专题45 随机抽样(教学案)(解析版)

合集下载

深入浅出的数学随机抽样教案,帮助学生轻松掌握难点

深入浅出的数学随机抽样教案,帮助学生轻松掌握难点

这篇教案主要是在数学随机抽样这个知识点上注重教学的深入浅出,采用有效的教学方法帮助学生轻松掌握难点。

一、教学目标:教学目标主要是帮助学生掌握数学随机抽样的基本概念和方法,包括如何计算样本方差和样本均值,并能够精确应用到实际的问题中。

二、教学内容:1、数学随机抽样的基本概念和定义随机抽样是指从总体中随机抽取一定数量的个体作为样本,从而用样本的数据来推断总体的特征。

在数学中,随机抽样包括简单随机抽样、分层随机抽样、整群随机抽样等多种形式。

2、数学随机抽样的方法数学随机抽样主要采用两种方法:一种是等概率抽样法,另一种是无放回抽样法。

其中,等概率抽样法是指每个个体被选中的概率相等,而无放回抽样法是指抽样过程不考虑是否重复抽到已经抽中的个体。

3、计算样本方差和样本均值的方法在数学随机抽样中,样本方差和样本均值是非常重要的两个统计量。

样本方差的计算方法是样本各个数据与数据的平均值之差的平方和的平均值,而样本均值就是指样本所有数据的算术平均数。

三、教学任务:1、基础概念学习,包括随机抽样的定义,种类以及方法等。

2、样本方差和样本均值的计算方法,以及如何使用计算机进行计算。

3、教学案例分析,应用数学随机抽样的相关知识,对实际问题进行分析和解决。

四、教学方法:1、引导式教学法通过引导式教学,引导学生在教学的过程中产生兴趣,积极去学习和思考。

在师生对话中,老师通过引导提问,让学生不断地参与学习。

2、合作探究法采用合作学习的方式,鼓励学生之间互相交流、协作,通过彼此之间的交流和探讨,提高学生的学习效果。

3、案例分析法通过教学案例分析的方式,让学生将所学知识运用到实际问题的探讨中,从而更好地理解所学。

五、教学流程:1、讲解什么是数学随机抽样以及其基本概念。

2、讲解数学随机抽样的方法。

3、讲解计算样本方差和样本均值的方法。

4、以教学案例的方式,让学生将学习到的知识应用到实际的问题中。

5、对学生的学习情况进行总结并进行充分的讨论。

(教案)随机抽样

(教案)随机抽样

随机抽样【教学目标】1.理解全面调查、抽样调查、总体、个体、样本、样本量、样本数据等概念2.理解简单随机抽样的概念,掌握简单随机抽样的两种方法:抽签法和随机数法3.理解分层随机抽样的概念,并会解决相关问题【教学重难点】1.抽样调查2.简单随机抽样3.分层随机抽样【教学过程】一、问题导入预习教材内容,思考以下问题:1.全面调查、抽样调查、总体、个体、样本、样本量、样本数据的概念是什么?2.什么叫简单随机抽样?3.最常用的简单随机抽样方法有哪两种?4.抽签法是如何操作的?5.随机数法是如何操作的?6.什么叫分层随机抽样?7.分层随机抽样适用于什么情况?8.分层随机抽样时,每个个体被抽到的机会是相等的吗?9.获取数据的途径有哪些?二、基础知识1.全面调查与抽样调查(1)对每一个调查对象都进行调查的方法,称为全面调查,又称普查W.(2)在一个调查中,我们把调查对象的全体称为总体,组成总体的每一个调查对象称为个体W.(3)根据一定的目的,从总体中抽取一部分个体进行调查,并以此为依据对总体的情况作出估计和推断的调查方法,称为抽样调查W.(4)把从总体中抽取的那部分个体称为样本W.(5)样本中包含的个体数称为样本量W.(6)调查样本获得的变量值称为样本的观测数据,简称样本数据.2.简单随机抽样(1)有放回简单随机抽样一般地,设一个总体含有N (N 为正整数)个个体,从中逐个抽取n (1≤n <N )个个体作为样本,如果抽取是放回的,且每次抽取时总体内的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做放回简单随机抽样.(2)不放回简单随机抽样如果抽取是不放回的,且每次抽取时总体内未进入样本的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做不放回简单随机抽样.(3)简单随机抽样放回简单随机抽样和不放回简单随机抽样统称为简单随机抽样.(4)简单随机样本通过简单随机抽样获得的样本称为简单随机样本.(5)简单随机抽样的常用方法实现简单随机抽样的方法很多,抽签法和随机数法是比较常用的两种方法. 名师点拨(1)从总体中,逐个不放回地随机抽取n 个个体作为样本,一次性批量随机抽取n 个个体作为样本,两种方法是等价的.(2)简单随机抽样中各个个体被抽到的机会都相等,从而保证了抽样的公平性.3.总体平均数与样本平均数(1)总体平均数①一般地,总体中有N 个个体,它们的变量值分别为Y 1,Y 2,…,Y N ,则称Y -=Y 1+Y 2+…+Y N N=1N ∑N i =1Y i 为总体均值,又称总体平均数. ②如果总体的N 个变量值中,不同的值共有k (k ≤N )个,不妨记为Y 1,Y 2,…,Y k ,其中Y i 出现的频数f i (i =1,2,…,k ),则总体均值还可以写成加权平均数的形式Y -=1N ∑k i =1f i Y i W.(2)样本平均数如果从总体中抽取一个容量为n 的样本,它们的变量值分别为y 1,y 2,…,y n ,则称y -=y 1+y 2+…+y n n =1n ∑n i =1y i 为样本均值,又称样本平均数.在简单随机抽样中,我们常用样本平均数y -去估计总体平均数Y -.4.分层随机抽样(1)分层随机抽样一般地,按一个或多个变量把总体划分成若干个子总体,每个个体属于且仅属于一个子总体,在每个子总体中独立地进行简单随机抽样,再把所有子总体中抽取的样本合在一起作为总样本,这样的抽样方法称为分层随机抽样,每一个子总体称为层W.(2)比例分配在分层随机抽样中,如果每层样本量都与层的大小成比例,那么称这种样本量的分配方式为比例分配.5.分层随机抽样中的总体平均数与样本平均数(1)在分层随机抽样中,如果层数分为2层,第1层和第2层包含的个体数分别为M 和N ,抽取的样本量分别为m 和n .我们用X 1,X 2,…,X M 表示第1层各个个体的变量值,用x 1,x 2,…,x m 表示第1层样本的各个个体的变量值;用Y 1,Y 2,…,Y N 表示第2层各个个体的变量值,用y 1,y 2,…,y n 表示第2层样本的各个个体的变量值,则:①第1层的总体平均数和样本平均数分别为X -=X 1+X 2+…+X M M =1M ∑M i =1X i ,x -=x 1+x 2+…+x m m=1m ∑m i =1x i . ②第2层的总体平均数和样本平均数分别为Y -=Y 1+Y 2+…+Y N N =1N ∑N i =1Y i ,y -=y 1+y 2+…+y n n=1n ∑n i =1y i . ③总体平均数和样本平均数分别为W -=∑M i =1X i +∑N i =1Y i M +N ,w -=∑m i =1x i +∑ni =1y i m +nW. (2)由于用第1层的样本平均数x -可以估计第1层的总体平均数X -,用第2层的样本平均数y -可以估计第2层的总体平均数Y -.因此我们可以用M ×x -+N ×y -M +N =M M +N x -+N M +N y -估计总体平均数W -.(3)在比例分配的分层随机抽样中,m M =n N =m +n M +N ,可得M M +N x -+N M +Ny -=m m +n x -+n m +ny -=w -.因此,在比例分配的分层随机抽样中,我们可以直接用样本平均数w -估计总体平均数W -.6.获取数据的途径获取数据的基本途径有:(1)通过调查获取数据;(2)通过试验获取数据;(3)通过观察获取数据;(4)通过查询获取数据三、合作探究总体、样本等概念辨析题例1:为了调查参加运动会的1 000名运动员的平均年龄,从中抽取了100名运动员进行调查,下面说法正确的是( )A .1 000名运动员是总体B .每个运动员是个体C .抽取的100名运动员是样本D .样本量是100【解析】根据调查的目的可知,总体是这1 000名运动员的年龄,个体是每个运动员的年龄,样本是抽取的100名运动员的年龄,样本量为100.故答案为D .【答案】D[规律方法]此类题目要正确理解总体与个体的概念,要弄明白概念的实质,并注意样本与样本容量的不同,其中样本量为数目,无单位.简单随机抽样的概念例2:下面的抽样方法是简单随机抽样吗?为什么?(1)从无数个个体中抽取50个个体作为样本;(2)仓库中有1万支奥运火炬,从中一次抽取100支火炬进行质量检查;(3)某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴灾区开展救灾工作. 【解】(1)不是简单随机抽样.因为简单随机抽样要求被抽取的样本总体的个数是有限的.(2)不是简单随机抽样.虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”.(3)不是简单随机抽样.因为这50名官兵是从中挑选出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求.[规律方法]要判断所给的抽样方法是否为简单随机抽样,关键是看它们是否符合简单随机抽样的定义,即简单随机抽样的四个特点.抽签法及随机数法的应用例3:某班有50名学生,要从中随机地抽出6人参加一项活动,请分别写出利用抽签法和随机数法抽取该样本的过程.【解】(1)利用抽签法步骤如下:第一步:将这50名学生编号,编号为01,02,03, (50)第二步:将50个号码分别写在纸条上,并揉成团,制成号签.第三步:将得到的号签放在一个不透明的容器中,搅拌均匀.第四步:从容器中逐一抽取6个号签,并记录上面的号码.对应上面6个号码的学生就是参加该项活动的学生.(2)利用随机数法步骤如下:第一步:将这50名学生编号,编号为1,2,3, (50)第二步:用随机数工具产生1~50范围内的整数随机数,把产生的随机数作为抽中的编号,使与编号对应的学生进入样本.第三步:重复第二步的过程,直到抽足样本所需人数.对应上面6个号码的学生就是参加该项活动的学生.[规律方法](1)利用抽签法抽取样本时应注意以下问题:①编号时,如果已有编号(如学号、标号等)可不必重新编号.(例如该题中50名同学,可以直接利用学号)②号签要求大小、形状完全相同.③号签要搅拌均匀.④抽取号签时要逐一、不放回抽取.(2)利用随机数法抽取样本时应注意的问题:如果生成的随机数有重复,即同一编号被多次抽到,应剔除重复的编号并重新产生随机数,直到产生的不同编号个数等于样本所需的人数.分层随机抽样中的有关计算例4:(1)某单位共有老、中、青年职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍,为了解职工身体状况,现采用分层随机抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工的人数为W.(2)某高中学校为了促进学生个体的全面发展,针对学生发展要求,开设了富有地方特色的“泥塑”与“剪纸”两个社团,已知报名参加这两个社团的学生共有800人,其中x ∶y ∶z =5∶3∶2,且“泥塑”社团的人数占两个社团总人数的35,为了了解学生对两个社团活动的满意程度,从中抽取一个50人的样本进行调查,则从高二年级“剪纸”社团的学生中应抽取人.【解析】(1)设该单位老年职工人数为x ,由题意得3x =430-160,解得x =90.则样本中的老年职工人数为90×32160=18.(2)法一:因为“泥塑”社团的人数占总人数的35, 故“剪纸”社团的人数占总人数的25,所以“剪纸”社团的人数为800×25=320;因为“剪纸”社团中高二年级人数比例为y x +y +z =32+3+5=310, 所以“剪纸”社团中高二年级人数为320×310=96.由题意知,抽样比为50800=116,所以从高二年级“剪纸”社团中抽取的人数为96×116=6.法二:因为“泥塑”社团的人数占总人数的35,故“剪纸”社团的人数占总人数的25,所以抽取的50人的样本中,“剪纸”社团中的人数为50×25=20.又“剪纸”社团中高二年级人数比例为y x +y +z =32+3+5=310, 所以从高二年级“剪纸”社团中抽取的人数为20×310=6. 【答案】(1)18(2)6[规律方法]分层随机抽样中有关计算的方法(1)抽样比=该层样本量n 总样本量N =该层抽取的个体数该层的个体数. (2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比. 对于分层抽样中求某层个体数,或某层要抽取的样本个体数,都可以通过上面两个等量关系求解.样本平均数的求法例5:(1)甲在本次飞镖游戏中的成绩为8,6,7,7,8,10,9,8,7,8.求甲在本次游戏中的平均成绩.(2)在了解全校学生每年平均阅读多少本文学经典名著时,甲同学抽取了一个容量为10的样本,并算得样本的平均数为5;乙同学抽取了一个容量为8的样本,并算得样本的平均数为6.已知甲、乙两同学抽取的样本合在一起组成一个容量为18的样本,求合在一起后的样本均值.【解】(1)甲在本次游戏中的平均成绩为6+3×7+4×8+9+1010=7.8. (2)合在一起后的样本均值为10×5+8×610+8=50+4818=499. [规律方法]在分层随机抽样中,如果第一层的样本量为m ,平均值为x ;第二层的样本量为n ,平均值为y ,则样本的平均值为mx +ny m +n. 【课堂检测】1.在简单随机抽样中,每一个个体被抽中的可能性( )A .与第几次抽样有关,第一次抽中的可能性要大些B .与第几次抽样无关,每次抽中的可能性都相等C .与第几次抽样有关,最后一次抽中的可能性要大些D .每个个体被抽中的可能性无法确定解析:选B .在简单随机抽样中,每一个个体被抽中的可能性都相等,与第几次抽样无关.2.若对某校1 200名学生的耐力做调查,抽取其中120名学生,测试他们1500米跑的成绩,得出相应的数值,在这项调查中,样本是指( )A .120名学生B .1 200名学生C .120名学生的成绩D .1 200名学生的成绩解析:选C .本题抽取的是120名学生的成绩,因此每个学生的成绩是个体,这120名学生的成绩构成一个样本.3.(2019·广西钦州市期末考试)某中学共有1 000名学生,其中高一年级350人,该校为了了解本校学生视力情况,用分层随机抽样的方法从该校学生中抽出一个容量为100的样本进行调查,则应从高一年级抽取的人数为( )A .20B .25C .30D .35解析:选D .高一年级抽取的人数为3501 000×100=35.故选D .4.在调查某中学的学生身高时,利用分层抽样的方法抽取男生20人,女生15人,得到了男生身高的平均值为170,女生身高的平均值为165.试估计该中学所有学生的平均身高是多少?解:20×170+15×16520+15=5 87535=16767.即该中学所有学生的平均身高为16767. 第四步,把与号码相对应的人抽出,即可得到所要的样本.。

