2=1消去y 整理得:a 2k 2+b 2 x 2+2kma 2x +a 2m 2-a 2b 2=0,判别式Δ=4k 2m 2a 4-4a 2k 2+b 2 a 2m 2-a 2b 2 =4a 2b 2a 2k 2-m 2+b 2 ①,所以AB =1+k 2⋅x 1-x 2 =1+k 2⋅2ab a 2k 2-m 2+b 2a 2k 2+b 2,原点O 到直线l 的距离d =mk 2+1,从而S △AOB =12AB ⋅d =12⋅1+k 2⋅2ab a 2k 2-m 2+b 2a 2k 2+b 2⋅m k 2+1=ab a 2k 2-m 2+b 2 m 2a 2k 2+b 2≤ab a 2k 2+b2⋅a 2k 2-m 2+b 2+m 22=ab 2当且仅当a 2k 2-m 2+b 2=m 2时取等号,此时a 2k 2+b 2=2m 2,代入①知Δ=4a 2b 2m 2>0,故S △AOB max =ab2,综上所述,△AOB 的面积的最大值为ab2.解法2:仿射变换作变换x =xy =a b y ,则椭圆C 变成圆x 2+y 2=a 2,如图,因为S △AO B=12O A ⋅O B ⋅sin ∠A O B=a 22sin ∠A O B ,所以当∠A O B =90°时,S ∠AO B取得最大值a 22,因为S=a bS ,所以S =b a S ,从而S △AOB 的最大值为a 22⋅b a =ab 2.6已知椭圆C :x 24+y 2=1的左右顶点为A 、B ,P 为椭圆C 上不与A 、B 重合的动点,则直线PA 、PB 的斜率之积为.解法1.第三定义本题当然可以利用椭圆的第三定义,快速得出结果为-14,其推导方法是设点P 的坐标,运用点P 的坐标满足椭圆的方程来化简PA 、PB 的斜率之积,得出斜率之积为定值,解法2.仿射变换其实也可以用仿射变换来证明这一结果,作变换x =x y =2y ,则椭圆C 变换成圆O :x 2+y 2=4,如图,在圆O 中,显然A B 是直径,所以P A ⊥P B ,从而k P A⋅k P B=-1,又k P A=2k PA ,k P B=2k PB ,所以k P A⋅k P B=4k PA ⋅k PB =-1,故k PA ⋅k PB =-14.7已知过点M 12,12 的直线l 与椭圆C :x 24+y 22=1交于A 、B 两点,若M 恰好为AB 的中点,则直线l 的方程为.解法1:点差法如图1,由中点弦结论,k OM ⋅k AB =-12,而k OM =1,所以k AB =-12,从而直线l 的方程为y -12=-12x -12,即2x +4y -3=0解法2:仿射变换作变换x =xy =2y,则椭圆C 变换成圆O :x 2+y 2=4,如图2,在圆O 中,M 仍为A B 中点,所以O M ⊥A B ,且M 12,22,所以直线O M的斜率为2,从而直线A B 的斜率为-22,故直线A B 的方程为y-22=-22x -12 ,即22x +y -324=0,将x =x y=2y 代入可得22x +2y -324=0,即2x +4y -3=0,所以直线AB 的方程为2x +4y -3=08已知椭圆C :x 22+y 2=1的A 、B 两点满足直线OA 、OB 的斜率之积为-12,其中O 为原点,点P 在射线OA 上,且OP =2OA ,若PB 与椭圆交于另一点Q ,则BPBQ=.解析:作变换x =xy =2y,则椭圆C 变成圆O :x 2+y 2=2,如图,则k O A=2k OA ,k O B=2k OB ,由题意,所以k O A⋅k O B=2k OA ⋅k OB =-1,从而O A ⊥O B ,显然O P =22,O B =2,O Q=2,所以P B =O B2+O P 2=10,作O G ⊥P B 于G ,则OG =O P ⋅O BPB=2105,BG =O B2-O G 2=105,因为O B =O Q ,所以G 为B Q 的中点,从而B Q =2B G =2105,故BPB Q=52,所以在变换前的图形中,BP BQ=52.【答案】52【反思】在椭圆x 2a 2+y 2b 2=1a >b >0 中,若涉及到了两直线的斜率之积为-b 2a2,则可以考虑利用仿射变换转化为圆,因为变换后两直线的斜率之积为-1,从而产生了两直线垂直这一良好的几何特征,往往可以使得问题简化.四:强化训练1已知椭圆C :x 24+y 2=1的右顶点为A ,上顶点为B ,直线y =kx k >0 与椭圆C 交于M 、N 两点,则四边形AMBN 的面积的最大值是.【解析】解法1:如图1,A 0,1 ,B 2,0 ,所以A 、B 两点到直线MN 的距离分别为d 1=1k 2+1,d 2=2k k 2+1,将y =kx 代入x 24+y 2=1化简得:1+4k 2x 2=4,解得:x =±21+4k 2,所以MN =1+k 2⋅41+4k2,从而四边形AMBN 的面积S =12MN ⋅d 1+d 2 =12⋅1+k 2⋅41+4k 21k 2+1+2kk 2+1=21+2k 1+4k 2=21+4k +4k 21+4k 2=21+4k 1+4k 2=21+41k+4k ≤21+421k⋅4k =22,当日仅当1k=4k ,即k =12时取等号,所以四边形AMBN 的面积的最大值是2 2.解法2:作变换x =xy =2y,则椭圆C 变成圆O :x 2+y 2=4,如图2,显然M N =4,由图可知A 和B 到直线M N 的距离之和在A B ⊥M N 时取得最大值,且最大值为A B =22,所以四边形A M B N 的面积S 的最大值为12M N ⋅A B =12×4×22=42因为S =2S ,所以四边形AMBN 的面积的最大值是2 2.2已知椭圆C :x 23+y 2=1的左、右顶点分别为A 和B ,P 为椭圆C 上不与A 、B 重合的动点,过原点O 作PA 、PB 的平行线与椭圆C 交于M 、N 两点,则△MON 的面积为.