《三角形内角和》教学设计及反思
小学数学《三角形内角和》教学设计(6篇)
![小学数学《三角形内角和》教学设计(6篇)](https://img.taocdn.com/s3/m/cf8714b9cd22bcd126fff705cc17552707225ef2.png)
小学数学《三角形内角和》教学设计(6篇)《三角形的内角和》教学反思篇一新课程将探究式学习作为学生学习的主要方式之一,着重点放在让学生在主动参与的过程进行学习,在探究问题的活动中获取知识并主动建构新的认知结构,了解获取知识的途径和技巧。
这节课我设计了以“观察—猜想—验证—应用”为主线,让学生在自主学习中“不知不觉”学习到新的知识。
在学生猜测三角形内角和是多少度的基础上,引导学生通过探究活动来验证自己的观点是否正确,激发求知的渴望和学习的热情,最后达成共识。
这节课我创设了学生喜欢的情境:“三个三角形的争吵”入手,让学生自己动手探索三角形的内角和。
让学生“量一量”“剪—拼”贴近了学生的生活,降低了学习难度,注重学生们的动手实践,亲生去体验去感悟。
在操作反馈的过程中我提出了两个问题:第一,你选用什么三角形,采用什么方法来验证;第二,经过操作得到什么结论。
学生分小组对大小不一的三角形进行验证,经历量、剪、拼一系列操作活动,从而得出“三角形内角和是180°”这一结论。
本节课不足之处:1学生在还没学习三角形的特性和三角形三边的关系及三角形的内角和的基础上进行学习三角形内角和。
就无法复习三角形的有关知识。
2、在解决三角形内角和是什么这个问题,说的不够透彻,课后我改成这样,先让两个学生说,说完让一个学生指出来,指完并让他用黑色水笔画出来。
为验证三角形内是180度做铺垫。
3、学生在介绍剪拼的方法时,可以让介绍的学生先上台演示是如何把内角拼在一起,这样学生在动手操作的时候就可以节省时间。
而且由于内角和这个概念没有讲清楚,学生在这一环节花了一定的时间。
4、在学生汇报方法时,还应该用尺子比一下拼后的三个角是在一条直线上,更直观的说明三个角形成一个平角,三角形的内角和是180°。
5、练习设计是有分层次,但是学生说的较少,我比较急地去分析,留给学生的时间不足这是我今后要特别注意的一个方面。
本节课我引导学生用测量或剪拼的方法探究三角形的内角和。
三角形的内角和优秀教学设计_三角形的内角和(优秀8篇)
![三角形的内角和优秀教学设计_三角形的内角和(优秀8篇)](https://img.taocdn.com/s3/m/3e926fea77a20029bd64783e0912a21614797f1a.png)
三角形的内角和优秀教学设计_三角形的内角和(优秀8篇)《三角形内角和》数学教案篇一尊敬的各位评委老师:大家好!今天我很高兴也很荣幸能有这个机会与大家共同交流,在深入钻研教材,充分了解学生的基础上,我准备从以下几个方面进行说课:“三角形的内角和”是三角形的一个重要性质,它有助于学生理解三角形内角之间的关系,是进一步学习几何的基础。
1、知识与技能:明确三角形的内角的概念,使学生自主探究发现三角形内角和等于180°,并运用这一规律解决问题。
2、过程和方法:通过学生猜、量、拼、折、观察等活动,培养学生发现问题、提出问题、分析问题和解决问题的能力。
3、情感与态度:使学生感受数学图形之美及转化思想,体验数学就在我们身边。
教学重点:动手操作、自主探究发现三角形的内角和是180°,并能进行简单的运用。
教学难点:采用多种途径验证三角形的内角和是180°。
通过前面的学习,学生已经掌握了三角形的一些基础知识,会量角,部分学生已经知道三角形内角和是180°,但不知道怎样得出这个结论。
本节课采用自主探索、合作交流的教学方法,学生自主参与知识的构建。
领悟转化思想在解决问题中的应用。
1、教师准备:多媒体课件、三角形教具。
2、学生准备:锐、直、钝角三角形各两个,量角器、剪刀。
(一)、创设情境,激趣导入导入:“同学们,有三位老朋友已经恭候我们多时了。
“(出示三角形动画课件),让学生依次说出各是什么三角形。
课件分别闪烁三角形三个内角,并介绍:“这三个角叫做三角形的内角,把三个角的度数加起来,就是三角形的内角和。
请学生画一个三角形,要求:有两个直角。
为什么不能画,问题在哪呢?这节课我们就一起来探究三角形的内角和。
板书课题。
(二)、自主探究、合作交流1、探索特殊三角形内角和拿出自己的一副三角板,同桌之间互相说一说各个角的度数。
三角形内角和是多少度呢?指名汇报。
90°+30°+60°=180°90°+45°+45°=180°从刚才两个三角形内角和的计算中,你发现了什么?2、探索一般三角形的内角和一般三角形的内角和是多少度?猜一猜。
三角形内角和教学反思 《三角形的内角和》的教学反思(优秀10篇)
![三角形内角和教学反思 《三角形的内角和》的教学反思(优秀10篇)](https://img.taocdn.com/s3/m/84278e417dd184254b35eefdc8d376eeaeaa17d1.png)
三角形内角和教学反思《三角形的内角和》的教学反思(优秀10篇)《三角形的内角和》教学反思篇一《三角形的内角和》教材是先让学生通过计算三角尺得个内角的度数和,激发学生好奇心,进而引发学生猜想:其他三角形的内角和也是180度吗?再通过组织操作活动验证猜想,得出结论。
根据这样的教材安排,本课的重点也就应放在“三角形内角和是180度”的探索上,让学生在探索中深入理解得出过程。
针对教材的如此安排,我也设计了如下的开放的课堂预设:验证过程1、要知道我们猜测的是否正确,你有什么办法验证呢?先独立思考,有想法了在小组里交流。
学生交流想法:生一:我们组根据刚才三角板的内角和是三个角的度数加起来得出的,所以,我们就用量角器量出了三个角的度数,再加起来。
学生说出了测量的度数相加,虽然不是很精确180度,量的过程中有点误差,得到了在180度左右。
