绝对值提高篇专项练习题

合集下载

绝对值(拔高30题)

绝对值(拔高30题)

绝对值计算化简专项练习30题1.已知a、b、c在数轴上得位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a﹣b|2.有理数a,b,c在数轴上得对应位置如图,化简:|a﹣b|+|b﹣c|+|a﹣c|.3.已知xy<0,x<y且|x|=1,|y|=2.(1)求x与y得值;(2)求得值.4.计算:|﹣5|+|﹣10|÷|﹣2|.5.当x<0时,求得值.6.若abc<0,|a+b|=a+b,|a|<﹣c,求代数式得值.7.若|3a+5|=|2a+10|,求a得值.8.已知|m﹣n|=n﹣m,且|m|=4,|n|=3,求(m+n)2得值.9.a、b在数轴上得位置如图所示,化简:|a|+|a﹣b|﹣|a+b|.10.有理数a,b,c在数轴上得位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|.11.若|x|=3,|y|=2,且x>y,求x﹣y得值.12.化简:|3x+1|+|2x﹣1|.13.已知:有理数a、b在数轴上对应得点如图,化简|a|+|a+b|﹣|1﹣a|﹣|b+1|.14.++=1,求()2003÷(××)得值.15.(1)|x+1|+|x﹣2|+|x﹣3|得最小值?(2)|x+1|+|x﹣2|+|x﹣3|+|x﹣1|得最小值?(3)|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|得最小值?16.计算:|﹣|+|﹣|+|﹣|+…+|﹣|17.若a、b、c均为整数,且|a﹣b|3+|c﹣a|2=1,求|a﹣c|+|c﹣b|+|b﹣a|得值.18.已知a、b、c三个数在数轴上对应点如图,其中O为原点,化简|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|.19.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|得最小值.20.计算:.21.计算:(1)2、7+|﹣2、7|﹣|﹣2、7| (2)|﹣16|+|+36|﹣|﹣1|22.计算(1)|﹣5|+|﹣10|﹣|﹣9|; (2)|﹣3|×|﹣6|﹣|﹣7|×|+2|23.计算.(1); (2).24.若x>0,y<0,求:|y|+|x﹣y+2|﹣|y﹣x﹣3|得值.25.认真思考,求下列式子得值..26.问当x取何值时,|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,并求出最小值.27.(1)当x在何范围时,|x﹣1|﹣|x﹣2|有最大值,并求出最大值.(2)当x在何范围时,|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|有最大值,并求出它得最大值.(3)代数式|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|最大值就是_________ (直接写出结果) 28.阅读:一个非负数得绝对值等于它本身,负数得绝对值等于它得相反数,所以,当a≥0时|a|=a,根据以上阅读完成下列各题:(1)|3、14﹣π|= _________ ;(2)计算= _________ ;(3)猜想:= _________ ,并证明您得猜想.29.(1)已知|a﹣2|+|b+6|=0,则a+b= _________(2)求|﹣1|+|﹣|+…+|﹣|+|﹣|得值.30.已知m,n,p满足|2m|+m=0,|n|=n,p•|p|=1,化简|n|﹣|m﹣p﹣1|+|p+n|﹣|2n+1|.参考答案:1.﹣2a+c﹣12.2c﹣2b3.(2)104.105.﹣6.7.a=5或a=﹣38.1;499.﹣a+2b10.﹣2b11.1或512.|3x+1|+|2x﹣1|=.13.a14.﹣115.(1)4;(2)5;(3)5016.17.1, 218.019.50300420.21.(1)2、7;(2)5122、(1)6;(2)423.(1);(2)24.﹣y﹣125.26.101103027.(1)1;(2)2;(3)5028.(1)π﹣3、14;(2);(3).29.(1)﹣4;(2).30.﹣2参考答案:1.解:∵a、c在原点得左侧,a<﹣1,∴a<0,c<0,∴2a<0,a+c<0,∵0<b<1,∴1﹣b>0,∵a<﹣1,∴﹣a﹣b>0∴原式=﹣2a+(a+c)﹣(1﹣b)+(﹣a﹣b) =﹣2a+a+c﹣1+b﹣a﹣b=﹣2a+c﹣1.故答案为:﹣2a+c﹣12.解:由图可知:b<0,c>a>0,∴a﹣b>0,b﹣c<0,a﹣c<0,∴|a﹣b|+|b﹣c|+|a﹣c|,=(a﹣b)﹣(b﹣c)﹣(a﹣c),=a﹣b﹣b+c﹣a+c=2c﹣2b3.解:(1)∵|x|=1,∴x=±1,∵|y|=2,∴y=±2,∵x<y,∴当x取1时,y取2,此时与xy<0矛盾,舍去;当x取﹣1时,y取2,此时与xy<0成立,∴x=﹣1,y=2;(2)∵x=﹣1,y=2,∴=|﹣1﹣|+(﹣1×2﹣1)2=|(﹣1)+(﹣)|+[(﹣2)+(﹣1)]2=|﹣|+(﹣3)2=+9 =104.解:|﹣5|+|﹣10|÷|﹣2|=5+10÷2=5+5=105.解:∵x<0,∴|x|=﹣x,∴原式==0+=﹣6.解:∵|a|<﹣c,∴c<0,∵abc<0,∴ab>0,∵|a+b|=a+b,∴a>0,b>0,∴=++=1+1﹣1=17.解:∵|3a+5|=|2a+10|,∴3a+5=2a+10或3a+5=﹣(2a+10),解得a=5或a=﹣38.解:∵|m﹣n|=n﹣m,∴m﹣n≤0,即m≤n.又|m|=4,|n|=3,∴m=﹣4,n=3或m=﹣4,n=﹣3.∴当m=﹣4,n=3时,(m+n)2=(﹣1)2=1;当m=﹣4,n=﹣3时,(m+n)2=(﹣7)2=499.解:∵a<0,b>0,∴a﹣b<0;又∵|a|>|b|,∴a+b<0;原式=﹣a+[﹣(a﹣b)]﹣[﹣(a+b)],=﹣a﹣(a﹣b)+(a+b),=﹣a﹣a+b+a+b=﹣a+2b10.解:由图可知:c<a<0<b,则有a﹣c>0,a﹣b<0,b﹣c>0,2a<0,|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|,=(a﹣c)﹣(b﹣a)﹣(b﹣c)+(﹣2a),=a﹣c﹣b+a﹣b+c﹣2a=﹣2b.故答案为:﹣2b11.解:因为x>y,由|x|=3,|y|=2可知,x>0,即x=3.(1)当y=2时,x﹣y=3﹣2=1;(2)当y=﹣2时,x﹣y=3﹣(﹣2)=5.所以x﹣y得值为1或512.解:分三种情况讨论如下:(1)当x<﹣时,原式=﹣(3x+1)﹣(2x﹣1)=﹣5x;(2)当﹣≤x<时,原式=(3x+1)﹣(2x﹣1)=x+2;(3)当x≥时,原式=(3x+1)+(2x﹣1)=5x.综合起来有:|3x+1|+|2x﹣1|=.13.解:由数轴可知:1>a>0,b<﹣1,所以原式=a+[﹣(a+b)]﹣(1﹣a)﹣[﹣(b+1)]=a14.解:∵=1或﹣1,=1或﹣1,=1或﹣1,又∵++=1,∴,,三个式子中一定有2个1,一个﹣1,不妨设,==1,=﹣1,即a>0,b>0,c<0,∴|abc|=﹣abc,|ab|=ab,|bc|=﹣bc,|ac|=﹣ac,∴原式=()2003÷(××)=(﹣1)2003÷1=﹣115.解:(1)∵数x表示得点到﹣1表示得点得距离为|x+1|,到2表示得点得距离为|x﹣2|,到3表示得点得距离为|x ﹣3|,∴当x=2时,|x+1|+|x﹣2|+|x﹣3|得最小值为3﹣(﹣1)=4;(2)当x=1或x=2时,|x+1|+|x﹣2|+|x﹣3|+|x﹣1|得最小值为5;(3)当x=10或x=12时,|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|得最小值=5016.解:原式=(﹣)+(﹣)+(﹣)+…+(﹣)=﹣+﹣+﹣+…+﹣=﹣=17.解:∵a,b,c均为整数,且|a﹣b|3+|c﹣a|2=1,∴a、b、c有两个数相等,不妨设为a=b,则|c﹣a|=1,∴c=a+1或c=a﹣1,∴|a﹣c|=|a﹣a﹣1|=1或|a﹣c|=|a﹣a+1|=1,∴|a﹣c|+|c﹣b|+|b﹣a|=1+1=218.解:根据数轴可得c<b<0<a,∴|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|=a﹣b﹣(2a﹣b)+a﹣c﹣(﹣c)=a﹣b﹣2a+b+a﹣c+c=019.解:∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边得数关于|x﹣1003|对称,此时得与最小,此时|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+ (1002)=2×=50300420.解:=﹣+﹣+﹣+…+﹣=﹣=21.解:(1)原式=2、7+2、7﹣2、7=2、7;(2)原式=16+36﹣1=5122、解:(1)原式=5+10﹣9=6;(2)原式=3×6﹣7×2=18﹣14=423.解:(1)原式=﹣+=;(2)原式=﹣+=24.解:∵x>0,y<0,∴x﹣y+2>0,y﹣x﹣3<0∴|y|+|x﹣y+2|﹣|y﹣x﹣3|=﹣y+(x﹣y+2)+(y﹣x﹣3)=﹣y+x﹣y+2+y﹣x﹣3=﹣y﹣125.解:原式=﹣+﹣+﹣=﹣=26.解:1﹣2011共有2011个数,最中间一个为1006,此时|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,最小值为|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|=|1006﹣1|+|1006﹣2|+|1006﹣3|+…+|1006﹣2011|=1005+1004+1003+…+2+1+0+1+2+3+…+1005=101103027.解:(1)∵|x﹣1|﹣|x﹣2|表示x到1得距离与x到2得距离得差,∴x≥2时有最大值2﹣1=1;(2)∵|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|表示x到1得距离与x到2得距离得差与x到3得距离与x到4得距离得差得与,∴x≥4时有最大值1+1=2;(3)由上可知:x≥100时|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|有最大值1×50=50.故答案为5028.解:(1)原式=﹣(3、14﹣π)=π﹣3、14;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣= ;(3)原式=1﹣+﹣+﹣+…+﹣= 1﹣= .故答案为π﹣3、14;;29.解:(1)∵|a﹣2|+|b+6|=0,∴a﹣2=0,b+6=0,∴a=2,b=﹣6,∴a+b=2﹣6=﹣4;(2)|﹣1|+|﹣|+…+|﹣|+|﹣|=1﹣+﹣+…+﹣+﹣=1﹣= .故答案为:﹣4,30.解:由|2m|+m=0,得:2|m|=﹣m,∴m≤0,∴﹣2m+m=0,即﹣m=0,∴m=0.由|n|=n,知n≥0,由p•|p|=1,知p>0,即p2=1,且p>0,∴p=1,∴原式=n﹣|0﹣1﹣1|+|1+n|﹣|2n+1|=n﹣2+1+n﹣2n﹣1=﹣2。