【解析】解法1:如图1,由图形的对称性,不妨假设M 在第一象限,N 在第二象限,由椭圆的第三定义,k PA ⋅k PB =-13,又k OM =k PB ,k ON =k PA ,所以k OM ⋅k ON =-13,设k OM =k k >0 ,则k ON =-13k ,联立y =kx x 23+y 2=1消去y 整理得:1+3k 2 x 2=3,解得:x =±31+3k 2,所以x M =31+3k 2,故y M =3k 1+3k 2,从而M 31+3k 2,3k 1+3k 2,同理可得N -3k 3k 2+1,13k 2+1,所以S △MON =1231+3k 2⋅13k 2+1--3k 3k 2+1⋅3k 1+3k2=32.解法2:作变换x=xy =3y,则椭圆C 变成圆O :x 2+y 2=3,如图2,变换前,由椭圆的第三定义,k PA ⋅k PB =-13,又k OM =k PB ,k ON =k PA ,所以k OM ⋅k ON =-13,变换后,k O M =3k OM ,k O N =3k ON ,所以k O M ⋅k O N=3k OM ⋅k ON =-1,从而O M ⊥O N ,故S △MON=12×3×3=32,又S △MON=3S △MON ,所以S △MON =32.3已知椭圆C :x 22+y 2=1上有点P 22,32,过P 作两条倾斜角互补的直线交椭圆C 于另外两点M 、N ,则直线MN 的斜率为.【解析】作变换x =xy =2y ,则椭圆C 变成圆O :x 2+y 2=2,如图1中,作PQ ⊥x 轴交椭圆C 于Q ,则在图2中,P Q ⊥x 轴,由题意,在图1中,∠MPQ =∠NPQ ,所以在图2中,∠M P Q =∠N P Q ,所以M Q=N Q ,故Q 是M N的中点,从而O Q ⊥M N ,在图1中,由对称性可得Q 22,-32,所以在图2中,Q22,-62 ,从而k OQ=-3,所以k MN=33,又k MN=2k MN ,所以k MN =66.4已知A 、B 、C 是椭圆E :x 22+y 2=1上的三个动点,则△ABC 的面积的最大值为.【解析】作变换x =xy =2y ,则椭圆E 变成圆O :x 2+y 2=2,如图,显然当△A B C 的面积取得最大值时,应有C D ⊥A B ,且C D =O D +O C设O D =d 0≤d <2 ,则C D =d +2,A B =2O A 2-O D 2=22-d2所以S △A BC=12A B ⋅C D =12×22-d 2×d +2 =2-d 2×d +2 ,从而S △A BC 2=2-d 2 d +2 2=2-d 2+d 3=1332-3d 2+d 2+d 2+d≤13⋅32-3d +2+d +2+d +2+d 44=274故S △A BC≤332,当且仅当32-3d =2+d 时取等号,此时,d =22,所以△A B C 的面积的最大值为332,又S △A BC=2S △ABC ,所以△ABC 的面和的最大值为364.【答案】364【反思】圆的内接三角形中,正三角形面积最大,等于334R 2.5设A 、B 两点在椭圆C :x 22+y 2=1上,且AB 的中点为Q 22,12,若椭圆C 外的点P 满足PA 、PB 的中点都在椭圆C 上,则直线OP 的斜率为.【解析】不难发现A 为上顶点,B 为右顶点,作变换x =xy=2y ,则椭圆C 变成圆O :x 2+y 2=2,如图在图2中,Q 22,22,且P A 和P B 的中点都在圆O 上,所以点P 在A B 的中垂线y =x 上,显然原点O 也在直线y =x 上,从而直线O P 的斜率为1,因为k O P=2k OP ,所以k OP =22.【答案】226已知直线l :x +2y -2=0与椭圆C :x 22+y 2=1相交于点T ,O 为原点,平行于OT 的直线l 与直线l 相交于点P ,与椭圆C 相交于A 、B 两点,若PT 2=λPA ⋅PB ,则λ=.【解析】解法1:联立x +2y -2=0x 22+y 2=1解得:x =1,y =22,所以T 1,22 ,直线OT 的斜率为22,因为l与直线l 平行,所以可设l :x =2y +m ,设A x 1,y 1 ,B x 2,y 2 ,O x 0,y 0 ,联立x =2y +mx +2y -2=0 解得:y =22-m4,所以y 0=22-m4,从而PT =1+-2 2⋅22-y 0=3⋅22-22-m 4=64m ,故PT 2=38m 2PA ⋅PB =1+2 2⋅y 1-y 0 ⋅1+2 2⋅y 2-y 0 =3y 1-22-m 4y 2-22-m 4,联立x =2y +mx22+y 2=1消去x 整理得:4y 2+22my +m 2-2=0①,因为y 1、y 2是方程①的两根,所以4y 2+22my +m 2-2=4y -y 1 y -y 2 ②,在②中令y =22-m4可得4⋅22-m 216+22m ⋅22-m 4+m 2-2=422-m 4-y 1 22-m 4-y 2化简得:22-m4-y 122-m 4-y 2=m 28,从而PA ⋅PB =3m 28,所以PT 2=PA ⋅PB ,故λ=1.解法2:作变换联立x +2y -2=0x 22+y 2=1解得:x =1,y =22,所以T 1,22 ,直线OT 的斜率为22,从而变换后,T 1,1 ,直线O T 和直线A B 的斜率为1,直线P T 的斜率为-1,从而PT PT=1+-22 2⋅x P -x T1+-1 2⋅x P -x T=32⋅x P -x Tx P-x T,又由变换过程知x P=x P ,x T=x T ,所以PT P T =32,同理可得,PA P A=1+2221+12=32,PBP B=1+2221+12=32,所以PT 2=34P T 2,PA ⋅PB =34P A ⋅P B,从而PT 2PA ⋅PB =P T 2P A ⋅P B,在图2中,由切割线定理,P T 2=P A ⋅P B,所以P T 2P A ⋅P B=1,故PT 2PA ⋅PB=1,因为PT 2=λPA ⋅PB ,所以λ=PT 2PA ⋅PB=1.【答案】1【反思】本题改编自2016年四川高考的解析几何大题,可以看到,运用放射变换,问题可以轻松解决.。

