材料现代分析测试方法-分子振动光谱 PPT课件

合集下载

《分子光谱分析》课件

《分子光谱分析》课件

对未来学习的建议与展望
深入学习光谱分析理论
掌握先进的光谱分析技术
建议学习者进一步深入学习光谱分析的理 论基础,理解各种光谱分析方法的物理机 制和术和 新方法,了解并掌握最新的光谱分析技术 。
加强实验技能训练
拓展光谱分析应用领域
建议学习者多进行实验操作,提高实验技 能和数据分析能力,培养解决实际问题的 能力。
03
学习如何利用分子光谱分析技术 解决实际问题,培养实验设计和 数据分析的能力。
04
了解分子光谱分析在科研和工业 生产中的应用,培养解决实际问 题的能力。
02
分子光谱分析的基本原理
光的吸收和发射
光的吸收
当光子与分子相互作用时,如果光子的能量与分子某能级差相等,则该能级上 的电子可发生跃迁,从低能级跃迁到高能级,分子吸收光子并吸收能量。
原子光谱
由原子能级间的跃迁产生,包括线状光谱和连续光谱。
分子光谱
由分子振动和转动能级间的跃迁产生,包括带状光谱和漫散光谱。
03
分子光谱分析的实验技术
实验设备与仪器
红外光谱仪
用于测量分子振动和旋转的频率,从而推 断分子的结构和性质。
紫外可见光谱仪
用于测量分子电子跃迁的频率,从而推断 分子的电子结构和性质。
04
分子光谱分析的应用
在化学研究中的应用
化学反应机理研究
通过分子光谱分析,可以 研究化学反应过程中分子 结构和振动、转动变化, 从而揭示化学反应机理。
化学合成过程监控
在化学合成过程中,利用 分子光谱分析可以实时监 测反应进程,指导反应条 件优化和产物纯度控制。
化合物结构鉴定
分子光谱分析能够提供化 合物的特征光谱,通过比 对标准谱库可以确定化合

高分子材料分析测试方法ppt课件

高分子材料分析测试方法ppt课件
结构鉴定激光拉曼散射光谱拉曼光谱用于分析的不足1拉曼散射面积2不同振动峰重叠和拉曼散射强度容易受光学系统参数等因素的影响3荧光现象对傅立叶变换拉曼光谱分析的干扰4在进行傅立叶变换光谱分析时常出现曲线的非线性的问题5任何一物质的引入都会对被测体体系带来某种程度的污染这等于引入了一些误差的可能性会对分析的结果产生一定的影响激光拉曼散射光谱在高分子材料分析中的应用1
4、数据处理对红外谱图质量的影: (1)平滑处理:
红外光谱实验中谱图常常不光滑,影响谱图质量。不光滑的原因除了样 品吸潮以外还有环境的潮湿和噪声。平滑是减少来自各方面因素所产生的 噪声信号, 但实际是降低了分辨率, 会影响峰位和峰强, 在定量分析时需特 别注意。
(2)基线校正: 在溴化钾压片制样中由于颗粒研磨得不够细或者不够均匀, 压出的锭片不 够透明而出现红外光散射, 所以不管是用透射法测得的红外光谱,还是用反射 法测得的光谱, 其光谱基线不可能在零基线上, 使光谱的基线出现漂移和倾斜 现象。需要基线校正时, 首先判断引起基线变化的原因, 能否进行校正。基线 校正后会影响峰面积, 定量分析要慎重。
6、影响吸收谱带的其他因素还有:共轭效应、张力效应、诱导效 应和振动耦合效应。
共轭效应: 由于大P 键的形成, 使振动频率降低。 张力效应: 当环状化合物的环中有张力时, 环内伸缩振动降低,环外 增强。 诱导效应: 由于取代基具有不同的电负性, 通过静电诱导作用,引起 分子中电子分布的变化及键力常数的变化,从而改变了基团的特征 频率。 振动耦合效应: 当2个相邻的基团振动频率相等或接近时, 2个基团 发生共振,结果使一个频率升高, 一个频率降低。
Raman散射与红外吸收方法机理不同,所遵守的选择定则也不同。 两种方法可以相互补充,这样对分子的问题可以更周密的研究。下图是 Nylon 66的Raman与红外光谱图