随机抽样教案

随机抽样教案

随机抽样教案教案:随机抽样教学目标:1. 理解随机抽样的定义和意义;2. 掌握常见的随机抽样方法;3. 运用随机抽样方法进行数据收集。

教学准备:1. 教师:教材、电脑、投影仪;2. 学生:纸笔。

教学内容与步骤:Step 1:引入随机抽样概念(5分钟)1. 教师用实例向学生解释随机抽样的概念和意义;2. 引导学生思考随机抽样的好处,比如能够有效减少样本偏倚,提高结果的代表性等。

Step 2:常见的随机抽样方法(10分钟)1. 教师介绍常见的随机抽样方法,如简单随机抽样、分层抽样、系统抽样等;2. 详细解释每种方法的特点和适用范围;3. 鼓励学生提问和讨论。

Step 3:实际操作(20分钟)1. 教师将学生分成小组,每组4-5人;2. 每组用纸笔模拟进行随机抽样实验;3. 每组根据实验结果展示并讨论,分析所选样本的代表性和抽样误差。

Step 4:总结与扩展(10分钟)1. 教师引导学生总结所学内容,回顾随机抽样的定义、方法和应用;2. 引导学生思考如何在实际调查中应用随机抽样方法;3. 分组展示学生的思考结果,互相交流和提供反馈。

Step 5:作业布置(5分钟)1. 让学生在家通过互联网查找更多关于随机抽样的方法和案例;2. 要求学生写一篇短文,总结自己对随机抽样的理解和应用。

教学延伸:1. 学生可以自行收集一些实际数据,并运用所学的随机抽样方法进行数据分析;2. 学生可以利用统计软件进行随机抽样实验的模拟,进一步加深对随机抽样方法的理解和应用。

教学评价:1. 课堂上的小组讨论和展示评价;2. 学生的作业评价。

教学反思:1. 教师在引入随机抽样概念时,可以设计一些趣味性的实例,引发学生的兴趣;2. 在实际操作环节,可以更加详细地解释每种随机抽样方法的步骤和计算方法,以帮助学生更好地理解和运用;3. 在作业布置环节,可以提供一些相关的网站资源,方便学生查找和学习。

随机抽样教案

随机抽样教案

随机抽样教案教学目标:1. 学生能够理解随机抽样的概念和目的。

2. 学生能够根据给定的问题,选择适当的随机抽样方法。

3. 学生能够分析和解读随机抽样所获得的数据。

教学资源:1. PowerPoint演示文稿。

2. 投影仪。

3. 白板和黑板。

4. 计算器。

5. 学生练习册。

教学步骤:引入(5分钟):1. 使用PowerPoint演示文稿简要介绍什么是随机抽样,并解释为什么我们需要使用随机抽样方法来进行数据收集。

2. 引发学生对随机抽样的兴趣:举例说明随机抽样在日常生活中的应用场景,如调查问卷、市场调研等。

探究(15分钟):1. 解释简单随机抽样的概念:从一个总体中以等概率随机地选取样本的方法。

2. 分组让学生进行讨论和思考:为什么简单随机抽样是一个可靠的方法?3. 提示学生注意简单随机抽样的注意事项:保证每个个体有相等的机会被选中,避免抽样偏差。

4. 通过使用白板或黑板,演示如何使用计算器或随机数表来进行简单随机抽样的具体步骤。

实践(20分钟):1. 给学生提供一份实际的问题或场景,要求他们选择适当的随机抽样方法,例如系统抽样、分层抽样或整群抽样等。

2. 学生在小组中讨论,并给出他们的答案和理由。

3. 鼓励学生解释他们的选择,以便其他学生可以从中学习。

讲解与讨论(15分钟):1. 收集学生的答案和理由,并进行讨论。

2. 强调每种抽样方法的特点和适用场景,并解释它们的优缺点。

3. 引导学生思考在不同情境下选择不同抽样方法可能会带来的结果差异。

巩固与评估(15分钟):1. 分发学生练习册,要求他们完成一些练习题以巩固所学内容。

2. 在课堂上解答学生的问题,并给予指导。

3. 通过学生的练习和问题回答,评估他们对随机抽样的理解程度。

总结(5分钟):回顾课堂上学到的知识要点,强调随机抽样的重要性和应用,并鼓励学生在日常生活中多加使用和实践。

延伸活动:鼓励学生在家中或社区中设计和实施一个简单的抽样调查项目,并汇报他们的结果和发现。

2.1《随机抽样》教案(新人教必修3)

2.1《随机抽样》教案(新人教必修3)

2.1.1简单随机抽样教学目标:1.结合实际问题情景,理解随机抽样的必要性和重要性2.学会用简单随机抽样的方法从总体中抽取样本教学重点:学会用简单随机抽样的方法从总体中抽取样本教学过程:1.总体和样本在统计学中 , 把研究对象的全体叫做总体.把每个研究对象叫做个体.把总体中个体的总数叫做总体容量.为了研究总体的有关性质,一般从总体中随机抽取一部分:,,,研究,我们称它为样本.其中个体的个数称为样本容量.2.简单随机抽样,也叫纯随机抽样。

就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。

特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。

简单随机抽样是其它各种抽样形式的基础。

通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

3.简单随机抽样常用的方法:(1)抽签法;⑵随机数表法;⑶计算机模拟法;⑷使用统计软件直接抽取。

在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。

4.抽签法:(1)给调查对象群体中的每一个对象编号;(2)准备抽签的工具,实施抽签(3)对样本中的每一个个体进行测量或调查例:请调查你所在的学校的学生做喜欢的体育活动情况。

5.随机数表法:例:利用随机数表在所在的班级中抽取10位同学参加某项活动。

课堂练习:第52页,练习A,练习B小结:本节重点介绍简单随机抽样常用的方法:⑴抽签法;⑵随机数表法;学会用简单随机抽样的方法从总体中抽取样本课后作业:第58页,习题2-1A第1、2、3题,2.1.2系统抽样教学目标:1.结合实际问题情景,理解系统抽样的必要性和重要性2.学会用系统抽样的方法从总体中抽取样本教学重点:学会用系统抽样的方法从总体中抽取样本教学过程:1.系统抽样(等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。

第一个样本采用简单随机抽样的办法抽取。

随机抽样(解析版)

随机抽样(解析版)