高考数学复习:利用仿射变换解决椭圆

高考数学复习:利用仿射变换解决椭圆

高考数学复习:利用仿射变换解决椭圆谈及利用仿射变换可以解决一些初等几何的问题,可以使问题变得更加简洁、透彻,对笔者启发很大,笔者通过自己的教学实践感觉到利用仿射变换,可以将椭圆的有关问题转化为圆的问题,从而可以借助圆当中的一些性质解决问题,使问题的解决过程大大简化,在利用仿射变换解决相关问题时,主要利用以下几个性质:性质1 变换后共线三点单比不变(即变换后三点的两个线段的比值和变换前的比值一样);性质2 变换后保持同素性和接合性(即变换前直线与曲线若相切,变换后仍相切); 性质3 变换前后对应图形的面积比不变;现以一些高考试题为例加以说明。

例1设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB 相交于点D ,与椭圆相交于E 、F 两点 ⑴若6=,求k 的值;⑵求四边形AEBF 面积的最大值。

分析:此例按照常规解法较为繁杂,但利用仿射变换将椭圆变换为单位圆,点A 、B 、D 、E 、F 分别变换为点A ’、B ’、D ’、E ’、F ’, 线段E ’F ’恰为圆的直径,根据性质1,D ’分线段E ’F ’的比与D 分线段EF 的比相同,利用圆当中的相交弦定理.....求得D ’点的坐标,再反求出D 点坐标,从而很容易求出k 值;利用性质3,可以求得四边形AEBF 与四边形A ’E ’B ’F ’的面积关系,由于四边形A ’E ’B ’F ’面积的最大值较易求出,这样也就很容易求得四边形AEBF 面积的最大值。

解:依题设得椭圆的方程为1y 4x 22=+ 作仿射变换,令x ’=2x ,y ’=y ,则得仿射坐标系x ’O ’y ’,在此坐标系中,上述椭圆变换为圆x ’2+y ’2=1,点A 、B 、D 、E 、F 分别变换为点A ’、B ’、D ’、E ’、F ’,且E ’F ’为圆的直径,E ’F ’=2,A ’(1,0),B ’(0,1)⑴根据性质1 ∵DF 6ED = ∴''''F D 6D E = ∴E ’D ’=712 D ’F ’=72 ∵E ’D ’·D ’F ’=A ’D ’ ·D ’B ’ A ’D ’+D ’B ’=A ’B ’=2∴A ’D ’=724 D ’B ’=723或A ’D ’=723 D ’B ’=724 ∴''''B D 34D A =或''''D 43A = 由定比分点公式可得:D ’(7374,)或D ’(7473,) ∴D 点坐标为(7378,)或(7476,) ∴k=83或k=32 ⑵设四边形AEBF 的面积为S ,四边形A ’E ’B ’F ’的面积为S ’,E ’F ’与A ’B ’的夹角为θ,则S ’=θ⋅⋅sin ''''B A F E 21=θsin 2≤2(当θ=2π时取“=”号,此时F ’ (2222,))由于椭圆的面积为πab=2π,圆的面积为πr 2=π根据性质3有π=π'S 2S ,故S=2S ’ ∴S ≤22 当且仅当F 坐标为(22222,),即k=21时取“=”号 说明:由上述证明过程可知,当D ’为A ’B ’中点是时四边形A ’E ’B ’F ’的面积取到最大值,根据性质1,当D 为AB 中点时四边形AEBF 的面积取到最大值。

大招7仿射变换

大招7仿射变换

大招7仿射变换 大招总结仿射变换,通俗来讲,就是将一个空间内的图形按照一定法则变换,就会在另一个空间内得到与之对应的新图形.在高考数学解析几何题目中,我们可以利用仿射变换将一部分有关椭圆的问题转化为圆的问题,这样就可以借助圆中的特有的一些性质解决问题,从而使问题的解决过程大大简化.椭圆22221(0)x y a b a b +=>>,经过仿射变换x xa y yb '=⎧⎪⎨'=⎪⎩,则椭圆变为了圆222x y a ''+=,并且变换过程有如下对应关系:(1)点()00,P x y 变为00,a P x y b ⎛⎫' ⎪⎝⎭(2)直线斜率k 变为ak k b '=(3)图形面积S 变为aS S b''=(4)点、线、面位置不变(中点依然是中点,相切依然是相切)(5)弦长关系满足||A B AB ''=因此同一条直线上线段比值不变. 仿射变换一般而言主要应用于选填中快速得出结果,对于大题可以利用仿射变换快速得出结果但是容易丟掉步骤分,因此还是用正常方法写出过程.当出现以下几个场景的时候就可以联想仿射变换去处理:(1)面积问题(尤其是有一个顶点是坐标原点的时候);(2)斜率之积出现22b a-之类;(3)同一条线段的比例问题;(4)其他与之相关联的问题.典型例题例1.(2014-新课标)I 已知点(0,2)A -,椭圆2222:1(0)x y E a b a b+=>>的离心率为2F 是椭圆的右焦点,直线AFO 为坐标原点.+ (I)求E 的方程;(II)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程. 分析:这里第二问出现OPQ ∆面积最大,因此可以联想仿射变换化椭为圆去做..解(I)设(,0)F c ,由条件知2c =得c =,又2c a =,所以2222,1a b a c ==-=,故E 的方程2214x y +=.(II)方法1:依题意当l x ⊥轴不合题意,故设直线:2l y kx =-,设()()1122,,,P x y Q x y 将2y kx =-代入2214x y +=,得()221416120k x kx +-+=,当()216430k ∆=->,即234k >时,21,22824314k k x k ±-=+ 从而2221224143||114k k PQ k x x k+⋅-=+-=+ 又点O 到直线PQ 的距离221d k =+,所以OPQ ∆的面积221443||214OPQk S d PQ k∆-==+,设243k t -=,则2440,144OPQt t S t t t∆>==++,当且仅当72,2t k ==±等号成立,且满足0∆>, 所以当OPQ ∆的面积最大时,l 的方程为:722y x =-或722y x =--. 方法2:作变换2x xy y'=⎧⎨'=⎩,椭圆E 变为圆:224x y ''+=,,此时P Q ''过点(0,4)A '-,此时,2OPQ OPQ S S ∆'∆+=因此OPQ S ∆最大时,OP Q S ∆''同样最大.1sin 2sin 22OP Q S OP OQ P OQ P OQ ∆''='⋅'∠''=∠''当且仅当2P OQ π∠''=时最大 设直线P Q ''方程为4y k x '=''-,那么O 到直线P Q ''距离2421d k '==+17722PQ k k k ⇒'=±⇒='=± ∴直线l 的方程为722y x =±- 总结思考:当过椭圆外一个定点P 作一条直线与椭圆交于,A B 两点时,AOB ∆面积最大值2ab,当且仅当经过仿射变换之后的A B ''与原点O 所构成的三角形为直角三角形时取到最大值.如果定点P 是圆内点,则有两种情况:(1)如果作仿射变换之后P '到圆心距离大于等于22a ,那么面积最大值仍然是;(2)2ab如果作仿射变换之后P '到圆心距离小于22a ,那么当OP A B '⊥''时面积取到最大值.例2.设1F 、2F 分别是椭圆2214x y +=的左、右焦点.(1)若P 是该椭圆上的一个动点,求12PF PF ⋅的取值范围;(2)设(2,0),(0,1)A B 是它的两个顶点,直线(0)y kx k =>与AB 相交于点D ,与椭圆相交于E 、F 两点.求四边形AEBF 面积的最大值. 解(1)由题意可知2,1a b ==,∵c ==∴12(F F 设 (,)P x y∴2212(,),)3,PF PF x y x y x y ⋅=-⋅=+-+()2221133844x x x =+--=-由椭圆的性质可知,2228384x x -⇒--*()212138[2,1]4PF PF x ∴⋅=-∈- (2)方法1:设()()1122,,,E x kx F x kx ,联立2214y kx x y =⎧⎪⎨+=⎪⎩消去y 整理可得()22144k x+=12x x ∴==(2,0),(0,1)A B∴直线AB 的方程为:220x y +-=根据点到直线的距离公式可知,点,E F 到直线AB 的距离分别为1212k h ++==2212k h +==∴12h h+=∴||AB ==∴四边形的面积为()1211||22S AB h h =+===4212214k k=++(当且仅当14k k =即12k =时,上式取等号,所以S 的最大值为22. 方法2:作变换2x xy y'=⎧⎨'=⎩之后椭圆变为圆,方程为224x y ''+=+此时(0,2),22,4B A B E F '''=''=当且仅当E F A B ''⊥''时面积取到最大此时1222ABBF AE B F S S '''==四边形四边形例 3.(2017-肇庆三模)已知圆221:(1)16F x y ++=,定点2(1,0),F A 是圆1F 上的一动点,线段24F A的垂直平分线交半径1F A 于P 点.(I)求P 点的轨迹C 的方程;(II)四边形EFGH 的四个顶点都在曲线C 上,且对角线,EG FH过原点O ,若34BG FH k k ⋅=-,求证:四边形EFGH 的面积为定值,并求出此定值.解(1)解:因为P 在线段2F A 的中垂线上,所以2||PF PA =. 所以211112||4PF PF PA PF AF F F +=+==>所以轨迹C 是以12,F F 为焦点的椭圆,且1,2c a ==,所以3b =。

