7.4沸腾传热解析

合集下载

7.4 沸腾传热的模式

7.4 沸腾传热的模式

7.4 沸腾传热的模式液体的汽化(vaporization)可区分为蒸发(evaporation)和沸腾(boiling)两种。

前者指发生在液体表面上的汽化过程,后者则指在液体内部以产生汽泡的形式进行的汽化过程。

就流体运动的动力而言,沸腾过程又有大容器沸腾,又称池沸腾(pool boiling)和管内沸腾(in-tube boiling)两种。

大容器沸腾时流体的运动是由于温差和汽泡的扰动所引起的,而管内沸腾则需外加的压差作用才能维持。

本节通过大容器沸腾的介绍阐明沸腾传热的机理和基本特点,管内沸腾则留待到沸腾传热的影响因素中去介绍。

7.4.1 大容器饱和沸腾的三个区域现在来做一个观察沸腾传热现象的实验。

在盛水的烧杯中置入一根不锈钢细管,通电加热以使其表面上产生汽泡。

烧杯底下的电热器用于将水加热到饱和温度,这样在不锈钢管表面上进行的沸腾称为饱和沸腾(saturated boiling)。

随着电流密度的加大,亦即表面温度与饱和温度的温差Δt = t w - t s(称为过热度)的增加,烧杯中的水与不锈钢管表面之间的热交换会依次出现以下区域(如图7-14所示):图7-14饱和水在水平加热面上沸腾的q~Δt曲线(p = 1.013×105Pa)(1)自然对流区:壁面过热度较小(对于水在一个大气压下的饱和沸腾为Δt < 4℃)时,壁面上没有汽泡产生,传热属于自然对流工况。

(2)核态沸腾区(nucleate boiling):当加热壁面的过热度Δt > 4℃后,壁面上个别地点(称为汽化核心)开始产生汽泡,汽化核心产生的汽泡彼此互不干扰,称孤立汽泡区,其沸腾景象如图7-15a所示。

随着Δt进一步增加,汽化核心增加,汽泡互相影响,并会合成气块及气柱,图景如图7-15b所示。

在这两个区中,汽泡的扰动剧烈,传热系数和热流密度都急剧增大。

由于汽化核心对传热起着决定性影响,这两区的沸腾统称为核态沸腾(或称泡状沸腾)。

传热学7-2

传热学7-2
热管是20世纪60年代发展起来的具有特别高的导 热性能的传热元件。
热管中各个传递环节的热阻分析
设热管的外径 do =25mm, 内径 di =21mm,蒸发段长度 le及冷 凝段长度 lc均为 1m,碳钢导热系数 =43.2 W/(m· K)。热量从热 流体传到冷流体的过程中各个环节的热阻如下: (1). 从热流体到蒸发段外壁的换热热阻 R1 设蒸发段外表面总表面传热系数为 ho,e,则:
D
F
A B E
6/45
三 气泡动力学简介
1 沸腾传热具有较高传热强度的原因 气泡的形成、成长、脱离壁面所引起的各种 扰动而造成的。 要进一步强化沸腾传热就要设法增加加热表 面上产生气泡的地点----汽化核心 2 汽化核心产生地点
加热表面上凹坑、裂穴最有可能成为汽化核心
7/45
3 加热表面上要产生气泡液体必须过热
C
D
F
A B E
t q
5/45
沸腾传热有:
(1)壁温可以控制的情况 (2)热流密度可以控制的情况
C
临界热流密度 qmax
对于依靠控制热流密度来改 变工况的加热设备(电加热器 和核反应堆),一旦热流密度 超过峰值,工况将沿qmax 虚线 跳至稳定膜态沸腾线, t 将 猛升至近1000 º C,可能导致设 备的烧毁,所以qmax亦称烧毁点。 必须严格监视并控制热流密度。
R7
1
d o l c ho,c
在 R1~R7中,属于热管内部的热阻为R2~R6,其和为 6.78 10-3 K/W。一根长2m、直径为25mm的铜棒的热阻是上述钢-水 热管的1500倍。热管的这种特别优良的导热性能又被称为“超导 热性”。
本章作业
7-5、7-8、7-21、7-24、730、7-32

