全国适用:初中数学青年教师基本功大赛笔试试卷(含答案)

合集下载

初中数学青年教师基本功大赛笔试试卷(含答案)

初中数学青年教师基本功大赛笔试试卷(含答案)
你能帮小明在地图上画出藏宝地的位置吗?请你设计出找出藏宝地的方案。(设计找出 藏宝地的简要步骤,画出示意图)
A B
5. (本小题 12 分) 从甲地到乙地有 A1、A2 两条路线,从乙地到丙地有 B1、B2、B3 三条路 线,从丙地到丁地有 C1、C2 两条路线.一个人任意先了一条从甲地到丁地的路线.求 他恰好选到 B2 路线的概率是多少?
22ຫໍສະໝຸດ 要 t 最小,即 CT+TQ 最小,而 CT+TQ 是点 C 到直线 C
′B 的折线长,只有当 CT+TQ 成为点 C 到直线 C′B 的
y C
OK
T
x
B
Q H
垂线段时才最小,故作 CH⊥BC′交 OB 于点 K,则点
C′
K 就是使运动时间最短的点。
∵△CBC′为正三角形,∴∠C′CH=30°∴OK=OC·tan30°=2
P138—139) 5. (本小题 12 分)
A1


A2
如图:从甲到丁有 2×3×2=12 种走
9
A
M
B1
C1
B2

C2

B3
N
D
C
B
E
法,而经过线路
B2
共有
2×1×2=4
种走法,故
P=
4 12

1 3
6. (本 小 题 12 分 ) 如 图 : 裁 剪 线 AB 与 CD 长 恰 好 为 三 棱 柱 底 面 周 长 30cm, 故
BM AB 2 AM 2 30 2 182 24
由△CEB∽△AMB 可知: CB BE ,故 CB 60
AB BM
30 24

初中数学青年教师解题比赛及答案

初中数学青年教师解题比赛及答案

初中数学青年教师解题比赛及答案近年来,随着数学教育的不断发展与普及,初中数学教师的教学水平成为提高学生数学能力的重要关键。

为了促进教师专业发展和提高解题能力,初中数学青年教师解题比赛应运而生。

本文将介绍该比赛的背景和目标,并提供部分解题答案作为参考。

一、比赛背景与目标初中数学青年教师解题比赛作为一项专业化竞赛活动,旨在提高青年教师的数学思维和解题能力,加强他们对数学知识的理解和应用。

该比赛通过精心设计的解题题目,考察参赛教师的数学知识储备、解题思路和创新能力,提升他们的教学实践能力和教育教学水平。

二、比赛筹备与参与初中数学青年教师解题比赛由当地教育行政部门、学校和专业团体共同筹备组织。

组织方根据不同年级和内容设置一系列题目,参赛教师需在规定时间内提交解答。

在比赛过程中,还可以结合教学实践和学生需求,设置一些案例分析和教学设计环节。

三、比赛题型与参赛要求初中数学青年教师解题比赛的题型多样,包括选择题、填空题、计算题、证明题等。

参赛教师需要熟练掌握各种数学知识,具备良好的数学分析和解题能力,灵活运用各类解题方法。

参赛教师需按照以下要求提交解答:1. 解题思路清晰、步骤完整:解题过程应该有条不紊,清晰地呈现出解决问题的思考过程和策略。

2. 结果准确、合理:答案应当准确无误,同时要注重解题的合理性和严谨性。

3. 简洁明了、易读易懂:解答应采用准确、简洁的语言表达,以便于阅读和理解。

四、答题示例以下是初中数学青年教师解题比赛的一道选择题和一道填空题的部分答案,供参考:1. 选择题:根据下列数据,判断A和B哪一个数大:A. 0.45B. 0.5解答:由于0.45小于0.5,所以B数大于A数。

2. 填空题:已知两个夹角的比是2:3,其中较小的夹角为40°,则另一个夹角度数为____°。

解答:设较小的夹角为2x,根据题意可得:2x/3x = 40°/x,解得x = 20°,所以另一个夹角度数为3x = 60°。

初中数学教师基本功试卷

初中数学教师基本功试卷

一、选择题(每题2分,共20分)1. 下列不属于初中数学课程基本理念的是:A. 培养学生的数学思维B. 提高学生的数学应用能力C. 增强学生的数学审美观念D. 重视学生的数学创新精神2. 在数学课堂教学中,教师应注重:A. 教学内容的准确性B. 教学方法的多样性C. 教学评价的全面性D. 以上都是3. 下列关于数学教学目标的说法,正确的是:A. 教学目标应根据学生的认知水平和学习需求来确定B. 教学目标应只关注学生的数学知识掌握C. 教学目标应与学生的学习兴趣无关D. 教学目标应根据教师的喜好来确定4. 在教学过程中,教师应如何处理学生的错误:A. 忽略学生的错误,继续讲解B. 直接指出学生的错误,并纠正C. 引导学生分析错误原因,共同纠正D. 鼓励学生自行发现错误,自行纠正5. 下列关于数学教学方法的说法,正确的是:A. 课堂教学应以讲授为主,学生被动接受B. 课堂教学应以讨论为主,教师引导C. 课堂教学应以学生自主探究为主,教师指导D. 以上都是6. 在数学课堂教学中,教师应如何激发学生的学习兴趣:A. 通过生动有趣的教学案例B. 通过与学生互动,引导学生思考C. 通过竞赛和游戏等方式D. 以上都是7. 下列关于数学教学评价的说法,正确的是:A. 教学评价应以学生的数学知识掌握程度为主要依据B. 教学评价应关注学生的数学思维和解决问题能力C. 教学评价应注重学生的个体差异D. 以上都是8. 在数学课堂教学中,教师应如何培养学生的数学思维:A. 通过大量的练习和题海战术B. 通过引导学生思考、探究和解决问题C. 通过教师的讲解和示范D. 以上都是9. 下列关于数学教学资源利用的说法,正确的是:A. 教师应充分利用教材资源,避免过度依赖网络资源B. 教师应积极开发、整合和利用各种教学资源C. 教师应只使用教材资源,避免使用其他资源D. 以上都是10. 下列关于数学教学评价体系建设的说法,正确的是:A. 教学评价体系应只关注学生的数学知识掌握B. 教学评价体系应关注学生的数学思维和解决问题能力C. 教学评价体系应只关注学生的成绩D. 以上都是二、填空题(每题2分,共20分)1. 数学教学的基本理念是:________、________、________。

初中青年教师基本功比赛试题

初中青年教师基本功比赛试题

1.义务教育阶段数学课程的特点是什么?答:突出体现基础性、普及性和发展性,数学教育面向全体学生,实现人人…2.如何认识数学?答:数学是人类的工具;数学是人类用于交流的语言;数学赋予人创造性;数学是一种文化,等等。