绝对值专项练习60题(有答案)8页

绝对值专项练习60题(有答案)8页

绝对值专项练习60题(有答案)1.下列说法中正确的是()A.有理数的绝对值是正数B.正数负数统称有理数C.整数分数统称有理数D.a的绝对值等于a2.在数轴上距﹣2有3个单位长度的点所表示的数是()A.﹣5 B.1C.﹣1 D.﹣5或13.计算:|﹣4|=()A.0B.﹣4 C.D.44.若x的相反数是3,|y|=5,则x+y的值为()A.﹣8 B.2C.8或﹣2 D.﹣8或25.如果|a|=﹣a,那么a的取值范围是()A.a>0 B.a<0 C.a≤0 D.a≥06.如图,数轴上的点A所表示的是实数a,则点A到原点的距离是()A.a B.﹣a C.±a D.﹣|a|7.如果a是负数,那么﹣a、2a、a+|a|、这四个数中,负数的个数()A.1个B.2个C.3个D.4个8.在﹣(﹣2),﹣|﹣7|,﹣|+3|,,中,负数有()A.1个B.2个C.3个D.4个9.如图,数轴的单位长度为1,如果点A、C表示的数的绝对值相等,则点B表示的数是()A.1B.0C.﹣1 D.﹣210.任何一个有理数的绝对值在数轴上的位置是()A.原点两旁B.整个数轴C.原点右边D.原点及其右边11.a,b在数轴位置如图所示,则|a|与|b|关系是()A.|a|>|b| B.|a|≥|b| C.|a|<|b| D.|a|≤|b|12.已知|x|=3,则在数轴上表示x的点与原点的距离是()A.3B.±3 C.﹣3 D.0﹣313.若|a|=﹣a,则数a在数轴上的点应是在()A.原点的右侧B.原点的左侧C.原点或原点的右侧D.原点或原点的左侧14.下列判断错误的是()A.任何数的绝对值一定是正数B.一个负数的绝对值一定是正数C.一个正数的绝对值一定是正数D.任何数的绝对值都不是负数15.a为有理数,下列判断正确的是()A.﹣a一定是负数B.|a|一定是正数C.|a|一定不是负数D.﹣|a|一定是负数16.若ab<0,且a>b,则a,|a﹣b|,b的大小关系为()A.a>|a﹣b|>b B.a>b>|a﹣b| C.|a﹣b|>a>b D.|a﹣b|>b>a17.若|a|=8,|b|=5,a+b>0,那么a﹣b的值是()A.3或13 B.13或﹣13 C.3或﹣3 D.﹣3或1318.下列说法正确的是()A.﹣|a|一定是负数B.只有两个数相等时,它们的绝对值才相等C.若|a|=|b|,则a与b互为相反数D.若一个数小于它的绝对值,则这个数为负数19.一个数的绝对值一定是()A.正数B.负数C.非负数D.非正数20.若ab>0,则++的值为()A.3B.﹣1 C.±1或±3 D.3或﹣1 21.已知:a>0,b<0,|a|<|b|<1,那么以下判断正确的是()A.1﹣b>﹣b>1+a>a B. 1+a>a>1﹣b>﹣b C.1+a>1﹣b>a>﹣bD.1﹣b>1+a>﹣b>a22.若|﹣x|=﹣x,则x是()A.正数B.负数C.非正数D.非负数23.若|a|>﹣a,则a的取值范围是()A.a>0 B.a≥0 C.a<0 D.自然数24.若|m﹣1|=5,则m的值为()A.6B.﹣4 C.6或﹣4 D.﹣6或425.下列关系一定成立的是()A.若|a|=|b|,则a=b B.若|a|=b,则a=b C.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|26.已知a、b互为相反数,且|a﹣b|=6,则|b﹣1|的值为()A.2B.2或3 C.4D.2或427.a<0时,化简结果为()A.B.0C.﹣1 D.﹣2a28.在有理数中,绝对值等于它本身的数有()A.1个B.2个C.3个D.无穷多个29.已知|a|=﹣a、|b|=b、|a|>|b|>0,则下列正确的图形是()A.B.C.D.30.若|a|+|b|=|a+b|,则a、b间的关系应满足()A.b同号B.b同号或其中至少一个为零C.b异号D.b异号或其中至少一个为零31.已知|m|=4,|n|=3,且mn<0,则m+n的值等于()A.7或﹣7 B.1或﹣1 C.7或1 D.﹣7或﹣132.已知a、b、c大小如图所示,则的值为()A.1B.﹣1 C.±1 D.033.下列各式的结论成立的是()A.若|m|=|n|,则m>n B.若m≥n,则|m|≥|n| C.若m<n<0,则|m|>|n| D.若|m|>|n|,则m>n 34.绝对值小于4的整数有()A.3个B.5个C.6个D.7个35.绝对值大于1而小于3.5的整数有()个.A.7B.6C.5D.436.若x的绝对值小于1,则化简|x﹣1|+|x+1|得()A.0B.2C.2x D.﹣2x37.3.14﹣π的差的绝对值为()A.0B.3.14﹣πC.π﹣3.14 D.0.1438.下列说法正确的是()A.有理数的绝对值一定是正数B.有理数的相反数一定是负数C.互为相反数的两个数的绝对值相等D.如果两个数的绝对值相等,那么这两个数相等39.下面说法错误的是()A.﹣(﹣5)的相反数是(﹣5)B.3和﹣3的绝对值相等C.数轴上右边的点比左边的点表示的数小D.若|a|>0,则a一定不为零40.已知|a|>a,|b|>b,且|a|>|b|,则()A.a>b B.a<b C.不能确定D.a=b41.已知|x|≤1,|y|≤1,那么|y+1|+|2y﹣x﹣4|的最小值是_________.42.从1000到9999中,四位数码各不相同,且千位数与个位数之差的绝对值为2的四位数有_________个.43.最大的负整数是_________,绝对值最小的有理数是_________.44.最大的负整数,绝对值最小的数,最小的正整数的和是0_________.45.若x+y=0,则|x|=|y|.(_________)46.绝对值等于10的数是_________.47.若|﹣a|=5,则a=_________.48.设A=|x﹣b|+|x﹣20|+|x﹣b﹣20|,其中0<b<20,b≤x≤20,则A的最小值是_________.49.﹣3.5的绝对值是_________;绝对值是5的数是_________;绝对值是﹣5的数是_________.50.绝对值小于10的所有正整数的和为_________.51.化简:|x﹣2|+|x+3|,并求其最小值.52.若a,b为有理数,且|a|=2,|b|=3,求a+b的值.53.若|x|=3,|y|=6,且xy<0,求2x+3y的值.54.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.55.有理数a、b在数轴上的位置如图所示,化简|a﹣b|+|a+b|.56.已知a=12,b=﹣3,c=﹣(|b|﹣3),求|a|+2|b|+|c|的值.57.已知a、b、c在数轴上的位置如图所示,化简|a|+|c﹣b|+|a﹣c|+|b﹣a|58.小刚在学习绝对值的时候发现:|3﹣1|可表示数轴上3和1这两点间的距离;而|3+1|即|3﹣(﹣1)|则表示3和﹣1这两点间的距离.根据上面的发现,小刚将|x﹣2|看成x与2这两点在数轴上的距离;那么|x+3|可看成x与_________在数轴上的距离.小刚继续研究发现:x取不同的值时,|x﹣2|+|x+3|=5有最值,请你借助数轴解决下列问题(1)当|x﹣2|+|x+3|=5时,x可取整数_________(写出一个符合条件的整数即可);(2)若A=|x+1|+|x﹣5|,那么A的最小值是_________;(3)若B=|x+2|+|x|+|x﹣1|,那么B的最小值是_________,此时x为_________;(4)写出|x+5|+|x+3|+|x+1|+|x﹣2|的最小值.59.若ab<0,试化简++.60.同学们都知道,|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对的两点之间的距离.试探索:(1)求|5﹣(﹣2)|=_________.(2)设x是数轴上一点对应的数,则|x+1|表示_________与_________之差的绝对值(3)若x为整数,且|x+5|+|x﹣2|=7,则所有满足条件的x为_________.参考答案:1.A、有理数0的绝对值是0,故A错误;B、正数、0、负数统称有理数,故B错误;C、整数分数统称有理数,故C正确;D、a<0时,a的绝对值等于﹣a,故D错误.故选C.2.依题意得:|﹣2﹣x|=3,即﹣2﹣x=3或﹣2﹣x=﹣3,解得:x=﹣5或x=1.故选D.3.根据一个负数的绝对值是它的相反数,可知|﹣4|=4.故选D.4.x的相反数是3,则x=﹣3,|y|=5,y=±5,∴x+y=﹣3+5=2,或x+y=﹣3﹣5=﹣8.则x+y的值为﹣8或2.故选D5因为一个负数的绝对值是它的相反数;0的绝对值是0或相反数,所以如果|a|=﹣a,那么a的取值范围是a≤0.故选C.6.依题意得:A到原点的距离为|a|,∵a<0,∴|a|=﹣a,∴A到原点的距离为﹣a.故选B.7.当a是负数时,根据题意得,﹣a>0,是正数,2a<0,是负数,a+|a|=0,既不是正数也不是负数,=﹣1,是负数;所以,2a、是负数,所以负数2个.故选B.8.∵﹣(﹣2)=2,是正数;﹣|﹣7|=﹣7,是负数;﹣|+3|=﹣3是负数;=,是正数;=﹣是负数;∴在以上数中,负数的个数是3.故选C.9.如图,AC的中点即数轴的原点O.根据数轴可以得到点B表示的数是﹣1.故选C.10.∵任何非0数的绝对值都大于0,∴任何非0数的绝对值所表示的数总在原点的右侧,∵0的绝对值是0,∴0的绝对值表示的数在原点.故选D.11.∵a<﹣1,0<b<1,∴|a|>|b|.故选A12.∵|x|=3,又∵轴上x的点到原点的距离是|x|,∴数轴上x的点与原点的距离是3;故选A.13.∵|a|=﹣a,∴a≤0,即可得数a在数轴上的点应是在原点或原点的左侧.故选D.14.根据绝对值性质可知,一个负数的绝对值一定是正数;一个正数的绝对值一定是正数;任何数的绝对值都不是负数.B,C,D都正确.A中,0的绝对值是0,错误.故选A.15.A、错误,a=0时不成立;B、错误,a=0时不成立;C、正确,符合绝对值的非负性;D、错误,a=0时不成立.故选C16.∵ab<0,且a>b,∴a>0,b<0∴a﹣b>a>0∴|a﹣b|>a>b故选C.17.∵|a|=8,|b|=5,∴a=±8,b=±5,又∵a+b>0,∴a=8,b=±5.∴a﹣b=3或13.故选A.18.A、﹣|a|不一定是负数,当a为0时,结果还是0,故错误;B、互为相反数的两个数的绝对值也相等,故错误;C、a等于b时,|a|=|b|,故错误;D、若一个数小于它的绝对值,则这个数为负数,符合绝对值的性质,故正确.故选D.19.一个数的绝对值一定是非负数.故选C.20.因为ab>0,所以a,b同号.①若a,b同正,则++=1+1+1=3;②若a,b同负,则++=﹣1﹣1+1=﹣1.故选D.21.∵a>0,∴|a|=a;∵b<0,∴|b|=﹣b;又∵|a|<|b|<1,∴a<﹣b<1;∴1﹣b>1+a;而1+a>1,∴1﹣b>1+a>﹣b>a.故选D.22.∵|﹣x|=﹣x;∴x≤0.即x是非正数.故选C.23.若|a|>﹣a,则a的取值范围是a>0.故选A.24.∵|m﹣1|=5,∴m﹣1=±5,∴m=6或﹣4.故选C.25.选项A、B、C中,a与b的关系还有可能互为相反数.故选D.26.∵a、b互为相反数,∴a+b=0,∵|a﹣b|=6,∴b=±3,|b﹣1|=2或4.故选D.27.∵a<0,∴==0.故选B28.在有理数中,绝对值等于它本身的数为所有非负有理数,而非负有理数有无穷多个.故选D.29.∵|a|=﹣a、|b|=b,∴a<0,b>0,即a在原点的左侧,b在原点的右侧,∴可排除A、B,∵|a|>|b|,∴a到原点的距离大于b到原点的距离,∴可排除C,故选D.30.设a与b异号且都不为0,则|a+b|=||a|﹣|b||,当|a|>|b|时为|a|﹣|b|,当|a|≤|b|时为|b|﹣|a|.不满足条件|a|+|b|=|a+b|,当a与b同号时,可知|a|+|b|=|a+b|成立;当a与b至少一个为0时,|a|+|b|=|a+b|也成立.故选B.31. ∵|m|=4,|n|=3,∴m=±4,n=±3,又∵mn<0,∴当m=4时,n=﹣3,m+n=1,当m=﹣4时,n=3,m+n=﹣1,故选B.32.根据图示,知a<0<b<c,∴=++=﹣1+1+1=1.故选A.33.A、若m=﹣3,n=3,|m|=|n|,m<n,故结论不成立;B、若m=3,n=﹣4,m≥n,则|m|<|n|,故结论不成立;C、若m<n<0,则|m|>|n|,故结论成立;D、若m=﹣4,n=3,|m|>|n|,则m<n,故结论不成立.故选:C34.绝对值小于4的整数有:±3,±2,±1,0,共7个数.故选D35.绝对值大于1而小于3.5的整数有:2,3,﹣2,﹣3共4个.故选D.36.∵x的绝对值小于1,数轴表示如图:从而知道x+1>0,x﹣1<0;可知|x+1|+|x﹣1|=x+1+1﹣x=2.故选B.37.∵π>3.14,∴3.14﹣π<0,∴|3.14﹣π|=﹣(3.14﹣π)=π﹣3.14.故选:C38.A∵0的绝对值是0,故本选项错误.B∵负数的相反数是正数,故本选项错误.C∵互为相反数的两个数的绝对值相等,故本选项正确.D∵如果两个数的绝对值相等,那么这两个数相等或互为相反数,故本选项错误.故选C.39.A、﹣(﹣5)=5,5的相反数是﹣5,故本选项说法正确;B、3和﹣3的绝对值都为3,故本选项说法正确;C、数轴上右边的数总大于左边的数,故本选项说法错误;D、绝对值大于0的数可能是正数也可能是负数,故本选项说法正确.故选C.40.∵|a|>a,|b|>b,∴a、b均为负数,又∵|a|>|b|,∴a<b.故选B41.∵|x|≤1,|y|≤1,∴﹣1≤x≤1,﹣1≤y≤1,故可得出:y+1≥0;2y﹣x﹣4<0,∴|y+1|+|2y﹣x﹣4|=y+1+(4+x﹣2y)=5+x﹣y,当x取﹣1,y取1时取得最小值,所以|y+1|+|2y﹣x﹣4|min=5﹣1﹣1=3.故答案为:342.∵千位数与个位数之差的绝对值为2,可得“数对”,分别是:(0,2),(1,3),(2,4),(3,5),(4,6),(5,7),(6,8),(7,9),∵(0,2)只能是千位2,个位0,∴一共15种选择,∴从1000到9999中,四位数码各不相同,且千位数与个位数之差的绝对值为2的四位数有15×8×7=840个.43.最大的负整数是﹣1,绝对值最小的有理数是0.44.最大的负整数是﹣1,绝对值最小的数0,最小的正整数是1∵﹣1+0+1=0,∴最大的负整数,绝对值最小的数,最小的正整数的和是0正确.故答案为:√45.∵x+y=0,∴x、y互为相反数.∴|x|=|y|.故答案为(√)46.绝对值等于10的数是±10.47.若|﹣a|=5,则a=±5.48.由题意得:从b≤x≤20得知,x﹣b≥0 x﹣20≤0 x﹣b﹣20≤0,A=|x﹣b|+|x﹣20|+|x﹣b﹣20|=(x﹣b)+(20﹣x)+(20+b﹣x)=40﹣x,又x最大是20,则上式最小值是40﹣20=20.49.﹣3.5的绝对值是 3.5;绝对值是5的数是±5;绝对值是﹣5的数是不存在.50.绝对值小于10的正整数有:1、2、3、4、5、6、7、8、9,和为:1+2+3+4+5+6+7+8+9=45.故本题的答案是:45.51.①当x≤﹣3时,原式=2﹣x﹣x﹣3=﹣2x﹣1;②当﹣3<x<2时,原式=2﹣x+x+3=5;③当x≥2时,原式=x﹣2+x+3=2x+1;∴最小值为552.∵a,b为有理数,|a|=2,|b|=3,∴a=±2,b=±3,当a=+2,b=+3时,a+b=2+3=5;当a=﹣2,b=﹣3时,a+b=﹣2﹣3=﹣5;当a=+2,b=﹣3时,a+b=2﹣3=﹣1;当a=﹣2,b=+3时,a+b=﹣2+3=1.故答案为:±5、±1.53.∵|x|=3,|y|=6,∴x=±3,y=±6,∵xy<0,∴x=3,y=﹣6,或x=﹣3,y=6,①x=3,y=﹣6时,原式=2×3+3×(﹣6)=6﹣18=﹣12;②x=﹣3,y=6,原式=2×(﹣3)+3×6=﹣6+18=1254.∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,此时的和最小,此时|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+ (1002)=2×=503004.故答案为:503004.55.∵在数轴上原点右边的数大于0,左边的数小于0,右边的数总大于左边的数可知,b<a<0,∴|a﹣b|=a﹣b,|a+b|=﹣a﹣b,∴原式=a﹣b﹣a﹣b=﹣2b56. ∵a=12,b=﹣3,∴c=﹣(|b|﹣3)=﹣(3﹣3)=0,∴|a|+2|b|+|c|=12+2×3+0=18.57.由数轴,得b>c>0,a<0,∴c﹣b<0,a﹣c<0,b﹣a>0,∴|a|+|c﹣b|+|a﹣c|+|b﹣a|=﹣a﹣(c﹣b)﹣(a﹣c)+b﹣a=﹣a﹣c+b﹣a+c+b﹣a =2b﹣3a.58.∵|x+3|=|x﹣(﹣3)|,∴|x+3|可看成x与﹣3的点在数轴上的距离;(1)x=0时,|x﹣2|+|x+3|=|﹣2|+|3|=2+3=5;(2)|x+1|+|x﹣5|表示x到点﹣1与到点5的距离之和,当﹣1≤x≤5时,A有最小值,即表示数5的点到表示数﹣1的点的距离,所以A的最小值为6;(3)|x+2|+|x|+|x﹣1|表示x到数﹣2、0、1三点的距离之和,所以当x=0时,它们的距离之和最小,即B的最小值为3,此时x=0;(4)|x+5|+|x+3|+|x+1|+|x﹣2|表示x到数﹣5、﹣3、﹣1、2四点的距离之和,所以当﹣3≤x≤﹣1时,它们的距离之和有最小值9,即|x+5|+|x+3|+|x+1|+|x﹣2|的最小值为9.59.∵ab<0,∴a和b中有一个正数,一个负数,不妨设a>0,b<0,原式=1﹣1﹣1=﹣160.(1)|5﹣(﹣2)|=|5+2|=7;(2)|x+1|表示x与﹣1之差的绝对值;(3)∵|x+5|表示x与﹣5两数在数轴上所对的两点之间的距离,|x﹣2|表示x与2两数在数轴上所对的两点之间的距离,而﹣5与2两数在数轴上所对的两点之间的距离为2﹣(﹣5)=7,|x+5|+|x﹣2|=7,∴﹣5≤x≤2.故答案为7;x,﹣1;﹣5≤x≤2.。

