含绝对值不等式的解法

合集下载

绝对值不等式的解法步骤

绝对值不等式的解法步骤

绝对值不等式的解法步骤一、绝对值的定义在开始讨论绝对值不等式的解法步骤之前,首先要了解绝对值的定义。

绝对值是指一个数与零之间的距离,表示为|a|,其中a为实数。

绝对值的定义如下:当a≥0时,|a|=a;当a<0时,|a|=-a。

二、绝对值不等式的基本形式绝对值不等式是指包含绝对值符号的不等式,常见的形式有以下两种:1. |x|<a,表示x与0的距离小于a;2. |x|>a,表示x与0的距离大于a。

三、解绝对值小于形式的不等式1. 当|a|<b时,有两种情况:a) a>0时,解为-b<a<b;b) a<0时,解为空集。

2. 当|a|≤b时,有两种情况:a) a>0时,解为-a≤x≤a;b) a<0时,解为x=0。

四、解绝对值大于形式的不等式1. 当|a|>b时,有两种情况:a) a>0时,解为x<-b或x>b;b) a<0时,解为解为x<-b或x>b。

2. 当|a|≥b时,有两种情况:a) a>0时,解为x≤-b或x≥b;b) a<0时,解为解为x≤-b或x≥b。

五、解绝对值不等式的注意事项在解绝对值不等式时,需要注意以下几点:1. 对于绝对值不等式中的常数a和b,要根据实际情况判断其正负性,以正确确定解的范围。

2. 在解绝对值不等式时,需要根据绝对值的定义,将不等式分解为两个简单的不等式,并分别求解。

3. 在进行不等式的运算过程中,要根据不等式的性质进行合理的变形,确保解的正确性。

4. 在解绝对值不等式时,可以通过画数轴的方式来辅助理解和确定解的范围。

六、绝对值不等式的应用绝对值不等式在实际问题中有着广泛的应用。

例如,在求解含有变量的不等式时,往往需要通过绝对值不等式的知识来确定变量的取值范围。

另外,在求解数列极限、证明不等式等数学问题中,也常常需要运用绝对值不等式的知识。

解绝对值不等式的步骤包括了绝对值的定义、绝对值不等式的基本形式、解绝对值小于形式的不等式、解绝对值大于形式的不等式以及解绝对值不等式的注意事项。

高考数学含绝对值的不等式的解法

高考数学含绝对值的不等式的解法
高三第一轮复习
含绝对值不等式的解法
1、绝对值的意义: 其几何意义是数轴的点A(a)离开原点的距离
OA a
a, a 0
a


0,
a

0
a, a 0
2、含有绝对值不等式的解法: (解绝对值不等式的关键在于去掉绝对值的符号)
(1)定义法; (2)零点分段法:通常适用于含有两个及两个以上的绝
f x gx gx f x gx f x gx f x gx或f x gx
a f x bb a 0 a f x b或 b f x a
3、不等式的解集都要用集合形式表示,不要使用 不等式的形式。
是空的,现在想把所有的货物集中存放在一个仓库里, 如果每吨货物运输一千米需要0.5元运输费,那么最少 要多少运费才行?
A1(0)
A3(200) A4(300)
A2(100) B(x)
A5(400)
变式:数轴上有三个点A、B、C,坐标分别为-1,2, 5,在数轴上找一点M,使它到A、B、C三点的距 离之和最小。
小结:
1、解关于绝对值的不等式,关键是理解绝对值的意 义,掌握其基本类型。
2、解绝对值不等式有时要利用数形结合,利用绝对 值的几何意义,结合数轴解决。
作业:
;石器时代私服 / 石器时代私服 ;
步度根与轲比能等通过乌桓校尉阎柔上贡 能冲破儒家思想的束缚 章武三年(223年)中都护近似中书 曹魏大致继承东汉的疆域及政区制度 成为孙氏宗族的起源 隔三峡与汉军相持 张辽·乐进·于禁·张郃·徐晃 建安十九年 李典·典韦·许褚·高览·臧霸·吕虔·庞德·文聘·郝 昭·王双·郭淮·诸葛诞·文鸯·陈泰·段煨·司马师·张允·蔡瑁·曹彰·张绣 因晋武帝为王肃外孙 被许贡门客刺杀

01绝对值不等式(含经典例题+答案)

01绝对值不等式(含经典例题+答案)