3.如何认识数学学习?答:学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动。

内容的呈现应采用不同的表达方式,以满足多样化的学习需求。

有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。

由于学生所处的文化环境、家庭背景和自身思维方式的不同,学生的数学学习活动应当是一个生动活泼的、主动的和富有个性的过程。

4.如何认识数学教学?答:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。

教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。

学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。

5.如何认识数学的教育评价?答:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。

教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。

学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。

6.如何认识现代信息技术在数学课程中的作用?(1)树立数学课程与现代信息技术融合的观念。

(2)现代信息技术要致力于改变学生的学习方式。

7.《标准》关于三维目标,其中刻画知识技能目标的主要动词有哪些?你是怎么理解的?答:了解(认识)、理解、掌握、灵活运用。

了解(认识) :能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体情境中辨认出这一对象。

初中数学教师教学基本功比赛测试卷

初中数学教师教学基本功比赛测试卷

初中数学教师教学基本功比赛测试卷一、新课程标准(每空2分,共20分) 填空1数学是人们对客观世界定性把握和 、逐渐 、形成方法和理论,并进行广泛应用的过程。

2 教师的主要任务是激发学生的 ,向学生提供充分从事数学活动的机会,帮助学生成为学习的 。

3、初中阶段的数学内容分为数与代数、 、统计与概率和 四个领域。

4、动手操作、 、 是学生学习数学的重要方式。

5、不同的人在数学上得到不同的发展的意思是:教学要面向全体,必须适应每一位学生的 ;人的发展不可能整齐划一,必须 ,尊重差异。

二、专业知识(共70分)(一)填空题(每小题2分,共8分)1、如图,己知⊙O 的半径为5,弦AB=8,P 是弦AB 上的任意一点,则OP 的取值范围是 。

2、已知关于x 的不等式组⎩⎨⎧--0x 230a x >>的整数解共有6个,则a 的取值范围是 。

3、若ABC ∆的三边a 、b 、c 满足条件:222338102426a b c a b c +++=++,则这个三角形最长边上的高为 。

4、抛物线()2226y x =--的顶点为C ,已知3y kx =-+的图象经过点C ,则这个一次函数图象与两坐标轴所围成的三角形面积为 。

(二)选择题(每小题3分,共12分)5.如图,由几个小正方体组成的立体图形的左视图是6.有5张写有数字的卡片(如图1),它们的背面都相同,现将它们背面朝上(如图2),从中翻开任意一张是数字2的概率是OPBA羽毛球 25% 体操40%A .15 B .25C .23D .127.正方形网格中,AOB ∠如图放置,则tan ∠AOB 的值为A.5B.5C.12D.28. 已知甲、乙两组数据的平均数都是5,甲组数据的方差2112S =甲,乙组数据的方差2110S =乙,则以下说法正确的是 A.甲组数据比乙组数据的波动大B.乙组数据比甲组数据的波动大 C.甲组数据与乙组数据的波动一样大D.甲、乙两组数据的波动大小不能比较(三)解答题(共50分) 9.(本题满分6分)0112tan 30()2--+-;10.(本题满分6分)因式分解:a 2x 2-4+a 2y 2-2a 2xy ;11.(本题满分6分)某学校为了学生的身体健康,每天开展体育活动一小时,开设排球、篮球、羽毛球、体操课.学生可根据自己的爱好任选其中一项,老师根据学生报名情况进行了统计,并绘制了下边尚未完成的扇形统计图和频数分布直方图,请你结合图中的信息,解答下列问题:ABO(1)该校学生报名总人数有多少人?(2)选羽毛球的学生有多少人?选排球和篮球的人数分别占报名总人数的百分之几? (3)将两个统计图补充完整 12.(本题满分10分)如图,点A ,B ,C ,D 是直径为AB 的⊙O 上四个点,C 是劣弧 BD的中点,AC 交BD 于点E , AE =2, EC =1.(1)求证:DEC △∽ADC △;(2)连结DO ,试探究四边形OBCD 是否是菱形?若是,请你给予证明并求出它的面积;若不是,请说明理由.(3)延长AB 到H ,使BH =OB ,求证:CH 是⊙O 的切线.13,(本题满分10分)某污水处理公司为学校建一座三级污水处理池,平面图形为矩形,面积为200平方米(平面图如图22所示的ABCD).已知池的外围墙建造单价为每米400元.中间两条隔墙建造单价每米300元,池底建造的单价为每平方米80元(池墙的厚度不考虑)(1)如果矩形水池恰好被隔墙分成三个正方形,试计算此项工程的总造价(精确到100元)(2)如果矩形水池的形状不受(1)中长、宽的限制,问预算45600元总造价,能否完成此项工程?试通过计算说明理由.A D(3)请给出此项工程的最低造价(多出部分只要不超过100元就有效).隔隔墙墙B C图2214,(本题满分12分)已知抛物线C1:y=-x2+2mx+n(m,n为常数,且m≠0,n>0)的顶点为A,与y轴交于点C,抛物线C2与抛物线C1关于y轴对称,其顶点为B,连结AC、BC、AB.(1)写出抛物线C2的解析式;(2)当m=1时,判定△ABC的形状,并说明理由;(3)抛物线C1是否存在点P,使得四边形ABCP为菱形?如果存在,请求出m的值;如果不存在,请说明理由.答案一、新课标(20分)1、定量刻画、抽象概括2学习积极性、主人3空间与图形、课题学习4自主探究、合作交流5发展需要、承认差异二、专业知识(共70分)(一)填空题(共8分)1、3≤OP≤52、-5≤a<-43、60134、1(二)选择题(共12分))5、 A6、 B7、 D8、B(三)解答题(共70分)9.原式22+-……..……….2分1)2-………………4分12-=-3 ………………6分10.a2x2-4+a2y2-2a2xy=(a2x2-2a2xy+a2y2)-4 …………………2分= a2(x2-2xy+y2)-4= a2(x-y)2-22 ………………4分=( a x-ay+2)( a x–ay-2)………………6分11.解:(1)设该校报名总人数为x人,则由两个统计图可得40%160x=.∴x=16016040040%0.4==(人). ······································································1分(2)设选羽毛球的人数为y,则由两个统计图可得y=40025%100⨯=(人). ·····································2分因为选排球的人数是100人,所以10025%400=, ··········································3分因为选篮球的人数是40人,所以4010%400=,···············································4分即选排球.篮球的人数占报名的总人数分别是25%和10%.(3)如图 ·················································································································· 6分12.(共10分)(1)证明:∵C 是劣弧 BD的中点, ∴ DAC CDB ∠=∠. 而ACD ∠公共,∴ DEC △∽ADC △. ································· 1分 (2)证明:由⑴得DC ECAC DC=, ∵ 1.213CE AC AE EC ==+=+=,∴2313DC AC EC ==⨯= .∴DC .(2分)由 已知BC DC ==AB 是⊙O 的直径,∴90ACB ∠=︒.∴ 22222312AB AC CB =+=+=. ∴AB =∴ OD OB BC DC ====. ∴ 四边形OBCD 是菱形. ····························································································· 5分过C 作CF 垂直AB 于F ,连结OC ,则OB BC OC === ∴ 60OBC ∠=︒.∴ sin 60CF BC ︒=,3sin 6022CF BC =︒== ,∴ 322BCD S OB CF =⨯==菱形O . ································································· 7分 (3)证明:连结OC 交BD 于G ,∵ 四边形OBCD 是菱形, ∴OC BD ⊥且OG GC =.又 已知OB =BH ,∴ BG CH ∥. ∴90OCH OGB ∠=∠=︒,∴CH 是⊙O 的切线.···················································································· 10分13,(共10分)(1)设AB =x ,则AD =3x ,依题意3x 2=200,x ≈8.165.设总造价W 元. W =8x ×400+2x ×300+200×80=3800x +16000=47000(元).(2)设AB =x ,则AD =200x.所以(2x +200x×2)×400+2x ×300+80×200=45600.整理,得7x 2-148x +800=0.此时求根公式中的被开方式=-496<0,所以此方程无实数解,即预算45600元不能完成此项工程.(3)估算:造价45800元. (2x +400x)×400+600x +16000=45800.整理,得7x 2-149x +800=0.此时求根公式中的被开方式=-199<0,仍不够.造价46000元,同法可得7x 2-150x +800=0.此时求根公式中的被开方式=100>0,够了.造价45900元,可得求根公式中的被开方式=-49.75<0,不够.最低造价为46000元.14(共12分),(1)y =-x 2-2mx +n .(2)当m =1时,△ABC 为等腰直角三角形.理由如下:因为点A 与点B 关于y 轴对称,点C 又在y 轴上, AC =BC ,过点A 作抛物线C 的对称轴交x 轴于D .过点C 作CE ⊥AD 于E .当m =1时,顶点A 的坐标为A (1,1+n ),CE =1,又点C 的坐标为(0,n ),AE =1+n -n =1,所以AE =CE ,∠ECA =45°,∠ACy =45°,由对称性知∠BCy =45°,∠ACB =90°,所以△ABC 为等腰直角三角形.(3)假设抛物线C ,上存在点P ,使得四边形ABCP 为菱形,则PC =AB =BC ,由(2)知,AC =BC ,AB =BC =AC ,从而△ABC 为等边三角形,所以∠ACy =∠BCy =30°.又四边形ABCP 为菱形,且点P 在C 1上,点P 与点C 关于AD 对称,PC 与AD 的交点也为E ,∠ACE =90°-30°=60°,点A 、C 的坐标分别为A (m ,m 2+n ),C (0,n ),AE 2=m 2+n -n =m 2,CE =│m │,在Rt •△ACE 中,tan60°=2||AE m CE m =│m │所以m抛物线C 上存在点P ,使得四边形ABCP 为菱形.此时m。

数学教师教学基本功比赛测试卷(一)初级中学教师基本功大赛试题附答案

数学教师教学基本功比赛测试卷(一)初级中学教师基本功大赛试题附答案

初级中学数学教师教学基本功比赛测试卷(一)一.新课程标准,填空。

(每空2分,共20分)1数学是人们对客观世界定性把握和________________ 、逐渐____________ .形成方法和理论,并进行广泛应用的过程。

2教师的主要任务是激发学生的________________________ ,向学生提供充分从事数学活动的机会,帮助学生成为学习的__________________ 33、初中阶段的数学内容分为数与代数、 _______________ .统计与概率和 ______________ 四个领域。