振动光谱课件

振动光谱课件
• 1、把晶格看作网络大分子,晶胞是 其基本组成单元,分析晶胞中原子的 振动模型。 • 2、络阴离子团进入晶格后,可视为 独立单元看作。
振动光谱
五、吸收谱带的强度
• 红外吸收谱带的强度决定于偶极矩的变化大小。 • 振动时偶极矩变化越大,吸收强度愈大。一般极性比较强的分子
或基团吸收强度都比较大。 • 例如C=C,C=N,C-C,C-H等化学键的振动吸收谱带都比较弱
; • 而C=O,Si-O,C-Cl,C-F等的振动,其吸收谱带就很强。
振动光谱
第二节 红外光和红外光谱
• 1800年 英国天文学家Hershl发现红外光(又称红外 辐射或红外线)。
• 物质因受红外光的作用,引起分子或原子基团的振 动(热振动),从而产生对红外光的吸收。利用物 质对不同波长红外光的吸收程度进行研究物质分子 的组成和结构的方法,称为红外吸收光谱法,常以 IR表示。
• 2、振动必须引起偶极矩变化,才是IR活性的。即 正负电荷中心的间距发生变化。——IR活性振动。
• 3、如果振动引起极化率变化,才是Raman活性 的。在电磁波的作用下,正负电荷出现诱导偶极矩 ,有些振动是红外活性的,但非拉曼活性,有些相 反。有些是双活性的,有些是双非活性的。
振动光谱
•四、晶格振动
二、分子光谱与原子光谱
1、原子运动与原子光谱
原子的运动主要是电子在原子核周围运动,因此原子运动的 能量叫电子能,是电子在核周围运动、电子与电子之间以及电 子与核之间的作用产生的。原子光谱是原子中电子能级跃迁产 生的光谱。包括原子吸收与发射光谱。
振动光谱
2、分子运动与分子光谱
与原子运动相比,分子运动较复杂,主要有分子的整个平动、 分子绕其质心的转动、分子中原子核的振动及分子中电子的运 动。各状态的能量为平动能、转动能、振动能和电子能。分子 的总能量由以下几种能量组成:

《振动光谱》课件

《振动光谱》课件
局限性:需要样品具有足够 的拉曼活性,对某些样品不
适用
核磁共振谱
原理:利用核磁共 振现象,测量样品 中的核磁共振信号
应用:广泛应用于 有机化合物、生物 大分子、金属离子 等的结构分析和定 量分析
特点:具有高灵敏 度、高分辨率、无 破坏性等优点
技术:包括核磁共 振波谱、核磁共振 成像等
紫外可见光谱
应用领域的拓展与深化
生物医学领域:用于蛋白质、核酸等生物 大分子的结构分析和功能研究
材料科学领域:用于新材料的研发和性能 优化
环境科学领域:用于污染物监测和治理
化学领域:用于化学反应机理的研究和反 应动力学的模拟
物理领域:用于量子力学和凝聚态物理的 研究
航空航天领域:用于航天器和航天材料的 性能测试和优化
振动光谱的原理
振动光谱是研究分子振动能级的一 种光谱技术
振动光谱可以分为红外光谱和拉曼 光谱两种
添加标题
添加标题
添加标题
添加标题
振动光谱的原理是利用分子振动能 级之间的跃迁来产生光谱信号
红外光谱和拉曼光谱的原理分别是 利用分子振动能级之间的跃迁和分 子振动能级之间的拉曼散射来产生 光谱信号
振动光谱的应用
THANK YOU
汇报人:
提高分辨率:通过 改进仪器和算法, 提高光谱分辨率, 实现更精确的测量
提高灵敏度:通过 改进仪器和算法, 提高光谱灵敏度, 实现更微弱信号的 检测
提高速度:通过改 进仪器和算法,提 高光谱测量速度, 实现更快速的测量
提高自动化程度: 通过改进仪器和算 法,提高光谱测量 的自动化程度,实 现无人值守的测量
紫外可见光谱是电磁波谱的一部分,波长范围为200-800nm 紫外可见光谱包括紫外光谱和可见光谱,其中紫外光谱的波长范围为200400nm,可见光谱的波长范围为400-800nm 紫外可见光谱的应用广泛,包括化学分析、生物医学、环境监测等领域