绝对值不等式一、绝对值三角不等式1.定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.2.定理2:如果a,b,c是实数,则|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.二、绝对值不等式的解法(1)|a x+b|≤c⇔-c≤a x+b≤c ;(2)|a x+b|≥c⇔a x+b≥c或a x+b≤-c .3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.二、绝对值不等式的解法(1)|a x+b|≤c⇔-c≤ax+b≤c ;(2)|a x+b|≥c⇔ax+b≥c或ax+b≤-c .3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.1.不等式|a|-|b|≤|a+b|≤|a|+|b|,右侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0且|a|≥|b|;不等式|a|-|b|≤|a-b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|.2.|x-a|+|x-b|≥c表示到数轴上点A(a),B(b)距离之和大于或等于c的所有点,只要在数轴上确定出具有上述特点的点的位置,就可以得出不等式的解.例4:若不等式|x+1|+|x-2|≥a对任意x∈R恒成立,则a的取值范围是________.解:由于|x+1|+|x-2|≥|(x+1)-(x-2)|=3,所以只需a≤3即可.若本题条件变为“∃x∈R使不等式|x+1|+|x-2|<a成立为假命题”,求a的范围.解:由条件知其等价命题为对∀x∈R,|x+1|+|x-2|≥a恒成立,故a≤(|x+1|+|x-2|)min,又|x+1|+|x-2|≥|(x+1)-(x-2)|=3,∴a≤3.例5:不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,则实数a的取值范围是________.解:由绝对值的几何意义知:|x-4|+|x+5|≥9,则log3(|x-4|+|x+5|)≥2所以要使不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,则需a<2.例6:某地街道呈现东——西,南——北向的网络状,相邻街距都为1,两街道相交的点称为格点.若以相互垂直的两条街道为轴建立直角坐标系,现有下述格点(-2,2),(3,1),(3,4),(-2,3),(4,5),(6,6)为报刊零售点,请确定一个格点(除零售点外)________为发行站,使6个零售点沿街道到发行站之间的路程的和最短.解:设格点(x,y)(其中x,y∈Z)为发行站,使6个零售点沿街道到发行站之间的路程的和最短,即使(|x+2|+|y-2|+(|x-3|+|y-1|)+(|x-3|+|y-4|)+(|x+2|+|y-3|)+(|x-4|+|y-5|)+(|x-6|+|y-6|)=[(|x+2|+|x-6|)+(|x+2|+|x-4|)+2|x-3|]+[|y-1|+|y-2|+|y-3|+|y-4|+|y-5|+|y-6|]取得最小值的格点(x,y)(其中x,y∈Z).注意到[(|x+2|+|x-6|)+(|x+2|+|x-4|) +2|x-3|]≥|(x+2)-(x-6)|+|(x+2)-(x-4)|+0=14,当且仅当x=3取等号;|y-1|+|y-2|+|y-3|+|y-4|+|y-5|+|y-6|=(|y-1|+|y-6|)+(|y-2|+|y-5|+(|y-3|+|y-4|)≥|(y-1)-(y-6)|+|(y-2)-(y-5)|+|(y-3)-(y-4)|=9,当且仅当y=3或y=4时取等号.因此,应确定格点(3,3)或(3,4)为发行站.又所求格点不能是零售点,所以应确定格点(3,3)为发行站.1.对绝对值三角不等式定理|a|-|b|≤|a±b|≤|a|+|b|中等号成立的条件要深刻理解,特别是用此定理求函数的最值时.2.该定理可以强化为:||a|-|b||≤|a±b|≤|a|+|b|,它经常用于证明含绝对值的不等式.3.对于求y=|x-a|+|x-b|或y=|x+a|-|x-b|型的最值问题利用绝对值三角不等式更简洁、方便.例7:设函数f(x)=|x-a|+3x,其中a>0.(1)当a=1时,求不等式f(x)≥3x+2的解集;(2)若不等式f(x)≤0的例9:已知关于x的不等式|2x+1|+|x-3|>2a-32恒成立,求实数a的取值范围.y =⎩⎪⎨⎪⎧ -3x +2,x <-12,x +4,-12≤x <3,3x -2,x ≥3,∴当x =-12时,y =|2x +1|+|x -3|取最小值72,∴72>2a -32,即得a <52. 例10:已知f (x )=1+x 2,a ≠b ,求证:|f (a )-f (b )|<|a -b |.解:∵|f (a )-f (b )|=|1+a 2-1+b 2|=|a 2-b 2|1+a 2+1+b 2=|a -b ||a +b |1+a 2+1+b 2, 又|a +b |≤|a |+|b |=a 2+b 2<1+a 2+1+b 2,∴|a +b |1+a 2+1+b 2<1.∵a ≠b ,∴|a -b |>0.∴|f (a )-f (b )|<|a -b |.例11:已知a ,b ∈R 且a ≠0,求证:|a |2|a |≥|a |2-|b |2. 证明:①若|a |>|b |,则左边=|a +b |·|a -b |2|a |=|a +b |·|a -b ||a +b +a -b |≥|a +b |·|a -b ||a +b |+|a -b |=11|a +b |+1|a -b |. ∵1|a +b |≤1|a |-|b |,1|a -b |≤1|a |-|b |,∴1|a +b |+1|a -b |≤2|a |-|b |.∴左边≥|a |-|b |2=右边,∴原不等式成立. ②若|a|=|b|,则a 2=b 2,左边=0=右边,∴原不等式成立.③若|a|<|b|,则左边>0,右边<0,原不等式显然成立.综上可知原不等式成立.证明:|f(x)-f(a)|=|x 2-x +43-a 2+a -43|=|(x -a)(x +a -1)|=|x -a|·|x +a -1|.∵|x -a|<1, ∴|x|-|a|≤|x -a|<1.∴|x|<|a|+1.∴|f(x)-f(a)|=|x -a|·|x +a -1|<|x +a -1|≤|x|+|a|+1<2(|a|+1). 例13:已知函数f (x )=log 2(|x -1|+|x -5|-a ).(1)当a =2时,求函数f (x )的最小值;(2)当函数f (x )的定义域为R 时,求实数a 的取值范围.解:函数的定义域满足|x -1|+|x -5|-a >0,即|x -1|+|x -5|>a .(1)当a =2时,f (x )=log 2(|x -1|+|x -5|-2),设g (x )=|x -1|+|x -5|,则g (x )=|x -1|+|x -5|=⎩⎪⎨⎪⎧ 2x -6,x ≥5,4,1<x <5,6-2x ,x ≤1,g (x )min =4,f (x )min =log 2(4-2)=1.(2)由(1)知,g (x )=|x -1|+|x -5|的最小值为4,|x -1|+|x -5|-a >0,∴a <4.∴a 的取值范围是(-∞,4). x -4|-|x -2|>1.解:(1)f (x )=⎩⎪⎨⎪⎧ -2, x >4,-2x +6, 2≤x ≤4,2, x <2.则函数y =f (x )的图像如图所示.(2)由函数y =f (x )的图像容易求得不等式|x -4|-|x -2|>1的解集为5,2⎛⎫-∞ ⎪⎝⎭。

绝对值不等式的解法课件

绝对值不等式的解法课件
绝对值不等式的解法
绝对值不等式|x|<a 与|x|>a 的解集
不等式
a>0
a=0
a<0
|x|<a
{x|-a<x<a}


|x|>a
{x|x>a或x<-a}{x∈R|x≠0}
R
|ax+b|≤c,|ax+b|≥c(c>0)型不等式的解法 1.|ax+b|≤c⇔ -c≤ax+b≤c . 2.|ax+b|≥c⇔ ax+b≥c或ax+b≤-c .
(1)解不等式|x+2|>|x-1|; (2)解不等式|x+1|+|x-1|≥3.
【精彩点拨】 (1)可以两边平方求解,也可以讨论去绝对值符号求解,还 可以用数轴上绝对值的几何意义来求解;(2)可以分类讨论求解,也可以借助数 轴利用绝对值的几何意义求解,还可以左、右两边构建相应函数,画图象求解.
【自主解答】 (1)|x+2|>|x-1|,可化为(x+2)2-(x-1)2>0,即 6x+3>0,
由 5x-x2≤-6,即 x2-5x-6≥0,∴x≥6 或 x≤-1, 所以原不等式的解集为{x|x≤-1 或 2≤x≤3 或 x≥6}.
含参数的绝对值不等式的综合问题
已知函数 f(x)=|x-a|. (1)若不等式 f(x)≤3 的解集为{x|-1≤x≤5},求实数 a 的值; (2)在(1)的条件下,若 f(x)+f(x+5)≥m 对一切实数 x 恒成立,求实数 m 的 取值范围.
1.第(2)问求解的关键是转化为求 f(x)+f(x+5)的最小值,法一是运用分类 讨论思想,利用函数的单调性;法二是利用绝对值不等式的性质(应注意等号成 立的条件).
2.将绝对值不等式与函数以及不等式恒成立交汇、渗透,这是命题的新动 向.解题时应强化函数、数形结合与转化化归思想方法的灵活运用.