4、动手操作、________________ 、_______________ 是学生学习数学的重要方式。

5、不同的人在数学上得到不同的发展的意思是:教学要面向全体,必须适应每一位学生的_________________ :人的发展不可能整齐划一,必须____________________ ,尊重差异。

二、专业知识(共70分)(-)填空题(每小题2分,共8分)1、如图,己知C)O的半径为5,弦AB=8, P是弦AB上的任意一点,则OP的取值范围是 _________ o■2、已知关于X的不等式组Fi的整数解共有6个,则“的取值3— 2x>0范围是_______________3、若ΔABC 的三边"、b、C 满足条件:a2 + b2 + c2 + 338 = 1 Oa + 24Z? + 26c,则这个三角形最长边上的髙为_________ 。

4、抛物线y = 2(x-2)2-6的顶点为(7,已知),= -也+ 3的图象经过点C ,则这个一次函数图象与两坐标轴所囤成的三角形面积为____________ o(二)选择题(每小题3分,共12分)5、如图,由几个小正方体组成的立体图形的左视图是⅛⅛⅛⅛6.有5张写有数字的卡片(如图1),它们的背面都相同,现将它们背面朝上(如图2),从中翻开任意一张是数字2的概率是()图2(三)解答题(共50分)9. (本题满分6分)计算:4 l +2tan30υ- 10. (本题满分6分)因式分解:a :x : — 4+a c y 3—2a :xy: 11・(本题满分6分)某学校为了学生的身体健康,每天开展体冇活动一小时,开设排球、篮球、羽毛球、体操课•学生可根拯自己的爱好任选其中一项,老师根据学生报划情况进 行了统讣,并绘制了下边尚未完成的扇形统汁图和频数分布直方图,请你结合图中的信 息,解答下列问题:A. 15C. ~3 B.- 5 D. 1 27.正方形网格中, B.琴1C.-2 D. 2&已知甲、乙两组数据的平均数都是◎存则以下说法正确的是( A. 甲组数据比乙组数据的波动大 B. 乙组数据比甲组数据的波动大C. 甲组数据与乙组数据的波动一样大D •甲、乙两组数据的波动大小不能比较 2√3-IZAOB 如图放置,)(1) 该校学生报名总人数有多少人?(2) 选羽毛球的学生有多少人?选排球和篮球的人数分别占报轲总人数的百分之几?(3) 将两个统计图补充完整12.(本题满分10分)如图,点A ∙ B, G D 是直径为AB 的(Do 上四个点,C 是劣弧BD 的中点,AC 交BD 于点 E, AE=2, EC = 1.(1) 求证:ADEC AADC :(2)连结DO,试探究四边形OBCD 是否是菱形?若是,请你给予证明并求岀它的而积: 若不是,请说明理由.(3)延长AB 到乩 使BH =OB,求证:CH 是OO 的切线・13,(本题满分10分)某污水处理公司为学校建一座三级污水处理池,平面图形为矩形, 而积为200平方米(平面图如图22所示的ABCD ).已知池的外围墙建造单价为每米400元. 中间两条隔墙建造单价每米300元,池底建造的单价为每平方米80元(池墙的厚度不考虑)(1) 如果矩形水池恰好被隔墙分成三个正方形,试计算此项工程的总造价(精确到100 元)(2) 如果矩形水池的形状不受(1)中长、宽的限制,问预算45600元总造价,能否 完A 0 B成此项工程?试通过计算说明理由.(3)请给出此项工程的最低造价(多岀部分只展不超过100元就有效). D14,(本题满分12分)已知抛物线C1:y= -χ2+2πιx+n (In t"为常数,且m≠0,∕ι>0)的顶点为A,与y轴交于点C,抛物线C?与抛物线Cl关于y轴对称,英顶点为B,连结AU BC、AB.(1)写出抛物线C?的解析式:(2)当〃?=1时,判⅛∆ABC的形状,并说明理由:(3)抛物线G是否存在点P,使得四边形ABCP为菱形?如果存在,请求岀〃?的值;如果不存在,请说明理由.答案一. 新课标(20分)K 定量刻画.抽象概括2学习积极性.主人3空间与图形、课题学习4自主探 究、合作交流5发展需要、承认差异二、 专业知识(共70分)(-)填空题(共8分)1、3≤(9P≤52、-5≤67<-4 3. — 4. 113(-)选择题(共12分))5、 A6、 B7、 D 8. B(三)解答题(共70分)9. 原式出+ 2x 逅—严学一2 •…. 3 3 (√3-l )(√3+l) = √3-(√3 + l)-2 = √3-√3-l-2二-310. a :x c — 4+aV - 2a :xy =(a :x :—2a 2∑3r ÷a 2y 2) —4 ......... 2 分=a' (X2xy+j r ) —4=a' (χ-y ) 2~22 =(a X -ay+2) ( a x - ay-2) 11・解:(1)设该校报需总人数为X 人,则由两个统讣图可得 40%x = 160.(2)设选羽毛球的人数为y,则由两个统计图可蒔y= 400×25% = 100 (人)・ ...................IOO因为选排球的人数是K )。

(典型)初中数学学科青年教师基本功大赛试题(附答案详解)

(典型)初中数学学科青年教师基本功大赛试题(附答案详解)

(典型)初中数学学科青年教师基本功大赛试题(附答案详解)一、选择题(10×2=20分,单选或多选) 1.现实中传递着大量的数学信息,如反映人民生活水平的“恩格尔系数”、预测天气情况的“降雨概率”、表示空气污染程度的“空气指数”、表示儿童智能状况的“智商”等,这表明数学术语日趋( )(A )人本化 (B )生活化 (C )科学化 (D )社会化 2. 导入新课应遵循( )(A )导入新课的方法应能激发学生的学习兴趣、学习动机,造成悬念,达到激发情感,提出疑问的作用(B )要以生动的语言、有趣的问题或已学过的知识,引入新知识、新概念 (C )导入时间应掌握得当,安排紧凑 (D )要尽快呈现新的教学内容3.下列关于课堂教学的改进,理念正确的是 ( ) (A )把学生看作教育的主体,学习内容和学习方法由学生作主 (B )促进学生的自主学习,激发学生的学习动机 (C )教学方法的选用改为完全由教学目标来决定(D )尽可能多的提供学生有效参与的机会,让学生自己去发现规律,进而认识规律 4.为了了解某地区初一年级7000名学生的体重情况,从中抽取了500名学生的体重,就这个问题来说,下面说法中正确的是( )(A )7000名学生是总体 (B ) 每个学生是个体(C )500名学生是所抽取的一个样本 (D ) 样本容量是500 5. 一个几何体的三视图如图2所示,则这个几何体是( )6.如图1,点A(m,n)是一次函数y=2x 的图象上的任意一点,AB 垂直于x 轴,垂足为B ,那么三角形ABO 的面积S关于m 的函数关系的图象大致为( )7.有三条绳子穿过一片木板,姊妹两人分别站在木板的左、右两边,各选该边的一条绳子。

若每边每条绳子被选中的机会相等,则两人选到同一条绳子的概率为( )(A)21 (B) 31 (C) 61(D) 91主视图左视图俯视图图2 (A ) (B ) (C ) (D )8.一次数学课上,老师让大家在一张长12cm 、宽5cm 的矩形纸片内,折出一个菱形。