七年级数学绝对值(提高版)答案与试题解析

七年级数学绝对值(提高版)答案与试题解析

数学绝对值(提高版)试题1.设实数a、b、c满足a<b<c(ac<0),且|c|<|b|<|a|,则|x﹣a|+|x﹣b|+|x+c|的最小值是()A.B.|b|C.c﹣a D.﹣c﹣a2.|a﹣b|=|a|+|b|成立的条件是()A.ab>0B.ab>1C.ab≤0D.ab≤13.满足|x﹣2|+|x+1|=3的x的个数为()A.0B.2C.3D.多于3个4.若方程||x﹣2|﹣1|=a有三个整数解,则a的取值为()A.a>1B.a=1C.a=0D.0<a<15.已知(|1+x|+|2﹣x|)(|y+2|+|y﹣1|)=9,则x﹣2y的最小值为.6.已知实数x满足|x+1|+|x﹣4|=7.则x的值是.7.已知|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|=4,则实数x的取值范围是.8.已知方程|x﹣1|+|x﹣2|+|x﹣10|+|x﹣11|=m无解,则实数m的取值范围是.9.设a,b是方程||2x﹣1|﹣x|=2的两个不相等的根,则的值为.10.解方程:(1)|3x﹣5|+4=8;(2)|4x﹣3|﹣2=3x+4;(3)|x﹣|2x+1||=3;(4)|2x﹣1|+|x﹣2|=|x+1|.11.解下列方程:(1)|x+3|﹣|x﹣1|=x+1 (2)|x﹣1|+|x﹣5|=4.12.解方程:|2x+3|﹣|x﹣1|=4x﹣3.13.当a满足什么条件时,关于x的方程|x﹣2|﹣|x﹣5|=a有一解?有无数多个解?无解?14.讨论方程||x+3|﹣2|=k的解的情况.15.求关于x的方程||x﹣2|﹣1|﹣a=0(0<a<1)的所有解的和.数学绝对值(提高版)试题答案与试题解析1.设实数a、b、c满足a<b<c(ac<0),且|c|<|b|<|a|,则|x﹣a|+|x﹣b|+|x+c|的最小值是()A.B.|b|C.c﹣a D.﹣c﹣a解:∵ac<0∴a,c异号∴a<0,c>0又∵a<b<c,以及|c|<|b|<|a|∴a<b<﹣c<0<c|x﹣a|+|x﹣b|+|x+c|表示到a,b,﹣c三点的距离的和.当x在表示b点的数的位置时距离最小,即|x﹣a|+|x﹣b|+|x+c|最小,最小值是a与﹣c之间的距离,即﹣c﹣a.故选:D.2.|a﹣b|=|a|+|b|成立的条件是()A.ab>0B.ab>1C.ab≤0 D.ab≤1解:当a、b异号或a、b中有一个为0时,|a﹣b|=|a|+|b|成立,∴ab≤0,故选:C.3.满足|x﹣2|+|x+1|=3的x的个数为()A.0B.2C.3D.多于3个解:当x<﹣1时,方程化简为2﹣x﹣x﹣1=3,解得x=﹣1(不符合题意的解要舍去),当﹣1≤x<2时,2﹣x+x+1=3,x有无数个;当x≥2时,方程化简为x﹣2+x+1=3,解得x=2,综上所述:x有无数个,故选:D.4.若方程||x﹣2|﹣1|=a有三个整数解,则a的取值为()A.a>1B.a=1C.a=0D.0<a<1解:选:B.5.已知(|1+x|+|2﹣x|)(|y+2|+|y﹣1|)=9,则x﹣2y的最小值为﹣3.解:∵(|1+x|+|2﹣x|)(|y+2|+|y﹣1|)=9=3×3,∴﹣1≤x≤2,﹣2≤y≤1,∴x﹣2y的最小值为﹣1﹣2×1=﹣1﹣2=﹣3.故答案为:﹣3.6.已知实数x满足|x+1|+|x﹣4|=7.则x的值是﹣2或5.解:答案为:﹣2或5.7.已知|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|=4,则实数x的取值范围是2≤x≤3.x的取值范围是2≤x≤3.8.已知方程|x﹣1|+|x﹣2|+|x﹣10|+|x﹣11|=m无解,则实数m的取值范围是m<18.实数m的取值范围是m<18.9.设a,b是方程||2x﹣1|﹣x|=2的两个不相等的根,则的值为.解:∵||2x﹣1|﹣x|=2,∴|2x﹣1|﹣x=2或﹣2,∴|2x﹣1|=x+2或|2x﹣1|=x ﹣2,当2x﹣1≥0时,2x﹣1=x+2,解得x=3;当2x﹣1<0时,2x﹣1=﹣x﹣2,解得x=﹣;或当2x﹣1≥0时,2x﹣1=x﹣2,解得x=﹣1(舍去);当2x﹣1<0时,2x﹣1=﹣x+2,解得x=1(舍去);∴a=3,b=﹣,∴===×=.故答案为.10.解下列方程:(1)|3x﹣5|+4=8;(2)|4x﹣3|﹣2=3x+4;(3)|x﹣|2x+1||=3;(4)|2x﹣1|+|x﹣2|=|x+1|.解:(1)|3x﹣5|+4=8,∴|3x﹣5|=4,∴3x﹣5=4或3x﹣5=﹣4,移项化系数为1得:x=3或x=;(2)|4x﹣3|﹣2=3x+4,∴|4x﹣3|=3x+6,∴3x+6≥0即x≥﹣2,∴4x﹣3=3x+6或4x﹣3=﹣(3x+6),移项化系数为1解得:x=9或x=﹣;(3)|x﹣|2x+1||=3,∴x﹣|2x+1|=3或x﹣|2x+1|=﹣3,由x﹣|2x+1|=3知x>3,解得:x=﹣4(舍去);由x﹣|2x+1|=﹣3,移项得:|2x+1|=x+3≥0,∴x≥﹣3,2x+1=x+3或﹣(2x+1)=x+3,解得:x=2或x=;(4)当x<﹣1时,原方程可化为:1﹣2x﹣x+2=﹣x﹣1,x=2不符合题意;当﹣1≤x<时,原方程可化为:﹣2x+1﹣x+2=x+1,x=不符合题意;当≤x≤2时,原方程可化为:2x﹣1﹣x+2=x+1恒成立,说明凡是满足≤x≤2的x值都是方程的解;当x>2时,原方程可化为:2x﹣1+x﹣2=x+1,x=2不符合题意.故原方程的解为:≤x≤2.11.解下列方程:(1)|x+3|﹣|x﹣1|=x+1(2)|x﹣1|+|x﹣5|=4.解:(1)①当x≥1时,原方程可化为:x+3﹣(x﹣1)=x+1,解得:x=3;②当x<﹣3时,原方程可化为:﹣x﹣3﹣(1﹣x)=x+1,解得:x=﹣5;③当﹣3≤x<1时,原方程可化为:x+3+x﹣1=x+1,解得:x=﹣1.综上可得:方程的解为:x=3或x=﹣5或x=﹣1;(2)方程可理解为一个点到1和5两点的距离和,由此可得方程的解为:1≤x ≤5.12.解方程:|2x+3|﹣|x﹣1|=4x﹣3.解:(1)当x≤﹣时,原方程可化为:﹣3﹣2x+x﹣1=4x﹣3∴5x=﹣1,解得:x=﹣,与x≤﹣不符;(2)当x≥1时,原方程可化为:2x+3﹣x+1=4x﹣3∴3x=7.∴x=;(3)当﹣<x<1时,原方程可化为:2x+3﹣1+x=4x﹣3∴x=5与﹣<x <1不相符;综上所述,方程的解为:x=.13.当a满足什么条件时,关于x的方程|x﹣2|﹣|x﹣5|=a有一解?有无数多个解?无解?解:①x≥5时,x﹣2﹣(x﹣5)=x﹣2﹣x+5=3,当a=3时,有无数多解;当a≠3时,无论a取何值均无解;②x≤2时,2﹣x﹣(5﹣x)=2﹣x﹣5+x=﹣3,当a=﹣3时,有无数解;当a≠﹣3时,无解;③2<x<5时,x﹣2﹣(5﹣x)=x﹣2﹣5+x=2x﹣7,∴4<2x<10,∴4﹣7<2x﹣7<10﹣7即:﹣3<2x﹣7<3.所以当﹣3<a<3时,有一解;当a>3或a<﹣3时,无解.综上所述,当a=±3时,方程有无数个解,当a >3或a<﹣3时,无解;当﹣3<a<3时,有一解.14.讨论方程||x+3|﹣2|=k的解的情况.解:当k<0,原方程无解;当k=0时,原方程可化为:|x+3|﹣2=0,解得x=﹣1或x=﹣5;当0<k<2,此时原方程可化为:|x+3|=2±k,此时原方程有四解:x=﹣3±(2±k),即:x=k﹣1或x=﹣k﹣5或x=﹣k﹣1或x=k﹣5;当k=2时,原方程可化为:|x+3|=2±2,此时原方程有三解:x=1或x=﹣7或x =﹣3;当k>2时,原方程有两解:x+3=±(2±k),即:x=k﹣1或x=﹣k﹣5.故x=k﹣1或x=﹣k﹣1或x=﹣k﹣5或x=﹣5+k.15.求关于x的方程||x﹣2|﹣1|﹣a=0(0<a<1)的所有解的和.解:由原方程得||x﹣2|﹣1|=a,∴|x﹣2|﹣1=±a,∵0<a<1,∴|x﹣2|=1±a,即x﹣2=±(1±a),∴x=2±(1±a),从而x1=3+a,x2=3﹣a,x3=1+a,x4=1﹣a,∴x1+x2+x3+x4=8,即原方程所有解的和为8.。