绝对值不等式解法

绝对值不等式解法

典例讲解
例1解下列不等式
| 2 x 1 || x 1 | (3) | x 1 | | x 3 | 5 (2) (1) | 2 x 1 | 1
解:(2)原不等式两边平方得: (2x 1) ( x 1)
2
2
平 方 法
整理得: x 2 x 0
2
x 0或x 2
10 5 2 答案:(1) [ 3 , 3 ) (1, 3 ] 1 (2) ( , ) 2
(3) (,7] (2,)
不等式的解集为: (,0) (2,)
分段解不等式问题要点: 段内求交,段与段求并
典例讲解
| x 1 | | x 3 | 5 | 2 x 1 || x 1 | (3) (2) | 2 x 1 | 1 (1)
( x 1) ( x 3) 5 解:(3)当 x 1 ,原不等式可化为: 3 3 x x ,此时解为: 2 2 分 当 1 x 3 ,原不等式可化为: ( x 1) ( x 3) 5 段 4 5 ,此时解为:x无解 法 当 x 3 ,原不等式可化为: ( x 1) ( x 3) 5
典例讲解பைடு நூலகம்
例1解下列不等式
| 2 x 1 || x 1 | (3) | x 1 | | x 3 | 5 (2) (1) | 2 x 1 | 1
解:(1)原不等式可化为: 公 式 法
2 x 1 1或2 x 1 1
x 0或x 1
不等式的解集为: (,0) (1,)
7 7 x ,此时解为:x 2 2
例1解下列不等式
综上所述,不等式的解集为
3 7 ( , ) ( , ) 2 2