初中数学青年教师教学基本功比赛试题

初中数学青年教师教学基本功比赛试题

初中数学青年教师教学根本功比赛试题根底知识测试题〔下关〕一、填空题〔共6小题,每空0.5分,计10分〕1.数学是研究________________________的科学,这一观点是由____________首先提出的.2.通过义务教育阶段的学习,学生能获得适应社会生活和进一步开展所必须的数学的____________、____________、____________、____________.3.维果斯基的“最近开展区理论〞认为学生的开展有两种水平:一种是学生的___________开展水平;另一种是学生_________________开展水平,两者之间的差异就是最近开展区.4.从数学史上看,有理数的概念传入我国存在着翻译上的错误,其原意是_________数,包括______________小数和______________小数,______________的发现,引发了第一次数学危机.5._________是概率论开展史上首先被人们研究的概率模型,它具有两个特征:一是_________、二是_______________.6.波利亚在其名著?怎样解题?中提出的解数学题的四个步骤是:_________________、_________________、_________________、_________________;他认为“怎样解题表〞有两个特点,即普遍性和_____________性.二、简答题〔共3小题,每题5分,计15分〕7.大约在公元前6世纪至4世纪之间,古希腊人遇到了令他们百思不得其解的三大尺规作图问题,这就是著名的古代几何学作图三大难题.请你简述这三大难题分别是什么?8.?义务教育数学课程标准?〔2011年版〕从知识与技能等四个方面对总目标进展了阐述.〔1〕请写出其他三个方面目标的名称;〔2〕请简述总目标的这四个方面之间的关系.9.“角平分线上的一点到角的两边距离相等〞这一结论在教版义务教育数学教材八上的?1.4线段、角的轴对称性?以及九上的?1.2直角三角形全等的判定?中都有所出现.请你结合教学实际,简述课本上八上和九上分别是如何引导学生得到这一结论的,说说它们之间的区别、联系和这样安排的意义.参考答案:1.数量关系和空间形式.2.根底知识、根本技能、根本思想、根本活动经历.3.现有,可能的.4.成比例的数,有限,无限循环,无理数.5.古典概型,〔试验结果的〕有限性,〔每个结果的〕等可能性.6.弄清问题、拟定方案、实施方案、回忆反思;常识.7.三等分角问题:将任一个给定的角三等分.立方倍积问题:求作一个正方体的棱长,使这个正方体的体积是正方体体积的二倍.化圆为方问题:求作一个正方形,使它的面积和圆的面积相等.8.〔1〕数学思考、问题解决、情感态度;〔2〕四个方面是一个有机的整体;教学要兼顾这四个目标,这些目标的实现,是学生受到良好数学教育的标志;后三个目标的开展离不开知识技能的学习,知识技能的学习必须有利于其他三个目标的实现.9.八上?1.4线段、角的轴对称性?中是通过学生动手操作,采取折纸的方法折出角的平分线,再过角平分线上一点折出角的两边垂线段,然后度量这两条线段的长度得出结论的;九上?1.2直角三角形全等的判定?是通过严格的推理论证,采用自己画图、写、求证并证明得出结论的.它们的区别是,一个是通过动手操作,一个是通过严格证明.联系是,前面的学习为后面的学习作铺垫,在进展严格的证明之前,学生已经熟练地掌握了这一结论的运用.意义是,符合学生的认知开展规律,使学生的认知从感性上升到理性,既培养了学生的动手能力,又培养了学生的推理论证能力.符带说明:1.专业技能比赛包括根底知识测试和解题能力测试两局部.根底知识测试容包括数学文化〔数学史〕常识和数学教育根底知识〔教材、课程标准、教育学、心理学、教学论、教学法等〕.解题能力测试容包括根底题〔教材中的根本定理、公式的证明,教材例题、习题、复习题〕与综合题〔与中考中档题难度相当〕.2.第1、2、8题考察对?课标?学习和理解情况〔称为课标板块〕;第4、5、7题结合教版初中数学教科书的教学容对数学史进展简单的考察〔称为数学史板块〕;第3、6、9题是对心理学、数学教育学、教材和教学法等相关知识的考察〔称为综合板块〕.2012年雨花台区小学数学青年教师教学根本功比赛教育教学知识常识比赛试卷〔总分值100分,时间60分钟〕成绩一、填空题:本大题共8个小题,共22个空,每空1分,共22分。

初中数学教师基本能力竞赛(含答案)

初中数学教师基本能力竞赛(含答案)

第5题图第6题初中数学教师基本能力竞赛全卷共四大题28小题,满分150分,考试时间120分钟.一、选择题(本大题共10小题,每小题3分,满分30分)1、雄风商城春节期间,开设一种摸奖游戏,中一等奖的机会为20万分之一,用科学记数法表示为( )A 、2×10-5B 、5×10-6C 、5×10-5D 、2×10-62、图(1)表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A ,且当钟面显示3点30分时,分针垂直于桌面,A 点距桌面的高度为10厘米。

如图(2),若此钟面显示3点45分时,A 点距桌面的高度为16厘米,则钟面显示3点50分时,A 点距桌面的高度为( )?A 、(22-3 3)厘米B 、(16+π)厘米C 、18厘米D 、19厘米3、已知一组正数12345,,,,x x x x x 的方差为:222222123451(20)5S x x x x x =++++-,则关于数据123452,2,2,2,2x x x x x + + + + +的说法:①方差为S 2;②平均数为2;③平均数为4;④方差为4S 2。

其中正确的说法是( )A 、 ①②B 、①③C 、②④D 、③④4.如图,ABC ∆的角,,A B C 所对边分别为,,a b c ,点是O ABC ∆的外心,,于,于E AC OE D BC OD ⊥⊥,于F AB OF ⊥ 则OD OE OF =∶∶( ) .A 、a b c ∶∶B 、cb a 1:1:1 C 、C B A cos :cos :cos D 、C B A sin :sin :sin5、用三种边长相等的正多边形地砖铺地,其顶点拼在一起,刚好能完全铺满地面.已知正AB CEFO第8题图AB QOxy 第10题多边形的边数为x 、y 、z ,则zy x 111++的值为( ) A 、1 B 、32 C 、21 D 、31 6、如图,以Rt △ABC 的斜边BC 为一边在△ABC 的同侧作正方形BCEF ,设正方形的中心为O ,连结AO ,如果AB =4,AO =26,那么AC 的长等于( ) A 、12 B 、16 C 、43 D 、827、已知函数()()()()22113513x x y x x ⎧--⎪=⎨--⎪⎩≤>,则使y =k 成立的x 值恰好有三个,则k 的值为( )A 、0B 、1C 、2D 、38、二次函数2y ax bx c =++的图象如图所示,)2,(n Q 是图象上的一点,且BQ AQ ⊥,则a 的值为( ). A 、13- B 、12-C 、-1D 、-2 9、将一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为a,第二次掷出的点数为b,则使关于y x ,的方程组223=+=+y x by ax 只有正数解的概率为( )A 、121 B 、92 C 、185 D 、3613 10、如图,在平面直角坐标系xoy 中,等腰梯形ABCD 的顶点坐标分别为A (1,1),B (2,-1),C (-2,-1),D (-1,1)。