生二:我们组是把锐角三角形的三个角跟书上一样去折,折在一起发现正好是个平角,所以我们发现锐角三角形内角和也是180度。
(及时表扬了能主动预习的好习惯。
)生三:我们组把钝角三角形跟刚才一组一样,折在一起,发现也能拼成一个平角,所以钝角三角形的内角和也是180度。
生四:我们组研究的是直角三角形,跟上面两组的同学一样折在一起,三个角拼起来也是一个平角,所以直角三角形的内角和也是180度。
生五:我们也是折的,但我们没有把三个角折在一起,而是把两个小的角折到直角那里发现两个锐角合起来正好与直角三角形的直角重合,图形也就成了一个长方形,两个锐角的和是90度再加个直角也就是180度。
也有同学提出了采用了减下角再拼的方法。
以上这个小片段,虽然在孩子们表述中没这么流利,完整,但却是他们最真实的发现,这堂课上下来,感觉收获很大。
自己感觉这节课的设计上把握了学生学习起点与心理,遵循了教材让学生先猜想再验证的思路,从学生已有的知识背景出发,为他们提供了重复粉从事数学活动的时间和交流机会。
学生思考着,讨论着,交流着,感悟着,在这一过程中,学生不仅掌握了知识,寻求到了解决问题的方法,更重要的是在交流中,学生的语言表达能力也得到了很大的增强。
三角形内角和教学设计(通用6篇)
![三角形内角和教学设计(通用6篇)](https://img.taocdn.com/s3/m/3845b5d4710abb68a98271fe910ef12d2af9a921.png)
三角形内角和教学设计三角形内角和教学设计(通用6篇)作为一名教师,总不可避免地需要编写教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。
那么优秀的教学设计是什么样的呢?下面是小编帮大家整理的三角形内角和教学设计(通用6篇),欢迎阅读,希望大家能够喜欢。
三角形内角和教学设计1【教学目标】1、学生动手操作,通过量、剪、拼、折的方法,探索并发现“三角形内角和等于180度”的规律。
2、在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。
3、体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。
【教学重点】探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。
【教学难点】对不同探究方法的指导和学生对规律的灵活应用。
【教具准备】课件、表格、学生准备不同类型的三角形各一个,量角器。
【教学过程】一、激趣引入。
1、猜谜语师:同学们喜欢猜谜语吗?生:喜欢。
师:那么,下面老师给大家出个谜语。
请听谜面:形状似座山,稳定性能坚,三竿首尾连,学问不简单。
(打一图形)大家一起说是什么?生:三角形2、介绍三角形按角的分类师:真聪明!!板书“三角形”!那么,三角形按角分可以分为钝角三角形、直角三角形和锐角三角形这几类师分别出示卡片贴于黑板。
3、激发学生探知心里师:大家会不会画三角形啊?生:会师:下面请你拿出笔在本子上画出一个三角形,但是我有个要求:画出一个有两个直角的三角形。
试一试吧!生:试着画师:画出来没有?生:没有师:画不出来了,是吗?生:是师:有两个直角的三角形为什么画不出来呢?这就是三角形中角的奥秘!这节课我们就来学习有关三角形角的知识“三角形内角和”(板书课题)二、探究新知。
1、认识三角形的内角看看这三个字,说说看,什么是三角形的内角?生:就是三角形里面的角。
师:三角形有几个内角啊?生:3个。
师:那么为了研究的时候比较方便,我们把这三个内角标上角1角2角3,请同学们也拿出桌子上三角形标出(教师标出)师:你知道什么是三角形“内角和”吗?生:三角形里面的角加起来的度数。
《三角形内角和》数学教案(优秀6篇)
![《三角形内角和》数学教案(优秀6篇)](https://img.taocdn.com/s3/m/b47201b5710abb68a98271fe910ef12d2af9a9eb.png)
《三角形内角和》数学教案(优秀6篇)4、演示任意一个三角形的内角和都是180度。
出示一些三角形,让学生指出内角和。
师:你有什么发现?(无论是什么样的三角形他的内角和都是180度,与三角形的形状大小没有关系。
)(板书三角形的内角和是180度。
)师:那我们再看看刚刚汇报的结果。
为什么之前测量的时候并没有得到这样得到结果呢?(测量的不够精确,存在误差)师:如果测量仪器再精密一些,测量的更准确一些都可以得到三角形内角和是180度。
现在确定这个结论了吗?(25分钟)师:除了这节课大家想到的方法,还有很多方法也能证明三角形的内角和是180°到初中我们还有更严密的方法证明三角形的内角和是180°。
早在300多年前就有一位法国有名的科学家帕斯卡,他在12岁时就验证了任何三角形的内角和都是180°师:你们能用今天的发现做一些练习吗?五、测评反馈1、判断。
(1)直角三角形的两个锐角的和是90°。
(2)一个等腰三角形的底角可能是钝角。
(3)三角形的内角和都是180°,与三角形的大小无关。
4、剪一剪。
把一个三角形纸板沿直线剪一刀,剩下的纸板的内角和是多少度?六、课后作业69页第1题、第3题。
七、板书设计《三角形内角和》教学设计篇四【教材分析】《三角形内角和》是北师大版《数学》四年级下册的内容。
是在学生学习了三角形的概念及特征之后进行的,它是掌握多边形内角和及其他实际问题的基础,因此,掌握“三角形的内角和是180度”这一规律具有重要意义。
教材首先出示了两个三角形比内角和这一情境,让学生通过测量、折叠、拼凑等方法,发现三角形的内角和是180度。
教材还安排了“试一试”,“练一练”的内容。
已知三角形两个内角的度数,求出第三个角的度数。
【学生分析】经过近四年的课改实验,孩子们已经有了一定的自主探究,合作交流的能力。
