工程制图第三章 点、直线、平面的投影
工程制图第3章 点、直线和平面的投影
β
SH
O
α
Y
H
YH
V
a
A
a
b c
B
b
H
水平面
a
b a W c
C
a
c
b c
b c
b a c
投影特性: 1. abc、 abc积聚为一条线积聚为一直条线,具有积聚性 2. 水平投影abc反映 ABC实形
V b
正平面
b
b
a
B
b
c
W
a
a
A a
2.投影面垂直线
垂直于某一投影面的直线
(1) 铅垂线 (2) 正垂线 (3) 侧垂线
3.一般位置直线
与三个投影面都倾斜的直线
水平线 — 平行于水平投影面的直线 z
Z
a b
a
b
a
b
A
a
X
O
YW
X
B O
b
a
a
b
Y
投影特性:1. ab OX ; ab OYW 3. 反映、 角的真实大小
α
H
V SB
A
b
b
侧垂面
SbW
c β c
a
W
α a
c
C
a
b c
H
a
投影特性: 1、 侧面投影abc积聚为一条直线 2 、 水平投影abc、正面投影 abc为 ABC的类似形
3 、 abc与OZ、 OY的夹角反映α、β角的真实大小
V S
侧垂面的迹线表示 Z
SH
b
QV
a
A
c
C
正垂面
b
工程制图 第三章 知识点
工程制图第三章学问点第三章一、点的投影两点的相对位置 :X 坐标值大的点在左; Y 坐标值大的点在前; Z 坐标值大的点在上。
二、直线的投影1、各种位置直线的投影特性(1 投影面平行直线:在平行的投影面上的投影,反映实长;投影与投影轴的夹角分别反映直线与另两个投影面的真实倾角; 在另两个投影面上的投影, 平行于相应的投影轴,长度缩短。
(2 投影面垂直直线:在直线垂直的投影面上的投影积聚成一点; 在另两个投影面上的投影,平行于相应的投影轴,反映实长。
(3 一般位置直线:三个投影面上的投影都倾斜于投影轴; 投影与投影轴的夹角不反映直线与投影面的倾角;不反映实长(缩短。
2、直线上点的投影特性及定比关系 (1从属性:若点在直线上,则点的各个投影必在直线的各同面投影上。
(2定比性:属于线段上的点分割线段之比等于其投影之比。
3、两直线的相对位置关系及投影特性(1平行:三对同面投影分别相互平行。
(2 相交:三对同面投影都分别相交, 且投影的交点符合一点的三面投影特性。
(3交叉:既不符合平行特性也不复合相交特性。
推断两直线相交还是交叉的方法:(1 交点投影法:推断三个投影面的交点是否满意点的投影规章。
(通常需要做出第三投影面的两直线投影来推断(2定比关系法:由投影面的一条直线的交点投影,依据定比关系作出该交点在另一个投影面在该直线上的点的位置, 假如两个投影面上的交点是同一点, 则可推断两直线相交,反之则交叉。
4、直角三角形法 (求一般位置直线的实长和倾角直角三角形法的作图要领 :用线段在某投影面上的投影长作为一条直角边,以线段的两端点相对于该投影面的坐标差作为另一条直角边, 所作直角三角形的斜边即为线段的实长,斜边与投影长间的夹角即为线段与该投影面的倾角。
直角边与倾角的对应关系如下表:解题原则:求直线与哪个投影面的倾角, 就用哪个投影面上的投影长作为一条直角边。
5、直角的投影定理相互垂直的两直线, 其中有一条直线平行于投影面时, 则两直线在该投影面上的投影仍反映直角。
土木工程制图第3章点直线平面的投影
3.2 直线的投影
图3-29 判断两侧平线是否平行
3.2 直线的投影
2.两条直线相交
(1)若两条直线的三组同面投影都相交,且交点的投影符合点