数学教师教学基本功比赛测试卷(一)初级中学教师基本功大赛试题附答案

数学教师教学基本功比赛测试卷(一)初级中学教师基本功大赛试题附答案

初级中学数学教师教学基本功比赛测试卷(一)一、新课程标准,填空。

(每空2分,共20分)1数学是人们对客观世界定性把握和 、逐渐 、形成方法和理论,并进行广泛应用的过程。

2 教师的主要任务是激发学生的 ,向学生提供充分从事数学活动的机会,帮助学生成为学习的 。

3、初中阶段的数学内容分为数与代数、 、统计与概率和 四个领域。

4、动手操作、 、 是学生学习数学的重要方式。

5、不同的人在数学上得到不同的发展的意思是:教学要面向全体,必须适应每一位学生的 ;人的发展不可能整齐划一,必须 ,尊重差异。

二、专业知识(共70分)(一)填空题(每小题2分,共8分)1、如图,己知⊙O 的半径为5,弦AB=8,P 是弦AB 上的任意一点,则OP 的取值范围是 。

2、已知关于x 的不等式组⎩⎨⎧--0x 230a x >>的整数解共有6个,则a 的取值范围是 。

3、若ABC ∆的三边a 、b 、c 满足条件:222338102426a b c a b c +++=++,则这个三角形最长边上的高为 。

4、抛物线()2226y x =--的顶点为C ,已知3y kx =-+的图象经过点C ,则这个一次函数图象与两坐标轴所围成的三角形面积为 。

(二)选择题(每小题3分,共12分)5.如图,由几个小正方体组成的立体图形的左视图是6.有5张写有数字的卡片(如图1),它们的背面都相同,现将它们背面朝上(如图2),从中翻开任意一张是数字2的概率是( )OPBA羽毛球 25% 体操40%A .15 B .25C .23D .127.正方形网格中,AOB ∠如图放置,则tan ∠AOB 的值为( )A.55B.55C.12D.28. 已知甲、乙两组数据的平均数都是5,甲组数据的方差2112S =甲,乙组数据的方差2110S =乙,则以下说法正确的是( ) A.甲组数据比乙组数据的波动大B.乙组数据比甲组数据的波动大 C.甲组数据与乙组数据的波动一样大D.甲、乙两组数据的波动大小不能比较(三)解答题(共50分) 9.(本题满分6分)01112tan 30()3231---;10.(本题满分6分)因式分解:a 2x 2-4+a 2y 2-2a 2xy ;11.(本题满分6分)某学校为了学生的身体健康,每天开展体育活动一小时,开设排球、篮球、羽毛球、体操课.学生可根据自己的爱好任选其中一项,老师根据学生报名情况进行了统计,并绘制了下边尚未完成的扇形统计图和频数分布直方图,请你结合图中的信息,解答下列问题:ABO(1)该校学生报名总人数有多少人?(2)选羽毛球的学生有多少人?选排球和篮球的人数分别占报名总人数的百分之几? (3)将两个统计图补充完整 12.(本题满分10分) 如图,点A ,B ,C ,D 是直径为AB 的⊙O 上四个点,C 是劣弧BD 的中点,AC 交BD 于点E , AE =2, EC =1.(1)求证:DEC △∽ADC △;(2)连结DO ,试探究四边形OBCD 是否是菱形?若是,请你给予证明并求出它的面积;若不是,请说明理由.(3)延长AB 到H ,使BH =OB ,求证:CH 是⊙O 的切线.13,(本题满分10分)某污水处理公司为学校建一座三级污水处理池,平面图形为矩形,面积为200平方米(平面图如图22所示的ABCD ).已知池的外围墙建造单价为每米400元.中间两条隔墙建造单价每米300元,池底建造的单价为每平方米80元(池墙的厚度不考虑)(1)如果矩形水池恰好被隔墙分成三个正方形,试计算此项工程的总造价(精确到100元)(2)如果矩形水池的形状不受(1)中长、宽的限制,问预算45600元总造价,能否完成此项工程?试通过计算说明理由.(3)请给出此项工程的最低造价(多出部分只要不超过100元就有效).14,(本题满分12分)已知抛物线C 1:y =-x 2+2mx +n (m ,n 为常数,且m ≠0,n >0)的顶点为A ,与y 轴交于点C ,抛物线C 2与抛物线C 1关于y 轴对称,其顶点为B ,连结AC 、BC 、AB .(1)写出抛物线C 2的解析式;(2)当m =1时,判定△ABC 的形状,并说明理由;(3)抛物线C 1是否存在点P ,使得四边形ABCP 为菱形?如果存在,请求出m 的值;如果不存在,请说明理由.A D 隔 隔 墙 墙BC 图22答案一、新课标(20分)1、定量刻画、抽象概括2学习积极性、主人3空间与图形、课题学习4自主探究、合作交流5发展需要、承认差异二、专业知识(共70分)(一)填空题(共8分)1、3≤OP≤52、-5≤a<-43、60134、1(二)选择题(共12分))5、 A6、 B7、 D8、B (三)解答题(共70分)9.原式=332(32233(31)(31)+⨯--+……..……….2分331)2-………………4分3312-=-3 ………………6分10.a2x2-4+a2y2-2a2xy=(a2x2-2a2xy+a2y2)-4 …………………2分= a2(x2-2xy+y2)-4= a2(x-y)2-22 ………………4分=( a x-ay+2)( a x–ay-2)………………6分11.解:(1)设该校报名总人数为x人,则由两个统计图可得40%160x=.∴x=16016040040%0.4==(人). ·······················································1分(2)设选羽毛球的人数为y,则由两个统计图可得y=40025%100⨯=(人). ·····························2分因为选排球的人数是100人,所以10025%400=, ·································3分因为选篮球的人数是40人,所以4010%400=, ·························································································4分即选排球.篮球的人数占报名的总人数分别是25%和10%.(3)如图···························································································6分12.(共10分)(1)证明:∵C 是劣弧BD 的中点,∴ DAC CDB ∠=∠. 而ACD ∠公共,∴ DEC △∽ADC △. ·························· 1分 (2)证明:由⑴得DC ECAC DC=, ∵ 1.213CE AC AE EC ==+=+=, ∴2313DC AC EC ==⨯= . ∴3DC = .(2分)由 已知3BC DC ==AB 是⊙O 的直径,∴90ACB ∠=︒. ∴ 222223312AB AC CB =+=+=. ∴23AB =∴ 3OD OB BC DC ====. ∴ 四边形OBCD 是菱形. ········································································· 5分 过C 作CF 垂直AB 于F ,连结OC ,则3OB BC OC ===. ∴ 60OBC ∠=︒. ∴ sin 60CFBC︒=,33sin 60322CF BC =︒==, ∴ 33332BCD S OB CF =⨯==菱形O . ··················································· 7分 (3)证明:连结OC 交BD 于G ,∵ 四边形OBCD 是菱形, ∴OC BD ⊥且OG GC =.又 已知OB =BH ,∴ BG CH ∥. ∴90OCH OGB ∠=∠=︒,∴CH 是⊙O 的切线. ·································································· 10分13,(共10分)(1)设AB=x,则AD=3x,依题意3x2=200,x≈8.165.设总造价W元.W=8x×400+2x×300+200×80=3800x+16000=47000(元).(2)设AB=x,则AD=200 x.所以(2x+200x×2)×400+2x×300+80×200=45600.整理,得7x2-148x+800=0.此时求根公式中的被开方式=-496<0,所以此方程无实数解,即预算45600元不能完成此项工程.(3)估算:造价45800元. (2x+400x)×400+600x+16000=45800.整理,得7x2-149x+800=0.此时求根公式中的被开方式=-199<0,仍不够.造价46000元,同法可得7x2-150x+800=0.此时求根公式中的被开方式=100>0,够了.造价45900元,可得求根公式中的被开方式=-49.75<0,不够.最低造价为46000元.14(共12分),(1)y=-x2-2mx+n.(2)当m=1时,△ABC为等腰直角三角形.理由如下:因为点A与点B关于y轴对称,点C又在y轴上,AC=BC,过点A作抛物线C的对称轴交x轴于D.过点C作CE⊥AD于E.当m=1时,顶点A的坐标为A(1,1+n),CE =1,又点C的坐标为(0,n),AE=1+n-n=1,所以AE=CE,∠ECA=45°,∠ACy=45°,由对称性知∠BCy=45°,∠ACB=90°,所以△ABC为等腰直角三角形.(3)假设抛物线C,上存在点P,使得四边形ABCP为菱形,则PC=AB=BC,由(2)知,AC=BC,AB=BC=AC,从而△ABC为等边三角形,所以∠ACy=∠BCy=30°.又四边形ABCP为菱形,且点P在C1上,点P与点C关于AD对称,PC与AD的交点也为E,∠ACE =90°-30°=60°,点A、C的坐标分别为A(m,m2+n),C(0,n),AE2=m2+n-n=m2,CE=│m│,在Rt•△ACE中,tan60°=2||AE mCE m=3,│m│=3.所以m=±3.故抛物线C上存在点P,使得四边形ABCP为菱形.此时m=±3.。

(定稿)2012-2013初中数学学基本功大赛试卷

(定稿)2012-2013初中数学学基本功大赛试卷
等腰三角形的性质北京版教材 15 册第 13 章第 6 节 P 102-P 105 实践活动止
号 考





线
名 姓


教学重难点 教学方法 教具使用
教学步骤
教师活动
教学过程 学生活动
设计意图
教学步骤
教师活动
学生活动
设计意图
校 学
第3页共 4 页
教学步骤
教师活动
学生活动
设计意图
教学步骤
教师活动
学生活动
C. 1
D. 3
8
6
2


12.如图,在 Rt △ABC中,∠ ACB=90O,BC=6,正方形 ABDE的
E D
面积为 100,则正方形 ACFG的面积为 ( ) A.64 B.36 C.82 D.49


13. 正比例函数 y=x 与反比例函数 y= 1 的图象相交于 A、C两点 . AB⊥x
x
第1页共 4 页
17. 已知点 A( 4, y ),B( x ,-3 ), 如果 AB∥ x 轴, 且线段 AB的长度为 5, 则 x 的值为 _______ ,
y 的值为 _______. 18.有理数 a、 b、 c在数轴上的位置如图所示 : 若m=│a+b│- │b-1 │ - │ a- c│- │1- c│, 则1000m=_________. (三)、解答题 ( 本题满分 7 分) 19.高为 12.6 米的的教学楼 ED前有一棵大树 AB(如图 2-2-20 ).
a(a b) 2( a b)
C. ab
D.
ab
a( a b) ab
CM的长为

教师解题基本功竞赛(初中数学)及答案

教师解题基本功竞赛(初中数学)及答案

B(第11题图) 21OEF D BA 6.一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现2个男婴、1个女婴的概率是7.如图,方格纸中4个小正方形的边长均为1,则图中阴影部分三个小扇形的面积和为 (结果保留π). 物线232--=x ax y 与x 轴正半轴交于点A (3,0).以8.如图,抛OA 为边在x 轴上方作正方形OABC ,延长CB 交抛物线于点D ,再以BD 为边向上作正方形BDEF. 则点F 的坐标9.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,则该半圆的半径为 cm.10.如图,由1个正方形和1个等腰直角三角形拼在一起所组成的图形,把它分成4个全等的图形(在图上分)。