解答题:利用“仿射变换”化椭为圆

解答题:利用“仿射变换”化椭为圆

浅谈仿射变换在解决椭圆问题中的应用一、仿射变换思想方法椭圆)0,0(1:2222>>=+b a b y a x C 中,令a x x =',by y =',,则椭圆方程变为单位圆 1'22=+y x C : ,该变换过程称为仿射变换。

相当于在xoy 与'''y o x 两个坐标系来研究问题,但圆中几何意义明显,便于计算。

但最后要还原到椭圆中去解决问题。

变化前后点的坐标对应变化:),()','(),(bya x y x y x =→ )','(),()','(by ax y x y x =→二、性质1、点线关系不变(1)同素性:在经过变换之后,点仍然是点,线仍然是线 (2)结合性:在经过变换之后,在直线上的点仍然在直线上 (3)原三点共线,后三点也共线;原直线平行,后直线也平行 2、原弦长||AB ,斜率k ,后弦长|''|B A ,22211||k k m AB ++=|''|B A (其中ba m =) 3. 直线与圆锥曲线的位置关系不变(相切、相交)已知直线0:=++C Bx Ax l ,椭圆1:2222=+b y a x C ,讨论直线与椭圆的位置关系。

由a x x =',byy =',仿射变换后,直线0:=++C Bx Ax l 变为0:'=++C Bbx Aax l 。

(此结论可以作为公式背下,提高平时做题的速度)椭圆变为1'22=+y x C : ,由直线与圆的位置关系易得答案。

例1 已知直线03=-+y x ,椭圆1422=+y x ,则直线与椭圆的位置关系是( ) A.相交 B.相切 C. 相离 D. 相切或相交解:由2'x x =,y y ='仿射变换后,直线03=-+y x ,椭圆1422=+y x 分别变为直线03''2=-+y x 、椭圆1''22=+y x ,而直线03''2=-+y x 到圆1''22=+y x 的距离15312|3|22>=+-=d ,所以直线和圆相离,由于仿射变换直线与圆锥曲线的位置关系不变,所以原直线和椭圆相离。

仿射变换在解决有关椭圆的仿射性质问题中的应用

仿射变换在解决有关椭圆的仿射性质问题中的应用

仿射变换在解决有关椭圆的仿射性质问题中的应用
谭长明 汝春雷 鞍山师范学院 ( 鞍山 114007)


仿射变换是几何中一个重要变换,它是从运动变换到射影变换的桥梁。灵活地运用仿射
变换,能使一些初等几何问题由繁到简。论文中,应用仿射不变性和不变量解决一般椭圆的有关仿射性质 的命题,使仿射几何的知识和思想方法体现于解决初等几何问题中。 关键词 仿射变换 不变性 不变量 椭圆
圆和椭圆都是初等几何中常见的图形,圆 比椭圆更特殊,它有很多很好的性质,与圆有 关的定理举不胜举,但椭圆则不然,因其本身 的定义要比圆复杂, 椭圆的性质和定理就很少, 解决一个与椭圆有关的问题要比解决一个与圆 有关的相应的问题困难得多。在初等几何中, 有很多有关椭圆的问题,只能通过解析几何的 方法来解决, 这就给我们解题带来了不少麻烦。 因此,我们自然期望有一种方法,使得处理有 关椭圆的问题和处理有关圆问题一样容易,而 由仿射变换性质可知:椭圆通过适当的仿射变 换可变成圆。因此,只要考虑的有关椭圆的问 题纯属仿射性质的问题,就可以先转化为有关 圆相应的问题来解决,再把所得的结果推广到 椭圆中去,即可达到我们解题的目的。 为实现上述目的,我们还应该明确,为什 么椭圆通过适当的仿射变换可变成圆? 命题 圆的仿射对应图形是椭圆 y=rsinθ 证明:设有以原点为中心,r 为半径的一 个圆,它的参数方程为:x =rcosθ
关键词仿射变换不变性不变量椭圆圆和椭圆都是初等几何中常见的图形圆比椭圆更特殊它有很多很好的性质与圆有关的定理举不胜举但椭圆则不然因其本身的定义要比圆复杂椭圆的性质和定理就很少解决一个与椭圆有关的问题要比解决一个与圆有关的相应的问题困难得多
2007 年 3 月
电大理工 Dianda Ligong

巧用仿射变换解决椭圆相关问题的调查与实践

巧用仿射变换解决椭圆相关问题的调查与实践

巧用仿射变换解决椭圆相关问题的调查与实践本项目通过对其他专家及学者关于仿射变换在初等几何中的运用这方面的研究作了综合性的分析,并对中学生对仿射变换的知识理解和运用情况进行了调查,得出了仿射变换在初等几何中的应用还没有得到广泛的推广,同时还只是停留在原始的解题方法基础上。