(2)如果两条直线均为一般位置直线,只要有任意两组同面投 影相交,且交点符合点的投影规律,则这两条直线在空间相交。
(3)两条直线中有一条直线平行于某一投影面,则需画出两条 直线在该投影面上的投影来判断其是否相交,或者通过定比性来 判断。
作图步骤如图3-36(b) (1)从图3-36(a)可知AB为水平线,所以过点c向ab作垂线,得垂 足d,过d向上作联系线,交a′b′于点d′,连接c′d′ (2)cd为距离的水平投影,c′d′为距离的正面投影,可利用直角三 角形法求距离的实长,过点d在ab上截取dD0等于C、D两点的Z轴 坐标差,连接cD0,则cD0即为点C到水平线AB的距离。
(1)侧面投影反映实 长,与Y轴夹角为α, 与Z轴夹角为β。
(2)正面投影平行于 Z轴。
(3)水平投影平行于 Y轴。
3.2 直线的投影
3.2.3 一般位置直线的实长与倾角
(1)在α所存在的直角三角形中,α所相邻的一条直角边为 H面投影长,所对应的直角边为Z坐标差ΔZ,如图3-23(a)所示。
(2)在β所存在的直角三角形中,β所相邻的一条直角边为 V面投影长,所对应的直角边为Y坐标差ΔY,如图3-23(b)所示。
作图步骤如图3-37(b) (1)在水平投影图上过d点(也可是cd上的其他点)作ab的垂直线(也 可过ab上的任意一点作cd的垂直线),交ab于e点。连接d、e两点 得公垂线DE的水平投影de。由e点垂直向上作投影联系线,交a′b′ 于点e′,连接点d′、e′得公垂线DE的正面投影d′e′ (2)已知公垂线DE的两面投影,即可利用直角三角形法求出公垂线 DE的实长。
机械制图-点、直线、平面的投影
在机械制图中,特殊位置点常用于 确定物体的形状和大小,如交点、 切点等。
03 直线投影
直线在三投影面体系中的投影
正投影
直线在正投影面上的投影 与原直线平行或重合,且 长度不变。
侧投影
直线在侧投影面上的投影 与原直线垂直,且高度不 变。
水平投影
直线在水平投影面上的投 影与原直线平行,且长度 不变。
直线上的点的投影特性
点在直线上
点的投影在直线的投影上,且与 原点在同一平面内。
点在直线外
点的投影在直线的投影外,且与 原点不在同一平面内。Leabharlann 两直线的相对位置与投影特性
平行线
两直线在正投影面上的投影平行, 且高度相等。
交叉线
两直线在正投影面上的投影相交, 且高度相等。
垂直线
两直线在正投影面上的投影垂直, 且高度相等。
机械制图-点、直线、平面的投影
目 录
• 引言 • 点投影 • 直线投影 • 平面投影 • 实际应用与案例分析 • 总结与展望
01 引言
主题简介
01
机械制图是工程领域中用于表达 和交流设计思想的一种语言,而 点、直线和平面的投影是机械制 图的基础。
02
本主题将介绍点、直线和平面在 机械制图中的投影原理和方法, 帮助读者更好地理解和应用机械 制图。
投影法概述
投影法是将三维物体转换为二维图形 的方法,是机械制图中的基本技术。
投影法分为中心投影法和平行投影法 ,其中平行投影法又分为正投影法和 斜投影法。
02 点投影
点在三投影面体系中的投影
点的三面投影
一个点在三投影面体系中分别在H面、 V面和W面上投下影子,形成三个投 影点。
工程制图d(唐福官)第三章 点直线平面的投影
c
b
②
a
c
●
b b a c b
a
c
点C在直 线AB上
点C不在 直线AB上
电气学院学习部资料库
例2:判断点K是否在线段AB上。
a k● b
a k● b a
●
k
b
因k不在a b上, 故点K不在AB上。
另一判断法?