第10题11.如图,四边形OABD 为菱形,点B 、D 在以点O 为圆心的弧EF 上, 若OA = 3, ∠1 =∠2,则扇形OEF 的面积为_________.12.已知二次函数2y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x ,,且112x <<,与y 轴的正半轴的交点在(02),的下方.下列结论:①420a b c -+=;②0a b <<;③20a c +>;④210a b -+>.其中正确的结论是 (填序号).二、解答题:(本大题共90分.解答时应写出必要的计算过程、推演步骤或文字说明.) 13.(本题10分)如图,在平面直角坐标系中,直线334y x =-与x 轴、y 轴分别交于A B ,两点.现有半径为1的动圆位于原点处,以每秒1个单位的速度向右作平移运动,则经过多少秒,动圆与直线AB 相切.(第7题)第9题图AAAA14.(本题12分)甲、乙二人同时从A 地出发,沿同一条道路去B 地,途中都使用两种不同的速度1v 与2v (12v v ),甲一半的路程..使用速度1v 、另一半的路程..使用速度2v ;乙一半的时间..使用速度1v 、另一半的时间..使用速度2v . (1)甲、乙二人从A 地到达B 地的平均速度各是多少(用1v 和2v 表示)?(2)甲、乙二人谁先到达B 地?为什么?(3) 如图是甲从A 地到达B 地的路程s 与时间t 的函数图像,请你在图中画出相应的乙从A 地到达B 地的路程s 与时间t 的函数图像.15. (本题12分)如图12,Rt △ABC 中,∠C =90°,按题目所给条件及要求将相应的直角三角形,分割成若干个全等的并且分别与原三角形相似的三角形.........................画出图形并简要说明理由.第(1)图AC=BC 将ΔABC 分割成2个三角形;第(2)图AB=2AC 将ΔABC 分割成3个三角形;第(3)图将ΔABC 分割成4个三角形;第(4)图BC=2AC将ΔABC 分割成5个三角形;x16.(本题10分)某公司准备投资开发A 、B 两种新产品,通过市场调研发现:如果单独投资A 种产品,则所获利润(万元)与投资金额x (万元)之间满足正比 例函数关系:A y kx =;如果单独投资B 种产品,则所获利润(万元)与投资金额x (万元)之间满足二次函数关系:2B y ax bx =+.根据公司信息部的报告,A y ,B y (万元)与投资金额x (万元)的部分对应 值如右表所示:⑴填空:A y = ;B y = ;⑵如果公司准备投资20万元同时开发A 、B 两种新产品,设公司所获得的总利润为w (万元),试写出w 与某种产品的投资金额x 之间的函数关系式.⑶请你设计一个在⑵中能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少万元? 17.(本题10分)如图,某工厂D 与A ,B 两地有公路、铁路相连,且A C DB E D →→→→与路程相等,2BE CD =,CDE →→的路程为120千米,A C D C D E →→→→比的路程远10千米。

青年数学教师考试试题

青年数学教师考试试题

青年数学教师考试试题一、选择题(每题4分,共40分)1. 以下哪个选项是正确的?A. 圆的面积公式为A=πr²B. 圆的周长公式为C=2πrC. 圆的面积公式为A=2πrD. 圆的周长公式为C=πr²2. 函数f(x)=2x+3的反函数是:A. f^(-1)(x)=(x-3)/2B. f^(-1)(x)=(x+3)/2C. f^(-1)(x)=(x-2)/3D. f^(-1)(x)=(x+2)/33. 以下哪个数列是等差数列?A. 1, 3, 5, 7, ...B. 2, 4, 6, 8, ...C. 1, 2, 4, 8, ...D. 1, 4, 9, 16, ...4. 以下哪个选项是复数的共轭?A. (a+bi)的共轭是a-biB. (a+bi)的共轭是a+biC. (a+bi)的共轭是-a+biD. (a+bi)的共轭是-a-bi5. 以下哪个选项是正确的?A. 直线的斜率是其倾斜角度的正弦值B. 直线的斜率是其倾斜角度的余弦值C. 直线的斜率是其倾斜角度的正切值D. 直线的斜率是其倾斜角度的余切值6. 以下哪个选项是正确的?A. 函数y=x²的图像是一条直线B. 函数y=x²的图像是一条抛物线C. 函数y=x²的图像是一条双曲线D. 函数y=x²的图像是一条椭圆7. 以下哪个选项是正确的?A. 圆的方程是(x-a)²+(y-b)²=r²B. 圆的方程是x²+y²=r²C. 圆的方程是(x-a)²+(y-b)²=rD. 圆的方程是x²+y²=r8. 以下哪个选项是正确的?A. 函数y=sin(x)的周期是2πB. 函数y=sin(x)的周期是πC. 函数y=sin(x)的周期是π/2D. 函数y=sin(x)的周期是19. 以下哪个选项是正确的?A. 矩阵的乘法满足交换律B. 矩阵的乘法满足结合律C. 矩阵的乘法满足分配律D. 矩阵的乘法满足交换律、结合律和分配律10. 以下哪个选项是正确的?A. 函数y=x³-3x+2的导数是3x²-3B. 函数y=x³-3x+2的导数是x²-3C. 函数y=x³-3x+2的导数是3x-3D. 函数y=x³-3x+2的导数是x³-3x二、填空题(每题5分,共30分)1. 圆的周长公式为C=______。

数学青年教师考试试题

数学青年教师考试试题

数学青年教师考试试题一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 圆的周长与直径的比值是πB. 圆的周长与半径的比值是2πC. 圆的面积与半径的平方成正比D. 圆的面积与直径的平方成正比2. 已知函数f(x) = 2x + 3,求f(-1)的值。