我们在此,为了将仿射变换能够更好的推广到中学的初等几何教学中去,我们认为有必要对这方面进行进一步的研究。

为了能让中学教师和学生能认识到仿射变换在中学教学中的重要意义,我们进行了如下分析。

1、代数法当题型只涉及到关系式,没有图形时,可以采用代数法来解决。

代数法也是我们数学当中常用的方法。

我们对以下两个例子做了调查和分析例1:已知:点P(x,y )在椭圆上运动,求的最大值解:令,,则,,问题化为:Q(x' ,y' )是单位圆上的点,求的最大值。

设A (2, 0),则u即为直线AQ的斜率K。

设过点A的圆的切线为AB AC ( B C为切点),当Q和C重合时K取最大值,此时•••时优点:对于本题,通过与传统的解题方法作比较,它的优点在于比我们利用中学的传统方法解决要简单很多,计算量也不大。

调查方法:我们对部分中学生作了抽样调查,将此题给中学生做,并将数据进行统计。

调查结果:通过回收试题进行了总结,发现只有极少数的同学运用了仿射变换的方法来解决的,而更多的是利用传统的解题方法。

不足之处:此方法在知识上的跳跃性比较强,让中学生接受起来比较困难。

若要想此方法在中学中能得到广泛的推广,此题的解决方法还得进行适当的优化。

比如添加上图形,采用数与形相结合,使得更加形象化,学生也更容易理解。

分析:此方法虽然比较优越,但在中学的教学中并没有得到广泛的运用。

现在所面临的问题就是如何将此方法进行推广。

例2:已知:椭圆直线I : P是I上一点,射线0P交椭圆于R,又点Q在0P上且满足|0Q| • |0P|=|0R|2,当点P在I上移动时,求:点Q的轨迹方程,并说明轨迹是什么图形故Q点的轨迹是以(1,1)为中心,长半轴长为,短半轴长为,且焦点在直线y=1 上的椭圆(除去原点).优点:本题是一道难度系数很高的高考试题,当年利用传统的解题方法基本没有几个人能在有限的时间里把它做出来,而且计算量也比较大。

仿射变换在椭圆问题中的应用举例

仿射变换在椭圆问题中的应用举例

仿射变换在椭圆问题中的应用举例
吴红梅
【期刊名称】《数学教学》
【年(卷),期】2009(000)001
【摘要】仿射变换是平行射影链,主要代表图形在尺度、伸缩、旋转、扭曲等方
面的几何变换.它改变了图形的距离和角度,但是不改变图形的如下性质:同素性、接合性、两直线的平行性、共线三点的简比、两平行线段或共线线段的比、任意两个对应多边形面积的比、任意两条对应封闭凸曲线所围成的面积的比.
【总页数】2页(P24-25)
【作者】吴红梅
【作者单位】广东省茂名市第十二中学,525000
【正文语种】中文
【中图分类】O241.82
【相关文献】
1.基于仿射变换下对椭圆的探讨 [J], 贾慧美
2.基于仿射变换下对椭圆的探讨 [J], 贾慧美;
3.仿射变换在解决有关椭圆的仿射性质问题中的应用 [J], 谭长明;汝春雷
4.仿射变换在解决椭圆和三角形问题中的应用 [J], 王秀贞;
5.利用仿射变换研究椭圆内接四边形面积的最值 [J], 赵临龙
因版权原因,仅展示原文概要,查看原文内容请购买。

