非局部均值滤波代码
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
clear
clc
clf
colormap(gray)
% create example image
ima=100*ones(100);
ima(50:100,:)=50;
ima(:,50:100)=2*ima(:,50:100);
fs=fspecial('average');
ima=imfilter(ima,fs,'symmetric');
% add some noise
sigma=10;
rima=ima+sigma*randn(size(ima));
% show it
imagesc(rima)
drawnow
% denoise it
fima=NLmeansfilter(ima,5,2,sigma);
% show results
clf
subplot(2,2,1),imagesc(ima),title('original');
subplot(2,2,2),imagesc(rima),title('noisy');
subplot(2,2,3),imagesc(fima),title('filtered');
subplot(2,2,4),imagesc(rima-fima),title('residuals');
function [output]=NLmeansfilter(input,t,f,h)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %
% input: image to be filtered
% t: radio of search window
% f: radio of similarity window
% h: degree of filtering
%
% Author: Jose Vicente Manjon Herrera & Antoni Buades
% Date: 09-03-2006
%
% Implementation of the Non local filter proposed for A. Buades, B. Coll and J.M. Morel in
% "A non-local algorithm for image denoising"
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Size of the image
[m n]=size(input);
% Memory for the output
Output=zeros(m,n);
% Replicate the boundaries of the input image
input2 = padarray(input,[f f],'symmetric');
% Used kernel
kernel = make_kernel(f);
kernel = kernel / sum(sum(kernel));
h=h*h;
for i=1:m
for j=1:n
i1 = i+ f;
j1 = j+ f;
W1= input2(i1-f:i1+f , j1-f:j1+f);
wmax=0;
average=0;
sweight=0;
rmin = max(i1-t,f+1);
rmax = min(i1+t,m+f);
smin = max(j1-t,f+1);
smax = min(j1+t,n+f);
for r=rmin:1:rmax
for s=smin:1:smax
if(r==i1 && s==j1) continue; end;
W2= input2(r-f:r+f , s-f:s+f);
d = sum(sum(kernel.*(W1-W2).*(W1-W2)));
w=exp(-d/h);
if w>wmax
wmax=w;
end
sweight = sweight + w;
average = average + w*input2(r,s);
end
end
average = average + wmax*input2(i1,j1);
sweight = sweight + wmax;
if sweight > 0
output(i,j) = average / sweight;
else
output(i,j) = input(i,j);
end
end
end
function [kernel] = make_kernel(f)
kernel=zeros(2*f+1,2*f+1);
for d=1:f
value= 1 / (2*d+1)^2 ;
for i=-d:d
for j=-d:d
kernel(f+1-i,f+1-j)= kernel(f+1-i,f+1-j) + value ;
end
end