应用定比定理
电气学院学习部资料库
[例题3] 已知线段AB的投影图,试将AB分成2﹕1两段,求分 点C的投影c、c 。
b
电气学院学习部资料库
例二、已知立体上直线 AB、CD 的空间位置, 在投影图中标注其投影位置,填。
a’
b’
a ’’
c’ d’
b ’’
(c ’’ )
(d ’’ )
a
b
(d ) c 一般位置
铅垂
电气学院学习部资料库
2、 直线上点的投影
直线上的点具有两个特性: 1.从属性 若点在直线上,则点的各个投影必在直线的各同面投影上。利用 这一特性可以在直线上找点,或判断已知点是否在直线上。
(7)一般位置直线
b
b B a b X a b b Y Z a
A a
O
b
a a Y
投影特性:1. a b、 ab、a b均小于实长 2. a b、ab、a b均倾斜于投影轴 3.不反映 、 电气学院学习部资料库 、 实角
直线对投影面的相对位置分类 (一)投影面平行线 水平线//水平面 正平线//正平面 侧平线//侧平面
电气学院学习部资料库
(4)铅垂线— 垂直于水平投影面的直线
a A b b a a Z a
b
土木工程制图第三章点直线和平面的投影
a c
b
dH
AB∥CD,则ab∥cd、a′b′∥c′d′、a"b"∥c"d" AB∶CD=ab∶cd=a′b′∶c′d′=a"b"∶c"d"
土木工程制图
判断方法: 若两直线的三组同面投影都平行:则两直线在空间平行。 若两一般位置直线:任意两组同面投影平行,则可判断两直线在空间平行。 若两直线同时平行于某一投影面:则需通过两直线在该投影面上的投影来判断;或者通过定比性和指向来判断。
; 3)按投影关系求得b″。
2.重影点
a ●
空间两点在某一投影面上的投影重合为一点时,则称此两点
c●
为该投影面的重影点。
土木工程制图
a ● ● c
被挡住的投影加( )
a●c( ) A、C为哪个投影面的重影点呢?
A、C为H面的重影点
重影点
土木工程制图
H面重影点
V面重影点
W面重影点
土木工程制图
例5:已知形体的立体图及投影图,试在投影图 上标记形体上的重影点的投影,如下图所示。
土木工程制图
b′
k′ a′ X b k
a
b′
k′ a′ OX b k
a
b′
k′ a′ OX b k k1 a1 a
Z b″ k″
O
YH
a″ YW
三、两直线的相对位置关系
空间两直线的相对位置
分为
平行 相交 交叉 垂直
土木工程制图
厂房形体
1.平行两直线
土木工程制图
投影特性:
b a
A
V d
工程制图第3章点线面投影
水平投影ab‖ OYH,正面投影 a’b’ ‖OZ,都不反映实长; a”b”与OYW夹角反映α实际大小, a”b”与OZ夹角反映β实际大小。
投影面平行线的投影特性
名称 水平线(‖H面,对V、W面 倾斜) 正平线(‖V面,对H、W面 倾斜) 侧平线(‖W面,对H、V 面倾斜)
投 影 图
投 影 特 性
二、三视图的投影规律及方位对应关系
主、俯视图——共同反映物体的长度方向的尺寸,简称“长对正”; 主、左视图——共同反映物体的高度方向的尺寸,简称“高平齐”; 俯、左视图——共同反映物体的宽度方向的尺寸,简称“宽相等”。
14:10
3.2 点的投影
一、点的三面投影
空间点用大写拉丁字母 如A、B、C…表示; 水平投影用相应小写字母 a表示; 正面投影用相应小写字母 加一撇a’表示;
侧面投影用相应小写字母 加二撇a”表示。