高考数学双曲线 椭圆仿射变换

高考数学双曲线 椭圆仿射变换

仿射变换与双曲线的标准方程22221x y a b 相比椭圆的标准方程22221x y a b在形式上极为接近圆的标准方程222x y r .在这一讲,我们着重讲述利用仿射变换将椭圆变换为圆,再利用圆的良好几何性质解决问题的方法.对椭圆的标准方程22221x y a b ,我们需要在y 轴进行伸缩变换x x b y y a得到方程22221x y a a .伸缩变换不会改变直线与圆锥曲线的交点个数、也不会改变共线线段长度的比例关系、平行和直线共点关系等等,但是伸缩变换会改变线段的长度,这需要引起充分的注意.【备注】仿射变换(Affine Transform )是一种二维坐标到二维坐标之间的线性变换,保持二维图形的“平直性”(译注: straightness ,即变换后直线还是直线不会打弯,圆弧还是圆弧)和“平行性”(译注:parallelness ,其实是指保二维图形间的相对位置关系不变,平行线还是平行线,而直线上点的位置顺序不变,另特别注意向量间夹角可能会发生变化.仿射变换可以通过一系列的原子变换的复合来实现,包括:平移(Translation )、缩放(Scale )、翻转(Flip )、旋转(Rotation )和错切(Shear ).【备注】在伸缩变换①下,椭圆方程2222:1x y E a b变为圆222:E x y a ,椭圆上的点 00,P x y 变为00,a P x y b,因此过圆E 上一点P 的圆的切线方程为:l 200a x x y y a b 该直线通过伸缩变换①就可以得到过椭圆E 上一点P 的椭圆的切线方程22002:a l x x y y a b即00221x x y ya b典型例题例1(2010年上海)已知椭圆22x y ⑴设直线l 【解析】 ⑴ 作仿射变换,椭圆方程变为222x y a ,则121k k∴C D O E ,根据垂径定理,E 是弦C D 的中点于是E 是CD 的中点.⑵如下图,求作点1P 、2P 的步骤为:1.以O 为圆心,椭圆的长轴长a 为半径作圆;2.过O 作射线,使Ox 轴正方向到该射线的角为 ,射线与圆交于Q ;3.过圆与y 轴正向的交点作y 轴的垂线,过圆与x 轴负向的交点作x 轴的垂线,两条垂线交于点P ;4.连结P Q ,取其中点N ;认识仿射变换5.连结ON ,过N 作与ON 垂直的直线,交圆于点1P 、2P ; 6.过点1P 、2P 作x 轴的垂线,交椭圆于点1P、2P 即为所求. 证明:这样作图相当于作了纵轴方向上的伸缩变换22b y y a,容易证明线段P Q 与12P P互相平分,而坐标轴方向上的伸缩变换不改变线段的比例,因此PQ 与12PP 互相平分.这样就有12121222PQ PN PP PP PP PP【备注】题⑴说明弦中点问题中由点差法得到的结论可以看做是椭圆的“垂径定理”;题⑵利用仿射变换完成纯几何...作图,注意椭圆的参数方程在仿射变换图形下获得了确切的几何意义.练习1(2012年湖北理)设A 是单位圆221x y 上的任意一点,l 是过点A 与x 轴垂直的直线,D 是直线l 与x 轴的交点,点M 在直线l 上,且满足DM m DA (0m ,且1m ).当点A 在圆上运动时,记点M 的轨迹为曲线C .求曲线C 的方程,判断曲线C 为何种圆锥曲线,并求焦点坐标.【解析】 曲线C 的方程为2221y x m.当01m 时,曲线C 为焦点在x轴上的椭圆,焦点坐标为,0;当1m 时,曲线C 为焦点在y轴上的椭圆,焦点坐标为 0,.通过仿射变换可以将椭圆内接三角形变为圆内接三角形,它们之间存在固定的比例关系.而求解圆内接三角形的面积运算量要低很多.例2(2012年人大附开学考试)已知直线【解析】作仿射变换x x y,则直线l 是椭圆22334y x即2213944x y 的切线. 设O 到直线l 的距离为d ,23944d ≤(∵直线l 的斜率存在)12AOB A O B S d△△利用仿射变换处理面积问题等号当且仅当23 2d 时取得.因此AOB△.练习2(2010年朝阳一模文)已知椭圆22162x y中有一内接三角形ABC,其顶点C的坐标 1,AB.当ABC△的面积最大时,求直线AB的方程.B'A'O【解析】将椭圆通过仿射变换x xy y变成圆226x y,则A B C ABCS△△,1A Bk,C 坐标为,.∵直线OC ∥直线A B ,∴A B C OA BS S△△设直线A B 的方程为0x y m,则O到直线A B ,A B12OA BS△3≤∴当232m,即mOA BS△取得最大值3,此时直线A B 的方程为0xy.因此OABS△AB的方程为0x .练习3(2011年顺义二模)已知椭圆2214xy的左、右顶点分别记为A、B.过A斜率为1的直线交椭圆于另一点S,在椭圆C上的T满足:TSA△的面积为15.试确定点T的个数.【解析】将椭圆通过仿射变换12x xy y变成圆224x y,则225S AT SATS S△△.AS :22y x,即240x y∴圆心到直线ASAS∴T 到直线AS的距离为25142,∴在优弧上存在两个T 点2 T 点.综上,点T 的个数也即点T 的个数是2.练习4 (2010年宣武一模文)直线:220l x y 与椭圆2214y x 的交点为A 、B .求使PAB 的面积为12的点P 的个数;【解析】 2.练习5(2011年西城二模)设直线l 与椭圆2219x y 交于A 、B 两点,且以AB 为直径的圆过椭圆的右顶点C ,求ABC △面积的最大值.【解析】 如图,将坐标系原点平移至C ,则椭圆方程变为22319x y 即22690x x y .设直线AB 的方程为x my a ,则联立直线方程与椭圆方程有22690x my x x y a ,即266910y m yx a x a而12121y y x x ,∴6910a ,35a ,因此35CD . 将椭圆通过变换3x x y y变为圆229x y ,则13ABC A B C S S △△O (O')B'A'D (D')C (C')∵35C D ,3O C ,∴3153435A B C O A B S C D S O D△△设O 到A B 的距离为d,1122O A B S A B d d △∴当且仅当29d 时,O A B S △取得最大值92于是13128ABC O A B S S △△≤,即ABC △面积的最大值为38.例3(2011年辽宁)如图,已知椭圆的短轴为MN ,且1C 、C 这四点按纵坐标从大到小依次为【解析】 ⑴ 设2MN a ,则椭圆1C :2222211e x y a a ;椭圆2C :2222211e x y a a ;231e 4BC AD.⑵对椭圆1C 作仿射变换x x y ,则1C :222x y a ;对椭圆2C 作仿射变换x x ,1y y ,则2C :222x y a .BO AN EO EN BO AN k k∥211e EO EN k k设点 cos ,sin E a a (0π ),则sin cos EO k,sin cos 1EN k利用仿射变换处理弦长问题∴设cos 1cos EO EN k y k,则cos 1cos y , 1cos 1,11y 因此 ,02,y BO AN ∥2121e,∴当0<e时,不存在;当e 时,存在.利用仿射变换可以将一些题目中“平凡”的条件转化为对解题很有利的“特殊”条件,比如:① 利用仿射变换可以改变斜率,从而可以使得某些与椭圆相关的平行四边形转化为矩形,从而简化问题;② 利用仿射变化可以将椭圆变为圆,从而可以使某些与椭圆相关的平行四边形转化为菱形,从而简化问题. 例422x y【解析】 作仿射变换,椭圆方程变为224x y ,且OM ON .