他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。
三角形内角和教学设计(通用4篇)
![三角形内角和教学设计(通用4篇)](https://img.taocdn.com/s3/m/acf4876086c24028915f804d2b160b4e767f819d.png)
三角形内角和教学设计(通用4篇)作为一名人民老师,时常会须要打算好教案,借助教案可以更好地组织教学活动。
如何把教案做到重点突出呢。
以下是我为大家收集的三角形内角和教学设计(通用4篇),仅供参考,欢迎大家阅读。
三角形内角和教学设计篇1【教学内容】《人教版九年义务教化教科书数学》四年级下册《三角形的内角和》【教学目标】1.使学生知道三角形的内角和是180,并能运用三角形的内角和是180解决生活中常见的问题。
2.让学生经验量一量、折一折、拼一拼等动手操作的过程。
通过视察、推断、沟通和推理探究用多种方法证明三角形的内角和是180。
3.培育学生自主学习、互动沟通、合作探究的实力和习惯,培育学习数学的爱好,感受学习数学的乐趣。
【教学重点】使学生知道三角形的内角和是180,并能运用它解决生活中常见的问题。
【教学难点】通过多种方法验证三角形的内角和是180。
【教学打算】课件。
四组教学用三角板。
铅笔。
大帆布兜子。
固体胶。
剪刀。
筷子若干。
【教学过程】一、激趣导入,提炼学习方法1.课程起先,老师耳朵上别着一根铅笔,肩背大帆布兜子,里面装着一个量角器和几把缺了直角的三角板,手拿一张不规则的白纸,以一位老木匠的身份出现在学生面前。
激发学生的新奇心。
然后自述:“你们好,我是一个有三十多年工作阅历的老木匠了。
我收了三个徒弟,他们已经从师学艺三年了,今日我想让他们下山挣钱,可又不放心,想出几道题考验考验他们,又不知我的题合不合适,大家想不想先当一会我的徒弟试试这几道题呢?”2.接着以老木匠的身份说:前几天我造了一架柁,徒弟们能不能用我手中的工具验证一下横木和立柱是不是成直角的。
3.选择工具,总结方法。
让选择不同工具的同学用自己的方法验证。
老师随机板书:量一量、拼一拼、折一折。
师:你们真是爱动脑筋的好徒弟,那么请听好师傅的其次个问题。
4.导入新课。
图中有许多三角形,不论什么样的三角形都有三个角,这三个角就叫做三角形的内角,徒弟们能不能用学过的方法或者你喜爱的方法求一求三角形三个内角的和是多少?(板书课题:三角形的内角和)二、动手操作,探究沟通新知1.分组活动,探究新知依据学生的选择把学生分成三组,分别采纳量一量、折一折和拼一拼的方法探究新知。
《三角形的内角和》教学反思(精选4篇)
![《三角形的内角和》教学反思(精选4篇)](https://img.taocdn.com/s3/m/9ff341ca4793daef5ef7ba0d4a7302768e996fc3.png)
《三角形的内角和》教学反思(精选4篇)《三角形的内角和》教学反思(精选4篇)《三角形的内角和》教学反思篇1二学期几何里一个重要的知识点——三角形内角和,是在学生认识了三角形的特点和分类的基础上这一节课进一步对三角形内角之间的关系的学习和探究。
本课设计的出发点在于运用先进的多媒体手段让学生直观感知三角形内角和的特点。
这节课上完之后,我在课后进行了小结,也听取了经验丰富的教师的分析,收获很大,授课过程中有讲得好的环节也有处理得不好的环节,下面从几个方面小结:1.在本次授课中,引入是比较恰当的。
我是从学生原有的对图形的认识的感性知识进行引入的,先出示一个长方形,让学生说出它的内角和是多少度,学生用之前学过的知识都知道,长方形有四个直角,那么加起来就是360°,然后又用正方形,由于正方形和长方形有一个同样的特征,所以学生也很容易就能回答出来它的内角和是多少。
再将正方形沿着对边剪开,分成两个三角形,这个时候问学生:你们能猜出三角形的内角和是多少吗?这样的引入和从旧知到新知的过渡,非常地自然,学生也较容易进行猜想。
2.利用多媒体手段让学生直观感知三角形内角和的特点。
用动画演示撕角拼一拼,折角,让学生可以非常直观地认识三角形内角和的特点,印象非常深刻,也给学生在进行动手操作时以正确的指引。
3.小组合作,自主探究。
整一节课都很注重学生自主探究,动手实验的过程,我只是一个主导者,组织好课堂教学,放手让学生去实验、讨论、归纳,没有像之前上课那样由本人我讲完整节课而学生只是听。
4.在学生进行猜想之后,让学生开始动手实验,测量三角形的三个内角的度数并填表,这个环节在处理的时候不是很得当,因为量角在学生来说,本来就是一个难点,没有很好的掌握量角的技巧导致没能准确地量角,而且在本节课中,要进行量角实验的三角形个数较多,学生不能很好地进行小组分工,所以在这个地方花费了不少的时间,而结果量出来的度数也不是很精确,虽说在测量中允许有误差,但是这与一开始的教学设计出发点有出入,达不到很好验证猜想的效果。
小学四年级下册数学《三角形的内角和》教案(5篇)
![小学四年级下册数学《三角形的内角和》教案(5篇)](https://img.taocdn.com/s3/m/9a74f9063069a45177232f60ddccda38376be108.png)
小学四年级下册数学《三角形的内角和》教案(5篇)《三角形的内角和〉教学设计篇一课题三角形的内角和手记教学目标1、让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2、在学生在动手获取知识的过程中,培养学生的实践能力,并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。
3、使学生体验成功的喜悦,激发学生主动学习数学的兴趣。
重点难点重点:让学生经历“三角形内角和是180°”这一知识的形成、发展和应用过程。
难点:探索、验证三角形内角和是180°的过程。