14:10
二、点的三面投影规律
aa’⊥OX,a’az=aayh=XA (A到W面的距离)
a’a”⊥OZ,a’ax=a”ayw=ZA (A到H面的距离) 点的三投影展开 .swf 14:10
aax=a”az=YA (A到V面的距离)
点的投影
作图时,为了表示aax=a”az的关系,常
用过原点O的45°斜线或以O为圆心的圆弧
14:10
把点的H面与W面投影关系联系起来。
例3-1 已知点A的两面投影,求点A的第三面投影。
解题步骤:
(1) 过原点O作45°辅助线; (2) 过a作平行OX轴的直线与 45°辅助线相交一点;
(3) 过交点作⊥OYW的直线;
(4) 该直线与过a’且平行OX轴 的直线相交于一点即为a” 。
1.侧面投影a”b”=AB; 2.水平投影ab‖ OYH,正 面投影a’b’ ‖OZ,都不反 映实长; 3.a”b”与OYW夹角反映α实 际大小,a”b”与OZ夹角反 映β实际大小。
工程制图第三章点直线平面分析
上一页
下一页
23
1. 求直线的实长及对水平投影面的夹角角
退回总目录
2021/3/23
|zA-zB|
|zA-zB|
AB
AB
|zA-zB|
工ab程制图第三章点直线平面分析
|zA-zB |
24
2. 求直线的实长及对正面投影面的夹角 角
AB
b
|yA-yB|
退回总目录
2021/3/23
|yA-yB|
a
X
b
工程制图第三章点直线平面分析
上一页 下一页
4
二、点在三投影面体系中的投影
1. 三投影面体系的建立
点三面投影动画演示
点三面投影展开动画演示
A (空间点)到 W面投影,标记 a“ , 称侧面投影得 a ‘a“ ⊥ oz 展开 W、H OY轴一分为二OYh、 OYw
退回总目录 回章节目录
上一页 下一页
2021/3/23
上一页 下一页
12
四、重影点
当两点的某两个坐标相同时,该两点将处于同一投射线上,因而在由相 同两坐标确定的投影面上具有重合的投影,则这两投影称为对该投影面的重 影点。重影点要判别可见性: 由两点不同的坐标的大小判别,坐标大的可 见,反之不可见。不可见点加括号。
退回总目录 回章节目录
重影点动画演示
2021/3/23
a′
z
a″
x a
o
动画演示
Yw
思考:点A到哪个投影面距离近
Yh
退回总目录 回章节目录
上一页 下一页
2021/3/23
工程制图第三章点直线平面分析
7
三、点的投影与直角坐标的关系
1.点A(xA、yA、zA)的投影与坐标关系: xA=aZ a′=aYHa=a″A(点到W面的距离)
工程制图 点、直线及平面的投影
工程制图
B b b
A a
a
a
b
Z
b
a
a
X a
b
O
YW
b
YH
27
工学院 机械系 张文斌
红河学院
从属于V 投影面的铅垂线
工程制图
Z
a
a
b
b
X
O
YW
a(b)
YH
28
工学院 机械系 张文斌
红河学院
从属于OX轴的直线
工程制图
Z
X a
b O
YW
(b)
a
b a(b)
YH
29
工学院 机械系 张文斌
红河学院
二、一般位置直线
(2) 正垂线
(3) 侧垂线
3.从属于投影面的直线
从属于投影面的直线
从属于投影面的铅垂线
从属于投影轴的直线 二、一般位置直线
20
工学院 机械系 张文斌
红河学院 (1) 水平线 — 只平行于水平投影面的直线 工程制图
z
a b
a
b
a
b
A
a
X
O
YW
B
b a