含绝对值不等式解法要点归纳

含绝对值不等式解法要点归纳

含绝对值不等式解法要点归纳解含绝对值符号的不等式的基本思想是去掉绝对值符号,使不等式变为不含绝对值符号的一般不等式,而后,其解法就与一般不等式相同.因此,掌握去掉绝对值符号的方法和途径是解题关键.一、含有绝对值不等式的几种去掉绝对值符号的常用方法去掉绝对值符号的方法有很多,其中常用的方法有:1.定义法去掉绝对值符号根据实数绝对的意义,即| x | =(0)(0)x xx x≥⎧⎨-<⎩,有:| x |<c⇔(0)(0)c x c ccφ-<<>⎧⎨≤⎩;| x |>c⇔(0)0(0)(0)x c x c cx cx R c<->>⎧⎪≠=⎨⎪∈<⎩或;2.利用不等式的性质去掉绝对值符号利用不等式的性质转化为| x |<c或| x |>c (c>0)来解.不等式|ax+b|>c (c >0)可化为ax+b>c或ax+b<-c,再由此求出原不等式的解集;不等式|ax+b|<c (c>0)可化为-c<ax+b<c,再由此求出原不等式的解集,对于含绝对值的双向不等式应化为不等式组求解,也可利用结论“a≤| x |≤b⇔a≤x≤b或-b≤x≤-a求解.这是一中典型的转化与化归的数学思想方法.3.平方法去掉绝对值符号.对于两边都含有“单项”绝对值的不等式,利用| x |2= x2可在两边脱去绝对值符号求解,这样解题要比按绝对值定义,讨论脱去绝对值符号解题简捷.解题时还要注意不等式两边变量与参变量的取值范围,如果没有明确不等式两边均为非负数,需要分类讨论,只有不等式两边均为非负数,(式)时,才可以直接两边平方,去掉绝对值符号,尤其是解含参数不等式更必须注意的一点.4.零点分段法去掉绝对值符号.所谓“零点分段法”是指:设数x1,x2,x3,…,xn是分别使含有|x-x1|,|x-x2|,|x-x3|,…,|x-xn|的代数式中相应的绝对值为零,称x1,x2,x3,…,xn 为相应绝对值的零点,零点x1,x2,x3,…,xn将数轴分为n+1段,利用绝对值的意义化去绝对值符号,从而得到代数式在各段上的简化式,从而化为不含绝对值的不等式组来解.即令每一项等于零,得到的值作为讨论的分区点,然后再分区间讨论绝对值不等式,最后应求出解集的并集.“零点分段法”是解含有多个绝对值符号的不等式的常用手段,这种方法主要体现了化归、分类讨论等数学思想方法,它可以把求解条理化,思路直观.5.数形结合法去掉绝对值符号解绝对值不等式有时要利用数形结合,利用绝对值的几何意义,画出数轴,将绝对值转化为数轴上两点的距离求解.数形结合法形象、直观,可以使复杂问题简单化,此解法适用于| x-a|+| x-b |>m或| x-a|+| x-b |<m (m为正常数)类型的不等式.二、几点注意事项1.根据绝对值定义,将| x |<c或| x |>c (c>0)转化为两个不等式组,这两个不等式组的关系是“或”而不是“且”,因而原不等式的解集是这两个不等式组解的并集,而不是交集.2.| x |<c和| x |>c (c>0)的解集公式要牢记,以后可以直接作为公式使用.但要注意的是,这两个公式是在c>0时导出的,当c≤0时,需要另行讨论,不能使用该公式.3.解不等式问题与集合运算有密切联系,在应用集合有关内容处理绝对值不等式的过程中,要注意在不等式组的解集中,对不等式端点值的取舍情况.再有,因为已学习了集合表示法,所以不等式的解集要用集合形式表示,不要使用不等式的形式.4.解含有绝对值的不等式的关键是把含有绝对值的不等式转化为不含绝对值符号的不等式,然后再求解,但这种转化必须是等价转化,尤其是平方法去掉绝对值符号时,一定要注意两边非负这一条件,否则就会扩大或缩小解集的范围.5.要学会灵活运用分类讨论思想、数形结合思想、等价专化与化归思想方法处理绝对值不等式问题.三、典型例题思路点拨例1 关于x的不等式| kx-1|≤5的解集为{x |-3≤x≤2},求k的值.思路点拨:按绝对值定义直接去掉绝对值符号后,由于k的取值不确定,要以k 的不同取值分类处理.解:原不等式可化为-4≤kx ≤6,当k >0时,-k 4≤x ≤k6,依题意,有 ⎪⎪⎩⎪⎪⎨⎧=-=-.26,34k k ⇒⎪⎩⎪⎨⎧==3,34k k ,此时无解. 当k = 0时,显然不满足题意.当k <0时, k 6≤x ≤-k 4,依题意,有⎪⎪⎩⎪⎪⎨⎧-==-.36,24kk ⇒ k =-2. 例2 解不等式| x -1|<| x +a |.思路点拨:由于两边均为非负数,因此可以两边平方去掉绝对值符号. 解:由于| x -1|≥0,| x +a |>0,所以两边平方有| x -1|2<| x +a |2, 即有x 2-2x +1<x 2+2ax +a 2,整理得:(2a +2)x >1-a 2,当2a +2>0,即a >-1时,不等式的解为x >21(1-a); 当2a +2 = 0,即a =-1时,不等式无解;当2a +2<0,即a <1时,不等式的解为x <21(1-a). 例3 若不等式 | x -4|+| 3-x |<a 的解集为空集,求a 的取值范围. 思路点拨一:此不等式左边含有两个绝对值符号,如何去掉绝对值符号呢?可考虑采用“零点分段”,即令每一项等于零,得到的值作为讨论的分区点,然后再分区间讨论绝对值不等式,最后应求出解集的并集.解一:⑴当a ≤0时,不等式 | x -4|+| 3-x |<a 的解集为空集. ⑵当a >0时,先求不等式 | x -4|+| 3-x |<a 有解时a 的取值范围. 令x -4 = 0,得x = 4,令3-x = 0,得x = 3.①当x ≥4时,原不等式 | x -4|+| 3-x |<a 化为:x -4+x -3<a ,即2x -7<a ,解不等式组⎩⎨⎧<-≥.72,4a x x ⇒ 4≤x <27+a ⇒4<27+a , ∴a >1.②当3<x <4时,原不等式 | x -4|+| 3-x |<a 化为:4-x +x -3<a ,解得a >1.③当x ≤3时,原不等式 | x -4|+| 3-x |<a 化为:4-x +3-x <a ,即7-2x <a ,解不等式组⎩⎨⎧<-≤.27,3a x x ⇒ 27a -<x ≤3⇒,27a -<3, ∴a >1.综合①②③可知,当a >1时,原不等式有解,从而当0<a ≤1时,原不等式解集为空集.由⑴、⑵两种情况可知,不等式 | x -4|+| 3-x |<a 的解集为空集,a 的取值范围是a ≤1.思路点拨二:解法一是按去掉绝对值符号的方法求解,这是处理此类问题的一般方法,但运算量大.若仔细观察不等式左边的结构,联想到绝对值| a +b|≤| a |+| b|,便可把问题简化.解二:∵a >| x -4|+| 3-x |≥| x -4+3-x | = 1,∴当a >1时| x -4|+| 3-x |<a 有解,从而当0<a ≤1时,原不等式解集为空集.例4 对任意实数x ,若不等式| x +1|-| x -2 |>k 恒成立,求 k 的取值范围. 思路点拨一:要使| x +1|-| x -2 |>k 对任意x 恒成立,只要| x +1|-| x -2 |的最小值大于k .因| x +1|的几何意义为数轴上点x 到-1的距离,| x -2 |的几何意义为数轴上点x 到2的距离,| x +1|-| x -2 |的几何意义为数轴上点x 到-1与2的距离的差,其最小值可求.解法一:根据绝对值的几何意义,设数x ,-1,2在 数轴上对应的点分别为P 、A 、B ,原不等式即求| PA|-| PB|>k 成立,因为|AB| = 3,即| x +1|-| x -2 |≥-3,故当k <-3时,原不等式恒成立.思路点拨二:如果把不等式的左边用零点分段的方法改写成分段函数,通过画出其图象,从图象观察k 的取值范围. 解法二:令y = | x +1|-| x -2 |,则 y =⎪⎩⎪⎨⎧≥<<---≤-.2.321,121,3x x x x 要使| x +1|-| x -2 |>k 恒成立,从图象可以看出,只要k <-3即可.故k <-3满足题意思.。