专题6 随机抽样例1.从50件产品中随机抽取10件进行抽样.利用随机数表抽取样本时,将50件产品按01,02,03,⋯⋯,50进行编号,如果从随机数表的第1行,第6列开始,从左往右依次选取两个数字,则选出来的第4个个体编号为()70 29 17 12 15 40 33 20 38 26 13 89 51 03 7417 76 37 13 04 07 74 21 19 30 56 62 18 37 35A.03B.32C.38D.10【解析】解:由题意,选出来的前4个个体分别为:21,03,32,38,10,故第4个个体编号为38.故选:C.例2.某歌唱兴趣小组由15个编号为01,02,⋯,15的学生个体组成,现要从中选取3名学生参加合唱团,选取方法是从随机数表的第1行的第18列开始由左往右依次选取两个数字,则选出来的第3名同学的编号为()A.02B.09C.12D.03【解析】解:从随机数表第1行的第18列数字开始由左往右依次选取两个数字,则选出来的前3名同学的编号分别为03,09,02,所以选出来的第3名同学的编号为02.故选:A.例3.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得128粒内夹谷14粒,则这批米内夹谷约为()A.133石B.168石C.337石D.1364石【解析】解:由题意,这批米内夹谷约为141534168128⨯≈石,故选:B.例4.假设要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋中抽取60袋进行检验,利用随机数表抽样时,先将800袋牛奶按000,001,⋯,799进行编号,如果从随机数表第8行第7列开始向右读,请你写出抽取检测的第5袋牛奶的编号是()(下面摘取了随机数表第7行至第9行)84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 56 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54A.199B.175C.507D.128【解析】解:找到第8行第7列的数开始向右读,符合条件的是785,667,199,507,175,故选:B.例5.某工厂具有初级、中级、高级职称的工人分别有550人、150人、50人.为了解工人的职称与年龄之间的关系,用分层抽样的方法从这个工厂具有职称的工人中抽取30人进行调查,则应从初级职称的工人中抽取的人数为()A.20B.22C.24D.28【解析】解:根据分层抽样的知识可知,应从初级职称的工人中抽取的人数为5503022 55015050⨯=++,故选:B.例6.某校高一年级有男生260人,女生240人,用分层抽样的方法从高一年级的学生中随机抽取25名学生进行问卷调查,则应抽取的女生人数为()A.6B.12C.24D.36【解析】解:高一年级有男生260人,女生240人,用分层抽样的方法从高一年级的学生中随机抽取25名学生进行问卷调查,则抽样的比例为251 26024020=+,则应抽取的女生人数为12401220⨯=(人),故选:B.例7.某公司生产A,B,C三种不同型号的轿车,产量之比依次为2:3:4,为检验该公司的产品质量,用分层抽样的方法抽取一个容量为n的样本,若样本中A种型号的轿车比B种型号的轿车少8辆,则(n= )A.96B.72C.48D.36【解析】解:设样本中A型号车为x辆,则B型号为(8)x+辆,则283xx=+,解得16x=,即A型号车16辆,则216 234n=++,解得72n=.故选:B.例8.某单位有业务员和管理人员构成的职工160人,现用分层抽样方法从中抽取一个容量为20的样本,若样本中管理人员有7人,则该单位的职工中业务员有多少人()A.32人B.56人C.104人D.112人【解析】解:设该单位的职工中业务员有x人,业务员和管理人员构成的职工160人,抽取一个容量为20的样本,若样本中管理人员有7人,∴20720160x-=,104x∴=,故选:C.例9.某校有男生1600人,女生1000人,为了解该校学生的身高情况,采用分层抽样法抽取一个容量为104的样本,则抽取的男生人数是()A.24B.40C.32D.64【解析】解:由题意可得抽取的男生人数是160010464 16001000⨯=+,故选:D.例10.已知甲、乙、丙三个社区现分别有低收入家庭360户、270户、180户.若政府计划援助这三个社区中90户低收入家庭,现采用分层随机抽样的方法决定各社区户数,则甲社区中接受援助的低收入家庭的户数为()A.20B.30C.36D.40【解析】解:每个个体被抽到的概率等于901 3602701809=++,甲社区有360户低收入家庭,故应从甲社区中抽取低收入家庭的户数为1 360409⨯=,故选:D.例11.某高校大一新生中,来自东部地区的学生有2400人,中部地区学生有1600人、西部地区学生有1000人.从中选取100人作样本调研饮食习惯.为保证调研结果相对准确,下列判断正确的有()①用分层抽样的方法分别抽取东部地区学生48人、中部地区学生32人、西部地区学生20人;②用简单随机抽样的方法从新生中选出100人;③西部地区学生小刘被选中的概率为150;④东部地区学生小张被选中的概率比中部地区的学生小王被选中的概率大.A.①④B.①③C.①③④D.②③【解析】解:在①中,东部、中部、西部人数比为2400:1600:100012:8:5=用分层抽样的方法分别抽取东部地区学生:12100481285⨯=++人,中部地区学生:8100321285⨯=++人,西部地区学生20人:5100201285⨯=++人,故①正确;在②中,因为学生层次差异较大,且学生数量较多,应该利用分层抽样,故②错误;在③中,西部地区学生小刘被选中的概率为1001 24001600100050=++,故③正确;在④中,每个人被选中的概率均为1001 24001600100050=++,故④错误.故选:B.例12.某校高一、高二、高三共有2800名学生,为了解暑假学生在家的每天学习情况,计划用分层抽样的方法抽取一个容量为56人的样本,已知从高二学生中抽取的人数为19人,则该校高二学生人数为() A.900B.950C.1000D.1050【解析】解:抽样的比例为1956,则高二年级的人数为19280095056⨯=,故选:B.例13.某饮料厂商搞促销活动,在十万瓶饮料(编号为0~99999)中,采用系统抽样的方法抽出5%的饮料,并在抽出的饮料瓶盖内侧写上“中奖”字样,若抽出的饮料的最大编号是99996,则抽出的饮料的最小编号是()A.13B.14C.15D.16【解析】解:在十万瓶饮料(编号为0~99999)中,采用系统抽样的方法抽出5%的饮料,并在抽出的饮料瓶盖内侧写上“中奖”字样,若抽出的饮料的最大编号是99996,则抽出的饮料瓶数为1000005%5000⨯=,抽样的间隔为100000500020÷=,则抽出的饮料编号从大到小排列构成以99996为首项,以20-为公差的等差数列,的最小编号为99996(50001)(20+-⨯-)16=,故选:D.例14.为了了解1500名社区成员早锻炼情况,对他们随机编号为1,2,⋯,1500号,从中抽取一个容量为50的样本.若采用系统抽样,则分段的间隔k为()A.20B.30C.40D.50【解析】解:总体中个体数是1500,样本容量是50,根据系统抽样的步骤,得到分段的间隔15003050k==,故选:B.例15.从编号为0,1,2,3,⋯,79的80件产品中,利用系统抽样的方法抽取容量为5的样本,若编号为74的产品在样本中,该组样本中产品最小的编号为()A.8B.10C.12D.14【解析】解:系统抽样的样本间隔为80516÷=,7416410=⨯+,∴该样本中产品的最小编号为10,故选:B.例16.某班有学生60人,将这60名学生随机编号为1~60号,用系统抽样的方法从中抽出4名学生,已知4号、34号、49号学生在样本中,则样本中另一个学生的编号为()A.28B.23C.19D.13【解析】解:抽样间隔为15,故另一个学生的编号为41519+=,故选:C.例17.用系统抽样法要从160名学生中抽取容量为20的样本,将160名学生随机地从1~160编号,若第1组抽出的号码为6,则第6组中抽取的号码是()A.66B.56C.46D.126【解析】解:由题意可得分段间隔是160820=,抽出的这20个数成等差数列,首项为6,∴第6组中用抽签方法确定的号码是65846+⨯=.故选:C.例18.某学校从编号依次为001,002,⋯,900的900个学生中用系统抽样(等间距抽样)的方法抽取一个容量为20样本,已知样本中的有个编号为053,则样本中最大的编号为()A.853B.854C.863D.864【解析】解:依题意知系统抽样的组距为90045 20=,053为第二组的编号,即53458=+,所以第一组抽取的编号为008,则样本中最大的编号即第20组的编号为:81945863+⨯=.故选:C .例19.为了解高一学生对《中华人民共和国民法典》的学习情况,现从某校高一1205名学生中抽取50名学生参加测试,则首先用简单随机抽样剔除5名学生,然后剩余的1200名学生再用系统抽样的方法抽取,则每人入选的概率( )A .不全相等B .均不相等C .都相等,为10241D .都相等,为124【解析】解:根据简单随机抽样和系统抽样原理知,每个个体被抽到的概率相等, 所以每人入选的概率为50101205241P ==. 故选:C .例20.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,⋯⋯,960,分组后第一组抽到的号码为20.抽到的32人中,编号落入区间[400,800]的人数为( )A .11B .12C .13D .14 【解析】解:9603230÷=,∴由题意可得抽到的号码构成以20为首项、以30为公差的等差数列,且此等差数列的通项公式为20(1)303010n a n n =+-=-.落入区间[400,800],由4003010800n -,即41030810n 解得213273n . 再由n 为正整数可得 1427n ,∴编号落入区间[400,800]的人数为2714114-+=,故选:D .例21.“净拣棉花弹细,相合共雇王孀.九斤十二是张昌,李德五斤四两.纺讫织成布匹,一百八尺曾量.两家分布要明彰,莫使些儿偏向.”这首古算诗题出自《算法统宗》中的《棉布均摊》,它的意思如下:张昌拣棉花九斤十二两,李德拣棉花五斤四两,共同雇王孀来帮忙细弹、纺线、织布.共织成布匹一百零八尺长,则()(注:古代一斤是十六两)A.按张昌37.8尺,李德70.2尺分配就合理了B.按张昌70.2尺,李德37.8尺分配就合理了C.按张昌42.5尺,李德65.5尺分配就合理了D.按张昌65.5尺,李德42.5尺分配就合理了【解析】解:九斤十二两等于9.75斤,五斤四两等于5.25斤,所以按9.7510870.29.72 5.25⨯=+尺,李德5.2510837.89.75 5.25⨯=+尺,故选:B.例22.“今年我已经8个月没有戏拍了”迪丽热巴在8月的一档综艺节目上说,霍建华在家里开玩笑时说到“我失业很久了”;明道也在参加《演员请就位》时透露,已经大半年没有演过戏.为了了解演员的生存现状,什么样的演员才有戏演,有人搜集了内地、港澳台共计9481名演员的演艺生涯资料,在统计的所有演员资料后得到以下结论:①有65%的人在2019年没有在影剧里露过脸;②2019年备案的电视剧数量较2016年时下滑超过三分之一;③女演员面临的竞争更加激烈;④演员的艰难程度随着年龄的增加而降低.请问:以下判断正确的是()A.调查采用了分层抽样B.调查采用了简单随机抽样C.调查采用了系统抽样D.非抽样案例【解析】解:调查结果是对所有9481名演员的情况进行总结的,所以分析对象是全体,不是抽样.故选:D.例23.2020年3月某省教研室组织了一场关于如何开展线上教学的大型调研活动,共收到有效问卷558982份,根据收集的教学类型得到统计数据如图:以上面统计数据为标准对线上学习的教学类型进行分析,下面说法正确的是()A.本次调研问卷的学生中采用纯直播教学形式进行学习的学生人数超过了30万B.线上利用了直播平台进行学习的学生比例超过了90%C.线上学习观看过录播视频的学生比例超过了40%D.线上学习使用过资源包的学生的比例不足25%【解析】解:对于选项A:根据图表知识纯直播占比51.8%,总人数为558982,所以看纯直播的人数约为289552,没有超过30万,故选项A错误;对于选项B:线上学习利用直播平台进行学习的学生占比约为17.0% 5.4%14.9%51.8%89.1%+++=,没有超过90%,故选项B错误;对于选项C:线上学习观看过录播视频的学生占比约,17.0% 1.6%14.9%7.4%40.9%+++=,超过40%,故选项C正确;对于选项D:使用过资源包的人数占比约为17.0% 1.6% 5.4% 1.2%25.2%+++=,超过25%,故选项D错误,故选:C.例24.在一次全运会男子羽毛球单打比赛中,运动员甲和乙进入了决赛.羽毛球的比赛规则是3局2胜制,假设每局比赛甲获胜的概率为0.6,乙获胜的概率为0.4,利用计算机模拟试验,估计甲获得冠军的概率.为此,用计算机产生1~5之间的随机数,当出现随机数1,2或3时,表示一局比赛甲获胜,其概率为0.6.由于要比赛三局,所以每3个随机数为一组.例如,产生了20组随机数:423 231 423 344 114 453 525 323 152 342345 443 512 541 125 342 334 252 324 254相当于做了20次重复试验,用频率估计甲获得冠军的概率的近似值为0.65.【解析】解:由题意知模拟打3局比赛甲恰好获胜2局的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示打3局比赛甲恰好获胜2局的有:432,231,423,114,323,152,342,512,125,342,334,252,324共13组随机数,∴所求概率为130.65 20=,故答案为:0.65.。