沸腾传热

沸腾传热

沸腾传热开放分类:物理、热量沸腾传热boiling heat transfer热量从壁面传给液体,使液体沸腾汽化的对流传热过程。

化工生产中常用的蒸发器、再沸器和蒸气锅炉,都是通过沸腾传热来产生蒸气的。

类型按液体所处的空间位置,沸腾可以分为:①池内沸腾。

又称大容器内沸腾。

液体处于受热面一侧的较大空间中,依靠汽泡的扰动和自然对流而流动。

如夹套加热釜中液体的沸腾。

②管内沸腾。

液体以一定流速流经加热管时所发生的沸腾现象。

这时所生成的汽泡不能自由上浮,而是与液体混在一起,形成管内汽液两相流。

如蒸发器加热管内溶液的沸腾。

机理沸腾传热与汽泡的产生和脱离密切相关。

汽泡形成的条件是:①液体必须过热;②要有汽化核心。

这些条件是由汽泡与周围液体的力平衡和热平衡所决定的。

根据表面张力,可算出汽泡内的蒸气压力pv 为:式中pe为周围液体的压力,忽略液柱静压时,即为饱和蒸气压ps;σ为汽液界面张力;R为汽泡半径。

由于pv>ps,汽泡内蒸气的饱和温度Tv必然大于与ps对应的饱和温度Ts。

汽泡周围的液体若要汽化进入汽泡,则它的温度Te必须大于或至少等于汽泡内蒸气的饱和温度,即Te≥Tv。

从上式可知,当R=0时,pv将趋于无限大。

因此在一个绝对光滑的平面上是不可能产生汽泡的,必须有汽化核心。

加热表面上的划痕或空穴中含有的气体或蒸气,都可作为汽化核心。

紧贴这些核心的液体汽化后,形成汽泡并逐渐长大,然后脱离表面,接着又有新的汽泡形成。

在汽泡形成与脱离表面时造成液体对壁面的强烈冲击和扰动,所以对同一种液体来说,沸腾传热的传热分系数要比无相变时大得多。

常压下水沸腾时的传热分系数一般为1700~51000W/(m2·K)。

沸腾曲线池内沸腾根据过热度(加热壁面温度TW与液体饱和温度Tm之差,ΔT=TW-Tm)的大小,分为泡核沸腾和膜状沸腾(见图)。

当过热度很小时,传热取决于单相液体的自然对流。

当过热度增大时,汽泡不断在壁面上产生,并在液体中上升和长大,这对液体对流起着显著作用,称为泡核沸腾。

传热-第7章-2

传热-第7章-2

School of Energy and Power Engineering - NCEPU
主讲:魏高升 主讲:
33%
100%
School of Energy and Power Engineering - NCEPU
主讲:魏高升 主讲:
(3)库珀(Cooper)公式(适用于制冷剂): 库珀(Cooper)公式 适用于制冷剂): 公式(
g ( ρl − ρ v ) q w = ηl r γ
1/ 2
c p , l ∆t n Cwl rPrl
3
(2)加热表面状况 :决定汽化核心数目的多少。 决定汽化核心数目的多少。 (a) 壁面材料的种类、热物理性质以及壁面的厚 壁面材料的种类、 度等。如壁面与沸腾液体间的润湿性、加热壁面的吸 度等。如壁面与沸腾液体间的润湿性、 热系数 (λρc)1/2对沸腾换热都有影响; 对沸腾换热都有影响; (b) 加热壁面的粗糙度; 加热壁面的粗糙度 的粗糙度; (c) 加热壁面的氧化、老化和污垢沉积情况等。 加热壁面的氧化、老化和污垢沉积情况等。
School of Energy and Power Engineering - NCEPU
主讲:魏高升 主讲:
7-5 沸腾换热计算公式 1.大容器饱和核态沸腾换热计算公式 大容器饱和核态沸腾换热计算公式
(1)米海耶夫公式(适用于水在105~4×106压 米海耶夫公式(适用于水在10 力下大容器饱和沸腾) 力下大容器饱和沸腾):
School of Energy and Power Engineering - NCEPU
主讲:魏高升 主讲:
(3)不凝结气体:强化传热 不凝结气体: (4)加热表面的大小与方向以及液体自由表面 的高度(即液位)等因素的影响。 的高度(即液位)等因素的影响。 了解影响核态沸腾换热主要因素的主要目的就 了解影响核态沸腾换热主要因素的主要目的就 是为了确定强化或者削弱沸腾换热的方法。 是为了确定强化或者削弱沸腾换热的方法。