a
b
b YH
投影特性:1.ab OX ; ab OYW
O
YW
b
a(b)
YH
投影特性:1. a b 积聚 成一点
2. a bOX ; a b OYW 3. a b = a b = AB
24
工学院 机械系 张文斌
红河学院 (2)正垂线— 垂直于正面投影面的直线 工程制图
(a)b
(a)b
z a
b
A
工程图学:点、直线和平面的投影
b′ (b′) B A A ba
b″ a″ a″
B (b″) b″ B Ab a(b) a
a″
⊥H 点 积聚性
Y
∥V、W 直线 实形性
a′b′∥OZ a″b″∥OZ
3).侧垂线
X
Z
a′ a′ (b′) a′ b′
b″ b′
a″ a″
a″(b″) b″ O
YW
⊥W ab∥OX
点
积聚性
a
b b a(b)
过空间点A的投射线与投影面P的交点 即为点A在P面上的投影。
●
A
a
●
点在一个投影面上的投影不能 确定点的空间位置。
P
B2
●
B1
●
●
b
B3
●
采用多面投影。
二.点在两个投影面上的投影 1.两投影面体系的建立
V
X
水平投影面 —— H
正面投影面 —— V 投 影 轴 —— OX
O
2 .两投影面体系中点的投影 V
X
o
◆侧面投影面(简称侧面或W面) 投影轴 OX轴 OY轴 OZ轴 V面与H面的交线 H面与W面的交线 V面与W面的交线
H
Y
三个投影面互相垂 直
2.空间点A在三个投影面上的投影
Z a a a 点A的正面投影 点A的水平投影 X V a ● A ● ●a
o
● a H
W
点A的侧面投影
Y
空间点用大写字母表示,点的 投影用小写字母表示。
由此得出求水平迹点的方法:
(1) 延长直线的正面投影a′b′,与OX轴相交得m′; (2)由m′定出m,则m和m′为所求水平迹点M的两投影。
同理可求得正面迹点N。
土建工程制图第章点直线平面的投影_图文
已知
作图
直线的投影——两直线的相对位置
3.过E点作一直线与已知两交叉直线AB、C直线的相对位置
4.求作正平线MN与交叉三直线AB、CD、EF相交。
已知
作图
直线的投影——两直线的相对位置
5.作直线GH,使其与CD和EF相交且AB平行。
已知
作图
直线的投影——应用题
3.判断直线EF或点K是否在给定的平面上。
已知
作图
平面的投影——各种位置平面的投影
4.求平面内点的另一投影。
已知
作图
平面的投影——各种位置平面的投影
5.求平面ABC内直线EF的H面投影
(a)已知
(b)作图
分析:线段EF在平面ABC上,它一定通过平面上两个点, 作图过程及结果见上图(b)。
平面的投影——各种位置平面的投影
4.已知A、B、C三点的各一投影a、b′、c“,且Bb′=10, Aa=20,C c"=5。完成各点的三面投影,并用直线连接各同
面投影。
已知
点的投影
作图
点的投影
5.作出A、B两点的W面投影,并判断它 们的相对位置
A在B
A在B左前上方
已知
作图
分析:已知点的两投影可以求出点的第三投影,作图过程及 结果见上图(b)
1)过点A作正垂面P,其α为30° 2)过AB作铅垂面△ABC.
3) 过点A作一般面△ABC.
4) 过AB作一般面△ABC.
1)
2)
3)
4)
已知
平面的投影——各种位置平面的投影
3.过已知点、线作平面。
1)过点A作正垂面P,其α为30° 2)过AB作铅垂面△ABC.
3) 过点A作一般面△ABC.