随机抽样教案

随机抽样教案

随机抽样教案教案:随机抽样一、教学目标:1. 了解随机抽样的概念和作用;2. 学会进行随机抽样,并进行数据统计和分析;3. 提高学生的数据分析和解决问题的能力。

二、教学内容:1. 随机抽样的概念和作用;2. 随机抽样的方法:a) 简单随机抽样;b) 系统抽样;c) 分层抽样;d) 整群抽样。

三、教学过程:1. 导入新知识:a) 引入问题:小明想调查全校学生对新食堂的满意度,应该如何进行调查才能保证结果准确可靠?b) 让学生思考并各自提出解决办法。

2. 学习随机抽样:a) 介绍随机抽样的概念和作用;b) 通过实例解读不同抽样方法的特点和适用范围;c) 辅助案例分析,让学生理解各种抽样方法的应用场景。

3. 进行随机抽样:a) 列举不同抽样方法的步骤和操作要点;b) 引导学生根据不同情况选择适合的抽样方法;c) 进行实际抽样操作,抽取样本数据。

4. 数据统计和分析:a) 教授学生如何整理和记录样本数据;b) 分组讨论,根据样本数据分析结果,得出结论;c) 分享不同小组的分析结果,互相比较和讨论。

5. 结束活动:a) 总结本节课的学习内容和方法;b) 鼓励学生在实际生活中应用所学知识。

四、教学评价:1. 观察学生在学习过程中的参与度和合作度;2. 检查学生在实际操作中的准确性和熟练度;3. 针对教学过程中的问题进行适时的解答和指导。

五、教学资源:1. 教材、教具:教科书、白板、黑板、投影仪等;2. 资料和案例:关于随机抽样的案例和相关数据。

六、拓展延伸:1. 进行更复杂的抽样实验,引导学生灵活运用不同抽样方法,解决实际问题;2. 组织学生自主设计抽样调查,并进行数据分析和报告。

随机抽样教案

随机抽样教案

2.1 随机抽样【教学目标】1.理解随机抽样的必要性和重要性.2.会用简单随机抽样方法从总体中抽取样本,理解分层抽样和系统抽样方法.【教法指导】及学会简单随机抽样方法,理解分层和系统抽样方法;难点是对样本随机性的理解;增强新旧知识之间的联系,培养自己分析问题、解决问题的水平,从而获得学习数学的方法.【教学过程】课本导读一、总体、个体、样本在统计里,把所考察对象的某一数值指标的全体构成的集合看成总体,其中构成总体的每一个考察的对象为个体.从总体中随机抽取若干个个体构成的集合叫做总体的一个样本,样本中包含的个体数目叫做样本容量.二、随机抽样抽样时保持每一个个体都可能被抽到,每一个个体被抽到的机会是均等的,满足这样条件的抽样是随机抽样.三、简单随机抽样1.定义设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),假设每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.最常用的简单随机抽样的方法抽签法和随机数法.四、系统抽样1.定义当总体中的个体数目较多时,可将总体分成均衡的几个局部,然后按照事先定出的规则,从每一局部抽取1个个体得到所需要的样本,这种抽样方法叫做系统抽样.五、分层抽样1.定义在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法就叫做分层抽样.2.分层抽样的操作步骤第一步,确定样本容量与总体个数的比;第二步,计算出各层需抽取的个体数;第三步,采用简单随机抽样或系统抽样在各层中抽取个体;第四步,将各层中抽取的个体合在一起,就是所要抽取的样本.六、三种抽样方法的区别与联系疑难辨析1.简单随机抽样(1)在简单随机抽样中,某一个个体被抽到的可能性与第几次抽取相关,第一次抽到的可能性最大.( )[ 学 ](2)从20个零件中用简单随机抽样一次性抽取3个实行质量检测.( )(3)从100件玩具随机拿出一件,放回后再拿出一件,连续拿5次,是简单随机抽样.( )2.系统抽样(1)当总体中个体数较多时,应采取系统抽样法.( )(2)要从1 002个学生中用系统抽样的方法选择一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.( )3.分层抽样(1)分层抽样中,每个个体被抽到的可能性与层数及分层相关.( )(2)某地区教育部门要调查中小学生的近视情况及形成原因,要抽取1 的学生实行调查,可用分层抽样实行.( )[ 学 ]4.三种抽样方法的比较(1)某班有45人,现抽取5人参加一项社会活动,则能够用简单随机抽样法抽取.( )(2)某校即将召开学生代表大会,现要从高一、高二、高三共抽取60名代表,则可用分层抽样方法抽取.( )(3)三种抽样方法,不管是哪一种,总体中每一个个体被抽到的机会均等.( )(3)根据三种抽样方法的规则可知,每个个体被抽到的机会均等.题型一简单随机抽样例1第十二届全运会将于2013年8月31日至9月12日在辽宁省沈阳市举行,沈阳某大学为了支持大运会,从报名的30名大三学生中选8人组成志愿小组,请用抽签法和随机数表法设计抽样方案.探究一通过本例题让学生理解利用简单随机抽样抽取样本时条件及步骤.1.条件(1)总体的个数较少,利用随机数表法或抽签法可容易获得样本;2.步骤(1)随机数表法的操作步骤编号、选起始数、读数、获取样本;(2)抽签法的操作步骤编号、制签、搅匀、抽取.学思考题一1、以下问题中,最适合用简单随机抽样方法抽样的是 ( )A .某电影院有32排座位,每排有40个座位,座位号是1~40,有一次报告会坐满了听众,报告会结束后为听取意见,要留下32名听众实行座谈B .从10台冰箱中抽出3台实行质量检查C .某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人,教育部门为理解在编人员对学校机构改革的意见,要从中抽取一个容量为20的样本D .某乡农田有 山地800公顷,丘陵1 200公顷,平地2 400公顷,洼地400公顷,现抽取农田48公顷估计全乡农田平均每公顷产量 答案 B解析 A 的总体容量较大,用简单随机抽样法比较麻烦;B 的总体容量较少,用简单随机抽样法比较方便;C 因为学校各类人员对这个问题的看法可能差异很大,不宜采用简单随机抽样法;D 总体容量大,且各类田地的差别很大,也不宜采用简单随机抽样法.2.利用抽签法,从n 个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为13,则在整个抽样过程中,每个个体被抽到的概率为( )A.13B.514C.14D.10273.用随机数表实行抽样有以下几个步骤 ①将总体中的个体编号;②获取样本号码;③选定开始的数字,这些步骤的先后顺序应为( )A .①②③B .①③②C .③②①D .③①②4.学校举办元旦晚会,需要从每班选10名男生,8名女生参加合唱节目,某班有男生32名,女生28名,试用抽签法确定该班参加合唱的同5.现有120台机器,请用随机数表法抽取10台机器,写出抽样过程.【分析】已知N=120,n=10,用随机数表法抽样时编号000,001,002,…,119,抽取10个编号(都是三位数),对应的机器组成样本.【解析】第一步,先将120台机器编号,能够编为000,001,002, (119)第二步,在随机数表中任选一个数作为开始,任选一个方向作为读数方向,例如选出第9行第7列的数3,向右读;第三步,从选定的数3开始向右读,每次读取三位,凡不在000~119中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到074,100,094,052,080, 003,105,107,083,092;第四步,以上这10个号码074,100,094,052,080,003,105,107,083,092所对应的10台机器就是要抽取的对象.题型二系统抽样例2、 1、某初级中学领导采用系统抽样方法,从该校预备年级全体800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800实行编号,求得间隔数 =80050=16,即每16人抽取一人.在1~16中随机抽取一个数,假设抽到的是7,则从33~48这16个数中应取的数是________.【解析】 (1)因为采用系统抽样方法,每16人抽取一人,1~16中随机抽取一个数抽到的是7,所以在第 组抽到的是7+16( -1),所以从33~48这16个数中应取的数是7+16×2=39.【答案】392、某装订厂平均每小时大约装订图书360册,要求检验员每小时抽取40册图书,检验其质量状况,请你设计一个抽样方案.3.某校高中三年级的295名学生已经编号为1,2,…,295,为了理解学生的学习情况,要按1∶5的比例抽取一个样本,请用系统抽样的方法实行抽取,并写出过程.【分析】 按1∶5的比例确定样本容量,再按系统抽样的步骤实行,关键是确定第1段的编号.【解析】 按照1∶5的比例抽取样本,则样本容量为15×295=59. 抽样步骤是(1)编号 按现有的号码;(2)确定分段间隔 =5,把295名同学分成59组,每组5人,第1组是编号为1~5的5名学生,第2组是编号为6~10的5名学生,依次下去,第59组是编号为291~295的5名学生;(3)采用简单随机抽样的方法,从第一组5名学生中抽出一名学生,不妨设编号为l(1≤l≤5);(4)那么抽取的学生编号为l+5(=0,1,2,...,58),得到59个个体作为样本,如当l=3时的样本编号为3,8,13, (288)293.[ 学 ]探究二通过本例题让学生理解系统抽样的特点及步骤.(1)通过例2的(1)(2)让学生理解系统抽样的特点是等距离抽样,若第一组抽取号码a,然后以d为间距依次等距离抽取后面的编号,抽出的所有号码为a+d ( =0,1,2,…,n-1),其中n是组数.(2)通过例2的(3)让学生理解系统抽样的步骤第一步,将总体的N个个体编号.第二步,确定分段间隔,对编号实行分段.第三步,在第1段用简单随机抽样确定起始个体编号l.第四步,按照一定的规则抽取样本.思考题二(1)一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10组,组号依次为1,2,3,…,10,现用系统抽样抽取一个容量为10的样本,并规定假设在第一组随机抽取的号码为m,那么在第(=2,3,…,10)组中抽取的号码的个位数字与m +的个位数字相同.若m=6,则该样本的全部号码是__________________.(2)将某班的60名学生编号 01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是________.题型三、分层抽样例3、(1)(2013·湖南卷)某学校有男、女学生各500名.为理解男女学生在学习兴趣与业余爱好方面是否存有显著差异,拟从全体学生中抽取100名学生实行调查,则宜采用的抽样方法是( )A.抽签法 B.随机数法C.系统抽样法 D.分层抽样法(2)[2012·江苏卷] 某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.(3)[2012·天津卷] 某地区有小学150所,中学75所,大学25所,现采用分层抽样的方法从这些学校中抽取30所学校对学生实行视力调查,应从小学中抽取________所学校,中学中抽取________所学校.(4)某高中共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为( )A.15,5,25 B.15,15,15C.10,5,30 D.15,10,20(5)某城市有210家百货商店,其中大型商店20家、中型商店40家、小型商店150家,为了掌握各商店的营业情况,计划抽取一个容量为21的样本,按照分层抽样方法抽取时,各种百货商店分别要抽取多少家?并写出抽样过程.探究三通过本例题让学生理解分成抽样的特点及步骤,各局部之间有明显的差异是分层抽样的依据,至于各层内用什么方法抽样是灵活的.分层抽样中,个体被抽中的机会均等,表达了抽样的公平性.(1)通过例3(1)让学生理解什么情况采用分层抽样;(2)通过例3(2)(3)(4)让学生理解分层抽样的抽样比方何计算;(3)通过例3(5)让学生理解分层抽样的步骤.思考题三、(1)[2012·南阳一模] 某地为了调查职业满意度,决定用分层抽样的方法从公务员、教师、自由职业者三个群体的相关人员中抽取若干人组成调查小组,相关数据见下表相关人员数[ ] 抽取人数公务员35 b教师 a 3 自由职业者28 4则调查小组的总人数为( ) A .84 B .12 C .81 D .14(2)[2012·江西重点中学一模] 在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本 ①采用随机抽样法,将零件编号为00,01,02,…,99,抽出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个;③采用分层抽样法,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个.则( )A .不管采取哪种抽样方法,这100个零件中每个被抽到的概率都是15B .①②两种抽样方法,这100个零件中每个被抽到的概率都是15,③并非如此C .①③两种抽样方法,这100个零件中每个被抽到的概率都是15,②并非如此D .采用不同的抽样方法,这100个零件中每个被抽到的概率各不相同(3)[2012·吉林一模] 从总数为N 的一群学生中抽取一个容量为100的样本,若每个学生被抽取的概率为14,则N的值为( )A.25 B.75 C.400 D.5004.某公司有三个部门,第一个部门800个员工,第二个部门604个员工,第三个部门500个员工,现在用按部门分层抽样的方法抽取一个容量为380名员工的样本,求应该剔除几个人,每个部门应该抽取多少名员工?随堂测评1.现要完成以下3项抽样调查①从10盒酸奶中抽取3盒实行食品卫生检查.②技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取听众意见,需要请32位听众实行座谈.③东方中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了理解教职工对学校在校务公开方面的意义,拟抽取一个容量为20的样本.较为合理的抽样方法是( )A.①简单随机抽样,②系统抽样,③分层抽样B.①简单随机抽样,②分层抽样,③系统抽样C.①系统抽样,②简单随机抽样,③分层抽样D.①分层抽样,②系统抽样,③简单随机抽样[2012·漳州三校二联] 某学校为了调查高二年级的80名文学生和高三年级的120名文学生完成课后作业所需时间,采取了两种抽样调查的方式第一种由学生会的同学随机抽取高二年级8名和高三年级12名同学实行调查;第二种由教务处对该年级的文学生实行编号,从001到200,抽取学号最后一位为2的同学实行调查,则这两种抽样的方法依次为( )A.分层抽样,简单随机抽样B.抽签法,随机数表法C.分层抽样,系统抽样D.简单随机抽样,系统抽样3.[2013·南通中学联考] 某地有居民2万户,从中随机抽取200户,调查是否已安装安全救助报警系统,调查结果如下表所示[ ] 外户原住户已安装60 35未安装45 60则该小区已安装安全救助报警系统的户数估计有________户.4.某商场想通过检查发票及销售记录的 2 快速估计每月的销售总额.采取如下方法从某本发票的存根中随机抽一张,如15号,然后按序往后将65号,115号,165号,…,发票上的销售额组成一个调查样本.这种抽取样本的方法是( )A.抽签法 B.随机数表法C.系统抽样法 D.其他方式的抽样5.为了考察某校的教学水平,将抽查这个学校高三年级局部学生的本学年考试成绩实行考察.为了全面地反映实际情况,采取以下三种方式实行(已知该校高三年级共有14个教学班,并且每个班内的学生都已经按随机方式编好了学号,假定该校每班人数都相同).①从全年级14个班中任意抽取一个班,再从该班中任意抽取14人,考察他们的学习成绩;②每个班都抽取1人,共计14人,考察14个学生的成绩;③把学校高三年级的学生按成绩分成优秀、良好、普通三个级别,从中抽取100名学生实行考察(已知若按成绩分,该校高三学生中优秀学生有105名,良好学生有420名,普通学生有175名).根据上面的表达,试回答以下问题(1)上面三种抽取方式中,其总体、个体、样本分别指什么?每一种抽取方式抽取的样本中,其样本容量分别是什么?(2)上面三种抽取方式各自采用何种抽取样本的方法?(3)试分别写出上面三种抽取方式各自抽取样本的步骤.。