绝对值专题拔高版

绝对值专题拔高版

. . ..绝对值专题一、绝对值的化简计算【例题】1.已知a 、b 、c 在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a ﹣b|【例题】2.化简 215x x +--【例题】3.已知223(31)x y -=-+,求(xy )10【变式训练 举一反三】1.根据条件求代数式的值.(1)若abc <0,|a+b|=a+b ,|a|<﹣c ,(2若abc ≠02.已知|m ﹣n|=n ﹣m ,且|m|=4,|n|=3,求(m+n )2的值.3.a 、b 在数轴上的位置如图所示,化简:|a|-|a ﹣b|﹣|a-3b|.4.化简 135x x --+二、解绝对值的方程【例题】4.解方程 132132x x --+=-5.解方程 43216x x --+=三、数轴动点问题【例题】5.数轴上A 点对应的数为-5,B 点在A 点右边,电子蚂蚁甲、乙在B 分别以分别以2个单位/秒、1个单位/秒的速度向左运动,电子蚂蚁丙在A 以3个单位/秒的速度向右运动。

(1)若电子蚂蚁丙经过5秒运动到C 点,求C 点表示的数;(2)若它们同时出发,若丙在遇到甲后1秒遇到乙,求B 点表示的数。

(3)在(2)的条件下,设它们同时出发的时间为t 秒,是否存在t 的值,使丙到乙的距离是丙到甲的距离的2倍?【例题】6.数轴上点A 对应的数为a ,点B 对应的数为b ,点A 在负半轴,且|a|=3,b 是最小的正整数。

(Ⅰ)求线段AB 的长;(Ⅱ)若点C 在数轴上对应的数为x,且x 是方程2x+1=3x −4的根,在数轴上是否存在点P 使PA+PB=21BC+AB ,若存在,求出点P 对应的数,若不存在,说明理由。

(Ⅲ)如图,若Q 是B 点右侧一点,QA 的中点为M,N 为QB 的四等分点且靠近于Q 点,当Q 在B 的右侧运动时,有两个结论:①21QM+43BN 的值不变,②QM −32BN 的值不变,其中只有一个结论正确,请你判断正确的结论,并求出其值。

七年级数学上--绝对值练习及提高习题

七年级数学上--绝对值练习及提高习题

七年级数学上 --有理数--绝对值练习一令狐采学一、填空题:1、││=,│-│= 。

2、+│+5│= ,+│-5│=,-│+5│=,-│-5│=。

3、│0│= ,+│-0│= ,-│0│= 。

4、绝对值是6 ,符号是“-”的数是,符号是“+”的数是。

5、-0.02的绝对值的相反数是 ,相反数的绝对值是。

6、绝对值小于3.1的所有非负整数为。

7、绝对值大于小于的整数为。

8、计算的结果是。

9、当x=时,式子的值为零。

10、若a,b互为相反数,m的绝对值为2,则=。

11、已知,且为整数,则的值为。

12、若,则的值是。

13、若与互为相反数,则的值是。

14、若,,且,求的值是。

15、如图,化简:=。

16、已知,则=。

17、如图,则=。

18、已知,且,,则的值为。

19、若,,且,则=。

20、若,求的值为。

21、绝对值不大于2005的所有整数的和是,积是。

22、若,则的值为。

23、如果,,,那么m,n,-m,-n的大小关系是。

24、已知,,,且,那么=.25、已知,,那么_________.26、非零整数、满足,所有这样的整数组共有______组.二、选择题27.a表示一个有理数,那么.( )A.∣a∣是正数B.-a是负数C.-∣a∣是负数D.∣a∣不是负数28.绝对值等于它的相反数的数一定是( )A.正数B. 负C.非正数D. 非负数29.一个数的绝对值是最小的正整数,那么这个数是( )A.-1B.1C.0D.+1或-130.设m,n是有理数,要使∣m∣+∣n∣=0,则m,n的关系应该是( )A. 互为相反数B. 相等C. 符号相反D. 都为零31、设a为有理数,则的值是()A. 正数B. 负数C. 非正数D. 非负数32、若一个数的绝对值是正数,则这个数是()A. 不等于0的有理数B. 正数C. 任何有理数D. 非负数33、若,,则等于()A. 8B.C. 8和2D. 和34、如果,且,那么的值是()A. 正数B. 负数C. 正数或负数D. 035、已知,,则m与n的差是()A. B. C. D.36、下列等式成立的是()A. B. C. D.37、如果,则m,n的关系()A. 互为相反数B. 且C. 相等且都不小于0D. m 是n的绝对值38、已知,,且,则的值等于()A. 5或-5B. 1或-1C. 5或-1D. -5或-39、使成立的条件是()A. B. C.D.40、是非零有理数,且,那么的所有可能值为( )A.0 B. 1或 C.2或 D.0或三、解答题:41.化简:(1)1+∣-∣=(2)∣-3.2∣-∣+2.3∣=(3)-(-│-2│)=(4)-│-(+3.3│)=(5)-│+(-6)│ =(6)-(-|-2|)=(7)||=(8)|=(9)-(|-4.2|×|+)=(10)|-2|-|+1|+|0|=42.(1)若|a+2|+|b-1|=0,则a= b=;(2)若|a|=3,|b|=2,且a+b<0,则a-b=______________.七年级数学上 --有理数--绝对值练习一一、选择题1、如果m>0, n<0, m<|n|,那么m,n,-m, -n的大小关系()A.-n>m>-m>nB.m>n>-m>-nC.-n>m>n>-mD.n>m>-n>-m2、绝对值等于其相反数的数一定是()A.负数 B.正数 C.负数或零 D.正数或零3、下列说法中正确的是()A.一定是负数B.只有两个数相等时它们的绝对值才相等C.若则与互为相反数D.若一个数小于它的绝对值,则这个数是负数4、给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.其中正确的有〖〗A.0个B.1个C.2个D.3个5、如果,则的取值范围是〖〗 A.>OB.≥O C.≤OD.<O6、绝对值不大于11.1的整数有〖〗A.11个B.12个C.22个D.23个7、绝对值最小的有理数的倒数是()A、1 B、-1C、0D、不存在8、在有理数中,绝对值等于它本身的数有()A、1个B、2个C、3个D、无数多个9、下列数中,互为相反数的是()A、│-│和-B、│-│和-C、│-│和D、│-│和10、下列说法错误的是()A、一个正数的绝对值一定是正数B、一个负数的绝对值一定是正数C、任何数的绝对值都不是负数D、任何数的绝对值一定是正数11、│a│= -a,a一定是()A、正数 B、负数 C、非正数 D、非负数12、下列说法正确的是()A、两个有理数不相等,那么这两个数的绝对值也一定不相等B、任何一个数的相反数与这个数一定不相等C、两个有理数的绝对值相等,那么这两个有理数不相等D、两个数的绝对值相等,且符号相反,那么这两个数是互为相反数。

七年级数学上--绝对值练习及提高习题

七年级数学上--绝对值练习及提高习题

七年级数学上 --有理数--绝对值演习一一.填空题:1.│32│=,│-32│= .2.+│+5│= ,+│-5│=,-│+5│=,-│-5│=.3.│0│= ,+│-0│= ,-│0│= .4.绝对值是6 21,符号是“-”的数是 ,符号是“+”的数是 . 5.-0.02的绝对值的相反数是 ,相反数的绝对值是 . 6.绝对值小于3.1的所有非负整数为.7.绝对值大于23小于83的整数为.8.盘算2005(2004|20052004|)-+-的成果是.9.当x=时,式子||52x -的值为零.10.若a,b 互为相反数,m 的绝对值为2,则a ba b m +++=.11.已知||||2x y +=,且,x y 为整数,则||x y +的值为. 12.若|8||5|0a b -+-=,则a b -的值是.13.若|3|a -与|26|b -互为相反数,则2a b +的值是. 14.若||3x =,||2y =,且x y >,求x y +的值是. 15.如图,化简:2|2||2|a b +-+-=.16.已知|(2)||3|||0x y z +-+++=,则x y z ++=. 17.如图, 则||||||||a b a b b a --++-=.18.已知||a b a b -=-,且||2009a =,||2010b =,则a b -的值为. 19.若||5a =,2b =-,且0ab >,则a b +=.20.若0ab <,求||||||a b ab a b ab ++的值为.21.绝对值不大于2005的所有整数的和是,积是.22.若2|3|(2)0m n -++=,则2m n +的值为.23.假如0m >,0n <,||m n <,那么m ,n ,-m ,-n 的大小关系是. 24.已知1=a ,2=b ,3=c ,且c b a >>,那么c b a -+=.25.已知5=x ,1=y ,那么=+--y x y x _________.26.非零整数m .n 知足05=-+n m ,所有如许的整数组),(n m 共有______组. 二.选择题27.a 暗示一个有理数,那么.( )A.∣a ∣∣a ∣是负数 D.∣a ∣不是负数 28.绝对值等于它的相反数的数必定是( )A.正数B. 负C.非正数D. 非负数 29.一个数的绝对值是最小的正整数,那么这个数是( )A.-1B.1C.0D.+1或-1 30. 设m,n 是有理数,要使∣m ∣+∣n ∣=0,则m,n 的关系应当是( )A. 互为相反数B. 相等C. 符号相反D. 都为零 31.设a 为有理数,则2005||a -的值是( )A. 正数B. 负数C. 非正数D. 非负数 32.若一个数的绝对值是正数,则这个数是( )A. 不等于0的有理数B. 正数C. 任何有理数D. 非负数 33.若||5x =,||3y =,则x y +等于( )A. 8B. 8±C. 8和2D. 8±和2± 34.假如0a >,且||||a b >,那么a b -的值是( )A. 正数B. 负数C. 正数或负数D. 0 35.已知0m >,0n <,则m 与n 的差是( )A. ||||m n -B. (||||)m n --C. ||||m n +D. (||||)m n -+ 36.下列等式成立的是( )A .||||0a a +-= B. 0a a --= C. ||||0a a --= D. ||0a a --=37.假如||0m n -=,则m,n 的关系( )A. 互为相反数B. ||m n =±且0n ≥C. 相等且都不小于0D. m 是n 的绝对值 38.已知||3x =,||2y =,且0x y ⋅<,则x y +的值等于( )A. 5或-5B. 1或-1C. 5或-1D. -5或-39.使||10a a +=成立的前提是( )A. 0a > B. 0a < C. 1a = D. 1a =±40.c b a 、、长短零有理数,且0=++c b a ,那么abcabcc c b b a a +++的所有可能值为( )A .0B . 1或1-C .2或2-D .0或2- 三.解答题:41.化简:(1)1+∣-31∣= (2)∣∣-∣∣=(3)-(-│-252│)= (4)-│-(+3.3│)= (5)-│+(-6)│ = (6)-(-|-2|)= (7)|43211-|= (8)||56||65-÷ =(9)-(|-4.2|×|+|75)= (10)|-2|-|+1|+|0|=42.(1)若|a+2|+|b-1|=0,则a= b=;(2)若|a|=3,|b|=2,且a+b<0,则a-b=______________.七年级数学上 --有理数--绝对值演习一一.选择题1. 假如m>0, n<0, m<|n|,那么m,n,-m, -n 的大小关系( ) A.-n>m>-m>n B.m>n>-m>-n C.-n>m>n>-m D.n>m>-n>-m2、绝对值等于其相反数的数必定是( )A .负数B .正数C .负数或零D .正数或零3、下列说法中准确的是( )A .必定是负数B .只有两个数相等时它们的绝对值才相等C .若则与互为相反数D .若一个数小于它的绝对值,则这个数是负数4.给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等;④绝对值相等的两数必定相等.个中准确的有〖 〗A .0个B .1个C .2个D .3个 5.假如,则的取值规模是〖 〗 A .>OB .≥OC .≤OD .<O6.绝对值不大于11.1的整数有〖 〗 A .11个B .12个C .22个D .23个7.绝对值最小的有理数的倒数是( )A.1 B.-1 C.0 D.不消失8.在有理数中,绝对值等于它本身的数有( ) A.1个 B.2个 C.3个 D.很多多个 9.下列数中,互为相反数的是( )A.│-32│和-32B.│-23│和-32C.│-32│和23D.│-32│和3210.下列说法错误的是( )A.一个正数的绝对值必定是正数B.一个负数的绝对值必定是正数C.任何数的绝对值都不是负数D.任何数的绝对值 必定是正数 11.│a │= -a,a 必定是( )A.正数 B.负数 C.非正数 D.非负数12.下列说法准确的是( )A.两个有理数不相等,那么这两个数的绝对值也必定不相等B.任何一个数的相反数与这个数必定不相等C.两个有理数的绝对值相等,那么这两个有理数不相等D.两个数的绝对值相等,且符号相反,那么这两个数是互为相反数.13.-│a│= -3.2,则a是()A.3.2 B.-3.2 C. 3.2 D.以上都不合错误二.填空题1.______的相反数是它本身,_____的绝对值是它本身,_______的绝对值是它的相反数.2.有理数m,n在数轴上的地位如图,3.若|x-1| =0, 则x=__________,若|1-x |=1,则x=_______.4.在数轴上,绝对值为4,且在原点左边的点暗示的有理数为_____5.当时,;当时,.7.,则; ,则.8.假如,则,.9.绝对值等于它本身的有理数是,绝对值等于它的相反数的数是10.│x│=│-3│,则x=,若│a│=5,则a=三.断定题:1.断定下列各式是否准确(准确入“T”,错误入“F”):(1)|-a|=|a|;( ) (2)-|a|=|-a|;( )(4)若|a|=|b|,则a=b;( ) (5)若a=b,则|a|=|b|;( )(6)若|a|>|b|,则a>b;( )(7)若a>b,则|a|>|b|;( ) (8)若a>b,则|b-a|=a-b.( ) 2.断定对错.(对的入“T”,错的入“F”)(1)假如一个数的相反数是它本身,那么这个数是0. ( )(2)假如一个数的倒数是它本身,那么这个数是1和0. ( )(3)假如一个数的绝对值是它本身,那么这个数是0或1. ( )(4)假如说“一个数的绝对值是负数”,那么这句话是错的. ( )(5)假如一个数的绝对值是它的相反数,那么这个数是负数. ( )四.盘算1.已知│x│=2003,│y│=2002,且x>0,y<0,求x+y的值.2.已知│x+y+3│=0, 求│x+y│的值.3.│a-2│+│b-3│+│c-4│=0,则a+2b+3c=4.假如a,b互为相反数,c,d互为倒数,x的绝对值是1,求代数式x ba+x2+cd的值.5.已知│a│=3,│b│=5,a与b异号,求│a-b│的值.6.某企业临盆瓶装食用折衷油,依据质量请求,净含量(不含包装)可以有0.002L 误差.现抽查6瓶食用折衷油,超出划定净含量的升数记作正数,缺少划定净含量的升数记作负数.检讨成果如下表:请用绝对值常识解释:(1)哪几瓶是合乎请求的(即在误差规模内的)?(2)哪一瓶净含量最接近划定的净含量?绝对值进步篇一.断定题1. 有理数的绝对值必定大于0.()2. 假如两个数的绝对值相等,那么这两个数必定是互为相反数.()3. 假如一个数的绝对值等于它本身,那么这个数必定大于任何负数.()4. 一个数的绝对值必定不小于它本身.()5. 任何有理数的绝对值都是正数.()6. 绝对值等于它本身的数只有零.()7. 绝对值大于2且小于5的整数只有两个.() 8. 绝对值不大于3的整数有3,2,1,0.()9. -13的倒数的绝对值是-3.() 10. -001.的相反数的绝对值是1100.()11. 大于-4的整数有3个.()12. 小于-4的正整数有无限多个.()13. -<-24.() 14. ->-1101100.() 15. 01>-.() 16. 没有绝对值小于1的整数.() 17. 绝对值大于3并且小于5的整数有2个.()18. 大于-1并且小于0的有理数有无限多个.() 19. 在数轴上,到原点的距离等于2的数是2.()20. 绝对值不大于2的天然数是0,1,2.() 21. 绝对值等于本身的数只有0.()22. 两个数的相反数相等,那么这两个数必定相等.() 23. 两个数的绝对值相等,那么这两个数必定相等.() 二.盘算题: 1.若3+-y x 与1999-+y x 互为相反数,求y x y x -+的值.2.a +b <0,化简|a+b-1|-|3-a-b |.3.若y x -+3-y =0 ,求2x+y 的值.4.当b 为何值时,5-12-b 有最大值,最大值是若干?5.已知a 是最小的正整数,b .c是有理数,并且有|2+b |+(3a +2c )24422++-+c a c ab 的值.6.若a,b,c 为整数,且|a-b |19+|c-a |99=1,试盘算|c-a |+|a-b |+|b-c |的值.7.若|x |=3,|y |=2,且|x-y |=y-x,求x+y 的值.8.化简:|3x+1|+|2x-1|. 9.已知y=|2x+6|+|x-1|-4|x+1|,求y 的最大值.10.设a <b <c <d,求|x-a |+|x-b |+|x-c |+|x-d |的最小值.11.若2+|4-5x |+|1-3x |+4的值恒为常数,求x 该知足的前提及此常数的值. 12.2b 1=++-a ,求()2001b a ++()2000b a ++…()2b a ++=+b a .13.已知2-ab 与1-b 互为相反数,设法求代数式 14.若c b a ,,为整数,且120012001=-+-ac ba ,盘算cb b a ac -+-+-的值.15.若97,19==b a ,且b a b a +≠+,那么b a -= . 16.已知5=a ,3=b 且b a b a +=+,求b a +的值. 17化简100211003120021200312003120041-++-+-18.已知a.b.c 长短零有理数,且a +b +c=0,求abcabcc c b b a a +++的值.19.有理数a.b.c 均不为0,且a +b +c=0,试求ac a c cb c b ba b a ++的值.20.三个有理数c b a ,,,其积是负数,其和是正数,当cc b b a a x ++=时,求代数式2001200023x x -+.21.a 与b 互为相反数,且54=-b a ,求12+++-ab a bab a 的值.22、a .b .c 都不等于零,且abcabc c c b b a a x +++=,依据a .b .c 的不合取值,x 有___种不合的值.23.设c b a ,,长短零有理数(1)求cc b b a a ++的值; (2)求acac cb cb ab ab c c b b a a +++++的值;24.(分类评论辩论的思惟)已知甲数的绝对值是乙数绝对值的3倍,且在数轴上暗示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上暗示这两数的点位于原点同侧呢?25.(整体的思惟)方程x x -=-20082008 的解的个数是______.26.若m nn m -=-,且4m =,3n =,则2()m n +=.27|5||50|=-,它在数轴上的意义是暗示5的点与原点(即暗示0的点)之间的距离.式子|63|-,它在数轴上的意义是暗示6的点与暗示3的点之间的距离,式子|5|a +在数轴上的意义是.28.(非负性)已知|a b -2|与|a -1|互为互相数,试求下式的值.29、(距离问题)不雅察下列每对数在数轴上的对应点间的距离 4与2-,3与5,2-与6-,4-与3. 并答复下列各题:(1)你能发明所得距离与这两个数的差的绝对值有什么关系吗?(2)若数轴上的点A 暗示的数为x ,点B 暗示的数为―1,则A 与B 两点间的距离可以暗示为__________.(3)联合数轴求得23x x -++的最小值为,取得最小值时x 的取值规模为 ________.(4) 知足341>+++x x 的x 的取值规模为__________.。