工程制图3(点线面体的投影)
b′ A C a c
a″ B b b″ c″
直线、点在平面上
a′ c′ X c a b
Z a〞 b′ c〞 O YW b〞
YH
例:判断直线、点是否在平面上。
a′ c′ X c a b b′ O
例:完成平面ABCDE的投影。
c′ b′ a′ X b c a b e′ b′ d′ a′ a
c′ d′ e′ e d c
另外两种方法: 解法一: 解法一
a′● ′ ax az
●
a″ ″
a● 解法二: 解法二 用圆规直接量取a″az=aax 用圆规直接量取 ″
a′● ′ ax az
●
a″ ″
a●
点的空间位置 点在投影体系中有 四种位置情况: 四种位置情况:
V a′ A X aX H a
Z aZ a″ O aY
W
1. 在空间(X,Y,Z) 在空间(
特点: 1.和V.W.H 三 面的关系。 2在三个面 上的特点。
特点: 1.和 V.W.H三 面的关系。 2在三个 面上的特 点。
投影面垂直面投影特性
垂直于一个投影面,倾斜于另两个投影面。 垂直于一个投影面,倾斜于另两个投影面。 正垂面:垂直于V 正垂面:垂直于V面,对H,W面倾斜 铅垂面:垂直于H 铅垂面:垂直于H面,对V,W面倾斜 侧垂面:垂直于W 侧垂面:垂直于W面,对H,V面倾斜 投影面垂直面的投影特性: 投影面垂直面的投影特性: 平面在所垂直的投影面上的投影积聚为直线, 平面在所垂直的投影面上的投影积聚为直线,与投 影轴的夹角, 影轴的夹角,分别反映平面对另两个投影面的真实 倾角. 积聚性) 倾角.(积聚性) 在另外两个投影面上的投影均为缩小的平面图形。 在另外两个投影面上的投影均为缩小的平面图形。 类似性) (类似性)。
工程制图练习题第三章
3-18已知等边三角形ABC为一侧平面,又 知其AC的侧面投影a″c″和c′,求其三面投影。
3-18已知等边三角形ABC为一侧平面,又 知其AC的侧面投影a″c″和c′,求其三面投影。
3-19已知三角形CDE为一铅垂面和正面 投影,并知其与W面的倾角γ=60°,求该平面 的另两个投影。
3-19已知三角形CDE为一铅垂面和正面 投影,并知其与W面的倾角γ=60°,求该平面 的另两个投影。
3-48(1)求直线与平面相交的交点,并判断 可见性。
3-48(1)求直线与平面相交的交点,并判断 可见性。
3-48(2)求直线与平面相交的交点,并判断 可见性。
3-48(2)求直线与平面相交的交点,并判断 可见性。
3-48(3)求直线与平面相交的交点,并判断 可见性。
3-48(3)求直线与平面相交的交点,并判断 可见性。
3-15作出下列各平面的第三投影,并回答 它们相对投影面的位置。
3-15作出下列各平面的第三投影,并回答 它们相对投影面的位置。
3-15作出下列各平面的第三投影,并回答 它们相对投影面的位置。
3-16已知等腰直角三角ABC为一正平面, 又知斜边AC的正面投影a’c’和c的水平投影, 求其三面投影。
3-24(2)直线AD属于已知平面,求直线的 另一投影。
3-25试完成三角形ABC的水平投影,AD为 側垂线。
3-35试完成三角形ABC的水平投影,AD为 側垂线。
3-36过A点作一水平线AB与CD相交。
3-36过A点作一水平线AB与CD相交。
3-37判断二直线的相对位置。
3-37判断二直线的相对位置。
3-40判断两直线是否垂直。
(1) (2)
(3)
答:垂直 (4)
工程制图 第三章3-2
§3-2 点、直线、平面的投影任何物体的表面都是由点、线、面等几何元素组成。
如图3-11所示三棱锥,是由四个平面、六条棱线和四个点组成。
由于工程图样是用线框图形来表达,所以绘制三棱锥的三视图,实际上就是绘制构成三棱锥表面的这些点、棱线和平面的三面投影1。
因此,要正确绘制和阅读物体的三视图,须掌握这些基本几何元素的投影规律。
图3-11三棱锥一、点的投影1.点的三面投影形成如图3-12a所示,过空间点A分别向三个投影面作垂线,其垂足a、a′、a″2即为点A 在三个投影面上的投影。
按前述三投影面体系的展开方法将三个投影面展开(图3-12b),去掉表示投影面范围的边框,即得点A的三面投影图(图3-12c)。
图中a x、a y、a z分别为点的投影连线与投影轴OX、OY、OZ的交点。
图3-12点的三面投影形成2.点的三面投影规律从图3-12中点A的三面投影形成可得出点的三面投影规律:(1)点的正面投影与水平投影的连线垂直于OX轴,即a′a⊥OX。
(2)点的正面投影与侧面投影的连线垂直于OZ轴,即a′a″⊥OZ。
(3)点的水平投影到OX轴的距离等于点的侧面投影到OZ轴的距离,即aa x=a″a z.此外,从图3-12a还可看出点的投影到投影轴的距离,分别等于空间点到相应投影面的距1本书中,体的多面投影称为视图。
点、线、面等几何元素的投影一般称为投影图。
2空间点用大写字母表示,H面投影用相应的小写字母表示,V面投影用相应的小写字母加“′”表示,W 面投影用相应的小写字母加“″”表示。
离。
如:a′a z=aa YH反映点A到W面的距离;a′a x=a″a Yw反映点A到H面的距离; aa x=a″a z反映点A到V面的距离.根据上述点的三面投影规律,在点的三面投影中,只要知道其中任意两个面的投影,就可求作出该点的第三面投影。
〔例3-2〕已知点B的V面投影b′与H面投影b,求作W面投影b″(图3-13a)。
土建工程制图 第3章 点、直线、平面的投影
已知
a'
作图
d'
c'
直线的投影——应用题
3.求直线AB与CD的距离.