高中数学随机抽样教案

高中数学随机抽样教案

高中数学随机抽样教案
教学内容:随机抽样
教学目标:
1. 了解随机抽样的概念和方法;
2. 掌握常见的随机抽样技术;
3. 能够应用随机抽样方法解决实际问题。

教学重点:
1. 随机抽样的概念;
2. 简单随机抽样;
3. 分层抽样;
4. 系统抽样;
5. 整群抽样。

教学步骤:
1. 导入:介绍随机抽样的重要性和应用背景。

2. 理论讲解:讲解随机抽样的定义、方法和常见技术。

3. 实例演练:通过具体例题演示简单随机抽样、分层抽样、系统抽样和整群抽样的操作步骤。

4. 练习:布置练习题,让学生巩固所学知识。

5. 拓展:介绍其他随机抽样方法和应用领域。

6. 总结:回顾本节课的重点内容,强化学生对随机抽样的理解。

教学资源:
1. PPT课件;
2. 教材教辅;
3. 练习题库。

教学评价:
1. 课堂表现;
2. 课后作业成绩;
3. 期中期末考试成绩。

教学延伸:
1. 可以结合实际案例进行讨论,让学生更好地理解随机抽样的应用;
2. 可以组织学生进行小组活动,让他们合作完成一些随机抽样实验。

教学反思:
1. 在教学中要注意引导学生理解随机抽样的概念,避免机械记忆方法而忽视理解;
2. 需要多种教学方法结合,提高学生的学习兴趣和参与度。

高一数学辅导教案:随机抽样

高一数学辅导教案:随机抽样

随机抽样辅导教案一、 作业检查作业完成情况:优口良口中口差口学生姓名性别年级高一 学科数学授课教师上课时间第()次课 共()次课课时:3课时教学课题随机抽样教学目标理解随机抽样的必要性和重要性.教学重点 与难点会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.二、 内容回顾三、 知识整理1. 简单随机抽样(1) 定义:设一个总体含有N 个个体,从中逐个不放回地抽取〃个个体作为样本(〃WN),如果停次 抽取时总体内的各个个体被抽到的机会都相笠,就把这种抽样方法叫做简单随机抽样.(2) 最常用的简单随机抽样的方法:抽签法和随机数法.2. 系统抽样的步骤假设要从容量为N 的总体中抽取容量为〃的样本.(1) 编号:先将总体的N 个个体编号;(2) 分段:确定分段间隔h 对编号进行分段,当令〃是样本容量)是整数时,取k=*:(3) 确定首个个体:在第1段用简单随机抽样确定第一个个体编号WW&);(4) 获取样本:按照一定的规则抽取样本,通常是将/加上间隔R 得到第2个个体编号廿勾,再加 k 得到第3个个体编号(/+2幻,依次进行下去,直到获取整个样本.3. 分层抽样(1) 定义:在抽样时,将总体分成互不交义的层,然后按照一定的比例,从各层独立地抽取一定数 量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫做分层抽样.(2) 分层抽样的应用范围:当总体是由差异明显的儿个部分组成时,往往选用分层抽样.四、例题分析考点一简单随机抽样【例1】下列抽取样本的方式是否属于简单随机抽样?(1)从无限多个个体中抽取100个个体作为样本.(2)盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里.(3)从20件玩具中一次性抽取3件进行质量检验.(4)某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.规律方法(1)简单随机抽样需满足;①抽取的个体数有限;②逐个抽取;③是不放回抽取;④是等可能抽取.(2)简单随机抽样常有抽签法(适用总体中个体数较少的情况)、随机数表法(适用于个体数较多的情况).考点二系统抽样【例2】采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1.2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750|的人做问卷8,其余的人做问卷C.则抽到的人中,做问卷8的人数为().A.7B.9C.10D.15规律方法(1)系统抽样适用的条件是总体容量较大,样本容量也较大.(2)使用系统抽样时,若总体容量不能被样本容量整除,可以先从总体中随机地剔除几个个体,从而确定分段间隔.(3)起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定.考点三分层抽样【例3】某学校三个兴趣小组的学生人数分布如下表(每名同学只参加一个小组)(单位:人)篮球组书画组乐器组■'-4530a高.151020学校要对这三个小组的活动效果进行抽样调查,按小组分层抽样的方法,从参加这三个兴趣小组的学生中抽取30人,结果篮球组被抽出12人,则〃的值为.规律方法进行分层抽样的相关计畀时,常利用以下关系式巧解:样本容量〃该层抽取的个体数(1)总体的个数广该层的个体数:(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.五、对应训练1.下列抽样试验中,适合用抽签法的有().A. 从某厂生产的5000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱18件)产品中抽取6件进行质量检验C. 从甲、乙两厂生产的两箱(每箱18件)产品中抽取6件进行质量检验D. 从某厂生产的5000件产品中抽取10件进行质量检验2.从编号为1〜50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是().A.5,10,15,2025B.3,13,23,33,43C. 1.2,3.4,5D.2,4,6,16,323.某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号是().A.10B.11C.12D.164.某学校高一、高二、高三年级的学生人数之比为3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取名学生.5.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为六、本课小结1.三种抽样方法的联系三种抽样方法的共同点都是等概率抽样,即抽样过程中每个个体被抽到的概率相等,体现了这三种抽样方法的客观性和公平性.若样本容量为〃,总体的个体数为则用这三种方法抽样时,停个个体被抽到的概率都是£2.各种抽样方法的特点(1)简单随机抽样的特点:总体中的个体性质相似,无明显层次;总体容量较小,尤其是样本容量较小;用简单随机抽样法抽取的个体带有随机性,个体间无固定间距.(2)系统抽样的特点:适用于元素个数很多且均衡的总体;各个个体被抽到的机会均等;总体分组后,在起始部分抽样时,采用简单随机抽样.(3)分层抽样的特点:适用于总体由差异明显的儿部分组成的情况;分层后,在每一层抽样时可采用简单随机抽样或系统抽样.七、课堂小测1.某中学进行了该学年度期末统一考试,该校为了了解高一年级10()0名学生的考试成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法正确的是().A.1000名学生是总体B.每个学生是个体C. 1 000名学生的成绩是一个个体D. 样本的容量是1002.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先 已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是().A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样3.某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3:5:7,现用分层抽样的方法抽出容量为〃的样本,其中甲种产品有18件,则样本容量«=().A.54B.90C.45D.1264.总体由编号为01、02,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为().7816657208026314070243699728()19832049234493582003623486969387481A.08B.07C.02D.015.某学校高三年级一班共有60名学生,现采用系统抽样的方法从中抽取6名学生做“早餐与健康”的调查,为此将学生编号为1,2,…,60.选取的这6名学生的编号可能是().A. 1.2.3.4.5.6B. 6.16,26.36,46.56C.1,2,4,8,16,32D.3,9,13,27,36,546.某工厂在12月份共生产了360()双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为“,b,c,且“,c构成等差数列,则第二车间生产的产品数为().A.800B.1(XX)C.1200D.15007.将参加夏令营的600名学生编号为:001.002,…,600,采用系统抽样方法抽取一个容量为50 的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第1营区,从301到495在第]]营区,从496到600在第Ill营区,三个营区被抽中的人数依次为().A.26.16.8B.25,17,8C.25,16,9D.24,17,98.某初级中学共有学生2000名,务年级男、女生人数如下表:初一年级初二年级初三年级女生373X男生377370£已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19.(1)求工的值;(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?9.某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人.上级机关为了了解政府机构改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,请具体实施抽取.八、作业布置1.某课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应城市数分别为4,12,8.若用分层抽样抽取6个城市,则甲组中应抽取的城市数为________.2.某校高级职称教师26人,中级职称教师104人,其他教师若干人.为了了解该校教师的匚资收入情况,按分层抽样从该校的所有教师中抽取56人进行调查,已知从其他教师中共抽取了16人,则该校共有教师人.3.某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1〜50号,并分组,第一组1〜5号,第二组6〜10号,…,第十组46〜50号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为的学生.4.200名职匚年龄分布如图所示,从中随机抽40名职工作样本,采用系统抽样方法,按1〜20()编号为40组,分别为1〜5.6〜10,…,196〜200,第5组抽取号码为22,第8组抽取号码为.若采用分层抽样,40岁以下年龄段应抽取人.。

“随机抽样”教学设计

“随机抽样”教学设计

“随机抽样”教学设计一、内容和内容解析1.内容本节课主要内容是让学生了解在客观世界中要认识客观现象的第一步就是通过观察或试验取得观测资料,然后通过分析这些资料来认识此现象.如何取得有代表性的观测资料并能够正确的加以分析,是正确的认识未知现象的基础,也是统计所研究的基本问题.2.内容解析本节课是高中阶段学习统计学的第一节课,统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据.学生在九年义务阶段已经学习了收集、整理、描述和分析数据等处理数据的基本方法.在高中学习统计的过程中还将逐步让学生体会确定性思维与统计思维的差异,注意到统计结果的随机性特征,统计推断是有可能错的,这是由统计本身的性质所决定的.统计有两种.一种是把所有个体的信息都收集起来,然后进行描述,这种统计方法称为描述性统计,例如我国进行的人口普查.但是在很多情况下我们无法采用描述性统计对所有的个体进行调查,通常是在总体中抽取一定的样本为代表,从样本的信息来推断总体的特征,这称为推断性统计.例如有的产品数量非常的大或者有的产品的质量检查是破坏性的.统计和概率的基础知识已经成为一个未来公民的必备常识.抽样调查是我们收集数据的一种重要途径,是一种重要的、科学的非全面调查方法.它根据调查的目的和任务要求,按照随机原则,从若干单位组成的事物总体中,抽取部分样本单位来进行调查、观察,用所得到的调查标志的数据来推断总体.其中蕴涵了重要的统计思想——样本估计总体.而样本代表性的好坏直接影响统计结论的准确性,所以抽样过程中,考虑的最主要原则为:保证样本能够很好地代表总体.而随机抽样的出发点是使每个个体都有相同的机会被抽中,这是基于对样本数据代表性的考虑.本节课重点:能从现实生活或其他学科中提出具有一定价值的统计问题,理解随机抽样的必要性与重要性.二、目标和目标解析1.目标(1)通过对具体的案例分析,逐步学会从现实生活中提出具有一定价值的统计问题,(2)结合具体的实际问题情境,理解随机抽样的必要性和重要性;(3)以问题链的形式深刻理解样本的代表性.2.目标解析本章章头图列举了我国水资源缺乏问题、土地沙漠化问题等情境,提出了学习统计的意义.同时通过具体的实例,使学生能够尝试从实际问题中发现统计问题,提出统计问题.让学生养成从现实生活或其他学科中发现问题、提出问题的习惯,培养学生发现问题与提出问题的能力与意识.对某个问题的调查最简单的方法就是普查,但是这种方法的局限性很大,出于费用和时间的考虑,有时一个精心设计的抽样方案,其实施效果甚至可以胜过普查,在这个过程中让学生逐步体会到随机抽样的必要性和重要性.抽样调查,就是通过从总体中抽取一部分个体进行调查,借以获得对整体的了解.为了使由样本到总体的推断有效,样本必须是总体的代表,否则就可能出现方便样本.由此在对实例的分析过程中探讨获取能够代表总体的样本的方法,得到随机样本的概念,逐步理解样本的代表性与统计推断结论可靠性之间的关系.三、教学问题诊断分析学生在九年义务教育阶段已有对统计活动的认识,并学习了统计图表、收集数据的方法,但对于如何抽样更能使样本代表总体的意识还不强;在以前的学习中,学生的学习内容以确定性数学学习为主;学生对全面调查,即普查有所了解,它在经验上更接近确定性数学,而随机抽样学习则要求学生通过对具体问题的解决,能体会到统计中的重要思想——样本估计总体以及统计结果的不确定性.学生已有知识经验与本节要达成的教学目标之间还有很大的差距.主要的困难有:对样本估计总体的思想、对统计结果的“不确定性”产生怀疑,对统计的科学性有所质疑;对抽样应该具有随机性,每个样本的抽取又都落实在某个人的具体操作上不理解,因此教学中要通过具体实例的研究给学生释疑.在教学过程中,可以鼓励学生从自己的生活中提出与典型案例类似的统计问题,如每天完成家庭作业所需的时间,每天的体育锻炼时间,学生的近视率,一批电灯泡的寿命是否符合要求等等.在学生提出这些问题后,要引导学生考虑问题中的总体是什么,要观测的变量是什么,如何获取样本,通过这样一个教学过程,更能激起学生的学习兴趣,能学有所用,拉近知识与实践的距离,培养学生从现实生活或其他学科中提出具有一定价值的统计问题的能力.在这个过程中提升学生对统计抽样概念的理解,初步培养学生运用统计思想表述、思考和理解现实世界中的问题能力,这样教学效果可能会更佳.根据这一分析,确定本课时的教学难点是:如何使学生真正理解样本的抽取是随机的,随机抽取的样本将能够代表总体.四、教学支持条件分析准备一些随机抽样成功或失败的事例,利用实物投影或放映的多媒体设备辅助教学.五、教学过程设计(一)感悟数据、引入课题问题1:请同学们看章头图中的有关沙漠化和缺水量的数据,你有什么感受?师生活动:让学生充分思考和探讨,并逐步引导学生产生质疑:这些数据是怎么来的?设计意图:通过一些数据让学生充分感受我们生活在一个数字化时代,要学会与数据打交道,养成对数据产生的背景进行思考的习惯.问题2:我发现我们班级有很多的同学都是戴眼镜的,谁能告诉我我们班的近视率?普查:为了一定的目的而对考察对象进行的全面调查称为普查.总体:所要考察对象的全体称为总体(population)个体:组成总体的每一个考察对象称为个体(individual)普查是我们进行调查得到全部信息的一种方式,比如我国10年一次的人口普查等.设计意图:通过与学生比较贴近的案例入手,让学生体会到统计是从日常生活中产生的.(二)操作实践、展开课题问题3:如果我想了解榆次二中所有高一学生的近视率,你打算怎么做呢?抽样调查:从总体中抽取部分个体进行调查,这种调查称为抽样调查(sampling investigation).样本:从总体中抽取的一部分个体叫做总体的一个样本(sample).师生活动:以四人小组为单位进行讨论,每个小组派一个代表汇报方案.设计意图:从这个问题中引出抽样调查和样本的概念,使学生对于如何产生样本进行一定的思考,同时也使学生认识到样本选择的好坏对于用样本估计总体的精确度是有所不同的.列举:一个著名的案例在1936年美国总统选举前,一份颇有名气的杂志(Literary Digest)的工作人员做了一次民意测验.调查兰顿(ndon)(当时任堪萨斯州州长)和罗斯福(F.D.Roosevelt)(当时的总统)中谁将当选下一届总统.为了了解公众意向,调查者通过电话簿和车量登记簿上的名单给一大批人发了调查表(注意在1936年电话和汽车只有少数富人拥有).通过分析收回的调查表,显示兰顿非常受欢迎,于是杂志预测兰顿将在选举中获胜.实际选举结果正好相反,最后罗斯福在选举中获胜,其数据如下:候选人预测结果%选举结果%Roosevelt4362Landon5738问题4:你认为预测结果出错的原因是什么?设计意图:通过案例让学生进一步体会到:在抽样调查中,样本的选择是至关重要的,样本能否代表总体,直接影响着统计结果的可靠性.问题5:如果要调查下面这几个问题,你认为应该作全面调查还是抽样调查?你们对于普查和抽样调查是怎么看的?普查一定好吗?请举例.(1)了解全班同学每周的体育锻炼时间;(2)调查市场上某个品牌牛奶的含钙量;(3)了解一批日光灯的使用寿命.普查抽样调查需要大量的人力、物力和财力节省人力、物力和财力不能用于带有破坏性的检查可以用于带有破坏性的检查在操作正确的情况下,能得到准确结果结果与实际情况之间有误差设计意图:通过普查和抽样调查的比较,使学生感受抽样调查的必要性和重要性.问题6:如果我们想了解晋中市高一学生的近视率,你认为该怎么做呢?师生活动:以2人小组为单位进行讨论,说出比较可行的抽样方案.问题7:我们是否可以用晋中市高一年级学生的近视率来估计山西省高中生的近视率?为什么?师生活动:教师继续让学生进行小组讨论,引导学生从样本容量以及样本抽取需要考虑的要素,如:学生的层次(高一、高二、高三),学生生活的环境(城市、县镇、农村)等.教师对学生的回答进行归纳、整理,与学生一起讨论出比较可行的抽样方案.设计意图:通过进一步的追问,加深学生对样本代表性的理解.让学生进一步的认识到:在多背景下的抽样会产生偏差,以及样本的随机性与样本大小在产生有代表性的样本中的作用,同时对后面的内容进行简单介绍.(三)总结拓展、提升思想问题8:请你用1-2句话说说自己在本节课的收获.师生活动:引导学生从怎样学会提出统计问题?抽样调查与普查的优缺点?样本的代表性与统计推断结论之间的关系等方面进行总结和回顾.设计意图:总结回顾,巩固课堂知识、初步概括统计思想.六、目标检测设计1.某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是( )A.在公园调查了1000名老年人的健康状况B.在医院调查了1000名老年人的健康状况C.调查了10名老年邻居的健康状D.利用派出所的户籍网随机调查了该地区10%的老年人的健康状况.设计意图:促进学生理解抽样的必要性和样本的代表性.2.为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是A.总体是240B.个体是每一个学生C.样本是40名学生D.样本容量是40设计意图:回顾复习相关概念.3.为了了解全校学生的平均身高,王一调查了自己座位旁边的五位同学,把这五位同学的身高的平均值作为全校学生平均身高的估计值.(1)王一的调查是抽样调查吗?家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。