绝对值专项练习60题有答案8页

绝对值专项练习60题有答案8页

绝对值专项练习 60题(有答案)1.下列说法中正确的是( )A . 有理数的绝对值是正数 C . 整数分数统称有理数B . 正数负数统称有理数D . a 的绝对值等于 a2.在数轴上距-2有3个单位长度的点所表示的数是( A . - 5 3.计算:|-4|=( C . - 1 A . 0 B . -4 C . 14) D . 4 3, |y|=5,则x+y 的值为 B . 2 x 的相反数是 -8 4. 若 A . 5.如果|a|=-a ,那么a 的取值范围是( A . a> 0 B . av 0 6.如图,数轴上的点 A 所表示的是实数 A a C . C . a , C . 7.如果a 是负数, 那么-a 、2a 、 a+|a|、 & 在-(- 2), -|-7|,- |+3|, ( ) 8或-2 ) aO D . - 8 或 D. a% 则点A 到原点的距离是( D . - |a| 这四个数中,负数的个数( |a| C . 3个 -舟I ,1(*¥)中,负数有(C . 3个 A . 1个 9.如图,数轴的单位长度为 1,如果点A 、C 表示的数的绝对值相等,则点 B 表示的数是(10 .任何一个有理数的绝对值在数轴上的位置是( A .原点两旁 B .整个数轴 11. a, b 在数轴位置如图所示,则 A . |a|> |b| B . |a 申| 12 .已知|x|=3,则在数轴上表示 A . 3 B .出 C .原点右边 |a 与 |b|关系是( |C . ||a|v |b| x 的点与原点的距离是( C . - 3 13 .若|a|=- a ,则数a 在数轴上的点应是在( D .原点及其右边D • ]|aMb| ) D . 0 - 3A . 原点的右侧B . 原点的左侧C . 原点或原点的右侧D . 原点或原点的左侧 14 .下列判断错误的是( )A . 任何数的绝对值一定是正数B . 一个负数的绝对值一 ) D .定是正数 C . 一个正数的绝对值一定是正数 任何数的绝对值都不是负数15 . a 为有理数,下列判断正确的是( A . -a 一定是负数 B . |a| —定是正数 |a 一定不是负数 16 .若abv0,且a >b ,贝U a , |a -b|, b 的大小关系为( A . a > |a - b|>b B . a >b >|a - b| 17 .若 |a|=8, |b|=5, a+b >0,那么 a - b 的值是( A . 3 或 13 B . 13 或-13 18 .下列说法正确的是(C . |a - b|> a > b ) C .3 或-3D . - |a| —定是负数 ) |D .||a - b|>b >a|D .- 3 或 13D . 19. 一个数的绝对值 A .正数 -|a| —定是负数只有两个数相等时,它们的绝对值才相等 若|a|=|b|,则a 与b 互为相反数若一个数小于它的绝对值,则这个数为负数 定是( ) B .负数 c .非负数 20 .若ab >0,则聖冲■的值为( ) |b| |b| |ab|A . 3B . - 1 21.已知:a >0, bv0, |a|v |b|v 1,那么以下判断正确的是(A . 1 - b >- b > 1+a > aB . c .±或出 1+a > a > 1 - b >— bC . 22 .若 |-x|= - X ,则 x 是( A .正数 B .负数 23 .若|a|>- a ,则a 的取值范围是( A . a > 0B . a 为 24 .若|m - 1|=5,则m 的值为( A . 6B . - 4 D.非正数 D . 3或- 1 ) 1+a > 1 - b > a >- b D . 1 - b > 1+a >- b > aC .非正数 ) C. av 0 D.非负数 D. I 自然数 C . 6 或- 4 D. - 6 或 4 25 .下列关系一定成立的是( A .若 |a|=|b|,贝U a=b B . 26 .已知a 、b 互为相反数,且 A . 2 B . 2 或 3 ) 若|a|=b ,贝y a=b|a - b|=6,贝y |b - 1|的值为 C . 若|a|=- b ,贝y a=b D .若 a=- b ,则 |a|=|b| ) D . 2 或 4 27 . av 0时,化简竺里4吉果为(3a B . 0 A . 2 3 28 .在有理数中, A . 1个 绝对值等于它本身的数有( B . 2个 C . D . -2a C . 3个 29 .已知|a|=- a 、|b|=b 、|a|> |b|>0,则下列正确的图形是 A. 0 ◎ A B . a ~*C. 30 .若|a|+|b|=|a+b |,贝U a 、b 间的关系应满足( A . b 同号 B . C . b 异号 D . D .无穷多个 ) 0 「D . p ) b 同号或其中至少一个为零 b 异号或其中至少一个为零 31.已知 |m|=4, |n|=3,且 mnv 0,贝U m+n 的值等于( ) A . 7 或- 7 B . 1 或- 1 C . 7 或 1 D . -7 或-1 32.已知a 、b 、c 大小如图所示, 的值为 a b cA . 1B . - 1 33.下列各式的结论成立的是( A .若 |m|=|n|, 34 .绝对值小于 A . 3个35 .绝对值大于 A . 7C . ±D . 则 m > n B .4的整数有(B . 5个 1而小于3.5的整数有(B . 6 ) m >n ,则 |m|> |n| )C . 若 m V nv0,贝U |m|> |n|D .若|m| > |n|,贝U m > n36 .若X 的绝对值小于1,则化简|x - A . 0 B . 237 . 3.14 - n 的差的绝对值为( A . 0B . 3.14- nC . 6个 )个. C .「5 1|+x+1| 得(C . 2x C . n —3.14D . 7个D . D . D . -2x 0.14下列说法正确的是():有理数的绝对值一定是正数有理数的相反数一定是负数互为相反数的两个数的绝对值相等 如果两个数的绝对值相等,那么这两个数相等若 |-a|=5,设 A=|x - b|+|x - 20|+|x - b - 20|,其中 0< b < 20, b^x<20,则 A 的最小值是52 .若a , b 为有理数,且|a|=2, |b|=3, 求 a+b 的值.53. 若 |x|=3, |y|=6,且 xy < 0,求 2x+3y 的值.54. 试求 |x - 1|+|x - 3|+ •• + |x - 2003|+|x - 2005|的最小值.55.有理数a 、b 在数轴上的位置如图所示,化简 |a - b|+|a+b|.a 0a=12, b= - 3, c= -( |b|- 3),求 |a|+2|b|+|c|的值.a 、b 、c 在数轴上的位置如图所示,化简 |a|+|c- b|+|a - c|+|b - a|58.小刚在学习绝对值的时候发现: |3 - 1可表示数轴上3和1这两点间的距离;而|3+1|即 |3-( - 1) |则表示3和-1这两点间的距离.根据上面的发现,小刚将|x - 2|看成x 与2这两点在数轴上的距离;那么|x+31可看成x 与_38. A . B .C .D . 39F 面说法错误的是( A . B . C .D . )-(-5)的相反数是(-5)3和-3的绝对值相等数轴上右边的点比左边的点表示的数小若|a|> 0,则a 一定不为零|b|>b ,且 |a|> |b|,则( B . a < b 40. A . a > b 41 .已知 |x 鬥,|y|W1,那么 |y+1|+|2y -已知|a|> a , )C .不能确定 x - 4|的最小值是D . a=b42. 从1000到9999中,四位数码各不相同,且千位数与个位数之差的绝对值为 43. ____________________________ 最大的负整数是_______________________________ ,绝对值最小的有理数是 ______________ 44.最大的负整数,绝对值最小的数,最小的正整数的和是 0 ____________2的四位数有个.则 |x|=|y|.(46. 绝对值等于 47. 48.10的数是则a= -3.5的绝对值是 49. 50 .绝对值小于10的所有正整数的和为 51.化简:|x - 2|+|x+3|,并求其最小值. ;绝对值是5的数是 ;绝对值是-5的数是56.已知 57.已知59 .若abv 0,试化简血+止1+丄坐1a b ab60.同学们都知道,|5-( - 2) |表示5与-2之差的绝对值,实际上也可理解为 5与-2两数在数轴上所对的两点之间的距离. 试探索:(1) 求 |5-( - 2) |= ____________ . (2) 设x 是数轴上一点对应的数,则 |x+1|表示与(3)若x 为整数,且|x+5|+|x - 2|=7,则所有满足条件的 x 为__________ 在数轴上的距离.小刚继续研究发现: x 取不同的值时,|x - 2|+|x+3|=5有最 值,请你借助数轴解决下列问题(1) (2) (3) (4) 当|X — 2|+|x+3|=5时,x 可取整数 _______ 若A=|x+1|+|x - 5|,那么 A 的最小值是 若B=|x+2|+|x|+|x - 1|,那么B 的最小值是 写出 |x+5|+|x+3|+|x+1|+|x - 2|的最小值.(写出一个符合条件的整数即可),此时x 为之差的绝对值参考答案:1.A、有理数0的绝对值是0,故A错误;B、正数、0、负数统称有理数,故B错误;C、整数分数统称有理数,故C正确;D、a< 0时,a的绝对值等于-a,故D错误. 故选C.2.依题意得:|- 2 - x|=3,即-2 - x=3 或-2 - x= - 3,解得:x= - 5 或x=1 .故选 D .3.根据一个负数的绝对值是它的相反数,可知|-4|=4.故选D .4.x 的相反数是3,则x= - 3, |y|=5, y= ±, . x+y= - 3+5=2,或x+y= - 3 - 5= - 8.则x+y的值为-8或2 .故选D5因为一个负数的绝对值是它的相反数;0的绝对值是0或相反数,所以如果|a|=- a,那么a的取值范围是aW).故选C.6.依题意得:A到原点的距离为|a|,v a< 0,. |a|=- a,. A到原点的距离为-a.故选B.7•当a是负数时,根据题意得,- a> 0,是正数,2av 0,是负数,a+|a|=0,既不是正数也不是负数, 是负数;所以, 2a、启是负数,所以负数2个.故选B.a8 •••-(- 2) =2,是正数;-I- 7|=- 7,是负数;-|+3|=- 3是负数;|H|,是正数;-译5 9.如图,AC =-更是负数;.在以上数中,负数的个数是3.故选C.5的中点即数轴的原点O.根据数轴可以得到点B表示的数是-1.故选C.10.11.12.13.A 5 C•••任何非0数的绝对值都大于0,•任何非0数的绝对值所表示的数总在原点的右侧,■/ 0的绝对值是0,. 0的绝对值表示的数在原点.故选 D .••• a<- 1, 0< b< 1 ,••• |a|> |b|.故选 A•••|x|=3,又•••轴上x的点到原点的距离是|x|,.数轴上x的点与原点的距离是3;故选A .•/ |a|=- a,. aW),即可得数a在数轴上的点应是在原点或原点的左侧.故选D.14•根据绝对值性质可知,一个负数的绝对值一定是正数;一个正数的绝对值一定是正数;任何数的绝对值都不是负数.B, C, D 都正确.A中,0的绝对值是0,错误.