c m b' c' a' a' X d' a c(d ) O
X
土木工程制图 习题集
b'
d'
c'
a' X d' a
a
距离
O
c(d )
b
姓名
土木工程制图 习题集
a' a' O b
a'
△
b'
c' b' O
b' X
X
X
b
b
△
c
a a a
20
姓名
C0
直线的投影
直线上点
班级
已知
作图
直线的投影——直线上的点
4.在直线AB上求一点C,使点C与H、V面等距。
b' a' X
b
土木工程制图 习题集
Z
b' c' a'
YW
Z
a″ c″ b″
45°
X
b
YW
c
a'
d'
a' m' 20 n'
d'
c' X c a
b' O d
X X
c'
b' O
c a m
n
d
b
4.求作正平线MN与交叉三直线AB、CD、EF相交。
b
4.求作正平线MN与交叉三直线AB、CD、EF相交。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、点的直角坐标与三面投影的关系
Z V a az
y
X ax
A
z a
x O
a W
ay Y
1. aaz = aay =Aa = xA 2. aax = aaz =Aa =yA 3. aax =aa y = Aa=zA
四、三投影面体系中点的投影规律
aa X轴,aaz = aay = xA 2. aaZ轴, aax =aa y = zA 3. aax = aaz =yA
YH
(3)侧垂线— 垂直于侧面投影面的直线
a a b Z ab
b
ab A
B
X
O
YW
a a b
b YH
投影特性: 1. ab 积聚 成一点。 2. ab OYH ; ab OZ。 3. ab = ab =AB。
从属于V 面的直线
B b
b
Z b a
A a a b
一、两投影面体系的建立 二 、两投影面体系中点的投影
三、点的两个投影能唯一确定该点的空间位置 四、两面投影图的画法
五、两面投影图的性质
一、两投影面体系的建立
V
X
O
水平投影面 —— H 正面投影面 —— V
投 影 轴 —— OX
二、两投影面体系中点的投影
a
A
Z
X
Ya点A的水平Fra bibliotek影 —— a点A的正面投影 —— a
C D
a(b)
c
d
[例题1]
已知点A的正面与侧面投影,求点A的水平投影。
a
不注 画: 出因 平为 面平 边面 框是 。无 限 大 的 , 所 以 一 般
[例题2] 已知点A在点B之前5毫米,之上9毫米,之右8 毫米,求点A的投影。
a 9 a
8
5 a
第二节 直线的投影
基本要求
§2-1 直线的投影 §2-2 直线对投影面的相对位置 §2-3 一般位置线段的实长及它与投影面的夹角
第三章 点、直线、平面的投影
第一节 点的投影 第二节 直线的投影 第三节 平面的投影 第四节 直线、平面的相对位置 第五节 投影变换
第一节 点的投影
基本要求 §1-1 两投影面体系中点的投影 §1-2 三投影面体系中点的投影 §1-3 两点的相对位置 §1-4 重影点的投影 例题1 例题2
§1-1 两投影面体系中点的投影
(2)正平线—只平行于正面投影面的直线
Z b a
b
b
B a b a X
O
a YW
A
a
b
a
b YH
投影特性: 1. ab 平行于 OX ; a b平行于 OZ。 2. a b=AB。 3. 反映、角的真实大小
(3)侧平线—只平行于侧面投影面的直线
a
Z
a
a