分子光谱分析.优秀精选PPT

分子光谱分析.优秀精选PPT
仪器分析 分子光谱分析
主 讲:崔华 教授
第一章 分子光谱概论
1、分子的能级与分子光谱的形成
分子内部运动可分为三种,即转动、振动和 电子运动。对应的能量为Er 、Ev、 Ee ,对应的 能态组成了分子能级的精细结构。
分子的各能级之间跃迁时吸收或发射光子形 成了分子光谱。
分子光谱
吸收光谱 发光光谱
Er
S2
Ev
Ee *
IC—内转移 IC IX—系内交联
S1*
IX
T
F
P
S0
Ee0 10-15 s
10-9 – 10-7 s
10-3 – 10 s
分子能级的结构和能级间的转化、跃迁示意图
2、吸收光谱
分子从外界吸收光能,从基态跃迁到激发态把被吸 收的辐射强度按波长顺序记录下来,便得到吸收光谱。
分子的振动转动能级间的跃迁需吸收红外光区的能量, 形成红外光谱(IR Infrared)。
n n n n 发光光谱
在强磁场的激励下,一些具有磁性的原子核可以裂分为两个或两个以上的核磁能级。
当物质吸收光受到激发后,返回初始态可通过辐射跃迁或无辐射跃迁。
基态
受激单线态
三重态
单线态 单线态 三线态 单线态
Hale Waihona Puke 荧光 磷光从受激三线态向单线态的跃迁是禁戒的, 在没有其它竞争过程时,此种跃迁总要发生, 只是速度较慢。受激三线态的寿命比单线态长 得多,因此受激三重态与溶剂分子碰撞而转移, 损耗激发能量的机会就很多,这是在室温下不 能观察到磷光的原因。
0.05E— 1
eV
1 — 25 m
分子的电子能级之间的跃迁形成紫外可见吸收光谱
(UV-Visible)。

分子振动光谱 ppt课件

分子振动光谱  ppt课件

ppt课件
29
某一基团的特征吸收频率,同时还要受到分子结构 和外界条件的影响。
同一种基团,由于其周围的化学环境不同,其特征吸 收频率会有所位移,不是在同一个位置出峰。
基团的吸收不是固定在某一个频率上,而是在一个范围 内波动。
ppt课件
30
1.3.1 外部条件对吸收位置的影响
(1)物态效应:同一个化合物固态、液态和气态的红外光 谱会有较大的差异。如丙酮的υC=O,汽态时在1742cm-1,液 态时1718cm-1,而且强度也有变化。
1646
CH2
1611
CH2
1566
CH2
1641 cm-1
1678
1657
1651 cm-1
ppt课件
38
(5)氢键的影响:氢键的形成,往往使伸缩振动频率移向 低波数,吸收强度增强,并变宽;形成分子内氢键时影响很 显著。
O OH
H OO
υC=O ( cm-1)
O
O
1676,1673; 1675,1622
43
(b) 一个碳上含有二个或三个甲基,则在 1385~1350cm-1出现两个吸收峰 。
(c)二元酸的两个羧基之间只有1~2个碳原子时,会出 现两个υC=O,相隔三个碳原子则没有这种偶合。
HOOCCH2COOH HOOC(CH2)2COOH HOOC(CH2)nCOOH
υC=O 1740,1710
如乙酰乙酸乙酯有酮式和烯醇式结构,两者的吸收皆能 在红外谱图上找到,但烯醇式的υC=O较酮式υC=O弱,说 明稀醇式较少。
CH3-CO-CH2-COO-C2H5 υC=O 1738(s),1717(s)
CH2-C(OH)=CH-COOC2H5 υC=O与υC=C在1650cm-1(w) υOH3000cm-1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档