过程资源体验目标“学”与“教”创设问题情境课件出示:两个三角板遵循由特殊到一般的规律进行探究,引发学生的猜想后,引导学生探讨所有的三角形的内角和是不是也是180°。
这是同学们熟悉的三角尺,请同学们说一说这两个三角尺的三个内角分别是多少度?生: 45°、90°、45°。
生: 30°、90°、60°。
师:仔细观察,算一算这两个三角形的内角和是多少度?生:90°+45°+45°=180°。
生:90°+60°+30°=180°。
师:通过刚才的算一算,我们得到这两个三角形的内角和是180°,由此你想到了什么?生:直角三角形内角和是180°,锐角三角形、钝角三角形内角和也是180°。
师:这只是我们的一种猜想,三角形的内角和是否真的等于180°,还需要我们去验证。
构建模型每个组准备六个三角形(锐角三角形2个、直角三角形2个、钝角三角形2个)课件学生自己剪的一个任意三角形大胆放手让学生通过有层次的自主操作活动,帮助学生结合已有的知识经验,探究验证三角形内角和的不同方法。
教案及反思-三角形的内角和
![教案及反思-三角形的内角和](https://img.taocdn.com/s3/m/9ede402aa517866fb84ae45c3b3567ec112ddc03.png)
教案及反思-三角形的内角和一、教学目标1.让学生掌握三角形内角和定理,理解三角形的内角和是180°。
2.培养学生运用三角形内角和定理解决实际问题的能力。
3.培养学生的观察、分析和推理能力。
二、教学重难点1.教学重点:三角形内角和定理的理解和应用。
2.教学难点:三角形内角和定理的证明。
三、教学过程1.导入新课师:同学们,我们之前学习了三角形的分类和性质,那么大家知道三角形的内角和是多少度吗?生:不知道。
师:今天我们就来学习三角形的内角和,相信通过本节课的学习,大家一定能找到答案。
2.探索三角形内角和(1)分组讨论师:请同学们分成小组,每组准备一角形纸片,用量角器测量三角形的三个内角,然后将测量结果记录在黑板上。
师:请大家观察黑板上的数据,发现了什么规律?生:三角形的内角和是180°。
师:很好,这就是我们今天要学习的三角形内角和定理。
3.证明三角形内角和定理师:那么大家有没有想过,为什么三角形的内角和是180°呢?下面我们来证明这个定理。
(1)作辅助线①画出三角形ABC;②在BC边上任取一点D,连接AD;③作∠BAC的角平分线,交AD于点E。
(2)观察角的关系师:请大家观察图形,可以发现∠BAC、∠BDE和∠CDE有什么关系?生:∠BAC=∠BDE+∠CDE。
(3)证明三角形内角和定理师:由于∠BDE和∠CDE是∠BAC的角平分线,所以∠BDE=∠CDE。
又因为∠BAC+∠BDE+∠CDE=180°,所以∠BAC+2∠BDE=180°。
将∠BDE=∠CDE代入,得到∠BAC+∠BDE+∠CDE=180°,即三角形ABC的内角和是180°。
4.应用三角形内角和定理(1)已知一个三角形的两个内角分别是30°和60°,求第三个内角的度数。
(2)如果一个三角形的两个内角分别是90°和45°,那么这个三角形是什么三角形?师:通过本节课的学习,我们知道了三角形的内角和是180°,并且学会了运用三角形内角和定理解决实际问题。
三角形内角和教学设计及反思
![三角形内角和教学设计及反思](https://img.taocdn.com/s3/m/955ed374366baf1ffc4ffe4733687e21af45ff8f.png)
三角形内角和教学设计及反思一、教学设计本节课的主题为三角形内角和的教学设计,将通过多种教学方法和资源,帮助学生深入理解三角形内角和的概念和计算方法。
以下是具体的教学设计过程:1. 导入:通过引入问题的方式引起学生思考,如:“在我们日常生活中,三角形有哪些特点?它的内角和有什么规律呢?”引导学生回顾和总结之前学过的相关知识,为将要学习的内容做铺垫。
2. 知识讲授:通过教师讲解和示范的方式介绍三角形内角和的计算方法。
首先,教师可以画出一个任意的三角形,然后引导学生观察并分析三角形的内角和。
通过提问的方式,引导学生发现和总结“三角形内角和等于180°”的规律。
然后,教师可以用具体的例子进行计算说明,例如计算一个等边三角形和一个直角三角形的内角和。
3. 实践活动:设计一些有趣的小组活动和练习题,让学生在实践中巩固和应用所学的知识。
例如,将学生分成小组,每组给出一份不同形状的三角形,要求学生测量三角形的内角,并计算其内角和。
然后,学生可互相检查答案,并讨论可能出现的计算错误,共同提高计算能力和准确性。
4. 拓展延伸:对于学习进度较快的学生,可以提供一些拓展的学习资源,如教学视频或参考书籍,让他们进一步深入了解三角形内角和的相关性质和应用。
5. 总结归纳:通过让学生回答一些总结性问题,加深对所学内容的理解和运用。
例如,要求学生总结一下三角形内角和的计算方法和相关性质,并解释为什么三角形内角和等于180°。
二、教学反思本节课的教学设计在一定程度上能够激发学生的学习兴趣和主动性,帮助他们深入理解三角形内角和的概念和计算方法。
然而,也存在一些改进的空间:首先,设计的实践活动可以更加多样化和具体化。
除了测量和计算三角形的内角和,可以引入一些实际生活中的问题,如利用三角形内角和的概念计算建筑物的屋顶角度或地图上的夹角。
这样做能够更好地将所学知识与实际应用相结合,提高学生的学习动力和兴趣。
其次,教学设计中可以加入更多的小组合作学习活动。
《三角形内角和》教学反思(精选3篇)
![《三角形内角和》教学反思(精选3篇)](https://img.taocdn.com/s3/m/a67ae893af1ffc4fff47ac3e.png)
《三角形内角和》教学反思(精选3篇)《三角形内角和》教学反思1“三角形内角和”是人教版数学四年级下册的一节探索与发现课,让学生在学习了三角形的特征、高以及三角形分类的基础上,进一步研究三角形三个角的关系。