A. -1B. 1C. -5D. 53. 以下哪个图形是正五边形?A. 正方形B. 正三角形C. 正五边形D. 正六边形4. 计算下列表达式的值:(3x^2 - 2x + 1) - (x^2 + 4x - 3)。

A. 2x^2 - 6x + 4B. 2x^2 - 2x - 2C. 2x^2 - 6x + 2D. 2x^2 - 2x + 45. 已知a = 2,b = 3,求a^2 + b^2的值。

A. 13B. 7C. 5D. 96. 计算下列三角函数值:sin(30°)。

A. 1/2B. √3/2C. 1D. 07. 已知一个数列的前三项为1, 3, 5,求第四项的值。

A. 7B. 9C. 11D. 138. 计算下列表达式的值:(2x - 3)(2x + 3)。

A. 4x^2 - 9B. 4x^2 + 9C. 4x^2 - 6x + 9D. 4x^2 + 6x - 99. 已知一个直角三角形的两条直角边长分别为3和4,求斜边的长度。

A. 5B. 6C. 7D. 810. 计算下列表达式的值:(x + 2)(x - 2)。

A. x^2 - 4B. x^2 + 4C. x^2 - 2x + 4D. x^2 + 2x - 4二、填空题(每题4分,共20分)11. 一个等差数列的首项为2,公差为3,其第五项的值为_________。

12. 一个等比数列的首项为4,公比为2,其第三项的值为_________。

13. 已知一个二次函数的顶点坐标为(1, -2),且开口向上,求该二次函数的解析式为y = _________。

14. 计算下列三角函数值:cos(60°) = _________。

初中数学教师教学基本功比赛试卷

初中数学教师教学基本功比赛试卷

)b第6题x初中数学教师教学基本功比赛试卷一、选择题(每小题3分,共30分)1.方程1116x y+=的正整数解的个数是()A.7个 B.8个 C.9 个 D.10个2. 已知圆O1、圆O2的半径不相等,圆O1的半径长为3,若圆O2上的点A满足AO1 = 3,则圆O1与圆O2的位置关系是()A.相交或相切B.相切或相离C.相交或内含D.相切或内含3. 如图是某几何体的三视图,则该几何体的全面积是()A.36π B.60π C.96π D.120π4.如图,八边形ABCDEFGH中,∠A=∠B=∠C=∠D=∠E=∠F=∠G=∠H=135º,AB=CD=EF=GH=1,BC=DE=FG=HA=2,则这个八边形的面积等于()A.7 B.72 C.8 D.1425. 如图,是由大小一样的小正方形组成的网格,△ABC的三个顶点落在小正方形的顶点上.在网格上能画出三个顶点都落在小正方形的顶点上,且与△ABC成轴对称的三角形共( )个.A.2 B.3 C.4 D.56.如图,A,B的坐标为(2,0),(0,1)若将线段AB平移至11A B,则a b+的值为()A.2 B.3 C.4 D.5第7题7.在直线l上依次摆放着7个正方形,已知斜放置的3个的面积分别是a、b、c,正放置的4个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4的值为() A.cba++ B.ca+ C.cba++2 D.cba+-8.A是半径为5的⊙O内的一点,且OA=3,过点A且长小于8的弦有()A.0条 B.1条 C.2条 D.无数条9.从2,3,4,5这四个数中,任取两个数p和q(p≠q),构成函数y1=px-2和y2=x+q,使两个函数图象的交点在直线x=2的左侧,则这样的有序数组(p,q)共有()组.A.3 B.4 C.5 D.610.若关于x的不等式⎩⎨⎧≤-<-127xmx的整数解共有4个,则m的取值范围是()学校姓名密封线A .76<<mB .76<≤mC .76≤≤mD .76≤<m 二、填空题(每小题2分,共20分)11. 在地面上某一点周围有a 个正三角形、b 个正六边形(a 、b 均不为0),恰能铺满地面,则a +b =___________.12.已知a 、b 实数且满足(a 2+b 2)2-(a 2+b 2)-6=0,则a 2+b 2的值为 .13.如图,将半径为1、圆心角为60°的扇形纸片AOB ,在直线l 上向右作无滑动的滚动至扇形A ′O ′B ′处,则顶点O 经过的路线总长为 . 14.在直角坐标系中,0为坐标原点,A(1,1),在坐标轴上确定一点P ,使△AOP 为等腰三 角形,则符合条件的点P 共有__________个.15.如图,A 、B 是双曲线 y = k x(k >0) 上的点, A 、B 两点的横坐标分别是a 、2a ,线段AB 的延长线交x 轴于点C ,若S △AOC =6.则k= .16.如图,矩形ABCD 中,由8个面积均为1的小正方形组成的L 型模板如图放置,则矩形ABCD 的周长为___ ___.17.已知正方形ABCD 的面积35平方厘米, E 、F 分别为边AB 、BC 上的点, AF 和CE 相交于点G ,并且ABF ∆的面积为5平方厘米,BCE ∆的面积为14平方厘米,那么四边形BEGF 的面积是___________平方厘米.18.已知点A (0,2)、B (4,0),点C 、D 分别在直线1=x 与2=x 上,且CD x //轴,则AC+CD+DB 的最小值为 .19.如图正方形ABCD,E 、F 分别为AB 、BC 上的点,连AF 、CE 相交于一点G ,若72==∆∆AB C AB F S S BC BF ,54=BA BE ,⊿ABF 的面积等于5,⊿BCE 的面积等于14,求四边形EBFG 的面积20.把图一的矩形纸片ABCD 折叠,B 、C 两点恰好重合落在AD 边上的点P 处(如图二)已知∠MPN=090,PM=3,PN=4,那么矩形纸片ABCD 的面积为 。

初中教师教学基本功数学试卷答案

初中教师教学基本功数学试卷答案

初中教师教学基本功数学试卷答案统一笔试 100分(时间:150分钟)第一部分:公共部分(约10分)第二部分:课程知识(15分)1.填空题(每空2分,共6分)数学教育既要使学生掌握现代生活和学习中所需要的数学知识与技能,更要发挥数学在培养人的思维能力和创新能力方面的不可替代的作用.2.选择题(3分)推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式.推理一般包括(B)A. 归纳和类比B. 合情推理和演绎推理C. 经验和直觉D. 猜想和验证3. 简答题(6分)在教学中,如何处理好学生主体地位和教师主导作用的关系?答:好的教学活动,应是学生主体地位和教师主导作用的和谐统一。

一方面,学生主体地位的真正落实,依赖于教师主导作用的有效发挥;另一方面,有效发挥教师主导作用的标志,是学生能够真正成为学习的主体,得到全面的发展。

--------------------------------------(4分)实行启发式教学有助于落实学生的主体地位和发挥教师的主导作用。

教师富有启发性的讲授;创设情境、设计问题,引导学生自主探索、合作交流;组织学生操作实验、观察现象、提出猜想、推理论证等,都能有效地启发学生的思考,使学生成为学习的主体,逐步学会学习。

--------------------------------------(6分)第三部分:学科知识(20分)1. 填空题(每空1分,共3分)关于平面几何和立体几何,在初中阶段,学生学习了在同一平面内,两条直线的位置关系;在高中阶段,学生还将学习直线和平面的位置关系,以及平面和平面的位置关系等.2. 选择题(2分)D A BEF C PG 如果x 、y 满足0|3|2=-++y x ,那么y x 的值为( C ) A.81- B. 81 C. 8- D. 8 3. 作图题(3分)如图,已知△ABC .求作:∠ABC 的平分线BE ,与AC 相交于点E .(要求:保留作图的痕迹,不要求写出作法)解:图略--------------------------------3分4. 画图题(3分)在梯形ABCD 中,AD // BC ,AB = DC =AD ,∠C =60°,AE ⊥BD 于点E , AE =1cm ,试画出这个图形.解:图略--------------------------------3分5. 简答题(4分)在第一、第二学段,学生已经学习了代数的许多知识.请写出两个在第三学段继续学习的具体知识,并简述这两个知识在不同学段的具体要求有何不同.解:每个知识点各2分,共4分6. 解答题(5分)如图,在菱形ABCD 和菱形BEFG 中,点A 、B 、E 在同一条直线上,P 是线段DF 的中点,连结PG 、PC ,∠ABC =∠BEF=60°.(1)求证:PG ⊥PC ; (2)求PG PC的值. 解:(1)延长GP 交DC 于M ,证明△DMP .≌△FGP .得MP=GP ----------------------------2分 证出△CMG 是等腰三角形,证得PG ⊥PC -------------4分(2)3------------------------------5分第四部分:教育教学知识与技能(15分)(一)填空题(每空2分,共10分)1.教学过程的六个基本原则有:(1)理论联系实际 ;(2)科学性与思想性相统一;(3) 传授知识与发展能力相统一 ;(4) 直观性与抽象性相结合 ;(5)系统性与循序渐进相统一 ; (6) 统一要求与因材施教相统一.2.教学过程的特点:(1)双边性;(2)认知性;(3)发展性 .(二)简答题(5分)简述建构主义学习理论.答:建构主义学习观的基本内容是:学习是学习者主动建构内部心理结构的过程。

初中数学教师教学基本功测试卷

初中数学教师教学基本功测试卷

初中教师基本功数学学科笔试试卷学校姓名成绩第一部分公共部分(10分)选择题(共10题,每题1分)1.《中华人民共和国教师法》规定:教师应当履行“关心、爱护全体学生,尊重学生人格的义务”。

在教育教学中,尊重学生的人格,要求教师()①因材施教②不得歧视学生③不得对学生实施体罚④不得侵犯学生合法权益A. ①②③B. ①③④C. ①②④D. ②③④2.《国家中长期教育改革和发展规划纲要(2010-2020年)》提出了“二十字”工作方针,其中()是教育改革发展的核心任务。

A. 育人为本B. 改革创新C. 促进公平D. 提高质量3.《周礼》中的“六艺”是西周贵族教育中的六个学科,“六艺”是指()①礼、乐②《诗》《书》③书、数④《易》《春秋》⑤射、御⑥《礼》《乐》A.①②③B.③⑤⑥C.①③⑤D.②③⑥4.文艺复兴时期,被誉为美术三杰的是()①莎士比亚②拉伯雷③达〃芬奇④薄伽丘⑤拉斐尔⑥米开朗琪罗A.①②③B.④⑤⑥C.③⑤⑥D.②③⑥5.同样写离别,所散发出来的情调有明显区别的两首诗词是()A.崔颢的《黄鹤楼》和辛弃疾的《永遇乐》(千古江山)B.杜甫的《登高》和李清照的《声声慢》(寻寻觅觅)C.李白的《将进酒》和苏轼的《念奴娇》(大江东去)D.王勃的《送杜少府之任蜀州》和柳永的《雨霖铃》6.“光电效应”的提出者是()A. 牛顿B. 爱因斯坦C. 爱迪生D. 王选7.在光合作用过程中,绿色植物需要的原料是()A.二氧化碳和水B.一氧化碳和水C.一氧化碳和二氧化碳D.氧气和水8.下列说法中不正确的是()A.水体易遭污染,是由于水是很多物质的良好溶剂B.水中只能溶解少量的酒精C.用汽油清理衣物上的油渍比用水更有效D.水是人体内运送营养物质的重要载体9.朗朗是享誉世界的青年()A.指挥家B.钢琴演奏家C.作曲家D.音乐评论家10. 被授予“中国人民艺术家”的称号的()是我国20实际著名的画家和书法篆刻家A.张大千B.徐悲鸿C.齐白石D.范增第二部分课程知识(15分)一、选择题(2分)1.推理一般包括合情推理和演绎推理。