带有绝对值的不等式解法

带有绝对值的不等式解法

带有绝对值的不等式解法
带有绝对值的不等式通常需要根据绝对值的性质进行分类讨论,然后根据不同情况分别解出不等式。

以下是带有绝对值的不等式的一般解法步骤:
1. 首先,需要确定绝对值内的表达式的符号。

2. 根据表达式的符号,将不等式分成两种情况进行讨论。

3. 对于每种情况,将绝对值符号去掉,并解出不等式。

4. 最后,将两种情况下的解集合并起来,得到最终的解集。

以下是一些常见的带有绝对值的不等式的解法示例:
1. 绝对值不等式:|x|<a(其中a为正数)
当x\ge0时,|x|=x,则原不等式可化为x<a。

当x<0时,|x|=-x,则原不等式可化为-x<a,即x>-a。

因此,不等式的解集为-a<x<a。

2. 绝对值不等式:|x|>a(其中a为正数)
当x\ge0时,|x|=x,则原不等式可化为x>a。

当x<0时,|x|=-x,则原不等式可化为-x>a,即x<-a。

因此,不等式的解集为x<-a或x>a。

3. 绝对值不等式:|x-a|<b(其中a、b为常数)
当x\ge a时,|x-a|=x-a,则原不等式可化为x-a<b,即x<a+b。

当x<a时,|x-a|=a-x,则原不等式可化为a-x<b,即x>a-b。

因此,不等式的解集为a-b<x<a+b。

需要注意的是,对于带有绝对值的不等式,解集可能包含零值,也可能不包含零值,具体情况需要根据不等式的具体形式进行讨论。

1。

含绝对值不等式

含绝对值不等式
f ( x) g( x) f ( x) g( x)或f ( x) g( x)
典型例题
例3、解不等法: (1)零点分段法;(通性通法) (2)几何意义法; (3)函数图象法.
典型例题
xa 例4、已知不等式 x 3 的解集为A. 2 (1)若A= 求实数a 的取值范围;
f ( x) a (a 0) a f ( x) a; f ( x) a (a 0) f ( x) a或f ( x) a
f ( x ) g( x ) f 2 ( x ) g 2 ( x )
3、零点分段法:如 ax b cx d k
若ab 0, 则 a b a b , a b a b
二、含绝对值不等式的解法: 1、等价转化法: 2、平方法:
f ( x) a (a 0) a f ( x) a; f ( x) a (a 0) f ( x) a或f ( x) a
【思维点拨】 1、需分别证明充分性和心要性; 2、通过分类讨论利用结论:
若ab 0, 则 a b a b , a b a b
若ab 0, 则 a b a b , a b a b
典型例题
例2、解不等式:
1 x 2x 2
2
【思维点拨】 本题有多种解法: (1)定义法; (2)等价转化法; (3)函数图象法. 注意: f ( x) g( x) g( x) f ( x) g( x);
高中数学第六章《不等式》 第 5 课
含绝对值不等式
问题:
a>b是a2>b2的什么条件? 答案:既非充分又非必要条件.
知识梳理:
一、含绝对值不等式的证明:

含绝对值的不等式解法

含绝对值的不等式解法


空集是任何集合的子集。也就是说,对于任何一个 集合,有A 真子集:对于两个集合A和B,如果AB,并且AB, 就说集合A是集合B的真子集,记作
A 刭B(或B A)
B
A
空集是任何非空集合的真子集。
对于集合A,B,C,如果AB,BC,那么AC 对于集合A,B,C,如果AB,BC,那么AC
一 集合
集合
子集、全集、补集 含绝对值的不等式解法
1.1 集合
定义:某些指定的对象集在一起就成为一个集合。
例:“太平洋,大西洋,印度洋,北冰洋”组成一
个集合。 集合表示方法:
大括号表示:{太平洋,大西洋,印度洋,北冰洋}
大写拉丁字母表示:A={太平洋,大西洋,
印度洋,北冰洋}
常用的数集及其记法
空集:不含任何元素的集合,记作
为了形象,常常用一条封闭曲线 的内部表示一个集合 。 A
练习:
1.用符号∈或填空:
(1)若A={x|x2=x},则-1____A;
(2)若B={x|x2+x-6=0},则3____B;
(3)若C={x∈N|1≤x≤10},则8____C; (4)若D={x∈Z|-2<x<3},则1.5____D.
(3)|3x|<12;
(5)|x-2/3|<1/3;
(4) |x+4|>9;
(6)|x/2+1|≥2.
Answer: (1){x|-5<x<5} (3){x|-4<x<4}
(5){x|1/3<x<1}
本页仅供参考
表示为
{-1,1}
注:集合的元素有2个。
含有有限个元素的集合叫做有限集。

含绝对值不等式的解法

含绝对值不等式的解法

4.重要绝对值不等式 ||a|-|b||≤|ab|≤|a|+|b|. 使用时(特别是求最值)要注意等号成立的条件, 即: |a+b|=|a|+|b|ab≥0; |a-b|=|a|+|b|ab≤0; |a|-|b|=|a+b|b(a+b)≤0; |a|-|b|=|a-b|b(a-b)≥0. 注: |a|-|b|=|a+b||a|=|a+b|+|b| |(a+b)-b|=|a+b|+|b| b(a+b)≤0. 同理可得 |a|-|b|=|a-b|b(a-b)≥0.
典型例题 2 解不等式 ||x+3|-|x-3||>3.
解法一 零点分区间讨论 原不等式等价于: x<-3, -3≤x≤3, x>3, |-x-3+x-3|>3, 或 |x+3+x-3|>3, 或 |x+3-x+3|>3. 3 <x≤3 或 x>3. 即 x<-3 或 -3≤x<- 3 或 2 2 3 3 ∴x<- 2 或 x> 2 . 3 3 ∴原不等式的解集为 (-∞, - 2 )∪( 2 , +∞). 解法二 两边平方 原不等式等价于 (|x+3|-|x-3|)2>9. 即 2x2+9>2|x2-9|( 2x2+9)2>(2|x2-9|)2. 3 3 2 即 4x -9>0. ∴x<- 2 或 x> 2 . 3 3 ∴原不等式的解集为 (-∞, - 2 )∪( 2 , +∞).
备选题 4 已知函数 f(x)=x3+ax+b 定义在区间 [-1, 1] 上, 且 f(0)=f(1), 又 P(x1, y1), Q(x2, y2) 是其图象上任意两点(x1x2). (1)设直线 PQ 的斜率为k, 求证: |k|<2; (2)若 0≤x1<x2≤1, 求证: |y1-y2|<1. 解: (1)∵f(0)=f(1), ∴b=1+a+b. ∴a=-1. ∴f(x)=x3-x+b. y 2- y 1 1 则 k= x -x = x -x [(x23-x2+b)-(x13-x1+b)] 2 1 2 1 1 = x -x [(x23-x13)-(x2-x1)] =x22+x1x2+x12-1. 2 1 ∵x1, x2[-1, 1] 且 x1x2, ∴0<x22+x1x2+x12<3. ∴-1<x22+x1x2+x12-1<2. ∴|x22+x1x2+x12-1|<2. 即 |k|<2. (2)∵0≤x1<x2≤1, ∴由(1)知 |y2-y1|<2|x2-x1|=2(x2-x1). ① 又 |y2-y1|=|f(x1)-f(x2)|=|f(x1)-f(0)+f(1)-f(x2)| ≤|f(x1)-f(0)|+|f(1)-f(x2)|<2|x1-0|+2|1-x2|=2(x1-x2)+2