本节课学生对知识点的掌握还不错,但是,这一节课还有很多不足之处,需要加以改进:一、优点:1、教学设计不错,环节紧凑,思路清晰。
2、重视操作过程,时间把握得好。
本节课用了大量的时间来让学生做小组实验,从而让他们自己感知三角形内角和是180°,印象深刻。
3、能注意前后照应,解决了前面的疑问。
在讲授新课前,设置一个疑问“为什么同一个三角形不能有两个直角?”以此来吸引学生,找出三角形内角和的特性。
在掌握了三角形内角和是180°后,再次把问题提出来,让学生解决。
4、板书巧妙,一步步引入课题。
先是让学生复习“三角形”的定义,接着简单说明什么是“三角形内角”,最后再讲授三角形三个内角度数的和叫做“三角形内角和”。
5、课堂纪律好,气氛活跃,学生踊跃积极。
学生在小组活动时,活跃而有序,上课时能认真听讲,积极举手。
同时,实行小组评价更是发挥了学生的主动性。
6、求三角形内角和的方法,一个比一个直观、生动。
从量一量、算一算,到剪一剪、折一折,让学生更容易感受到三角形内角和是180°。
7、练习题设计得比较好,特别是判断题,都是学生平时容易出错的题目,在课堂上用比较直观的课件显示出来,让学生的印象深刻。
组合题也很有灵活性,先是找出能组成三角形的度数,然后根据度数判断出是什么三角形。
8、能尊重学生的意见,有的小组没有在算一算的时候,没有得出180°的结果,老师能够分析其中的原因。
二、不足之处:1、在老师给出“画有2个内角是直角的三角形”的任务时,学生明显是画不出来。
但是教师也可以把学生失败的作品展示出来,照应之后的讲解。
而不能一带而过。
2、如果量一量的方法,不能让人信服,要在后面打个“?”,等到解决疑问后,再去掉。
《三角形内角和》教案含教学反思
![《三角形内角和》教案含教学反思](https://img.taocdn.com/s3/m/d30ebf7bdc36a32d7375a417866fb84ae55cc35a.png)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角形内角和相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如剪拼三角形,观察内角和的变化。
三、教学难点与重点
1.教学重点
-理解并掌握三角Байду номын сангаас内角和等于180°的性质,能够准确运用此性质解决相关问题。
-学会通过实际操作验证三角形内角和,培养几何直观和空间观念。
-能够运用三角形内角和性质进行简单的几何推理。
举例解释:
-在教学过程中,教师需强调三角形内角和是固定值180°,通过多种方法(如剪拼、折叠等)让学生直观感受这一性质。
举例解释:
-在解决实际问题时,教师应引导学生注意三角形内角和性质在不同情境下的应用,如多边形内角和的计算、角度缺失问题的解决等。
-对于不同类型的三角形,教师需详细解释其内角和的特点,如等边三角形内角均为60°,等腰三角形底角相等等。
-针对学生可能存在的误区,教师可以通过提供反例、进行小组讨论等形式,帮助学生理解和纠正错误观念。
《三角形内角和》教案含教学反思
一、教学内容
本节课选自人教版《数学》四年级下册第七单元《角的度量》中的《三角形内角和》一课。教学内容主要包括:1.理解并掌握三角形内角和等于180°的性质;2.学会运用三角形内角和性质解决相关问题;3.通过实际操作,培养学生的空间观念和推理能力。具体内容包括:探索三角形的内角和;运用内角和性质解决实际问题;了解不同类型三角形的内角和特点。教学反思将围绕学生对三角形内角和概念的理解、操作能力和问题解决能力的培养等方面进行。
《三角形的内角和》教学设计【优秀8篇】
![《三角形的内角和》教学设计【优秀8篇】](https://img.taocdn.com/s3/m/4d7b22c4f605cc1755270722192e453610665bb4.png)
《三角形的内角和》教学设计【优秀8篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《三角形的内角和》教学设计【优秀8篇】教学设计的目的是为了提高教学效率和教学质量,使学生在单位时间内能够学到更多的知识。
《三角形的内角和》的教学反思(通用5篇)
![《三角形的内角和》的教学反思(通用5篇)](https://img.taocdn.com/s3/m/bcc3278f294ac850ad02de80d4d8d15abe230063.png)
《三角形的内角和》的教学反思〔通用5篇〕《三角形的内角和》的教学反思〔通用5篇〕《三角形的内角和》的教学反思1《三角形的内角和》是人教版四年级下册第五单元的内容,是学生学习了三角形的特性及分类的根底上学习的。
本节课我主要设计了四个环节,提出问题→合作探究→学以致用→分享收获。
第一个环节中,我先设计了一个情境,三角形三兄弟〔锐角三角形、钝角三角形、直角三角形〕争论谁的内角和大,一下子激起了学生的探究兴趣,这个时候就有学生说一样大,此时引出课题,同时学生提出问题:什么是内角?三角形的内角和是多少度?第二个环节是合作探究三角形的内角和,这个环节里学生小组合作,通过量、撕、折等方法,验证三角形的内角和是180。
第三个环节是学以致用,我设计了三个闯关游戏,第一关是两个角的度数求第三个角的度数,第二关是等边三角形、等腰三角形和直角三角形一个角的度数,第三关是两个一样的三角形组成一个大三角形后,大三角形的内角和是多少度。
反思师生互动的过程,本节课的优点有:1、本节课中学生探究欲很高,课堂研讨气氛浓重。
2、小组合作中,学生们发现测量时,三角形的内角和不一定是180,培养了学惹事实求是的科学态度,此时学生能运用转化思想解决问题,从而提升了学生解决问题的才能。
