(完整版)沪科版八年级数学(上册)复习要点

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

沪教版八年级数学上册复习要点

制作人:胡永

第十一章平面直角坐标系小结

一、平面内点的坐标特征

1、各象限内点P(a ,b)的坐标特征:

第一象限:a>0,b>0;第二象限:a<0,b>0;第三象限:a<0,b<0;第四象限:a>0,b<0

(说明:一、三象限,横、纵坐标符号相同,即ab>0;二、四象限,横、纵坐标符号相反即ab<0。)2、坐标轴上点P(a ,b)的坐标特征:

x轴上:a为任意实数,b=0;y轴上:b为任意实数,a=0;坐标原点:a=0,b=0

(说明:若P(a ,b)在坐标轴上,则ab=0;反之,若ab=0,则P(a ,b)在坐标轴上。)

3、两坐标轴夹角平分线上点P(a ,b)的坐标特征:

一、三象限:a=b;二、四象限:a=-b

二、对称点的坐标特征

点P(a ,b)关于x轴的对称点是(a ,-b);

关于y轴的对称点是(-a ,b);

关于原点的对称点是(-a ,-b)

三、点到坐标轴的距离

点P(x ,y)到x轴距离为∣y∣,到y轴的距离为∣x∣

四、(1)横坐标相同的两点所在直线垂直于x轴,平行于y轴;

(2)纵坐标相同的两点所在直线垂直于y轴,平行于x轴。

五、点的平移坐标变化规律

坐标平面内,点P(x ,y)向右(或左)平移a个单位后的对应点为(x+a,y)或(x-a,y);点P(x ,y)向上(或下)平移b个单位后的对应点为(x,y+b)或(x,y-b)。

(说明:左右平移,横变纵不变,向右平移,横坐标增加,向左平移,横坐标减小;上下平移,纵变横不变,向上平移,纵坐标增加,向下平移,纵坐标减小。简记为“右加左减,上加下减”)

第十二章一次函数

一、确定函数自变量的取值范围

1、自变量以整式形式出现,自变量的取值范围是全体实数;

2、自变量以分式形式出现,自变量的取值范围是使分母不为0的数;

3、自变量以偶次方根形式出现,自变量的取值范围是使被开方数大于或等于0(即被开方数≥0)的数;

自变量以奇次方根形式出现,自变量的取值范围是全体实数。

4、自变量出现在零次幂或负整数次幂的底数中,自变量的取值范围是使底数不为0的数。

(说明:(1)当一个函数解析式含有几种代数式时,自变量的取值范围是各个代数式中自变量取值范围的公共部分; (2)当函数解析式表示具有实际意义的函数时,自变量取值范围除应使函数解析式有意义外,还必须符合实际意义。)

二、一次函数

1、一般形式:y=k x +b (k 、b 为常数,k≠0),当b=0时,y=k x (k≠0),此时y 是x 的正比例函数。

2、一次函数的图像与性质

3、确定一次函数图像与坐标轴的交点 (1)与x 轴交点:)0,(k

b

,求法:令y=0,得k x +b=0,在解方程,求x ; (2)与y 轴交点:(0,b ),求法:令x=0,求y 。 4、确定一次函数解析式———待定系数法

确定一次函数解析式,只需x 和y 的两对对应值即可求解。具体求法为: (1)设函数关系式为:y=k x +b ; (2)代入x 和y 的两对对应值,得关于k 、b 的方程组;

(3)解方程组,求出k 和b 。 5、k 和b 的意义 (1)∣k ∣决定直线的“平陡”。∣k ∣越大,直线越陡(或越靠近y 轴);∣k ∣越小,直线越平(或越远离y 轴); (2)b 表示在y 轴上的截距。(截距与正负之分)

6、由一次函数图像确定k 、b 的符号 (1)直线上升,k>0;直线下降,k<0;

(2)直线与y 轴正半轴相交,b>0;直线与y 轴负半轴相交,b<0

y=kx +b (k≠0)

k >0 k <0 b >0

直线经过一、二、三象限

直线经过一、二、四象限

b=0

直线经过一、三象限及原点 直线经过二、四象限及原点

b <0

直线经过一、三、四象限

直线经过二、三、四象限

性质

(1)y 随x 的增大而增大(直线自左向右上升) (2)直线一定经过一、三象限 (1)y 随的增大而减小(直线自左向右下降) (2)直线一定经过二、四象限

y=k 1 x

y=k 2 x

y=k 3 x y=k 4 x k 1>k 2>k 3> k 4(按顺时针依次减小)

7、两条直线的位置关系

222111b x k y l b x k y l +=+=:和直线:直线

{{有无数交点)

与重合(与)

(没有交点)与平行(与)(有且只有一个交点)

与相交(与)(212121212121212

12

12

12

1321l l l l l l l l l l l l k k k k b b k k b b ⇔⇔⇔≠===≠

8、x=a 和y=b 的图象

x=a 的图象是经过点(a ,0)且垂直于x 轴的一条直线; y=b 的图象是经过点(0 ,b )且垂直于y 轴的一条直线。 9、由一次函数图像确定x 和y 的范围

(1)当x >a (或xb (或y

10、一次函数图象的平移 设m >0,n>0

(1)左右平移:直线y=k x +b 向右(或向左)平移m 个单位后的解析式为y=k (x -m )+b 或y=k (x +m )+b 。 (2)上下平移:直线y=k x +b 向上(或向下)平移n 个单位后的解析式为y=k x +b +n 或y=k x +b -n (说明:规律简记为“左加右减,上加下减”,左右对x 而言,上下对y 而言。)

11、由图象确定两个一次函数函数值的大小

三、二元一次方程组的图象解法(略)