(1) 铅垂线
(2) 正垂线 (3) 侧垂线
3.从属于投影面的直线
从属于投影面的直线 从属于投影面的铅直线
从属于投影轴的直线
二、一般位置直线
(1) 水平线 — 只平行于水平投影面的直线
z a a
A
b
a
b
b
a
X
O
YW
B
b
a
a b
b
YH
投影特性:1.ab平行于 OX ; ab平行于 OYW 。 2. ab=AB。 3.反映、 角的真实大小。
A b
a
b X O a B b b b YH
b
YW
a
投影特性: 1. ab 平行于 OZ ; ab平行于 OYH 。 2. ab =AB。 3.反映 、 角的真实大小。
(1)铅垂线— 垂直于水平投影面的直线
a A b X a a b Z a
b O
YW
B a(b)
§2-3 一般位置线段的实长及其与投影面的夹角
四、作图
1. 求直线的实长及对水平投影面的夹角角 2. 求直线的实长及对正面投影面的夹角角
§2-4 属于直线上的点
§2-5 两直线的相对位置 §2-6 直角投影定理
基本要求
§2-1
直线的投影
a b
c(d)
直线的投影仍为直线,特殊情况下为一点。
§2-2 直线对投影面的相对位置
一、特殊位置直线 1.直线平行于一个投影面 (1) 水平线
(2) 正平线
(3) 侧平线 2.直线垂直于一个投影面
三、点的两个投影能唯一确定该点的空间位置
四、两面投影图的画法
V
a
z
X a H
ax y a
x
O
H
五、两面投影图的性质
1) aaOX
2) aax =Aa ,
aax =Aa
通常不画出投影面的边界
§1-2 三投影面体系中点的投影
一、三投影面体系的建立
二、三投影面体系中点的投影 三、点的直角坐标与三面投影的关系 四、三投影面体系中点的投影规律 五、特殊点的投影
b a(b) YH
投影特性:1. a b 积聚 成一点。 2. a bOX ; a b OYW 。 3. a b = a b = AB。
(2)正垂线— 垂直于正面投影面的直线
ab A
B a b X a b O YW ab Z a b
a
b
投影特性: 1. a b 积聚 成一点。 2. ab OX ; ab OZ。 3. ab = ab =AB。
一、三投影面体系的建立
Z
O
W
Y
水平投影面 ---- H 正面投影面 ---- V 侧面投影面 ---- W
H∩V ---- OX V ∩W ---- OZ H∩W ---- OY
二、 三投影面体系中点的投影
V
a A O a X
Z a a
W
O
YW
a a
H YH
点A的水平投影 ——a 点A的正面投影 ——a 点A的侧面投影 ——a
1.
五、特殊点的投影
V b a X b c a H c O
Bb
a
b
Cc c
Aa
§1-3 两点的相对位置
a
a
b B
A
b
b
a
两点中x值大的点 —— 在左 两点中y 值大的点 —— 在前 两点中z 值大的点 —— 在上
§1- 4 重影点的投影
a b A B d(c)
a a X b O YW
a
b
YH
从属于V 投影面的铅直线
a
Z
a
b
b O
X
a(b)
YW
YH
从属于OX轴的直线
Z
X a a
b
b
O ab
YW
YH
二、一般位置直线
b b B a b a X b b a a YH O b YW Z a
A a
投影特性:1. a b、 ab、a b均小于实长。 2. a b、ab、a b均倾斜于投影轴。 3.不反映 、 、 实角。