3、量、撕、折的动手理论活动,不仅进步了学生的动手操作才能,而且让在动手的同时动脑、动口,积极参与知识学习的全过程,鼓励学生多观察、动脑想、大胆猜、勤钻研,增强了学生学习数学的兴趣,给学生提供更多的活动时机和空间,使学生在参与的过程中得到充足的体验和开展。
4、课堂练习题的设计层层递进,以及理论活动的设计,让学生体验了学以致用的快乐,获得成功的喜悦。
5、学生在分享收获中,各抒己见,提升了自己的表达才能和归纳才能。
本节课需要改良的地方:1、在合作探究环节,我提出问题:怎样来验证三角形的内角和?此时学生提出了测量的方法之后,我没有给学生留有足够的考虑空间,而是直接介绍了“撕、折”的方法,让孩子们进展探究,课堂中缺少了更多的生成。
小学数学《三角形内角和》教学设计(通用8篇)
![小学数学《三角形内角和》教学设计(通用8篇)](https://img.taocdn.com/s3/m/4c88013817fc700abb68a98271fe910ef12daebc.png)
小学数学《三角形内角和》教学设计(通用8篇)下文是我为您精心整理的《小学数学《三角形内角和》教学设计(通用8篇)》,您浏览的《小学数学《三角形内角和》教学设计(通用8篇)》正文如下:小学数学《三角形内角和》教学设计篇1教学目标:1、通过测量一量、拼一拼、折一折三个活动,探索和发现三角形三个内角的度数和等于180°。
2、已知三角形两个角的度数,会求出第三个角的度数。
3、经历三角形内角和的研究方法,感受数学研究方法。
教学重点:1、探索和发现三角形三个内角的度数和等于180°。
2、已知三角形两个角的度数,会求出第三个角的度数。
教学难点:掌握探究方法(猜想-验证-归纳总结),学会用“转化”的数学思想探究三角形内角和。
教学用具:表格、课件。
学具准备:各种三角形、剪刀、量角器。
一、创设情境揭示课题。
1、一天两个三角形发生了争执,他们请你们来评评理。
大三角形说:“我的个头大,所以我的内角和一定比你大。
”小三角形很不甘心地说:“我有一个钝角,我的内角和一定比你大。
”谁说得有道理呢?今天让我们来做一回裁判吧。
生1:大三角形大(个子大)生2:小三角形大(有钝角)(教师不做判断,让学生带着问题进入新课)2、什么是三角形的内角和?(板书:内角和)讲解:三角形内两条边所夹的角就叫做这个三角形的内角。
每个三角形都有三个内角,这三个内角的度数加起来就是三角形的内角和。
二、自主探究,合作交流。
(一)提出问题:1、你认为谁说得对?你是怎么想的?2、你有什么办法可以比较一下这两个三角形的内角和呢?生1:用量角器量一量三个内角各是多少度,把它们加起来,再比较。
生2:用拼一拼的办法把三个角拼到一起看它们能不能组成平角。
生3:用折一折的办法把三个角折到一起看它们能不能组成平角(二)探索与发现活动一:量一量(1)①了解活动要求:(屏幕显示)A、在练习本上画一个三角形,量一量三角形三个内角的度数并标注。
(测量时要认真,力求准确)B、把测量结果记录在表格中,并计算三角形内角和。
《三角形的内角和》教学设计优秀8篇
![《三角形的内角和》教学设计优秀8篇](https://img.taocdn.com/s3/m/af3c36537f21af45b307e87101f69e314332fae7.png)
《三角形的内角和》教学设计优秀8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!《三角形的内角和》教学设计优秀8篇作为一名默默奉献的教育工作者,通常会被要求编写教学设计,借助教学设计可以更好地组织教学活动。
《三角形内角和》的数学教学设计(最新7篇)
![《三角形内角和》的数学教学设计(最新7篇)](https://img.taocdn.com/s3/m/a12bc30ea22d7375a417866fb84ae45c3b35c213.png)
《三角形内角和》的数学教学设计(最新7篇)角形内角和教学设计篇一教学内容:教材第67页例6、“做一做”及教材第69页练习十六第1~3题。
教学目标:1、通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。
2、能运用三角形的内角和是180°这一结论,求三角形中未知角的度数。
3、培养学生动手动脑及分析推理能力。
重点难点:掌握三角形的内角和是180°。
教学准备:三角形卡片、量角器、直尺。
导学过程一、复习1、什么是平角?平角是多少度?2、计算角的度数。
3、回忆三角形的相关知识。
(出示直角三角形、锐角三角形、钝角三角形)二、新知(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知”的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。
同时,培养学生的综合素养)1、读学卡的学习目标、任务目标,做到心里有数。
2、揭题:课件演示什么是三角形的内角和。
3、猜想:三角形的内角和是多少度。
4、验证:(1)初证:用一副三角板说明直角三角形的内角和是180°。
(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。
(3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和是180°(师巡视)(4)汇报结论(清楚明白的给小组加优秀10分)5、结论:修改板书,把“?”去掉,写“是”。
6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示)7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。