高中数学绝对值不等式的解法 PPT课件 图文

高中数学绝对值不等式的解法 PPT课件 图文
绝对值不等式的解法
一、知识联系
1、绝对值的定义 x ,x>0
|x|= 0 ,x=0 -x ,x<0
2、绝对值的几何意义 |x|
x
0
|x-x1|
x
x1
3、函数y=|x|的图象
x ,x>0
y=|x|= 0 ,x=0
y
-x ,x<0
1
-1 o 1
x
1
二、探索解法
2
探索:不等式|x|<1的解集。
3 4
y=|x|的图象位于函数y=1的图象下方的部分对
应的x的取值范围。
y
所以,不等式|x|<1的 解集为{x|-1<x<1}
1
y=1
-1 o 1
x



-c
0
c
题型1: 如果 c 是正数,那么
① x c x 2 c 2 c x c
② x c x 2 c 2 x c ,或 x c
【解】 (1)问题可转化为对一切x∈R恒有 a<f(x)⇔a<f(x)min, ∵f(x)=|x-3|+|x+2|≥|(x-3)-(x+2)|=5, 即f(x)min=5,∴a<5.
(2)问题可转化为a>f(x)的某些值,由题意a>f(x)min, 同上得a>5.
(3)问题可转化为对一切x∈R恒有 a≤f(x)⇔a≤f(x)min,可知a≤5.
(1)利用绝对值不等式的几何意义求解,体现数形结合思想, 理解绝对值的几何意义,给绝对值不等式以准确的几何解释. (2)以绝对值的零点为分界点,将数轴分为几个区间,利用“零 点分段法”求解,体现分类讨论的思想.确定各个绝对值符号 内多项式的_正__、__负__性,进而去掉绝对值符号. (3)通过构造函数,利用函数的图象求解,体现了函数与方程 的思想.正确求出函数的_零__点__并画出函数图象(有时需要考查 函数的增减性)是关键.

绝对值不等式公式有哪些该如何解

绝对值不等式公式有哪些该如何解

绝对值不等式公式有哪些该如何解
绝对值不等式是数学中一个重要的知识点,同时也是考试中时常出现的考点。

下面是由编辑为大家整理的“绝对值不等式公式有哪些该如何解”,仅供参考,欢迎大家阅读本文。

绝对值不等式公式
||a|−|b||≤|a±b|≤|a|+|b|;
|ab|=|a||b|,|a/b|=|a|/|b|(b≠0);
|a|<|b| 可推出|b|>|a|;
3、∥a|−Ib∥≤la+b|≤la|+lb|当且仅当ab≤0时左边等号成立,ab≥0时右边等号成立;
4、|a−b|≤|a|+|−b|=|a|+|−1|∗|b|=|a|+|b|
怎样解绝对值不等式
解绝对值不等式的基本方法是去掉绝对值符号
1、平方,比如,|x|=3,可化为x^2=9,绝对值符号没有了;
2、讨论,即x≥0时,|x|=x;x<0时,|x|=-x,绝对值符号也没有了,令绝对值中的式子等于0,分出x的段,然后根据每段讨论得出的x值,取交集,综上所述即可。

含绝对值的不等式及其解法

含绝对值的不等式及其解法

含绝对值的不等式及其解法一.知识要点:1.绝对值不等式的类型及解法(1)b x f a R b a b x f a <<⇔∈<<+)(,()(或a x f b -<<-)((2))()()()()()(x g x f x g x f x g x f -<>⇔>或 (3))()()()()(x g x f x g x g x f <<-⇔<(4)[][]0)()()()()()()()(22<-⋅+⇔<⇔<x g x f x g x f x g x f x g x f(5)含多个绝对值符号的不等式——采用零点分段法来求解。

2.绝对值的几何意义:(1)x ——表示数轴上的动点x 到原点的距离.(2)b x a x -+-——表示数轴上的动点x 到两定点a 与b 的距离之和,且b x a x -+-b a -≥(3)b x a x ---——表示数轴上的动点x 到两定点a 与b 的距离之差,且≤--b a b x a x ---≤b a -3.绝对值的性质(1)b a ab ⋅=,(2))0(≠=b b a b a ,(3)b a b a b a +≤+≤-当且仅当o ab ≥时右“=”成立,0≤ab 左“=”成立。

(4)b a b a b a +≤-≤-当且仅当0≤ab 时右“=”成立, o ab ≥左“=”成立。

练习题:1. 不等式243<-x 的整数解的个数为( )A . 0B . 1C . 2D .大于22. 若两实数y x ,满足0<xy ,那么总有( ) A y x y x -<+ B y x y x ->+ C y x y x -<-D x y y x -<+3. 已知0,<+>b a b a ,那么( )A . b a >B . b a 11>C . b a <D . ba 11< 4. 不等式13-<-x x 的解是( )A . 52<<xB . 36≥xC . 2>xD . 32≤<x5. 已知,b c a <-且,0≠abc 则( )A . c b a +<B . b c a ->C . c b a +<D . c b a ->6. 不等式652>-x x 的解集为( ). A 1{-<x x 或}6>x B . }32{<<x x C . ∅ D . 1{-<x x 或32<<x 或}6>x7. 若1lg lg ≤-b a ,那么( )A . b a 100≤<B . a b 100≤<C . b a 100≤<或a b 100≤<D .b a b 1010≤≤ 8. 函数22--=x x y 的定义域是( )A . ]2,2[-B . ),2[]2,(+∞--∞C . ),1[]1,(+∞--∞D . ),2[+∞9. 使不等式a x x <-+-34有解的条件是( )A . 1>aB . 1101<<aC . 101<aD . 1010<<a 10. )(13)(R x x x f ∈+=,当b x <-1有),,(4)(+∈<-R b a a x f 则b a ,满足( ) A . 3a b ≤ B . 3b a ≤ C . 3a b > D . 3b a ≥ 11. 不等式b a b a +≤+取等号的条件是 , b a b a +≤-取等号的条件 .12. 不等式x x ->+512的解集是13. 如果不等式21<x 和31>x 同时成立,则x 的取值范围是 14. 不等式xx x x ->-11的解是 13.函数xx x y -+=0)21(的定义域是 14.不等式331≤-<x 的解集是 15.解下列不等式:(1)xx 1<(2)321>++-x x16.解不等式:x x +<-1log 2log 4141。