故选 A .15.A、错误,a=0时不成立;B、错误,a=0时不成立;C、正确,符合绝对值的非负性;D、错误,a=0时不成立. 故选C16.T abv0,且a> b,;a>0, b< CT. a- b>a> 0^ |a- b|>a> b 故选C.17.18.19.•/ |a|=8, |b|=5,••• a=i8, b=芳,又T a+b>0,A a=8, b= i5.A a- b=3 或13.故选 A .A、 -|a不一定是负数,当a为0时,结果还是0,故错误;B、互为相反数的两个数的绝对值也相等,故错误;C、a等于b时,|a|=|b|,故错误;D、若一个数小于它的绝对值,则这个数为负数,符合绝对值的性质,故正确.一个数的绝对值一定是非负数•故选C.20.因为ab>0,所以a, b同号.①若a, b同正,^T S)+卡J+|日+仆仁彳;22.23.24. ②若a, b 同负,^则i: I + |[ |+ I = - 1 - 1+1= - 1. 故选D.■/ a> 0,. |a|=a;T b< 0, • |b|= - b;又■/ |a|< |b|< 1, • a<- b< 1;. 1 - b> 1+a;而1+a> 1, • 1 - b> 1+a>- b>a.故选D.••• |- x|= - x;. xW).即x是非正数.故选C.若|a|>- a,贝U a的取值范围是a> 0.故选A.■/ |m- 1|=5, . m - 1= ±, . m=6 或-4.故选C.25 .选项A、B、C中,a与b的关系还有可能互为相反数.故选D.26.Ta 、b 互为相反数,••• a+b=O,T |a- b|=6,.・.b=出,|b - 1|=2 或 4.故选 D .27. V av 0,.••吐L L L =兰1!=0.故选 B3a 3a28. 在有理数中,绝对值等于它本身的数为所有非负有理数,而非负有理数有无穷多个.故选 29. V |a|=- a 、|b|=b , • av 0, b >0,即a 在原点的左侧,b 在原点的右侧,•••可排除A 、B ,v |a|>|b|,. a 到原点的距离大于 b 到原点的距离,•可排除C ,故选D .30. 设 a 与 b 异号且都不为 0,则 |a+b|=||a|- |b||,当 |a|> |b|时为 |a|- |b|,当 |a|<fb|时为 |b|- |a|. 不满足条件|a|+|b|=|a+b|,当a 与b 同号时,可知|a|+|b|=|a+b 成立;当a 与b 至少一个为 0时,|a|+|b|=|a+b 也成立. 故选B .31. V |m|=4, |n|=3,^ m=也,n= ±3,又 v mn v O ,:当 m=4 时,n= - 3, m+n=1 ,当 m= - 4 时,n=3 , m+n= - 1,故选 B .32.根据图示,知 av 0v bv c,.••园」£!==+¥+£=- 1+1+1=1 .故选 A .a b c a b c33. A 、若 m= -3, n=3 , |m|=|n|, mv n,故结论不成立; B 、若 m=3, n= - 4, m>i,则 |m|v|n|,故结论不成立;C 、若mv nv 0,则|m|> |n|,故结论成立;D 、若m= - 4, n=3 , |m|> |n|,贝U mvn ,故结论不成立.故选:C34. 绝对值小于4的整数有:±3,塑,±1, 0,共7个数.故选D35. 绝对值大于1而小于3.5的整数有:2, 3, - 2, - 3共4个.故选D .36.V x 的绝对值小于1,数轴表示如图:从而知道 x+1 >0, x - 1v0;可知|x+1|+|x - 1|=x+1+1 - x=2 .740.41. T |X|W1, |y 鬥,•••- 1強冬,-1鬥冬,故可得出:|y+1|+|2y - X - 4|=y+1+ (4+x - 2y ) =5+x - y ,当X 取-1, y 取1时取得最小值,所以|y+1|+|2y - x - 4|min =5- 1 - 1=3 .42.V 千位数与个位数之差的绝对值为 2,可得数对”分别是:(0, 2), ( 1, 3), (2, 4) , ( 3 , 5), (4 , 6) , ( 5 , •••( 0 , 2)只能是千位2,个位0,•—共15种选择,•••从1000到9999中,四位数码各不相同,且千位数与个位数之差的绝对值为43.最大的负整数是-1 ,绝对值最小的有理数是0 .44. 最大的负整数是-1,绝对值最小的数 0 ,最小的正整数是 1 V- 1+0+1=0, •••最大的故选B .-2V n> 3.14, • 3.14 - nV 0 ,• |3.14 -冗|= -( 3.14 - n) = n- 3.14 .故选:CA V 0的绝对值是0,故本选项错误.B V 负数的相反数是正数,故本选项错误.CV 互为相反数的两个数的绝对值相等,故本选项正确.D V 如果两个数的绝对值相等,那么这两个数相等或互为相反数,故本选项错误.故选 A 、 - (- 5) =5, 5的相反数是-5,故本选项说法正确; B 、 3和-3的绝对值都为3,故本选项说法正确;C 、 数轴上右边的数总大于左边的数,故本选项说法错误;D 、 绝对值大于0的数可能是正数也可能是负数,故本选项说法正确.故选 V |a|>a , |b|>b ,. a 、b 均为负数,又 V |a|> |b|,. av b .故选 By+1 为;2y - x - 4 v 0,37.38. 39.C .2的四位数有15 >8 X7=840个.不存在故答案为:37), (6, 8), (7, 9),负整数,绝对值最小的数,最小的正整数的和是0正确.故答案为:45.V x+y=0 ,• X、y互为相反数.二|x|=|y|.故答案为(V46 .绝对值等于10的数是±0 .47.若|- a|=5,贝U a= ±5.48.由题意得:从€0 得知,x - b% x - 20O x - b-20O,A=|x - b|+|x- 20|+|x - b- 20|= (x- b) + (20- x) + (20+b - x) =40 - x, 又x最大是20,则上式最小值是40 - 20=20 .49. - 3.5的绝对值是 3.5 ;绝对值是5的数是±5 ;绝对值是-5的数是26.Ta 、b 互为相反数,••• a+b=O,T |a- b|=6,.・.b=出,|b - 1|=2 或 4.故选 D .2=503004 . 故答案为:503004 .55.V 在数轴上原点右边的数大于0,左边的数小于 0,右边的数总大于左边的数可知,b < a < 0,•• |a - b|=a - b , |a+b|=- a - b ,;原式=a -b - a - b= - 2b56. •/ a=12 , b= - 3,; c= -( |b|- 3) = -( 3 - 3) =0,• |a|+2|b|+|c|=12+2X3+0=18 . 57.由数轴,得 b > c >0, a <0,; c - b < 0, a - c < 0, b - a >0,••• |a|+|c— b|+|a - c|+|b - a|= - a -( c - b ) -( a - c ) +b - a= - a - c+b - a+c+b - a =2b - 3a .58. v |x+3|=|x -( - 3) |,.・. |x+3|可看成x 与-3的点在数轴上的距离;(1) x=0 时,|x - 2|+|x+3|=| - 2|+|3|=2+3=5 ; (2) |x+1|+|x - 5|表示x 到点-1与到点5的距离之和, 当-1$老时,A 有最小值,即表示数5的点到表示数-1的点的距离,所以 A 的最小值为6;(3) |x+2|+|x|+|x - 1|表示x 到数-2、0、1三点的距离之和,所以当 x=0时,它们的距离之和最小, 即B 的最小值为3,此时x=0 ;(4) |x+5|+|x+3|+|x+1|+|x - 2|表示 x 到数-5、- 3、- 1、2 四点的距离之和, 所以当-3<x<- 1时,它们的距离之和有最小值9,即|x+5|+|x+3|+|x+1|+|x - 2|的最小值为9.59.V ab <0, • a 和b 中有一个正数,一个负数,不妨设 a >0,b < 0,原式=1 - 1 - 1= - 160. (1) |5-( - 2) |=|5+2|=7; (2) |x+1|表示 x 与-1 之差的绝对值;(3)v |x+5|表示x 与-5两数在数轴上所对的两点之间的距离, |x - 2|表示x 与2两数在数轴上所对的两点之间的距离,而-5与2两数在数轴上所对的两点之间的距离为 2 -( - 5) =7, |x+5|+|x - 2|=7,• - 5$电.故答案为7; x , - 1 ; -.50. 绝对值小于 10 的正整数有:1、2、3、4、5、6、7、8、9,和为:1+2+3+4+5+6+7+8+9=45 . 故本题的答案是:45. 51. ①当 XW — 3 时,原式=2 - x - x - 3= - 2x - 1;②当-3< x < 2 时,原式=2 - x+x+3=5 ; ③ 当x 呈时,原式=x - 2+x+3=2x+1 ;•••最小值为52. V a , b 为有理数,当 a=+2, 当 a=+2, 故答案为: 53. V |x|=3, |a|=2, |b|=3,••• a=±2, b=±,a+b=2+3=5 ; 当 a=- 2, b= - 3 时,a+b= - 2 - 3= - 5;b=+3 时,a+b= - 2+3=1.b=+3 时,b= - 3 时,芳、±1.|y|=6,二 x= ±3, y= ±), v xy < 0,二 x=3 , y= - 6,或 x= - 3,① x=3 , y= - 6 时,原式=2 >3+3X ( - 6) =6 - 18=- 12; ② x= - 3, y=6,原式=2X (- 3) +30=- 6+18=1254. V 2005=2X1003 - 1,•共有 1003 个数,••• x=502 X - 1=1003时,两边的数关于|x - 1003|对称,此时的和最小,此时 |x - 1|+|x - 3|+ •• + |x - 2003|+|x - 2005|=(x - 1) + (x -3) ••+ (1001 - x ) + (1003- x ) + (1005- x ) =2 (2+4+6+••+1002) C2+1002) X501=2 X ---------- --------+ •• + (2005—x )。

完整版)绝对值提高专项练习题

完整版)绝对值提高专项练习题

完整版)绝对值提高专项练习题1、若$x-y+3$与$x+y-1999$互为相反数,求$x$的值。

2、化简$|a+b-1|-|3-a-b|$,得到$\frac{|2a-4|}{2}$。

3、已知$x-y+y-3=0$,求$2x+y$的值,得到$2x+y=3y+3$。

4、当$b=\frac{3}{2}$时,$5-2b-1$有最大值,最大值是$2$。

5、已知$a$是最小的正整数,$b$、$c$是有理数,并且$|2+b|+(3a+2c)=0$,求$2a+b+c$的值。

6、若$|x|=3$,$|y|=2$,且$|x-y|=y-x$,求$x+y$的值,得到$x+y=5$。

7、化简$|3x+1|+|2x-1|$,得到$|3x+1|+|1-2x|$。

8、$a-1+b+2=\frac{(a+b)^2}{2001}$,求$\frac{x+y}{x-y}$的值,得到$\frac{x+y}{x-y}=\frac{4ab+c+22}{4ab-c-22}$。