随机抽样讲课教案模板范文

随机抽样讲课教案模板范文

教学对象:八年级学生教学目标:1. 知识与技能:理解随机抽样的概念,掌握简单随机抽样的方法,能够进行简单的随机抽样操作。

2. 过程与方法:通过小组合作、讨论等方式,培养学生的动手操作能力和合作探究能力。

3. 情感态度与价值观:培养学生严谨的科学态度和实事求是的精神,提高学生对统计学应用的认识。

教学重点:1. 随机抽样的概念和简单随机抽样的方法。

2. 如何进行随机抽样操作。

教学难点:1. 理解随机抽样的原理。

2. 如何在实际情况中应用随机抽样方法。

教学准备:1. 教学课件或黑板。

2. 随机抽样工具(如抽签、随机数表等)。

3. 小组合作学习材料。

教学过程:一、导入新课1. 教师通过提问引导学生回顾统计学的基本概念,如样本、总体等。

2. 提出问题:“如何从总体中选取部分个体作为样本进行研究?”3. 学生自由发言,教师总结并引出课题:随机抽样。

二、新课讲授1. 教师讲解随机抽样的概念,强调随机性的重要性。

2. 讲解简单随机抽样的方法,包括抽签法和随机数表法。

3. 通过实例演示如何进行随机抽样操作,如从班级中随机抽取10名学生作为样本。

4. 学生跟随教师进行操作练习,巩固所学知识。

三、小组合作探究1. 将学生分成小组,每组发放随机抽样工具和小组合作学习材料。

2. 小组讨论:如何在实际研究中应用随机抽样方法?3. 各小组分享讨论成果,教师点评并总结。

四、课堂小结1. 教师回顾本节课所学内容,强调随机抽样的重要性和应用场景。

2. 学生总结自己在课堂上的收获和疑问。

五、作业布置1. 完成课后练习题,巩固所学知识。

2. 查阅资料,了解随机抽样在生活中的应用。

教学反思:本节课通过引导学生回顾统计学的基本概念,引入随机抽样的概念,使学生理解随机抽样的原理和方法。

在教学过程中,注重学生的动手操作能力和合作探究能力的培养,通过小组合作探究,让学生在实践中掌握随机抽样方法。

在教学过程中,应关注学生的学习状态,及时调整教学策略,确保教学目标的实现。

2019届高考数学一轮复习:《随机抽样》教学案(含解析)

2019届高考数学一轮复习:《随机抽样》教学案(含解析)

随_机_抽_样[知识能否忆起]一、简单随机抽样: 1.简单随机抽样的概念:设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.最常用的简单随机抽样方法有两种——抽签法和随机数法. 二、系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本: (1)先将总体的N 个个体编号;(2)确定分段间隔k ,对编号进行分段,当N n 是整数时,取k =Nn ;(3)在第1段用简单随机抽样确定第一个个体编号l(l≤k);(4)按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号l +k ,再加k 得到第3个个体编号l +2k ,依次进行下去,直到获取整个样本.三、分层抽样 1.分层抽样的概念:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是分层抽样.2.当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法. 3.分层抽样时,每个个体被抽到的机会是均等的.[小题能否全取]1.(教材习题改编)在某班的50名学生中,依次抽取学号为5、10、15、20、25、30、35、40、45、50的10名学生进行作业检查,这种抽样方法是( )A .随机抽样B .分层抽样C .系统抽样D .以上都不是解析:选C 由系统抽样的特点可知C 正确.2.为了了解一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是( ) A .总体B .个体是每一个零件C .总体的一个样本D .样本容量解析:选C 200个零件的长度是总体的一个样本.3.某工厂生产A ,B ,C 三种不同型号的产品,产品的数量之比依次为3∶4∶7,现在用分层抽样的方法抽出容量为n 的样本,样本中A 型产品有15件,那么样本容量n 为( )A .50B .60C.70 D.80解析:选C 由n×33+4+7=15得n=70.4.(2018·金华模拟)某学院有A,B,C三个专业共1 200名学生.现采用分层抽样的方法抽取一个容量为120的样本,已知A专业有420名学生,B专业有380名学生,则在C专业应抽取________名学生.解析:由已知条件可得每一名学生被抽取的概率为P=1201 200=110,则应在C专业中抽取(1 200-420-380)×110=40名学生.答案:405.将某班的60名学生编号为:01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是________.解析:依据系统抽样方法的定义知,将这60名学生依次按编号每12人作为一组,即01~12、13~24、…、49~60,当第一组抽得的号码是04时,剩下的四个号码依次是16,28,40,52(即其余每一小组所抽出来的号码都是相应的组中的第四个号码).答案:16,28,40,52三种抽样方法的异同点:典题导入[例1] 下面的抽样方法是简单随机抽样的是( )A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2 709的为三等奖B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见D.用抽签法从10件产品中选取3件进行质量检验[自主解答] A、B是系统抽样,因为抽取的个体间的间隔是固定的;C是分层抽样,因为总体的个体有明显的层次;D是简单随机抽样.[答案] D由题悟法1.简单随机抽样需满足:(1)抽取的个体数有限;(2)逐个抽取;(3)是不放回抽取;(4)是等可能抽取.2.简单随机抽样常有抽签法(适用总体中个体数较少的情况)、随机数法(适用于个体数较多的情况).以题试法1.(2018·宁波月考)在简单随机抽样中,某一个个体被抽到的可能性( )A.与第几次抽样有关,第一次抽到的可能性最大B.与第几次抽样有关,第一次抽到的可能性最小C.与第几次抽样无关,每一次抽到的可能性相等D.与第几次抽样无关,与样本容量无关解析:选C 由随机抽样的特点知某个体被抽到的可能性与第几次抽样无关,每一次抽到的可能性相等.典题导入[例2] (2018·山东高考)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为( ) A.7 B.9C.10 D.15[自主解答] 由系统抽样的特点知:抽取号码的间隔为96032=30,抽取的号码依次为9,39,69,…,939.落入区间[451,750]的有459,489,…,729,这些数构成首项为459,公差为30的等差数列,设有n项,显然有729=459+(n-1)×30,解得n=10.所以做问卷B的有10人.[答案] C由题悟法1.系统抽样适用的条件是总体容量较大,样本容量也较大.2.使用系统抽样时,若总体容量不能被样本容量整除,可以先从总体中随机地剔除几个个体.以题试法2.(2018·武夷模拟)用系统抽样法从160名学生中抽取容量为20的样本,将160名学生随机地从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为126,则第1组中用抽签的方法确定的号码是________.解析:设第1组抽取的号码为b,则第n组抽取的号码为8(n-1)+b,∴8×(16-1)+b=126,∴b=6,故第1组抽取的号码为6.答案:6典题导入[例3] (1)(2018·福建高考)一支田径队有男女运动员98人,其中男运动员有56人.按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是________.(2)(2018·天津高考)某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取____________所学校,中学中抽取____________所学校.[自主解答] (1)依题意,女运动员有98-56=42(人).设应抽取女运动员x 人,根据分层抽样特点,得x 42=2898,解得x =12. (2)150×30150+75+25=150×30250=18,75×30250=9.[答案] (1)12 (2)18 9本例(2)中条件变为“某地区有小学、中学、大学若干所,现采用分层抽样的方法从这些学校中抽取30所学校,其中从150所小学中抽取18所”试求该地区共有多少所学校.解:设共有n 所学校, ∴150×30n =18,∴n =250.由题悟法进行分层抽样时应注意以下几点(1)分层抽样中分多少层,如何分层要视具体情况而定,总的原则是:层内样本的差异要小,两层之间的样本差异要大,且互不重叠.(2)为了保证每个个体等可能入样,所有层中每个个体被抽到的可能性相同. (3)在每层抽样时,应采用简单随机抽样或系统抽样的方法进行抽样. (4)抽样比=样本容量总体容量=各层样本数量各层个体数量.以题试法3.(2018·惠州二调)某工厂的一、二、三车间在12月份共生产了3 600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a 、b 、c ,且a 、b 、c 构成等差数列,则二车间生产的产品数为( )A .800B .1 000C .1 200D .1 500解析:选C 因为a 、b 、c 成等差数列,所以2b =a +c ,所以二车间抽取的产品数占抽取产品总数的三分之一,根据分层抽样的性质可知,二车间生产的产品数占总数的三分之一,即为3 600×13=1 200.1.(2018·江西模拟)在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本:①采用随机抽样法,将零件编号为00,01,02,…,99,从中抽出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个;③采用分层抽样法,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个.则( )A .不论采取哪种抽样方法,这100个零件中每个零件被抽到的概率都是15B .①②两种抽样方法,这100个零件中每个零件被抽到的概率都是15,③并非如此C .①③两种抽样方法,这100个零件中每个零件被抽到的概率都是15,②并非如此D .采用不同的抽样方法,这100个零件中每个零件被抽到的概率各不相同解析:选A 由于随机抽样法、系统抽样法与分层抽样法均是等可能性抽样,因此不论采取哪种抽样方法,这100个零件中每个零件被抽到的概率都是15.2.某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是( )A .简单随机抽样法B .抽签法C .随机数法D .分层抽样法解析:选D 总体由差异明显的几部分组成、按比例抽样,为分层抽样.3.(2018·忻州一中月考)将参加夏令营的600名学生编号为:001,002,…,600,采用系统抽样的方法抽取一个容量为50的样本,且随机抽得的编号为003.这600名学生分住在3个营区,从001到300住在第1营区,从301到495住在第2营区,从496到600住在第3营区,则3个营区被抽中的人数依次为( )A .26,16,8B .25,16,9C .25,17,8D .24,17,9解析:选C 由题意知,被抽中的学生的编号构成以3为首项,12为公差的等差数列{a n },其通项a n =12n -9(1≤n≤50,n ∈N *).令1≤12n-9≤300,得1≤n≤25,故第1营区被抽中的人数为25;令301≤12n-9≤495,得26≤n≤42,故第2营区被抽中的人数为17;令496≤12n-9≤600,得43≤n≤50,故第3营区被抽中的人数为8.4.(2018·潍坊模拟)为调查参加运动会的1 000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是( )A .1 000名运动员是总体B .每个运动员是个体C .抽取的100名运动员是样本D .样本容量是100解析:选D 所调查的是运动员的年龄,故A、B、C错误,样本容量是100.5.(2018·濮阳调研)甲校有3 600名学生,乙校有5 400名学生,丙校有1 800名学生.为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个容量为90的样本,应该在这三校分别抽取的学生人数是( ) A.30,30,30 B.30,45,15C.20,30,10 D.30,50,10解析:选 B 抽取比例是903 600+5 400+1 800=1120,故三校分别抽取的学生人数为 3 600×1120=30,5400×1120=45,1 800×1120=15.6.某学校在校学生2 000人,为了加强学生的锻炼意识,学校举行了跑步和登山比赛,每人都参加且每人只参加其中一项比赛,各年级参加比赛的人数情况如下:其中a∶b∶c=2∶5∶3,全校参加登山的人数占总人数的4.为了了解学生对本次活动的满意程度,按分层抽样的方式从中抽取一个200人的样本进行调查,则高三年级参加跑步的学生中应抽取( ) A.15个B.30人C.40人D.45人解析:选D 由题意,全校参加跑步的人数占总人数的34,所以高三年级参加跑步的总人数为34×2 000×310=450,由分层抽样的特征,得高三年级参加跑步的学生中应抽取的人数为2002 000×450=45.7.(2018·浙江高考)某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为________.解析:由分层抽样得,此样本中男生人数为560×280560+420=160.答案:1608.(2018·湖北高考)一支田径运动队有男运动员56人,女运动员42人.现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有________人.解析:分层抽样的特点是按照各层占总体的比相等抽取样本,设抽取的女运动员有x人,则x8=4256,解得x=6.答案:69.(2018·江西模拟)某市有A、B、C三所学校,共有高三文科学生1 500人,且A、B、C三所学校的高三文科学生人数成等差数列,在三月进行全市联考后,准备用分层抽样的方法从所有高三文科学生中抽取容量为n 的样本,进行成绩分析,若从B校学生中抽取40人,则n=________.解析:设A、B、C三所学校学生人数分别为x,y,z,由题知x,y,z成等差数列,所以x+z=2y,又x+y+z=1 500,所以y=500,用分层抽样方法抽取B校学生人数为n1 500×500=40,得n=120.答案:12010.(2018·开封模拟)某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n 个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体;如果参会人数增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,求n.解:总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为36n ,分层抽样的比例是n 36,抽取的工程师人数为n36×6=n 6,技术员人数为n 36×12=n 3,技工人数为n 36×18=n2,所以n 应是6的倍数,36的约数,即n =6,12,18. 当样本容量为(n +1)时,总体容量是35人,系统抽样的间隔为35n +1,因为35n +1必须是整数,所以n 只能取6.即样本容量n =6.11.(2018·聊城联考)某单位有2 000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各部门中,如下表所示:(1)若要抽取40人调查身体状况,则应怎样抽样?(2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人? (3)若要抽20人调查对某运动会筹备情况的了解,则应怎样抽样? 解:(1)用分层抽样,并按老年4人,中年12人,青年24人抽取.(2)用分层抽样,并按管理2人,技术开发4人,营销6人,生产13人抽取.(3)用系统抽样,对2 000人随机编号,号码从0001~2 000,每100号分为一组,从第一组中用随机抽样抽取一个号码,然后将这个号码分别加100,200,…,1 900,得到容量为20的样本.12.一个城市有210家百货商店,其中大型商店有20家,中型商店有40家,小型商店有150家.为了掌握各商店的营业情况,要从中抽取一个容量为21的样本,按分层抽样方法抽取样本时,各类百货商店要分别抽取多少家?写出抽样过程.解:∵21∶210=1∶10, ∴2010=2,4010=4,15010=15. ∴应从大型商店中抽取2家,从中型商店中抽取4家,从小型商店中抽取15家. 抽样过程:(1)计算抽样比21210=110;(2)计算各类百货商店抽取的个数: 2010=2,4010=4,15010=15;(3)用简单随机抽样方法依次从大、中、小型商店中抽取2家、4家、15家;(4)将抽取的个体合在一起,就构成所要抽取的一个样本.1.从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是( )A.5,10,15,20,25 B.3,13,23,33,43C.1,2,3,4,5 D.2,4,6,16,32解析:选B 间隔距离为10,故可能编号是3,13,23,33,43.2.最近络上流行一种“QQ农场游戏”,这种游戏通过虚拟软件模拟种植与收获的过程.为了了解本班学生对此游戏的态度,高三(6)班计划在全班60人中展开调查,根据调查结果,班主任计划采用系统抽样的方法抽取若干名学生进行座谈,为此先对60名学生进行编号01,02,03,…,60,已知抽取的学生中最小的两个编号为03,09,则抽取的学生中最大的编号为________.解析:由最小的两个编号为03,09可知,抽样间距为6,因此抽取人数的比例为16,即抽取10名同学,其编号构成首项为3,公差为6的等差数列,故最大编号为3+(10-1)×6=57.答案:573.(2018·山西四校联考)调查某高中1 000名学生的身高情况,得下表.已知从这批学生中随机抽取1名学生,抽到偏低男生的概率为0.15.(1)求x的值;(2)若用分层抽样的方法,从这批学生中随机抽取50名,问应在偏高学生中抽多少名;(3)已知y≥193,z≥193,求偏高学生中男生不少于女生的概率.解:(1)由题意可知,x1 000=0.15,故x=150.(2)由题意可知,偏高学生人数为y+z=1 000-(100+173+150+177)=400.设应在偏高学生中抽m名,则m400=501 000,故m=20.应在偏高学生中抽20名.(3)由(2)知y+z=400,且y≥193,z≥193,满足条件的(y,z)有(193,207),(194,206),…,(207,193),共有15组.设事件A:“偏高学生中男生不少于女生”,即y≤z,满足条件的(y,z)有(193,207),(194,206),…,(200,200),共有8组,所以P(A)=8 15.偏高学生中男生不少于女生的概率为815.1.(2018·抚顺模拟)某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是( )A.4 B.5C.6 D.7解析:选C 四类食品的每一种被抽到的概率为2040+10+30+20=15,则植物油类和果蔬类食品被抽到的种数之和为(10+20)×15=6.2.某工厂生产A、B、C三种不同型号的产品,其相应产品数量之比为2∶3∶5,现用分层抽样方法抽出一个容量为n的样本,样本中A型号产品有16件,那么此样本的容量n=________.解析:设分别抽取B、C型号产品m1,m2件,则由分层抽样的特点可知216=3m1=5m2,∴m1=24,m2=40,∴n=16+m1+m2=80. 答案:80。