(理科)四边形OM P N 为正方形,于是OP M N∴P 点的轨迹方程为圆228x y , 因此P 点的轨迹方程为228x,即22184x y .∴存在符合题意的点1F 、2F ,坐标为 2,0 .(即椭圆的两个焦点) (文科)四边形OM P N 为矩形,OP M N ∴P 点的轨迹方程为圆2220x y ,因此P 点的轨迹方程为2220x,即2212010x y .∴存在符合题意的点F ,坐标为,0.(即椭圆的右焦点). 练习1(2011年海淀一模)设直线:l y kx m (12k ≤)与椭圆22143x y 相交于A 、B 两点,以线利用仿射变换凸显隐藏几何条件段OA ,OB 为邻边作平行四边形OAPB ,其中顶点P 在椭圆C 上,O 为坐标原点.求OP 的取值范围.【解析】 用仿射变换椭圆转化为圆,于是平行四边形OAPB 变为菱形OA P B ,由12AB k ≤得A B k ≤.根据菱形的对角线互相垂直,于是OP k ≥,因此1P x ≤.也就是说,1P P x x ≤ 于是22222231344P P P P Px x OP x y x133,4因此OP的取值范围是,.练习2(2012年海淀一模理)已知直线1l :1y kx m 与椭圆G :2212x y 交于A 、B 两点,直线2l :2y kx m (12m m )与椭圆G 交于C 、D 两点,且AB CD ,如图所示.⑴ 证明:120m m ;⑵ 求四边形ABCD 的面积S 的最大值.【解析】 考虑用仿射变换.⑴ ABCD 为椭圆内接平行四边形,作仿射变换后变为圆内接平行四边形,为矩形.因此对角线为直径,也就是说椭圆内接平行四边形的对角线互相平分于原点,于是120m m ;⑵ 圆内接矩形当且仅当矩形为正方形时面积最大,最大值为4,于是椭圆内接平行四边形面积.【备注】也可以看作相关直线问题⑴ 设直线y kx m 与椭圆交于两点A 、B ,则联立直线与方程,有22212102k x kmx m∴22AB k22k∴AB CD 等价于2212m m ,又12m m ,∴12m m ,即120m m⑵ 由①,AB 与CD 关于原点对称,四边形ABCD 为对称中心在原点的平行四边形.不妨设10m ,则4ABCD OABS S△21422k22211221412m k m k≤(当且仅当22112m k时取得等号). ∴四边形ABCD 的面积S 的最大值是例5Q【解析】 如图,将椭圆22182x y通过仿射变换2x x y y变成圆228x y ,则 2,2M 过M 作x 轴的垂线,垂足为H ,交圆228x y 于点N ,则易知 2,2N . ∵ 2,2N ,∴OM ON ,又OM A B ∥,∴ON A B 根据垂径定理,N 平分弧A B ,于是M N是A M B 的平分线.于是22MP M P M Q MQ k k k k ,又MH PQ ,∴MPQ △是等腰三角形,证毕.【备注】(2012年密云一模理)如图所示,已知椭圆的中心在原点,焦点在x 轴上,长轴长是短轴长的3倍,且经过点 3,1M .平行于OM 的直线l 在y 轴上的截距为m (0m ),且交椭圆于A 、B 两不同点.⑴ 求椭圆的方程; ⑵ 求m 的取值范围;⑶ 求证:直线MA 、MB 与x 轴始终围成一个等腰三角形.【解析】 ⑴ 221182x y ;⑵ 设直线l :13y x m (0m ),则 2,00,2m ;⑶ 视为连线垂直问题的推广或用仿射变换均可解决.练习6(2011年四中高二期中考试)已知点 2,1M 是椭圆22182x y 上一点,直线102y x m m 与椭圆相交于A 、B 两点.求MAB 的内心的横坐标.【解析】 考虑到图形的特点与求解的问题,考虑使用仿射变换将椭圆转化为圆加以解决.在圆中,容易证明M Q 是B MA 的平分线;于是MQ 是BMA 的平分线.因此MAB 的内心的横坐标为M 的横坐标,也就是2.例6(201122x y【解析】 ⑴ 如图,作仿射变换x x y yC 变为圆C :223x y .∴32OP Q OPQ S S△△ 设O 到直线P Q 的距离为d ,则1322d ,解得d 于是P Q ,OP OQ ,因此2212x y ,2221x y 而222211223x y x y ,∴22221212x x x x 3,2222121223y y y y 2 .综合⑵设PQ 的斜率为k ,则OM 的斜率为23k,OM PQ OM P Q333 设2249k m k ,则43m ≥.3OM PQ 52≤.⑶∵ODE ODG OEG S S S△△△32OD E OD G OE G S S S △△△∴在圆C 中,D E 、D G 、E G 所对的圆心角均为90 因此,不存在满足题意的三角形.练习7(2013北京昌平二模理)如图,已知椭圆22221x y a b (0a b )的长轴为AB ,过点B 的直线l 与x 轴垂直,椭圆的离心率e,F 为椭圆的左焦点,且1AF BF . ⑴求此椭圆的方程;⑵设P 是此椭圆上异于A B ,的任意一点,PH x 轴,H 为垂足,延长HP 到点Q 使得HP PQ . 连接AQ 并延长交直线l 于点,M N 为MB 的中点,判定直线QN 与以AB 为直径的圆O 的位置关系.【备注】设AQ 与椭圆交于点R ,则NR 与椭圆相切,此题与⑵均可以利用仿射变换解决.例7已知椭圆22143x y上的两点A 、点.设直线PB 与椭圆相交于D ,证明:直线利用仿射变换将问题转化为几何问题【解析】 将椭圆通过伸缩变换为圆,则需证明:若点A 、B 为关于圆的直径HG 对称的两点,HG 所在直线上的一点P 与B 点的连线交圆于D ,则AD 与PH 交于定点E .证明如下:如图,连结AG 、GD ,设PA 与圆交于C .HG PDBECA∵G 为弧CD 和弧AB 的中点,∴AG 、DH 分别是A 和BDG 的平分线 而DG DH ,∴DG 是EDP 的平分线.于是AE DE EGAP DP GP,因此2AE DE EG AP DP GP , 而AE DE EG EH (相交弦定理),AP DP AP CP PG PH (切割线定理) 于是EG EH EG EG PG PH PG PG ,即EG PGEH PH .∵PG PH 为定值(在本例中为13),∴EG EH 为定值,E 为定点(在本例中 1,0E ).练习8 设直线l :y kx m 与椭圆2212x y 相交于M 、N 两点,F 是椭圆的右焦点,直线FM 与直线FN 的斜率互为相反数.求证:直线l 过定点,并求该定点的坐标.【解析】 直线l 过定点 2,0.本质与例题相同.练习9(2010年江苏)如图,在平面直角坐标系xOy 中,已知椭圆22195x y 的左、右顶点为A 、B ,右焦点为F .设过点 9,T m 的直线,TA TB 与此椭圆分别交于点 11,M x y 、 22,N x y ,其中0m ,10y ,20y .设9t ,求证:直线MN 必过x 轴的一定点(其坐标与m 无关).【解析】 如下左图所示,利用坐标变换x xa y y b可以把椭圆22221x y a b 变换圆222x y a ,由于伸缩变换不改变共线以及线段长度的比,于是问题就转化为如下右图所示的:已知以AB 为直径圆O ,T 为与AB 垂直的圆外直线上任意一点,连结AT 、BT 与圆O 分别交于M 、N .求证MN 恒过定点D .x法1连结AN 、MB 并延长交于点T ,容易知道T 与T 在同一条垂直于AB 的直线上(B 为ATT △的垂心)CT'T对ABT △的割线MN ,根据梅涅劳斯定理有1AD BM T NDB MT NA ;而AM 、NB 、T T 交于一点,根据赛瓦定理有1BM T N ACMT NA CB;于是1AD CB DB AC,即AD ACDB BC 为定值,因此D 为定点. 