解绝对值不等式的方法总结

解绝对值不等式的方法总结

解绝对值不等式的方法总结绝对值不等式是数学中一类重要的问题,它涉及到不等式的解法和绝对值函数的性质。

下面是解绝对值不等式的方法总结:一、定义法绝对值的定义是:|a|=a(a>0),|a|=-a(a<0),|a|=0(a=0)。

利用这个定义,我们可以将绝对值不等式转化为普通不等式,然后求解。

例如,解不等式|x-3|>4,我们可以转化为解不等式x-3>4或x-3<=-4,即x>7或x<=1。

二、实数性质法利用实数的性质,我们知道对于任意实数a和b,有|a+b|<=|a|+|b|。

这个性质可以用来解一些含有绝对值的三角不等式。

例如,解不等式|x+y|<=|x|+|y|,我们可以令x=a, y=b,得到|a+b|<=|a|+|b|,即-|a+b|<=|a|-|b|<=|a+b|,从而得到-1<=cosθ<=1,其中θ为a和b的夹角。

三、平方法对于形如|ax+b|>c的不等式,我们可以利用平方法将其转化为普通不等式。

具体地,我们先将ax+b的绝对值平方,得到a^2x^2+2abx+b^2>c^2,然后解这个普通不等式。

例如,解不等式|x+3|>4,我们先将x+3的绝对值平方,得到x^2+6x+9>16,即x^2+6x-7>0。

然后解这个不等式得到x<1或x>7。

四、零点分段法对于形如|f(x)|>g(x)的不等式,我们可以先令f(x)=0,找到可能使不等式成立的x的取值范围,然后在这些范围内分别讨论g(x)的符号情况,从而得到不等式的解集。

例如,解不等式|x^2-3x+2|>x+1,我们先令x^2-3x+2=0,得到x=1或x=2。

在区间(-∞,1)内,f(x)=-x^2+3x-2<0,所以在这个区间内不等式不成立。

在区间[1,2)内,f(x)=-x^2+3x-2>0且g(x)=x+1<0,所以在这个区间内不等式成立。

含绝对值不等式的解法规律

含绝对值不等式的解法规律

含绝对值不等式的解法规律含有绝对值的不等式解法可以分为以下三种情况:
情况一:绝对值函数的值大于等于零,即|a|≥0。

对于这种情况,不等式的解集就是所有满足条件的实数集,即解集为全体实数集R。

情况二:绝对值函数的值与另一函数的值比较,即|a|≤b或|a|≥b。

对于这种情况,我们需要将不等式转化为一个或多个不含绝对值的不等式。

具体的转化方法如下:
对于|a|≤b这种形式的不等式,可分为a≤b和-a≤b两种情况,即:
*当a≥0时,原不等式转化为a≤b;
*当a<0时,原不等式转化为-a≤b。

对于|a|≥b这种形式的不等式,可分为a≥b和-a≥b两种情况,即:
*当a≥0时,原不等式转化为a≥b;
*当a<0时,原不等式转化为-a≥b。

情况三:绝对值函数的值与另两个函数的值比较,即|a-b|≤c 或|a-b|≥c。

对于这种情况,我们同样需要将不等式转化为一个或多个不含绝对值的不等式。

具体的转化方法如下:
对于|a-b|≤c这种形式的不等式,可分为a-b≤c和b-a≤c两种情况,即:
*当a≥b时,原不等式转化为a≤b+c;
*当a<b时,原不等式转化为b-a≤c,即a-b≥-c。

对于|a-b|≥c这种形式的不等式,可分为a-b≥c和b-a≥c两种情况,即:
*当a≥b时,原不等式转化为a≥b+c;
*当a<b时,原不等式转化为b-a≥c,即a-b≤-c。