随机抽样教案

随机抽样教案

随机抽样教案教案名称:随机抽样教学目标:1. 理解随机抽样的概念;2. 掌握随机抽样的方法;3. 掌握随机抽样的应用。

教学重点:1. 随机抽样的概念;2. 随机抽样的方法;3. 随机抽样的应用。

教学步骤:Step 1:导入新知1. 引出随机抽样的概念,通过举例子让学生认识抽样的重要性。

2. 讲解随机抽样的定义和原理,引导学生思考为什么要使用随机抽样而不是抽取全部样本。

Step 2:讲解随机抽样的方法1. 简单随机抽样:向学生解释如何使用随机数表或随机数发生器进行简单随机抽样,并指导学生练习。

2. 系统抽样:解释系统抽样的原理和步骤,引导学生进行练习。

3. 分层抽样:介绍分层抽样的概念和应用场景,讲解如何进行分层抽样。

Step 3:随机抽样的应用1. 给学生提供一些实际问题,如市场调查、学生满意度调查等,并引导他们思考如何使用随机抽样方法解决这些问题。

2. 让学生分组进行小组讨论,设计一个调查问题,并使用随机抽样方法确定调查样本。

3. 学生展示自己设计的调查问题和样本,互相评价并提出改进建议。

Step 4:总结与拓展1. 总结随机抽样的概念、方法和应用,强调随机抽样的重要性和限制条件。

2. 引导学生思考随机抽样的局限性,并探讨其他抽样方法的优缺点。

教学资源:1. 随机数表或随机数发生器2. 实际问题的案例3. 小组讨论的工具和材料评估方式:1. 学生的参与度和合作度;2. 学生的小组讨论和展示表现;3. 学生对随机抽样方法的理解和应用能力。

拓展活动:1. 学生可以继续进行调查研究,使用随机抽样方法得出结果,并撰写报告或展示结果。

2. 邀请专业人士或做过相关研究的人来做客讲座,分享他们在实际工作中使用随机抽样的经验和教训。

高考数学第9章统计与统计案例第1节随机抽样教学案(含解析)理

高考数学第9章统计与统计案例第1节随机抽样教学案(含解析)理

第一节 随机抽样[考纲传真] 1.理解随机抽样的必要性和重要性.2.会用简单随机抽样方法从总体中抽取样本.3.了解分层抽样和系统抽样的方法.1.简单随机抽样(1)抽取方式:逐个不放回抽取;(2)每个个体被抽到的概率相等;(3)常用方法:抽签法和随机数法.2.分层抽样(1)在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.(2)分层抽样的应用范围 当总体是由差异明显的几个部分组成时,往往选用分层抽样.3.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本.(1)先将总体的N 个个体编号;(2)确定分段间隔k ,对编号进行分段.当N n (n 是样本容量)是整数时,取k =N n; (3)在第1段用简单随机抽样确定第一个个体编号l (l ≤k );(4)按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号(l +k ),再加k 得到第3个个体编号(l +2k ),依次进行下去,直到获取整个样本.[常用结论]1.三种抽样方法的共性:等概率抽样,不放回抽样,逐个抽取,总体确定.2.系统抽样是等距抽样,入样个体的编号相差N n的整数倍. 3.分层抽样是按比例抽样,每一层入样的个体数为该层的个体数乘以抽样比.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)简单随机抽样中每个个体被抽到的机会不一样,与先后有关. ( )(2)系统抽样在起始部分抽样时采用简单随机抽样. ( )(3)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平. ( )(4)分层抽样中,每个个体被抽到的可能性与层数及分层有关.( )[答案](1)×(2)√(3)×(4)×2.(教材改编)在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5 000名居民的阅读时间的全体是( )A.总体B.个体C.样本的容量D.从总体中抽取的一个样本A[从5 000名居民某天的阅读时间中抽取200名居民的阅读时间,样本容量是200,抽取的200名居民的阅读时间是一个样本,每名居民的阅读时间就是一个个体,5 000名居民的阅读时间的全体是总体.]3.(教材改编)老师在班级50名学生中,依次抽取学号为5,10,15,20,25,30,35,40,45,50的学生进行作业检查,这种抽样方法是( )A.随机抽样B.分层抽样C.系统抽样D.以上都不是C[因为抽取学号是以5为公差的等差数列,故采用的抽样方法应是系统抽样.]4.某公司有员工500人,其中不到35岁的有125人,35~49岁的有280人,50岁以上的有95人,为了调查员工的身体健康状况,从中抽取100名员工,则应在这三个年龄段分别抽取人数为( )A.33,34,33 B.25,56,19C.20,40,30 D.30,50,20B[因为125∶280∶95=25∶56∶19,所以抽取人数分别为25,56,19.]5.利用简单随机抽样从含有8个个体的总体中抽取一个容量为4的样本,则总体中每个个体被抽到的概率是________.1 2[总体个数为N=8,样本容量为M=4,则每一个个体被抽到的概率为P=MN=48=12.]1A.从某厂生产的5 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱18件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱18件)产品中抽取6件进行质量检验D .从某厂生产的5 000件产品中抽取10件进行质量检验B [因为A ,D 中总体的个体数较大,不适合用抽签法;C 中甲、乙两厂生产的产品质量可能差别较大,因此未达到搅拌均匀的条件,也不适合用抽签法;B 中总体容量和样本容量都较小,且同厂生产的产品可视为搅拌均匀了.]2.总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )D [从第1行第5列和第6列组成的数65开始由左到右依次选出的数为08,02,14,07,01,所以第5个个体编号为01.]抽签法适用于总体中个体数较少的情况,随机数法适用于总体中个体数较多的情一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;抽签法.【例】 001,002,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为009,抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C ,则抽到的人中,做问卷B 的人数为( )A .7B .9C .10D .15C [从960人中用系统抽样方法抽取32人,则将整体分成32组,每组30人,因为第一组抽到的号码为009,则第二组抽到的号码为039,第n 组抽到的号码为a n =9+30·(n -1)=30n -21,由451≤30n -21≤750,得23615≤n ≤25710,所以n =016,017,…,025,共有25-16+1=10(人).][拓展探究] 若本例中条件变为“若第5组抽到的号码为129”,求第1组抽到的号码.[解] 设第1组抽到的号码为x ,则第5组抽到的号码为x +(5-1)×30,由x +(5-1)×30=129,解得x =9,因此第1组抽到的号码为009.适用于元素个数较多且均衡的总体各个个体被抽到的机会均等总体分组后,在起始部分抽样时采用的是简单随机抽样如果总体容量整除,则抽样间隔为(1)人按001,002,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为 ( )A .11B .12C .13D .14(2)中央电视台为了解观众对某综艺节目的意见,准备从502名现场观众中抽取10%进行座谈,现用系统抽样的方法完成这一抽样,则在进行分组时,需剔除________个个体,抽样间隔为________.(1)B (2)2 10 [(1)由系统抽样定义可知,所分组距为84042=20,每组抽取一人,因为包含整数个组,所以抽取个体在区间[481,720]的数目为720-48020=12. (2)把502名观众平均分成50组,由于502除以50的商为10,余数是2,所以每组有10名观众,还剩2名观众,采用系统抽样的方法步骤如下:第一步,先用简单随机抽样的方法从502名观众中抽取2名观众,这2名观众不参加座谈.第二步,将剩下的500名观众编号为001,002,003,…,500,并均匀分成50段,每段分50050=10(个)个体.]1.3∶5∶7,现用分层抽样的方法抽出容量为n 的样本,其中甲种产品有18件,则样本容量n 等于( )A .54B .90C .45D .126B [依题意得33+5+7×n =18,解得n =90,即样本容量为90.] 2.(2017·江苏高考)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.18 [∵样本容量总体个数=60200+400+300+100=350, ∴应从丙种型号的产品中抽取350×300=18(件).]3.已知某地区中小学生人数和近视情况分别如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为________.图1 图2200,20[该地区中小学生总人数为3 500+2 000+4 500=10 000,则样本容量为10000×2%=200,其中抽取的高中生近视人数为2 000×2%×50%=20.]求某层应抽个体数量:按该层所占总体的比例计算已知某层个体数量,求总体容量或反之:根据分层抽样就是按比例抽样,列比例式进行计算.确定是否应用分层抽样:分层抽样适用于总体中个体差异较大的情况。

初中随机抽样教案

初中随机抽样教案

初中随机抽样教案教学目标:1. 理解随机抽样的概念和意义;2. 学会使用简单随机抽样的方法进行数据收集;3. 能够运用随机抽样方法解决实际问题。

教学重点:1. 随机抽样的概念和意义;2. 简单随机抽样的方法。

教学难点:1. 随机抽样的实际应用。

教学准备:1. 教师准备一些小物品,如糖果、笔等,作为抽样样本;2. 准备一些实际问题,让学生进行随机抽样解决。

教学过程:一、导入(5分钟)1. 教师向学生介绍随机抽样的概念,引导学生思考随机抽样在实际生活中的应用;2. 学生分享生活中遇到的需要进行随机抽样的情况。

二、学习随机抽样(10分钟)1. 教师讲解简单随机抽样的方法,如抽签法、随机数表法等;2. 学生通过小组讨论,理解并掌握简单随机抽样的步骤和注意事项;3. 教师进行示范,使用小物品进行简单随机抽样,并让学生参与其中,加深理解。