9、已知$ab-2$与$b-1$互为相反数,求代数式$\frac{1}{ab(a+1)(b+1)(a+2)(b+2)(a+1999)(b+1999)}$的值,得到$-\frac{1}{2}$。

10、已知$a=5$,$b=3$且$a+b=a-b$,求$a+b$的值,得到$a+b=0$。

11、已知$a$与$b$互为相反数,且$a-b=\frac{4a-ab+b}{2}$,求$\frac{5a+ab+1}{2}$的值,得到$\frac{5a+ab+1}{2}=10$。

12、已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数,分别为$-6$和$2$;若数轴上表示这两数的点位于原点同侧,无解。

13、方程$x-2008=2008-x$的解的个数是$1$。

14、若$m-n=n-m$,且$m=4$,$n=3$,则$(m+n)=7$。

绝对值练习基础篇提高篇拓展篇e

绝对值练习基础篇提高篇拓展篇e

绝对值练习根底篇、提高篇,拓展篇〔一〕绝对值练习根底篇1、 ______5=-;______312=-;______31.2=-;______=+π. 2、 ______510=-+-;______36=-÷-;______5.55.6=---3、 2-的相反数是 2--的倒数是 。

4、 的绝对值的相反数是5、 如果3-=a ,那么______=-a ,______=a 。

6、 绝对值为3的数为____________ 。

7、 一个数的绝对值是32,那么这个数为______。

8、 -|-6/7|=________________。

(4)--+=___________。

9、 12的相反数与-7的绝对值的和是____________________。

10、 绝对值小于π的整数有______________________。

11、 绝对值小于的所有非负整数为 。

12、 绝对值不大于2005的所有整数的和是 ,积是 。

13、 7=x ,那么______=x ; 7=-x ,那么______=x 。

14、 个。

15、 假设4x -=,那么x =__________假设31x -=,那么x =__________16、 在-(-2),-|-2|,(-2)2,-22四个数中,负数有_________个17、 有理数的绝对值一定是 ,绝对值等于它本身的数有 。

18、 假设|x|=-x ,那么x 是_________数;19、 a=-8 b=-6,求-│b ∣-│-a ∣的值为 。

20、 a<0,ab<0,且│a │>│b │,试在数轴上简略地表示出a ,b ,-a 与-b 的位置,并用“<〞号将它们连接起来为 。

〔二〕绝对值练习提高篇A 绝对值的非负性,平方根的非负性1、 假设|a+2|+|b-1|=0,那么a= b= ;2、 假设023=-++b a ,那么b a 的值为 。

绝对值提高训练题

绝对值提高训练题

绝对值提高训练题一.选择题(共14小题)1.下列说法正确的是()A.一个数的绝对值一定比0大B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.最小的正整数是12.当|a|=5,|b|=7,且|a+b|=a+b,则a﹣b的值为()A.﹣12B.﹣2或﹣12C.2D.﹣23.已知|2x﹣1|=7,则x的值为()A.x=4或x=﹣3B.x=4C.x=3或x=﹣4D.x=﹣34.已知点M、N、P、Q在数轴上的位置如图,则其中对应的数的绝对值最大的点是()A.M B.N C.P D.Q5.若m是有理数,则|m|﹣m一定是()A.零B.非负数C.正数D.负数6.已知a,b,c为非零的实数,则的可能值的个数为()A.4B.5C.6D.77.﹣3的绝对值是()A.3B.﹣3C.D.﹣8.如果a+b+c=0,且|a|>|b|>|c|.则下列说法中可能成立的是()A.b为正数,c为负数B.c为正数,b为负数C.c为正数,a为负数D.c为负数,a为负数9.把有理数a代入|a+4|﹣10得到a1,称为第一次操作,再将a1作为a的值代入得到a2,称为第二次操作,…,若a=23,经过第2020次操作后得到的是()A.﹣7B.﹣1C.5D.1110.下列说法中,正确的是()A.一个有理数的绝对值不小于它自身B.若两个有理数的绝对值相等,则这两个数相等C.若两个有理数的绝对值相等,则这两个数互为相反数D.﹣a的绝对值等于a11.若x的相反数是3,|y|=5,则x+y的值为()A.﹣8B.2C.8或﹣2D.﹣8或212.若|x|=5,|y|=2且x<0,y>0,则x+y=()A.7B.﹣7C.3D.﹣313.﹣2的绝对值是()A.2B.﹣2C.D.﹣14.对于任何有理数a,下列各式中一定为负数的是()A.﹣(﹣3+a)B.﹣a C.﹣|a+1|D.﹣|a|﹣1二.填空题(共19小题)15.有理数a、b、c在数轴的位置如图所示,且a与b互为相反数,则|a﹣c|﹣|b+c|=.16.已知a,b,c都是有理数,且满足=1,那么6﹣=.17.已知数a,b,c的大小关系如图所示:则下列各式:①b+a+(﹣c)>0;②(﹣a)﹣b+c>0;③;④bc﹣a>0;⑤|a﹣b|﹣|c+b|+|a﹣c|=﹣2b.其中正确的有(请填写编号).18.如图,化简代数式|a+b|﹣|a﹣1|+|b﹣2|的结果是.19.已知有理数a在数轴上的位置如图,则a+|a﹣1|=.20.已知a、b、c的位置如图:则化简|﹣a|﹣|c﹣b|﹣|a﹣c|=.21.如果|x|=6,则x=.22.﹣2的绝对值是,的相反数是.23.计算:|﹣5|=.24.计算:|﹣3|=.25.已知a与b的和为2,b与c互为相反数,若|c|=1,则a=.26.如果|a|=4,|b|=2,且|a+b|=a+b,则a﹣b的值是.27.已知有理数a、b表示的点在数轴上的位置如图所示,化简:|b﹣a|﹣|a+1|=.28.绝对值大于1而小于4的整数有个.29.绝对值小于2的整数有个.30.如果|a﹣2|的值与|b+3|的值互为相反数,那么2b﹣a=.31.已知a,b,c的位置如图,化简:|2a﹣b|+|b+c|﹣|a﹣c|=.32.已知|a|=5,|b|=3,且|a﹣b|=b﹣a,那么a+b=.33.已知:|x|=3,|y|=5,且xy<0,则x+y=.三.解答题(共9小题)34.有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,c﹣a0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.35.有理数a、b、c的位置如图所示,化简式子:|b|+|a﹣c|+|b﹣c|﹣|a﹣b|.36.计算:已知|x|=3,|y|=2,(1)当xy<0时,求x+y的值;(2)求x﹣y的最大值.37.先阅读,后探究相关的问题【阅读】|5﹣2|表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|可以看作|5﹣(﹣2)|,表示5与﹣2的差的绝对值,也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.(1)如图,先在数轴上画出表示点2.5的相反数的点B,再把点A向左移动1.5个单位,得到点C,则点B和点C表示的数分别为和,B,C两点间的距离是;(2)数轴上表示x和﹣1的两点A和B之间的距离表示为;如果|AB|=3,那么x为;(3)若点A表示的整数为x,则当x为时,|x+4|与|x﹣2|的值相等;(4)要使代数式|x+5|+|x﹣2|取最小值时,相应的x的取值范围是.38.计算:已知|x|=,|y|=,且x<y<0,求6÷(x﹣y)的值.39.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)求|4﹣(﹣2)|=;(2)若|x﹣2|=5,则x=;(3)请你找出所有符合条件的整数x,使得|1﹣x|+|x+2|=3.40.数学实验室:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:①数轴上表示2和5两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是.②数轴上表示x和﹣2的两点之间的距离表示为.数轴上表示x和5的两点之间的距离表示为.③若x表示一个有理数,则|x﹣1|+|x+3|的最小值=.④若x表示一个有理数,且|x+3|+|x﹣2|=5,则满足条件的所有整数x的是.⑤若x表示一个有理数,当x为,式子|x+2|+|x﹣3|+|x﹣5|有最小值为.41.已知数轴上三点A,O,B对应的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=;(2)当x=时,点P到点A、点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值范围是;(4)在数轴上,点M,N表示的数分别为x1,x2,我们把x1,x2之差的绝对值叫做点M,N之间的距离,即MN=|x1﹣x2|.若点P以每秒3个单位长度的速度从点O向左运动时,点E以每秒1个单位长度的速度从点A向左运动、点F以每秒4个单位长度的速度从点B也向左运动,且三个点同时出发,那么运动秒时,点P到点E,点F的距离相等.42.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):14,﹣9,+8,﹣7,13,﹣6,+12,﹣5.(1)请你帮忙确定B地位于A地的什么方向,距离A地多少千米?(2)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?(3)救灾过程中,冲锋舟离出发点A最远处有多远。

七年级北师大数学上--绝对值练习及提高习题-2

七年级北师大数学上--绝对值练习及提高习题-2


25、已知 x 5 , y 1 ,那么 x y x y _________.
26、非零整数 m 、 n 满足 m n 5 0 ,所有这样的整数组 (m, n) 共有 ______组.
二、选择题
27.a 表示一个有理数 , 那么 .( )
A. ∣a∣是正数 B.-a 是负数 C.- ∣a∣是负数 D.
A.-n>m>-m>n B.m>n>-m>-n C.-n>m>n>-m D.n>m>-n>-m
2、绝对值等于其相反数的数一定是(
) A .负数 B .正数 C .负数或零
D .正数或零
3、下列说法中正确的是(
) A.
一定是负数
B .只有两个数相等时它们的绝对值才相等
C.若
则 与 互为相反数
D
.若一个数小于它的绝对值,则这个数是负数
0. ( )
(2) 如果一个数的倒数是它本身,那么这个数是
1 和 0. ( )
(3) 如果一个数的绝对值是它本身,那么这个数是
0 或 1. ( )
(4) 如果说“一个数的绝对值是负数”,那么这句话是错的.
()
(5) 如果一个数的绝对值是它的相反数,那么这个数是负数.
()
四、计算 1、已知│ x│ =2003,│ y│ =2002, 且 x> 0, y< 0,求 x+y 的值。
4、给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两
个数绝对值不相等;④绝对值相等的两数一定相等.其中正确的有……………………〖

A. 0 个
B. 1 个
C. 2 个

绝对值(拔高30题)

绝对值(拔高30题)