法2CT NM A BOD 设4AC a ,TAC ,NAC ,则4cos aAT,2cos AM a ,2cos a BT ,2cos BN a ,AN AD ADN MDB AD AD DM AN AM MB MD AM DM DB MD DB MB BNADM NDB BN DB△∽△△∽△而AN AT ANT BMT BM BT △∽△,于是22824AD AT AM a DB BT BN a.法3PCD O BA M NT 设2MOC ,2NOC ,则OC 到OP 的角为 ,以O 为极点,OC 为极径,那么直线MN 的方程为 cos ,d O MN ,即 cos cos AB 于是ODcos cos AB cos cos sin sin cos cos sin sin AB1tan tan 1tan tan AB而12TAC MAB MOB ,12NAB NOB ,∴tan TC AC ,tan tan BCBTC TC因此11BC AC OD AB BC AC,于是点D 为定点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈仿射变换在解决椭圆问题中的应用
文[1]介绍了在解决椭圆的某些综合问题时,可以利用仿射变换的办法,把椭圆变换为圆来进行研究,会使得问题的解决过程变得简化.笔者也结合自身的教学与解题实践,通过几道例题,浅谈一下仿射变换在解决椭圆综合问题中的一些用法.
例1 已知椭圆22221(0)x y a b a b
+=>>,O 为坐标原点,A 为椭圆右顶点,若椭圆上存在点P (异于点A ),使得PO PA ⊥,则椭圆离心率的取值范围为________.
分析 此题中的点P 满足PO PA ⊥,即点P 在以AO 为直径的圆上,也即椭圆22221(0)x y a b a b
+=>>与以AO 为直径的圆有不同于点A 的公共点.利用仿射变换将椭圆变换为圆,点P 变换为点'P ,则点P 与点'P 的纵坐标之比即为椭圆短半轴与长半轴之比.
解 作仿射变换,令','a x x y y b
==,可得仿射坐标系'''x O y ,在此坐标系中,上述椭圆变换为圆222''x y a +=,原坐标系中以AO 为直径的
圆的方程为220x ax y -+=,则0'b y a y ⎛=== ⎝⎭,不难
求得椭圆离心率,12e ⎛⎫∈ ⎪ ⎪⎝⎭
. 说明 此题解法较多,用别的方法也不难求得本题的结果,但由上述过程我们看到,仿射变换也为我们提供了一种方便简洁的求解思路.
例2 已知椭圆22221(0)x y a b a b
+=>>,12F F 、分别为椭圆左右焦点,过12F F 、作两条互相平行的弦,分别与椭圆交于M N P Q 、、、四点,若当两条弦垂直于x 轴时,点M N P Q 、、、所形成的平行四边形面积最大,则椭圆离心率的取值范围为________.
分析 利用仿射变换将椭圆变换为圆,此时M N P Q 、、、四点分别变换为''''M N P Q 、、、四点,由仿射变换时变换前后对应图形的面积比不变这个性质,故将上述题目中的椭圆变换为圆时,''''M N P Q 、、、四点所形成的平行四边形面积最大值仍在两条弦与x 轴垂直时取到,故只需研究在圆的一条直径上,取关于圆心对称的两点12F F 、,当1OF 为多少时,能使得过12F F 、的两条互相平行的弦与此直径垂直时刻,
与圆的四个交点所形成的面积最大.
解 作仿射变换,令','a x x y y b ==,可得仿射坐标系'''x O y ,在此坐标系中,上述椭圆变换为圆222''x y a +=,点12F F 、坐标分别为
(,0)(,0)c c -、,过12F F 、作两条平行的弦分别与圆交于''''M N P Q 、、、四点.由平行四边形性质易知,三角形'''O P Q 的面积为''''M N P Q 、、、四点所形成的平行四边形面积的14
,故只需令三角形'''O P Q 面积的最大值在弦''P Q 与x 轴垂直时取到即可.由文[2]中的结论,易得当
0,2c ⎛⎤∈ ⎥ ⎝⎦
时,三角形'''O P Q 面积的最大值在弦''P Q 与x 轴垂直时取到.故此题离心率的取值范围为02⎛ ⎝⎦,.
说明 此题的一般解法也较多,但按照常规解法则较为繁琐.而上述解法利用仿射变换把椭圆变换为圆后,由于圆中三角形面积的计算
较为简便,故使得本题的解答过程大大简化.本题以面积的求解为载体,在此载体下可以有多种变式,笔者给出一种,有兴趣的读者不妨用仿射变换的办法尝试求解.
例2变式 已知椭圆22143x y +=,(1,)A m 为椭圆内一定点,过点A 的弦与椭圆交于P Q 、两点,若使得三角形OPQ 面积为3的弦PQ 存在两条,则m 取值范围为________.
例3 (2014年常州期末第18题)在平面直角坐标系xOy 中,椭圆2222:1(0)x y E a b a b
+=>>的右准线为直线l ,动直线(0,0)y kx m k m =+<>交椭圆于A B 、两点,线段AB 的中点为M ,射线OM 分别交椭圆及直线l 于点P Q 、,如图,当A B 、两点分别是椭圆E 的右顶点及上顶点时,点Q 的纵坐标为1e (其中e 为椭圆的离心率),且5OQ OM =.
(1)求椭圆E 的标准方程;
(2)如果OP 是OM OQ 、的等比中项,那么m k
是否为常数?若是,求出该常数;若不是,请说明理由.
分析 此题按照常规解法较为繁琐,但利
用仿射变换会使得问题的解决变得简单.仿射
变换后,点A B M P Q 、、、、分别变换为点
'''''A B M P Q 、、、、,对应直线的斜率变换为原来的a b
倍,且根据圆的性质,可得''''A B O Q ⊥,利用此性质可较容易求得m 与k 的比值关系.
解 作仿射变换,令','a x x y y b
==,可得仿射坐标系'''x O y ,在此坐标系中,上述椭圆变换为圆222''x y a +=,点A B M P Q 、、、、分别变换为点'''''A B M P Q 、、、、,由'M 为''A B 中点,可得''''A B O Q ⊥.
(1)当A B 、两点分别是原坐标系中椭圆E 的右顶点及上顶点
时,经仿射变换得到()()22',0,'0,,,,,22a a a a A a B a Q M c bc ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭
,此时线段''A B
所在直线斜率为1-,则''O Q 斜率为1,即22=1a a b c bc ⇒=,22
a a c =,计
算易得2a c ==,即椭圆E 的标准方程为2215x y +=. (2)经仿射变换后,''O P 是''''O M O Q 、的等比中项''A B 所在直线斜率变换为a k
b ,则根据''''A B O Q ⊥,可得''O Q 斜率为

22
22''1''2a b O Q O P c a k k
=+==-,因为2''''('')O Q O M O P =,即
求得
''O M =,又因为tan '''=ak M O y b
-∠=,则222''1a k b m O M b a =+,化简计算易得222''12a k b m O M k b a
=+=-,即m k 为定值2-.
说明 本题原答案是利用直线AB 与椭圆联立求得M 点坐标,进而求得直线OQ 后,继续令直线OQ 与椭圆联立,求得P 点坐标,再利用三条线段成等比中项求得m 与k 的比值,运算量较大.但利用仿射变换的办法,把椭圆仿射变换为圆后,各线段间几何关系明显且使得问题简洁易解,运算量大大简化.。

相关文档
最新文档