三、实践操作(10分钟)1. 教师提出一些实际问题,如调查班级同学最喜欢的科目等,让学生使用随机抽样方法进行数据收集;2. 学生分组进行随机抽样,记录数据,并总结抽样结果;3. 各组学生分享自己的抽样结果,讨论抽样结果的可靠性和代表性。

四、总结与拓展(10分钟)1. 教师引导学生总结随机抽样的优点和局限性;2. 学生思考如何改进随机抽样方法,提高抽样的准确性和效率;3. 教师提出一些拓展问题,引导学生思考随机抽样在其他领域的应用。

五、课堂小结(5分钟)1. 教师回顾本节课所学内容,强调随机抽样的概念和意义;2. 学生分享自己对随机抽样的理解和体会。

教学反思:本节课通过讲解和实践活动,让学生掌握了随机抽样的方法和步骤,能够运用随机抽样解决实际问题。

在实践操作环节,学生积极参与,通过小组合作,锻炼了团队合作能力和解决问题的能力。

在总结与拓展环节,学生思考了随机抽样的优点和局限性,并提出了一些改进意见,拓展了随机抽样在其他领域的应用。

整体来看,本节课达到了预期的教学目标,学生对随机抽样有了更深入的理解和掌握。

随机抽样教案

随机抽样教案

随机抽样教案一、教学目标1.了解随机抽样的概念和方法;2.掌握随机抽样的步骤和技巧;3.能够运用随机抽样方法进行数据采集和分析。

二、教学内容1. 随机抽样的概念和方法随机抽样是指从总体中按照一定的概率规律抽取样本的方法。

随机抽样是一种科学的、客观的、可靠的抽样方法,它能够有效地避免了主观性和偏见性的影响,保证了样本的代表性和可比性。

随机抽样的方法有很多种,常用的有简单随机抽样、分层随机抽样、整群随机抽样等。

其中,简单随机抽样是最基本、最常用的一种方法,它的步骤如下:1.确定总体:首先要明确需要研究的总体是什么,例如某个地区的人口、某个公司的员工等;2.确定样本容量:根据总体的大小和研究目的,确定需要抽取的样本容量;3.编制总体名单:将总体中的每个个体都列出来,编制成总体名单;4.抽取样本:采用随机数表、随机数发生器等工具,按照一定的概率规律从总体名单中抽取样本;5.检查样本:对抽取的样本进行检查,确保样本的代表性和可靠性。

2. 随机抽样的步骤和技巧随机抽样的步骤和技巧如下:1.确定总体:首先要明确需要研究的总体是什么,例如某个地区的人口、某个公司的员工等;2.确定样本容量:根据总体的大小和研究目的,确定需要抽取的样本容量;3.确定抽样方法:根据总体的特点和研究目的,选择合适的抽样方法;4.编制总体名单:将总体中的每个个体都列出来,编制成总体名单;5.抽取样本:采用随机数表、随机数发生器等工具,按照一定的概率规律从总体名单中抽取样本;6.检查样本:对抽取的样本进行检查,确保样本的代表性和可靠性。

随机抽样的技巧包括:1.确定样本容量时要考虑总体的大小、分布、特点等因素;2.编制总体名单时要注意避免漏抽和重复抽样;3.抽取样本时要保证随机性和代表性,避免主观性和偏见性的影响;4.检查样本时要注意样本的质量和可靠性,避免样本失真和误差。

3. 运用随机抽样方法进行数据采集和分析随机抽样方法可以应用于各种数据采集和分析领域,例如社会调查、市场研究、医学实验等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.理解随机抽样的必要性和重要性;2.会用简单随机抽样方法从总体中抽取样本;3.了解分层抽样和系统抽样方法.4.会用随机抽样的基本方法解决一些简单的实际问题.一 、简单随机抽样1.定义:设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.最常用的简单随机抽样的方法:抽签法和随机数法. 3.抽签法与随机数法的区别与联系抽签法和随机数法都是简单随机抽样的方法,但是抽签法适合在总体和样本都较少,容易搅拌均匀时使用,而随机数法除了适合总体和样本都较少的情况外,还适用于总体较多但是需要的样本较少的情况,这时利用随机数法能够快速地完成抽样.二 、系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本. 1.先将总体的N 个个体编号.2.确定分段间隔k ,对编号进行分段,当N n 是整数时,取k =Nn .3.在第1段用简单随机抽样确定第一个个体编号l (l ≤k ).4.按照一定的规则抽取样本,通常是将l 加上间隔k 得到第2个个体编号(l +k ),再加k 得到第3个个体编号(l +2k ),依次进行下去,直到获取整个样本.三、分层抽样1.定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.2.分层抽样的应用范围:当总体是由差异明显的几个部分组成的,往往选用分层抽样. 【必会结论】1.不论哪种抽样方法,总体中的每一个个体入样的概率是相同的. 2.系统抽样是等距抽样,入样个体的编号相差Nn的整数倍.3.分层抽样是按比例抽样,每一层入样的个体数为该层的个体数乘以抽样比.高频考点一 随机抽样方法例1.某班级有男生20人,女生30人,从中抽取10人作为样本,其中一次抽样结果是:抽到了4名男生、6名女生,则下列命题正确的是 ( )A .这次抽样可能采用的是简单随机抽样B .这次抽样一定没有采用系统抽样C .这次抽样中每个女生被抽到的概率大于每个男生被抽到的概率D .这次抽样中每个女生被抽到的概率小于每个男生被抽到的概率 答案 A解析 利用排除法求解.这次抽样可能采用的是简单随机抽样,A 正确;这次抽样可能采用系统抽样,男生编号为1~20,女生编号为21~50,间隔为5,依次抽取1号,6号,…,46号便可,B 错误;这次抽样中每个女生被抽到的概率等于每个男生被抽到的概率,C 和D 均错误.故选A.【特别提醒】应用简单随机抽样应注意的问题(1)一个抽样试验能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.(2)在使用随机数表时,如遇到三位数或四位数时,可从选择的随机数表中的某行某列的数字计起,每三个或四个作为一个单位,自左向右选取,有超过总体号码或出现重复号码的数字舍去.【变式探究】用随机数表法对一个容量为500编号为000,001,002,…,499的产品进行抽样检验,抽取一个容量为10的样本,若选定从第12行第5列的数开始向右读数(下面摘取了随机数表中的第11行至第15行),根据下图,读出的第三个数是( )18 18 07 92 4544 17 16 58 0979 83 86 19 6206 76 50 03 1055 23 64 05 05 26 62 38 97 7584 16 07 44 9983 11 46 32 2420 14 85 88 4510 93 72 88 71 23 42 40 64 7482 97 77 77 8107 45 32 14 0832 98 94 07 7293 85 79 10 75 52 36 28 19 9550 92 26 11 9700 56 76 31 3880 22 02 53 5386 60 42 04 5337 85 94 35 1283 39 50 08 3042 34 07 96 8854 42 06 87 9835 85 29 48 39 A .841 B .114 C .014 D .146 答案 B解析 从第12行第5列的数开始向右读数,第一个的编号为389,下一个775,775大于499,故舍去,再下一个841(舍去),再下一个607(舍去),再下一个449,再下一个983(舍去),再下一个114,读出的第三个数是114.高频考点二 分层抽样例 2.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.答案 18解析 ∵样本容量总体个数=60200+400+300+100=350,∴应从丙种型号的产品中抽取350×300=18(件).【方法技巧】分层抽样的步骤 (1)将总体按一定标准分层;(2)计算各层的个体数与总体数的比,按各层个体数占总体数的比确定各层应抽取的样本容量; (3)在每一层进行抽样(可用简单随机抽样或系统抽样).【变式探究】某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取________名学生.答案 60解析 由分层抽样的特点可得应该从一年级本科生中抽取44+5+5+6×300=60名学生.高频考点三 系统抽样例3、采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为( )A .7B .9C .10D .15答案 C解析 抽样间隔为30,所以第k 组被抽中的号码为9+30(k -1).令451≤9+30(k -1)≤750,151115≤k ≤25710,k ∈N *,∴做B 卷的人数为10人.【方法技巧】系统抽样的特点及抽样技巧(1)系统抽样的特点——机械抽样,又称等距抽样,所以依次抽取的样本对应的号码就是一个等差数列,首项就是第1组所抽取样本的号码,公差为间隔数,根据等差数列的通项公式就可以确定每一组内所要抽取的样本号码.(2)系统抽样时,如果总体中的个数不能被样本容量整除时,可以先用简单随机抽样从总体中剔除几个个体,然后再按系统抽样进行.【变式探究】 将参加夏令营的600名学生按001,002,…,600进行编号.采用系统抽样的方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分别住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为 ( )A .26,16,8B .25,17,8C .25,16,9D .24,17,9 答案 B解析 由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k (k ∈N *)组抽中的号码是3+12(k -1).令3+12(k -1)≤300,得k ≤1034,因此第Ⅰ营区被抽中的人数是25;令300<3+12(k -1)≤495,得1034<k ≤42,因此第Ⅱ营区被抽中的人数是42-25=17;第Ⅲ营区被抽中的人数为50-25-17=8.高频考点四 分层抽样与概率相结合问题某公司有一批专业技术人员,对他们进行年龄状况和接受教育程度(学历)的调查,其结果(人数分布)如下表:学历 35岁以下 35~50岁 50岁以上 本科 80 30 20 研究生x20y(1)用分层抽样的方法在35~50岁年龄段的专业技术人员中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2人,求至少有1人学历为研究生的概率;(2)在这个公司的专业技术人员中按年龄状况用分层抽样的方法抽取N 个人,其中35岁以下48人,50岁以上10人,再从这N 个人中随机抽取1人,此人的年龄为50岁以上的概率为539,求x ,y 的值.解 (1)用分层抽样的方法在35~50岁年龄段的专业技术人员中抽取一个容量为5的样本,设抽取学历为本科的人数为m ,∴3050=m5,解得m =3. 抽取的样本中有研究生2人,本科生3人, 从中任取2人的所有等可能基本事件共有C 25个,其中有1人的学历为研究生的基本事件有C 12C 13个,2人的学历都为研究生的基本事件有C 22个, ∴从中任取2人,至少有1人学历为研究生的概率为C 12C 13+C 22C 25=710. (2)由题意,得10N =539,解得N =78.∴35~50岁中被抽取的人数为78-48-10=20, ∴4880+x =2050=1020+y,解得x =40,y =5. 即x ,y 的值分别为40,5.【规律总结】系统抽样和分层抽样中的注意事项(1)系统抽样最大的特点是“等距”,利用此特点可以很方便地判断一种抽样方法是否是系统抽样. (2)分层抽样中分多少层、如何分层要视具体情况而定,总的原则是层内样本的差异要小,两层之间的样本差异要大,且互不重叠;为了保证每个个体等可能入样,所有层中每个个体被抽到的可能性相同.【变式探究】最新高考改革方案已在上海和浙江实施,某教育机构为了解我省广大师生对新高考改革方案的看法,对某市部分学校500名师生进行调查,统计结果如下:赞成改革 不赞成改革 无所谓 教师 120 y 40 学生xz130在全体师生中随机抽取1名“赞成改革”的人是学生的概率为0.3,且z =2y .(1)现从全部500名师生中用分层抽样的方法抽取50名进行问卷调查,则应抽取“不赞成改革”的教师和学生人数各是多少?(2)在(1)中所抽取的“不赞成改革”的人中,随机选出3人进行座谈,求至少有1名教师被选出的概率.解 (1)由题意知x500=0.3,所以x =150,所以y +z =60,因为z =2y ,所以y =20,z =40,则应抽取“不赞成改革”的教师人数为50500×20=2,应抽取“不赞成改革”的学生人数为50500×40=4.(2)从抽取的“不赞成改革”的2名教师,4名学生中,随机选出3人的不同选法有C 36种,其中有1名教师的选法有C 12C 24种,有2名教师的选法有C 22C 14种, 故至少有1名教师被选出的概率P =C 12C 24+C 22C 14C 36=45.1. (2018年江苏卷)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【答案】【解析】从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为1.(2017·江苏卷)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.解析:∵样本容量总体个数=60200+400+300+100=350,∴ 应从丙种型号的产品中抽取350×300=18(件).答案:181.[2015·四川高考]某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )A .抽签法B .系统抽样法C .分层抽样法D .随机数法 答案 C解析 最合理的抽样方法是分层抽样法.选C 项.2.[2015·天津高考]设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这三个协会中抽取6名运动员组队参加比赛.(1)求应从这三个协会中分别抽取的运动员的人数;(2)将抽取的6名运动员进行编号,编号分别为A 1,A 2,A 3,A 4,A 5,A 6.现从这6名运动员中随机抽取2人参加双打比赛.①用所给编号列出所有可能的结果;②设A 为事件“编号为A 5和A 6的两名运动员中至少有1人被抽到”,求事件A 发生的概率. 解 (1)应从甲、乙、丙三个协会中抽取的运动员人数分别为3,1,2.(2)①从6名运动员中随机抽取2人参加双打比赛的所有可能结果为{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4),{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共15种.②编号为A 5和A 6的两名运动员中至少有1人被抽到的所有可能结果为C 12C 14+C 22种,因此,事件A 发生的概率P (A )=C 12C 14+C 2215=35.。

相关文档
最新文档