初中教师教学基本功数学试卷答案-推荐下载

初中教师教学基本功数学试卷答案-推荐下载

D
D. 8
A
C
P F
G
统一要求与因材施教
B
E
相统一 . 2.教学过程的特点:(1)双边性;(2) 认知性 ;(3) 发展性 . (二)简答题(5 分) 简述建构主义学习理论. 答: 建构主义学习观的基本内容是:学习是学习者主动建构内部心理结构的过
程。即学习的生成过程,是学习者的已有经验与其主动选择的信息相互作用, 主动建构信息的过程。这一过程总是要涉及学生原有的知识经验,并利用这些 经验来理解和建构新知识。建构有两个含义:一是对新信息意义的理解,另一 方面是对原有经验的改组和重建。 第五部分:教育评价知识(10 分)
1
和 平面 的位置关系等.
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
你能帮小明在地图上画出藏宝地的位置吗?请你设计出找出藏宝地的方案。(设计找出 藏宝地的简要步骤,画出示意图)
A B
5. (本小题 12 分) 从甲地到乙地有 A1、A2 两条路线,从乙地到丙地有 B1、B2、B3 三条路线, 从丙地到丁地有 C1、C2 两条路线.一个人任意先了一条从甲地到丁地的路线.求他恰 好选到 B2 路线的概率是多少?
4
6. (本小题 12 分) 将宽为 18cm 的彩色矩形纸带 AMCN 裁剪成一个平行四边形 ABCD(如 图 1).如图 2 是一个三棱柱包装盒,它的底面是边长为 10cm 的正三角形,三个侧面都是 矩形.然后用平行四边形纸带 ABCD 按如图 3 的方式把这个三棱柱包装盒的侧面进行包 贴(要求包贴时没有重叠部分),纸带在侧面缠绕 3 圈,正好将这个三棱柱包装盒的侧面全 部包贴满.求按图 3 方式包贴这个三棱柱包装盒所需的矩形纸带的长度.
C D
B 45°
60°
A
E
3.(本小题10分) 用两种方法求函数 y x 4 4x 2 1 的最值。
3
4.(本小题 10 分)小明在课外读物中看到这样一段文字和一幅图: 下图是寻宝者得到的一幅藏宝地图,荒凉的海岛上没有藏匿宝藏的任何标志,只有 A、B
两块天然巨石。寻宝者从其他文件资料上查到,岛上 A、B 两块巨石的直角坐标分别是 A(2,1)和 B(8,2),藏宝地 P 的坐标是(6,6)。

这些悖论触发了第三次数学危机。
5.课程标准的一个重要支撑理论是建构主义,其代表人物有:
(填两
个)
(二)简答题(共 5 小题,每小题 5 分,计 25 分)
6.大约在公元前 6 世纪至 4 世纪之间,古希腊人遇到了令他们百思不得其解的三大尺规作
图问题,这就是著名的古代几何作图三大难题。请你简述这三大难题分别是什么?
3.今天,世界各国的科学家们都在试探寻找“外星人”,科学家们一次又一次地向宇宙发
射了地球上人类的形象、问候语言、自然音响、世界名曲等信号,尝试与“他们”通话、
建立友谊。数学家曾建议用
作为人类探寻“外星人”并与“外星人”联系
的语言。
4.1900 年前后,在数学的集合论中出现了三个著名悖论,其中最重要的悖论
A
D
N
M
B 图1
A
C
图2
图3
7 (本小题 16 分) 如图,在平面直角坐标系中,已知抛物线 y ax 2 bx c 交 x 轴于
5
A(2,0), B(6,0) 两点,交 y 轴于点 C(0,2 3) .
(1)求此抛物线的解析式;
(2)若此抛物线的对称轴与直线 y 2x 交于点 D,作⊙D 与 x 轴相切,⊙D 交 y 轴于点
(一)填空题(共 5 小题,每小题 3 分,计 15 分) 1.知识与技能、过程方法、情感、态度、价值观。 2.勒奈·笛卡尔。 3.“勾股定理”的图形。 4. 罗素悖论。
7
5.皮亚杰、科恩伯格、斯滕伯格、卡茨、维果斯基。(填两个) (二)简答题(共 5 小题,每小题 5 分,计 25 分) 6.答:(1)将任一个给定的角三等分。(2)立方倍积问题:求作一个正方体的棱长,使这个 正方体的体积是已知正方体体积的二倍。(3)化圆为方问题:求作一个正方形,使它的面积 和已知圆的面积相等。 7.答:化归思想、从特殊到一般思想、建模思想、算法多样化、数形结合思想、方程思 想、极端化思想…… 8.答:(1)激发学生的数学学习兴趣和学习动机;(2)培养学生将问题情境数学化的能 力;(3)养成学生关注情境问题的数学本质和数学特性,用数学的眼光、数学的视角关注问 题、审视世界的思维习惯;(4)增强学生数学应用意识,感受数学与生活的联系。 9.答:(维果斯基的)“最近发展区理论”认为,学生的发展有两种水平:一种是学生的 现有水平,另一种是学生可能的发展水平,两者之间的差距就是最近发展区。所谓“知道 什么”就是学生的“现有水平”,“能够知道什么”就是“学生可能的发展水平”, 从而着 眼于学生的最近发展区,根据学生认知水平,为学生提供带有难度的内容,调动学生的积 极性,发挥其潜能,在教师的引导、同伴的帮助和自己的努力下,超越最近发展区而达到 其困难发展到的水平。 10.答:八上从图形变换角度出发,利用轴对称性,通过图形变换,想象、类比、归纳得 出结论,重点发展学生几何直观能力、合情推理能力;九上是从证明的角度出发,通过演 绎推理得出结论,有相对严密的逻辑体系,重点发展学生的演绎推理能力、逻辑思维能力。
y 的位置,使得△PGA 的面积被直线 AC 分为 1︰2 两部分.
E
D
C
F OA
B
x
(第 7 题图)
6
第Ⅱ卷 三、教学设计(80 分):
对给出的教材,请写出:教材分析、教学目标、重点难点分析、教学过程,板书设计、 媒体使用、设计简要说明,并写出完整教学设计。
参考答案 第Ⅰ卷
一、基础知识(40 分):
初中数学青年教师基本功大赛笔试试卷
(全卷满分 200 分,考试时间:第Ⅰ卷 90 分钟,第Ⅱ卷 120 分钟)
第Ⅰ卷
一、基础知识(40 分):
(一)填空题(共 5 小题,每小题 3 分,计 15 分)1.数学课Fra bibliotek教学的三维目标是



2.法国哲学家、物理学家、数学家、生理学家
被称为解析几何学的创始
人。
二、解题能力(80 分)
2
1.(本小题 10 分)证明定理:斜边和一条直角边对应相等的两个直角三角形全等。
2.(本小题 10 分) 如图,某校一幢教学大楼的顶部竖有一块宣传牌 CD.小明在山坡的坡 脚 A 处测得宣传牌底部 D 的仰角为 60°,沿山坡向上走到 B 处测得宣传牌顶部 C 的 仰角为 45°.已知山坡 AB 的坡度 i=1: 3,AB=12 米,AE=18 米,求这块宣传牌 CD 的高度.(测角器的高度忽略不计,结果精确到 0.1 米.参考数据: 2≈1.414, 3≈1.732)
E、F 两点,求劣弧 EF 的长; (3)设 K 为线段 BO 上一点,点 T 从点 B 出发,先沿 x 轴到达 K 点,再沿 KC 到达 C 点, 若 T 点在 x 轴上运动的速度是它在直线 KC 上运动速度的 2 倍,试确定 K 点的位置,使 T 点按照上述要求到达 C 点所用的时间最短。
(4)P 为此抛物线在第二象限图像上的一点,PG 垂直于 x 轴,垂足为点 G,试确定 P 点
1
7.请你说出几种数学思想方法(至少三种),并就其中一种思想方法举实例说明。
8.简述创设问题情境的目的是什么?
9.爱因斯坦曾说:“大多数教师的提问是浪费时间,那些提问是想了解学生不知道什么, 其实真正的提问艺术是要了解学生知道什么或能够知道什么”。结合你的教学观,谈谈你对 爱因斯坦这段话的理解。
10.“角平分线上的一点到角的两边距离相等”这一结论在苏科版义务教育数学教材八上的 《1.4 线段、角的轴对称性》以及九上的《1.2 直角三角形全等的判定》中都有所出现。请 你结合教学实际,简述课本上八上和九上分别是如何引导学生得到这一结论的,说说它们 之间的区别、联系和这样安排的意义。
相关文档
最新文档