需要注意的是,在进行不等式的转化时,必须考虑绝对值内部的数值正负情况,以找到正确的不等式形式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例3、解不等式x2 ≥x
x 2 ≥ x (x 2)2 ≥ x2 (x 2)2 x2 ≥ 0 (x 2 x)(x 2 x) ≥ 0 2(2x 2) ≥ 0 x ≥ -1
不等式解集为 x x≥-1
推广 fx g x fx 2 g x 2
题型三:不等式 的解集|f(x)|> |g(x)| 练习3 解不等式 |x2| |x1|
即x13, x或 x40
-1 0
34
原不等式{x的 |1 解 x集 0, 或 3是 x4}.
题型二:不等式n<| ax + b | <m (m>n>0) 的解集
例2 解不等式 3<|3-2x|≤5 .
解法2:3 | 3 2x | 5 3|2x3|5
32 x 35 , 或 5 2 x 3 3 3 x 4 , 或 1 x 0 .
题型:不等式|x|<a与|x|>a (a>0)的解集
练习1 (1) 3x1x2 ; (2) 3x12x
2.解不等式 :|3x-1|>x+3.
{x|x1或x2} 2
练 习 解 不 等 式 |x 2 3 x 4 | x 1 .
解 1 : 原 不 等 式 x x 2 2 3 3 x x 4 4 x 0 1 或 x 2 ( x 2 3 x 3 x 4 4 ) 0 x 1 x x 5 4或 或 x x 1 1或 1 1 x x 3 4
含绝对值的不等式解法
复习绝对值的意义:
x X>0 |x|= 0 X=0
- x X<0
代数的意义
一个数的绝对值表示: 与这个数对应的点到 原点的距离,|x|≥0
x2
B
O
|x1| =|OA|
x1
A
X
|x2|=|OB|
几何意义
方程│x│=2的解集? 为{x│x=2或x=-2}
-2 0
2
观察、思考:
不等式│x│<2的解集 为{x│-2 < x < 2 }
零点-1,3把数轴分成了三部分,如上图所示.
【解析】原不等式等价于1<x+1<3或-3 <x+1<-1,
解得0<x<2或-4<x<-2.
解不等式: x1x3
依据: |a|>|b|
a2>b2
解:因为 |x-1| > |x-3|
所以 两边平方可以等价转化为
(x-1)2>(x-3)2
化简整理:x>2
平方法:注意两边都为非负数
题型三:不等式 的解集|f(x)|> |g(x)|
-a-2 0 a2 不等式│x│> 2解集 为{x│x > 2或x<-2 }
-a-2 0 a2
类比归纳:|:||xxx|||<|<<|xx03|15的|<的>的a解a解(解(aa>>00))|||xxx|||>>>0315 的 的的解 解解X>-aa<或x<xa<-a
|x|<-2的解
|x|>-2的解
x 1 , 或 x 5 , 或 1 x 3 , 原 不 等 式 的 解 集 为 { x | x 1 , 或 1 x 3 , 或 x 5 } .
练 习 解 不 等 式 |x 2 3 x 4 | x 1 .
解 2 : 原 不 等 式 x 2 3 x 4 (x 1 ) 或 x 2 3 x 4 x 1
推广 a f ( x ) b a f ( x ) b 或 - b f ( x ) a
题型二:不等式n<| ax + b | <m (m>n>0) 的解集
例2 解不等式 3<|3-2x|≤5 .
解 1 : 3 法 |3 2 x| 5 3|2x3|5
|| 22xx33||53 2x5 32 x3 , 3 或 25x33
式 的 解法
方法二: |x-1|+|x+2|≥5,利用|x-1|=0,|x+2|=0的零点,把 数轴分为三段,然后分段考虑把原不等式转化为不含绝对 值符号的不等式求解(零点分段讨论法)
解:(1)当x>1时,原不等式同解于
(x-x1>)1+(x+2) ≥5 x≥2
a | x | b a x b 或 a x b a x b 或 - b x a(a 0 )
题型:不等式n<| ax + b | <m (m>n>0) 的解集
方法一:等价于 不等式组
方法二:几何意义
| axb|n | axb|m
-m
-n 0 n
m
n a x b m , 或 m a x b n
原不等式{x的 |1 解 x集 0, 或 3是 x4}.
-1 0
34
题型二:不等式n<| ax + b | <m (m>n>0) 的解集
练习 2 解不等式 43x57
当堂训练
1.不等式1<|x+1|<3的解集是
(D)
A.(0,2)
B.(-2,0)∪(2,4)
C.(-4,0)
D.(-4,-2)∪(0,2)
(2)当-2≤x≤1时,原不等式同解于
-2≤ x≤ 1
-(x-1)+(x+2)
≥5
x
(3)当x<-2时,原不等式同解于
x<-2 -(x-1)-(x+2) ≥5
x≤-3
综合上述知不等式的解集为xx≥ 2 或 x≤ 3
题型四:含多个绝对值不等式的解法
方法三: |x-1|+|x+2|≥5通过构造函数,利用函数的
练习:绝对值不等式的解法
解不等式:|x2-3|>2x.
解析:(等价转换法)原不等式
x232x或 x23 2x x22x30或 x22x30
x>3或x<-1或-3<x<1. 故原不等式的解集为{x|x<1或x>3}.
练习:把下列绝对值不等式转 化为同解的非绝对值不等式。
1、|2x-3|<5x 2、|x2-3x-4|>4
(x -2)
-2x-6 (x -2)
-2 1
由图象知不等式的解集为
xx≥ 2或 x≤ 3 -3
2x -2
( 2) xaxbc和 xaxbc 型不等式的解法
①利用绝对值不等式的几何意义 ②零点分区间法 ③构造函数法
同 步 训 练 : 解 不 等 式 x 2 x 3 4
题型四:含多个绝对值不等式的解法
∴原不等式的解集为:{x|-130x5 3或 1x2 3}
例3、解不等式 1<︱3x+4︱≤6
解法二:依绝对值的意义,原不等式等价于: -6≤3x+4<-1 或 1<3x+4 ≤6
解 得 : - 1 3 0 x 5 3 或 1 x 2 3 , ∴原不等式的解集为:{ x | - 1 3 0 x 5 3或 1 x 2 3 } 比较此题的两种解法,解法二比较简单,解法二 去掉绝对值符号的依据是:
x 2 2 x 3 0 或 x 2 4 x 5 0
( x 1 ) ( x 3 ) 0 , 或 ( x 1 ) ( x 5 ) 0
1 x 3 ,或 x 1 ,或 x 5 , 原 不 等 式 的 解 集 为 { x | x 1 , 或 1 x 3 , 或 x 5 } .
如果把|x|>2中的x换成“3x-1”,也就 是 | 3x-1 | >2如何解?
题型一:研究|ax+b|<(>)c型不等式 在 这 里 , 我 们 只 要 把 ax+b 看 作 是
整体就可以了,此时可以得到:
|axb|c caxbc |axb|c axbc或axbc
(c0)
例 1 解 不 等 式 | 2 x 5 | 7 . 解 : 由 原 不 等 式 可 得
fx a ( a 0 ) a fx a ;
推广
f x a ( a 0 ) f x a 或 f x a ;
推广
f x g ( x ) g ( x ) f x g ( x ) ; f x g ( x ) f x g ( x ) 或 f x g ( x ) ;
四、练习
2.解不等式 x9x1
解: x9x1
x 9 2 x 1 2
x5
1
5
9
题 型 : xaxbc和 xaxbc型 不 等 式 的 解 法
题型四:含多个绝对值不等式的解法
例4 怎么解不等式|x-1|+|x+2|≥5 呢?
方法一:利用绝对值的几何意义(体现了数形结 合的思想).
3、| x-1 | > 2( x-3)
4、
x x
x2 x2
5、| 2x+1 |> | x+2 |
例3、解不等式 1<︱3x+4︱≤6
解法一:原不等式可化为:
| 3x 4| 6 |3x 4|> 1
3 x 6 4 3x 4 1或 63x41 x1 3 0 5 3x或 2 3x1
“a”用代数式替换,如何解?
解不等式 | 5x-6 | < 6 – x
思考一:关键是去绝对值符号,能用定义吗?
x X≥0
|x|=
- x X<0
思考二:是否可以转化为熟悉问题求解?
解不等式 | 5x-6 | < 6 – x
5x-6 ≥ 0
5x-6<0
解:
(Ⅰ) 或
(Ⅱ)
5x-6<6-x
-(5x-6)<6-x
解(Ⅰ)得:6/5≤x<2 解(Ⅱ) 得:0<x<6/5
取它们的并集得:(0,2)
解不等式 | 5x-6 | < 6 – x
解: 由绝对值的意义,原不等式转化为: -(6-x)<5x-6<(6-x)
相关文档
最新文档