绝对值计算化简专项练习30题之迟辟智美创作1.已知a、b、c在数轴上的位置如图所示,化简:|2a|﹣|a+c|﹣|1﹣b|+|﹣a ﹣b|2.有理数a,b,c在数轴上的对应位置如图,化简:|a﹣b|+|b﹣c|+|a﹣c|.3.已知xy<0,x<y且|x|=1,|y|=2.(1)求x和y的值;(2)求的值.4.计算:|﹣5|+|﹣10|÷|﹣2|.5.当x<0时,求的值.6.若abc<0,|a+b|=a+b,|a|<﹣c,求代数式的值.7.若|3a+5|=|2a+10|,求a的值.8.已知|m﹣n|=n﹣m,且|m|=4,|n|=3,求(m+n)2的值.9.a、b在数轴上的位置如图所示,化简:|a|+|a﹣b|﹣|a+b|.10.有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|.11.若|x|=3,|y|=2,且x>y,求x﹣y的值.12.化简:|3x+1|+|2x﹣1|.13.已知:有理数a、b在数轴上对应的点如图,化简|a|+|a+b|﹣|1﹣a|﹣|b+1|.14.++=1,求()2003÷(××)的值.15.(1)|x+1|+|x﹣2|+|x﹣3|的最小值?(2)|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值?(3)|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值?16.计算:|﹣|+|﹣|+|﹣|+…+|﹣|17.若a、b、c均为整数,且|a﹣b|3+|c﹣a|2=1,求|a﹣c|+|c﹣b|+|b﹣a|的值.18.已知a、b、c三个数在数轴上对应点如图,其中O为原点,化简|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|.19.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.20.计算:.21.计算:(1)2.7+|﹣2.7|﹣|﹣2.7| (2)|﹣16|+|+36|﹣|﹣1|22.计算(1)|﹣5|+|﹣10|﹣|﹣9|;(2)|﹣3|×|﹣6|﹣|﹣7|×|+2| 23.计算.(1);(2).24.若x>0,y<0,求:|y|+|x﹣y+2|﹣|y﹣x﹣3|的值.25.认真思考,求下列式子的值..26.问当x取何值时,|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,并求出最小值.27.(1)当x在何范围时,|x﹣1|﹣|x﹣2|有最年夜值,并求出最年夜值.(2)当x在何范围时,|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|有最年夜值,并求出它的最年夜值.(3)代数式|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|最年夜值是_________(直接写出结果)28.阅读:一个非负数的绝对值即是它自己,负数的绝对值即是它的相反数,所以,当a≥0时|a|=a,根据以上阅读完成下列各题:﹣π|=_________;(2)计算=_________;(3)猜想:=_________,并证明你的猜想.29.(1)已知|a﹣2|+|b+6|=0,则a+b=_________(2)求|﹣1|+|﹣|+…+|﹣|+|﹣|的值.30.已知m,n,p满足|2m|+m=0,|n|=n,p•|p|=1,化简|n|﹣|m﹣p﹣1|+|p+n|﹣|2n+1|.参考谜底:1.﹣2a+c﹣12.2c﹣2b3.(2)104.105.﹣6.7.a=5或a=﹣38.1;499.﹣a+2b10.﹣2b11.1或512.|3x+1|+|2x﹣1|=.13.a14.﹣115.(1)4;(2)5;(3)5016.17.1,218.019.50300420.21.(1)2.7;(2)5122.(1)6;(2)423.(1);(2)24.﹣y﹣125.26.101103027.(1)1;(2)2;(3)50 28.(1)π﹣3.14;(2);(3).29.(1)﹣4;(2).30.﹣2参考谜底:1.解:∵a、c在原点的左侧,a<﹣1,∴a<0,c<0,∴2a<0,a+c<0,∵0<b<1,∴1﹣b>0,∵a<﹣1,∴﹣a﹣b>0∴原式=﹣2a+(a+c)﹣(1﹣b)+(﹣a﹣b)=﹣2a+a+c﹣1+b﹣a﹣b=﹣2a+c﹣1.故谜底为:﹣2a+c﹣12.解:由图可知:b<0,c>a>0,∴a﹣b>0,b﹣c<0,a﹣c<0,∴|a﹣b|+|b﹣c|+|a﹣c|,=(a﹣b)﹣(b﹣c)﹣(a﹣c),=a﹣b﹣b+c﹣a+c=2c﹣2b3.解:(1)∵|x|=1,∴x=±1,∵|y|=2,∴y=±2,∵x<y,∴当x取1时,y取2,此时与xy<0矛盾,舍去;当x取﹣1时,y取2,此时与xy<0成立,∴x=﹣1,y=2;(2)∵x=﹣1,y=2,∴=|﹣1﹣|+(﹣1×2﹣1)2=|(﹣1)+(﹣)|+[(﹣2)+(﹣1)]2=|﹣|+(﹣3)2=+9=104.解:|﹣5|+|﹣10|÷|﹣2|=5+10÷2=5+5=105.解:∵x<0,∴|x|=﹣x,∴原式==0+=﹣6.解:∵|a|<﹣c,∴c<0,∵abc<0,∴ab>0,∵|a+b|=a+b,∴a>0,b>0,∴=++=1+1﹣1=17.解:∵|3a+5|=|2a+10|,∴3a+5=2a+10或3a+5=﹣(2a+10),解得a=5或a=﹣38.解:∵|m﹣n|=n﹣m,∴m﹣n≤0,即m≤n.又|m|=4,|n|=3,∴m=﹣4,n=3或m=﹣4,n=﹣3.∴当m=﹣4,n=3时,(m+n)2=(﹣1)2=1;当m=﹣4,n=﹣3时,(m+n)2=(﹣7)2=49 9.解:∵a<0,b>0,∴a﹣b<0;又∵|a|>|b|,∴a+b<0;原式=﹣a+[﹣(a﹣b)]﹣[﹣(a+b)],=﹣a﹣(a﹣b)+(a+b),=﹣a﹣a+b+a+b=﹣a+2b10.解:由图可知:c<a<0<b,则有a﹣c>0,a﹣b<0,b﹣c>0,2a<0,|a﹣c|﹣|a﹣b|﹣|b﹣c|+|2a|,=(a﹣c)﹣(b﹣a)﹣(b﹣c)+(﹣2a),=a﹣c﹣b+a﹣b+c﹣2a=﹣2b.故谜底为:﹣2b11.解:因为x>y,由|x|=3,|y|=2可知,x>0,即x=3.(1)当y=2时,x﹣y=3﹣2=1;(2)当y=﹣2时,x﹣y=3﹣(﹣2)=5.所以x﹣y的值为1或512.解:分三种情况讨论如下:(1)当x<﹣时,原式=﹣(3x+1)﹣(2x﹣1)=﹣5x;(2)当﹣≤x<时,原式=(3x+1)﹣(2x﹣1)=x+2;(3)当x≥时,原式=(3x+1)+(2x﹣1)=5x.综合起来有:|3x+1|+|2x﹣1|=.13.解:由数轴可知:1>a>0,b<﹣1,所以原式=a+[﹣(a+b)]﹣(1﹣a)﹣[﹣(b+1)]=a14.解:∵=1或﹣1,=1或﹣1,=1或﹣1,又∵++=1,∴,,三个式子中一定有2个1,一个﹣1,无妨设,==1,=﹣1,即a>0,b>0,c<0,∴|abc|=﹣abc,|ab|=ab,|bc|=﹣bc,|ac|=﹣ac,∴原式=()2003÷(××)=(﹣1)2003÷1=﹣115.解:(1)∵数x暗示的点到﹣1暗示的点的距离为|x+1|,到2暗示的点的距离为|x﹣2|,到3暗示的点的距离为|x﹣3|,∴当x=2时,|x+1|+|x﹣2|+|x﹣3|的最小值为3﹣(﹣1)=4;(2)当x=1或x=2时,|x+1|+|x﹣2|+|x﹣3|+|x﹣1|的最小值为5;(3)当x=10或x=12时,|x﹣2|+|x﹣4|+|x﹣6|+…+|x﹣20|的最小值=50 16.解:原式=(﹣)+(﹣)+(﹣)+…+(﹣)=﹣+﹣+﹣+…+﹣=﹣=17.解:∵a,b,c均为整数,且|a﹣b|3+|c﹣a|2=1,∴a、b、c有两个数相等,无妨设为a=b,则|c﹣a|=1,∴c=a+1或c=a﹣1,∴|a﹣c|=|a﹣a﹣1|=1或|a﹣c|=|a﹣a+1|=1,∴|a﹣c|+|c﹣b|+|b﹣a|=1+1=218.解:根据数轴可得c<b<0<a,∴|b﹣a|﹣|2a﹣b|+|a﹣c|﹣|c|=a﹣b﹣(2a﹣b)+a﹣c﹣(﹣c)=a﹣b﹣2a+b+a﹣c+c=019.解:∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,此时的和最小,此时|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+ (1002)=2×=50300420.解:=﹣+﹣+﹣+…+﹣=﹣=﹣2.7=2.7;(2)原式=16+36﹣1=5122. 解:(1)原式=5+10﹣9=6;(2)原式=3×6﹣7×2=18﹣14=423.解:(1)原式=﹣+=;(2)原式=﹣+=24.解:∵x>0,y<0,∴x﹣y+2>0,y﹣x﹣3<0∴|y|+|x﹣y+2|﹣|y﹣x﹣3|=﹣y+(x﹣y+2)+(y﹣x﹣3)=﹣y+x﹣y+2+y﹣x﹣3=﹣y﹣125.解:原式=﹣+﹣+﹣=﹣=26.解:1﹣2011共有2011个数,最中间一个为1006,此时|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|取得最小值,最小值为|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣2011|=|1006﹣1|+|1006﹣2|+|1006﹣3|+…+|1006﹣2011|=1005+1004+1003+…+2+1+0+1+2+3+…+1005=101103027.解:(1)∵|x﹣1|﹣|x﹣2|暗示x到1的距离与x到2的距离的差,∴x≥2时有最年夜值2﹣1=1;(2)∵|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|暗示x到1的距离与x到2的距离的差与x到3的距离与x到4的距离的差的和,∴x≥4时有最年夜值1+1=2;(3)由上可知:x≥100时|x﹣1|﹣|x﹣2|+|x﹣3|﹣|x﹣4|+…+|x﹣99|﹣|x﹣100|有最年夜值1×50=50.故谜底为5028.解:(1)原式=﹣﹣π)=π﹣3.14;(2)原式=1﹣+﹣+﹣+…+﹣=1﹣=;(3)原式=1﹣+﹣+﹣+…+﹣=1﹣=.故谜底为π﹣3.14;;29.解:(1)∵|a﹣2|+|b+6|=0,∴a﹣2=0,b+6=0,∴a=2,b=﹣6,∴a+b=2﹣6=﹣4;(2)|﹣1|+|﹣|+…+|﹣|+|﹣|=1﹣+﹣+…+﹣+﹣=1﹣=.故谜底为:﹣4,30.解:由|2m|+m=0,得:2|m|=﹣m,∴m≤0,∴﹣2m+m=0,即﹣m=0,∴m=0.由|n|=n,知n≥0,由p•|p|=1,知p>0,即p2=1,且p>0,∴p=1,∴原式=n﹣|0﹣1﹣1|+|1+n|﹣|2n+1|=n﹣2+1+n﹣2n﹣1=﹣2。

绝对值的提高练习

绝对值的提高练习

绝对值的提高练习一.知识点回顾1、 绝对值的几何意义:在数轴上表示一个数的点离开原点的距离叫这个数的绝对值.2、 绝对值运算法则:一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;零的绝对值是零. 即:3、 绝对值性质:任何一个实数的绝对值是非负数.二. 典型例题分析:例1、 a ,b 为实数,下列各式对吗?若不对,应附加什么条件?请写在题后的横线上。

(1)|a+b |=|a |+|b |;;(2)|ab |=|a ||b |;;(3)|a-b |=|b-a |;;(4)若|a |=b ,则a=b ;;(5)若|a |<|b |,则a <b ;;(6)若a >b ,则|a |>|b |, 。

例2、设有理数a ,b ,c 在数轴上的对应点如图1-1所示,化简|b-a |+|a+c |+|c-b |.例3、若3+-y x 与1999-+y x 互为相反数,求y x y x -+2的值。

一.解答题:1. a +b <0,化简|a+b-1|-|3-a-b |.2..若y x -+3-y =0 ,求2x+y 的值.3. 当b 为何值时,5-12-b 有最大值,最大值是多少?4.已知a 是最小的正整数,b 、c 是有理数,并且有|2+b |+(3a +2c )2=0.求式子4422++-+c a c ab 的值.5. 已知x <-3,化简:|3+|2-|1+x |||.6. 若|x |=3,|y |=2,且|x-y |=y-x ,求x+y 的值.7.化简:|3x+1|+|2x-1|.8. 若a,b,c为整数,且|a-b|19+|c-a|99=1,试计算|c-a|+|a-b|+|b-c|的值.练习1.已知y=|2x+6|+|x-1|-4|x+1|,求y的最大值.练习2.设a<b<c<d,求|x-a|+|x-b|+|x-c|+|x-d|的最小值.练习3.若2x+|4-5x|+|1-3x|+4的值恒为常数,求x该满足的条件及此常数的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝对值提高篇
姓名:
1. 若3+-y x 与1999-+y x 互为相反数,求
y x y x -+的值。

2. a +b <0,化简|a+b-1|-|3-a-b |.
3. 若y x -+3-y =0 ,求2x+y 的值.
4. 当b 为何值时,5-12-b 有最大值,最大值是多少?
5. 已知a 是最小的正整数,b 、c 是有理数,并且有|2+b |+(3a +2c )2=0. 求式子4
422++-+c a c ab 的值.
6. 若a ,b ,c 为整数,且|a-b |19+|c-a |99=1,试计算|c-a |+|a-b |+|b-c |的值.
7. 若|x |=3,|y |=2,且|x-y |=y-x ,求x+y 的值.
8. 化简:|3x+1|+|2x-1|.
9. 已知y=|2x+6|+|x-1|-4|x+1|,求y 的最大值.
10. 设a <b <c <d ,求|x-a |+|x-b |+|x-c |+|x-d |的最小值.
11. 若2+|4-5x |+|1-3x |+4的值恒为常数,求x 该满足的条件及此常数的值.
12. 02b 1=++-a ,求()
2001b a ++()2000b a ++…()2
b a ++=+b a .
13. 已知2-ab 与1-b 互为相反数,设法求代数式 .)
1999)(1999(1)2)(2(1)1)(1(11的值++++++++++b a b a b a ab
14. 若c b a ,,为整数,且120012001=-+-a c b
a ,计算c
b b a a
c -+-+-的值.
15. 若97,19==b a ,且b a b a +≠+,那么b a -= .
16. 已知5=a ,3=b 且b a b a +=+,求b a +的值。

17. 化简
100211003120021200312003120041-++-+-
18. 已知a 、b 、c 是非零有理数,且a +b +c=0,求
abc abc c c b b a a +++的值。

19. 有理数a 、b 、c 均不为0,且a +b +c=0,试求
a c a c c
b
c b b a b a ++的值。

20. 三个有理数c b a ,,,其积是负数,其和是正数,当c
c b b a a x ++=
时,求代数式2001200023x x -+.
21. a 与b 互为相反数,且54=
-b a ,求1
2+++-ab a b ab a 的值.
22. 已知a 、b 、c 都不等于零,且abc
abc c c b b a a x +++=
,根据a 、b 、c 的不同取值,x 有______种不同的值。

23. 设c b a ,,是非零有理数 (1)求c c b b a a ++的值; (2)求ac
ac cb cb ab ab c c b b a a +++++的值
24. (分类讨论的思想)已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,
两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢?
25. (整体的思想)方程x x -=-20082008 的解的个数是______。

26. 若m n n m -=-,且4m =,3n =,则2
()m n += .
27. 大家知道|5||50|=-,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离.又如式子|63|-,
28. (非负性)已知|a b -2|与|a -1|互为相互数,试求下式的值.
()()()()()()1111
112220072007ab a b a b a b ++++++++++
29. (距离问题)观察下列每对数在数轴上的对应点间的距离 4与2-,3与5,2-与6-,4-与3. 并回答下列各题: (1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?
(2)若数轴上的点A 表示的数为x ,点B 表示的数为―1,则A 与B 两点间的距离
可以表示为__________.
(3)结合数轴求得23x x -++的最小值为 ,取得最小值时x 的取值范围为 ________.
(4) 满足341>+++x x 的x 的取值范围为__________。

相关文档
最新文档