)三、知识运用(课件出示练习题,生解答)1、填空(1)一个三角形,它的两个内角度数之和是110,第三个内角是()、(2)一个直角三角形的一个锐角是50,则另一个锐角是()。
三角形内角和的教学反思优秀10篇
![三角形内角和的教学反思优秀10篇](https://img.taocdn.com/s3/m/b247e0d54bfe04a1b0717fd5360cba1aa8118c15.png)
三角形内角和的教学反思优秀10篇《三角形的内角和》教学反思篇一在学校教学示范课上,讲了《三角形的内角和》一课。
整节课还算比较顺利,在课堂是完成了教学目标,并且体现了小组合作学习的探究的过程。
现在总结一下课堂上的几点不足:1、学生小组合作学习的能力还有待于进一步培养在课堂教学的重点过程中,我设计的是小组合作探究,“先讨论有几种验证方法,再分别选择不同的方法验证,验证后在小组内交流”这样的目的是为了在尽量短的时间内使学生通过不同的验证方法得出共同的的结论,在交流的过程中学生能够清晰的观察到不同的验证方法,这样一个人的验证过程就成了几个人人学习成果。
既节省了时间,又能让学生接受到尽量多的信息。
但是学生们的表现却不令人满意,也许是公开课学生放不开的原因,他们只是各自验证完了和同桌交流一下,完全没有以往在班级里那种热烈讨论的气氛。
虽然我在后面的学习汇报过程中使用了投影仪展示,但还是不如学生小组内交流更直接。
因此,我这一设计的目的效果不理想。
2、我本身驾驭课堂的能力还有待于提高由于在试讲的过程中我设计的最后一个练习题没有完成,而这一道题又是这堂课教学内容一个升华,因此我想尽量完成。
在课堂教学的过程中我尽量控制时间,由于过于注意时间,导致了在学生用投影仪演示完后,为了更清晰的演示折、拼的过程的动画忘了播放,影响了又一个给学生直观展示的机会。
这一问题的出现我觉得是我自身驾驭课堂的能力还不够,有待于进一步提高。
《三角形的内角和》教学反思篇二这节课我让学生经历观察、猜想、实验、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点。
在学生猜测三角形的内角和是多少度的基础上,引导学生通过探究活动来验证自己的观点是否正确,激发求知的渴望和学习的热情,最后达成共识。
新课程将探究式学习作为学生学习的主要方式之一,着重点放在让学生在主动参与的过程中进行学习,在探究问题的活动中获取知识并主动建构新的认知结构,了解获取知识的途径和技巧。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《三角形内角和》教学设计及反思人教版) 四年级下册第85页。
设计思路遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。
学生对三角尺上每个角的度数比较熟悉,就从这里入手。
先让学生算出每块三角尺三个内角的和是180°,引发学生的猜想:其它三角形的内角和也是180°吗?接着,引导学生小组合作,任意画出不同类型的三角形,用通过量一量、算一算,得出三角形的内角和是180°或接近180°(测量误差),再引导学生通过剪拼的方法发现:各类三角形的三个内角都可以拼成一个平角。
再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。
这一系列活动潜移默化地向学生渗透了“转化”数学思想,为后继学习奠定了必要的基础。
最后让学生运用结论解决实际问题,练习的安排上,注意练习层次,共安排三个层次,逐步加深。
练习形式具有趣味性,激发了学生主动解题的积极性。
第一个练习从知识的直接应用到间接应用,数学信息的出现从比较显现到较为隐藏。
这些题检测不同层次的学生是否掌握所学知识应该达到的基本要求,顾及到智力水平发展较慢和中等的同学,第3个练习设计了开放性的练习,在小组内完成。
由一个同学出题,其它三个同学回答。
先给出三角形两个内角的度数,说出另外一个内角。
有唯一的答案。
训练多次后,只给出三角形一个内角,说出其它两个内角,答案不唯一,可以得出无数个答案。
让学生在游戏中消除疲倦激发兴趣,拓展学生思维。
兼顾到智力水平发展较快的同学。
在整个教学设计中,本着“学贵在思,思源于疑”的思想,不断创设问题情境,让学生去实验、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。
教学目标1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2.让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。
并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。
3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。
教材分析三角形的内角和是三角形的一个重要特征。
本课是安排在学习三角形的概念及分类之后进行的,它是学生以后学习多边形的内角和及解决其它实际问题的基础。
学生在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以及合作学习的习惯。
因此,教材很重视知识的探索与发现,安排了一系列的实验操作活动。
教材呈现教学内容时,不但重视体现知识的形成过程,而且注意留给学生充分进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。
概念的形成没有直接给出结论,而是通过量、算、拼等活动,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。
教学重点让学生经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。
教学准备多媒体课件、学具。
教学过程一、激趣引入(一)认识三角形内角师:我们已经认识了什么是三角形,谁能说出三角形有什么特点?生1:三角形是由三条线段围成的图形。
生2:三角形有三个角,……师:请看屏幕(课件演示三条线段围成三角形的过程)。
师:三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。
(这里,有必要向学生直观介绍“内角”。
)(二)设疑,激发学生探究新知的心理师:请同学们帮老师画一个三角形,能做到吗?(激发学生主动学习的心理)生:能。
师:请听要求,画一个有两个内角是直角的三角形,开始。
(设置矛盾,使学生在矛盾中去发现问题、探究问题。
)师:有谁画出来啦?生1:不能画。
生2:只能画两个直角。
生3:只能画长方形。
师(课件演示):是不是画成这个样子了?哦,只能画两个直角。
师:问题出现在哪儿呢?这一定有什么奥秘?想不想知道?生:想。
师:那就让我们一起来研究吧!(揭示矛盾,巧妙引入新知的探究)二、动手操作,探究新知(一)研究特殊三角形的内角和师:请看屏幕。
(播放课件)熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数。
(课件闪动其中的一块三角板)生:90°、60°、30°。
(课件演示:由三角板抽象出三角形)师:也就是这个三角形各角的度数。
它们的和怎样?生:是180°。
师:你是怎样知道的?生:90°+60°+30°=180°。
师:对,把三角形三个内角的度数合起来就叫三角形的内角和。
师:(课件演示另一块三角板的各角的度数。
)这个呢?它的内角和是多少度呢?生:90°+45°+45°=180°。
师:从刚才两个三角形内角和的计算中,你发现什么?生1:这两个三角形的内角和都是180°。
生2:这两个三角形都是直角三角形,并且是特殊的三角形。
(二)研究一般三角形内角和1.猜一猜。
师:猜一猜其它三角形的内角和是多少度呢?同桌互相说说自己的看法。
生1:180°。
生2:不一定。
……2.操作、验证一般三角形内角和是180°。
(1)小组合作、进行探究。
师:所有三角形的内角和究竟是不是180°,你能用什么办法来证明,使别人相信呢?生:可以先量出每个内角的度数,再加起来。
师:哦,也就是测量计算,是吗?那就请四人小组共同研究吧!师:每个小组都有不同类型的三角形。
每种类型的三角形都需要验证,先讨论一下,怎样才能很快完成这个任务。
(课前每个小组都发有锐角三角形、直角三角形、钝角三角形,指导学生选择解决问题的策略,进行合理分工,提高效率。
)(2)小组汇报结果。
师:请各小组汇报探究结果。
生1:180°。
生2:175°。
生3:182°。
……(三)继续探究师:没有得到统一的结果。
这个办法不能使人很信服,怎么办?还有其它办法吗?生1:有。
生2:用拼合的办法,就是把三角形的三个内角放在一起,可以拼成一个平角。
生:把它们剪下来放在一起。
1.用拼合的方法验证。
师:很好,请用不同的三角形来验证。
师:小组内完成,仍然先分工怎样才能很快完成任务,开始吧。
2.汇报验证结果。
师:先验证锐角三角形,我们得出什么结论?生1:锐角三角形的内角拼在一起是一个平角,所以锐角三角形的内角和是180°。
生2:直角三角形的内角和也是180°。
生3:钝角三角形的内角和还是180°。
3.课件演示验证结果。
师:请看屏幕,老师也来验证一下,是不是跟你们得到的结果一样?(播放课件)师:我们可以得出一个怎样的结论?生:三角形的内角和是180°。
(教师板书:三角形的内角和是180°学生齐读一遍。
)师:为什么用测量计算的方法不能得到统一的结果呢?生1:量的不准。
生2:有的量角器有误差。
师:对,这就是测量的误差。
三、解决疑问。
师:现在谁能说说不能画出有两个直角的一个三角形的原因?(让学生体验成功的喜悦)生:因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。
师:在一个三角形中,有没有可能有两个钝角呢?生:不可能。
师:为什么?生:因为两个锐角和已经超过了180°。
师:那有没有可能有两个锐角呢?生:有,在一个三角形中最少有两个内角是锐角。
四、应用三角形的内角和解决问题。
1. 看图求出未知角的度数。
(知识的直接运用,数学信息很浅显)2. 按要求计算。
(数学信息较为隐藏和生活中的实际问题)3.游戏巩固。
在四人小组中完成:由一个同学出题,其它三个同学回答。
(1)给出三角形两个内角,说出另外一个内角(有唯一的答案)。
(2)给出三角形一个内角,说出其它两个内角(答案不唯一,可以得出无数个答案)。
五、全课总结。
今天你学到了哪些知识?是怎样获取这些知识的?你感觉学得怎么样?教学反思这篇教学设计通过施教,符合新课程理念,转变学生的学习方式,能让学生以小组合作的形式进行问题的探索与研究,学生在整节课中学得轻松。
整节课的教学设计,条理清晰,层次清楚,学生思维活跃,教学一开始从学生熟悉的三角板抽象出特殊的三角形探讨三角形的内角和是180°,接下来很自然地引导学生探讨所有的三角形的内角和是不是也是180,过渡自然且有吸引力。
在学习活动的过程中,先让学生进行测量、计算,但得不到统一的结果,再引导学生用把三个角拼在一起得到一个平角进行验证。
这时,有部分学生在拼凑的过程中出现了困难,花费的时间较长,在这里用课件再演示一遍正好解决了这个问题。
练习设计也具有许多优点,注意到练习的梯度,并由浅入深,照顾到不同层次学生的需求,也很有趣味性。
但还受课本资源的限制,不能大胆突破教材,充分利用生活资源。
例如:可以出示一块被打烂了的三角形玻璃板(如图:),向学生提出挑战性的问题:老师今天不小心把这块三角形的玻璃板打烂了,要重新买与原来同样大的一块,可老师不知道尺寸,怎么办呢?谁能帮老师解决这个问题呢?让学生利用学过的知识解决生活中常出现的问题,更能使学生体会到数学不仅。