沸腾传热过程PPT课件

沸腾传热过程PPT课件
21
第21页/共28页
影响沸腾传热的主要因素
➢ 过冷度的影响:
在大容器沸腾中流体主要部分的温度低于相应压力
下的饱和温度的沸腾称为过冷沸腾。
对于大容器沸腾,除了在核态沸腾起始点附近区域
外,过冷度对沸腾换热的强度并无影响。
在核态沸腾起始段,自然对流的机理还占相当大的
1
1
比例,而自然对流时,h ~ t 4 , t ~ (t w tf )4 , 因而过冷
如:烧开水
4
第4页/共28页
沸腾传热机理
➢ 气泡生成的必要条件: ✓ 液体必须过热,即液体的温度高于相应压强下的饱 和温度ts ; ✓ 加热壁面上应存在有汽化核心。
➢ 传热表面的汽化核心: 传热表面的汽化核心与该表面的粗糙程度、氧化情况
以及材质等诸多因素有关,是一个十分复杂的问题。 一般认为:粗糙表面上微细的凹缝或裂穴最可能成为
Hale Waihona Puke 从附录查得,ts 100 C 时水和水蒸气的物性为:
c pl 4.220 kJ (kg K) l 958.4 kg m3
r 2257 kJ kg
v 0.594 kg m3
17
第17页/共28页
沸腾传热系数计算
58.9 103 N m
l 0.2825 103 kg (m s)
代入式(*)得:
15
第15页/共28页
沸腾传热系数计算
➢ 库珀(Cooper)公式:
h
Cq 0.67
M
0.5 r
prm
(
lg
pr
) 0.55
C 90W0.33 /(m0.66 K)
m 0.12 0.21lg Rp μm
式中:Mr 为液体的分子量; pr对比压力(液体的压力与其临界压力之比; Rp为表面粗糙度。

7.4沸腾传热解析

7.4沸腾传热解析

饱和水蒸汽在长2m,外径19mm的管外凝结, 如气压为0.074bar(绝对),管壁平均温度为2 5℃,求将管横放和竖放时的平均凝结换热系 数及凝结液量。
本章作业
• 7-11、7-17、7-23
T
Tl
Ts
2Ts rv R
R
Rmin
2 Ts rv (tw
ts
)
克拉贝隆方程
式中: — 表面张力,N/m;r — 汽化潜热,J/kg v — 蒸汽密度,kg/m3;tw — 壁面温度,C ts — 对应压力下的饱和温度, C
沸腾分类
饱和沸腾 大空间沸腾
过冷沸腾
管内沸腾 饱和沸腾 过冷沸腾
t ts t ts
基本概念
大空间沸腾:高于饱和温度的热壁面沉浸在具有自由 表面的液体中进行沸腾
特点:蒸气泡自由浮升,进入容器空间 壁面附近的流体运动是由自然对流及气泡的生长和脱离导致的混 合而引起的
管内沸腾:因空间限制,蒸气和液体混合在一起,构 成汽液两相流
(1) 用烧结、钎焊、火焰喷涂、电离沉积等物理与化学手段 在换热表面上形成多孔结构。
(2) 机械加工方法。
一个平底紫铜锅的底部直径为0.3m,由电加热器维 持在118℃。计算使锅中的水沸腾所需的功率。蒸 发速率?临界热流密度?
q
l
r
g
l
v
1 2 C pl t
C
wl
r
Prl
s
3
863 k W
可见, (tw – ts ) , Rmin 同一加热面上,可成为汽 化核心的凹穴数量增加 汽化核心数增加 换热增强
Nucleate boiling
A
D
Transition boiling

7.4 沸腾传热的模式

7.4 沸腾传热的模式

7.4 沸腾传热的模式液体的汽化(vaporization)可区分为蒸发(evaporation)和沸腾(boiling)两种。

前者指发生在液体表面上的汽化过程,后者则指在液体内部以产生汽泡的形式进行的汽化过程。

就流体运动的动力而言,沸腾过程又有大容器沸腾,又称池沸腾(pool boiling)和管内沸腾(in-tube boiling)两种。

大容器沸腾时流体的运动是由于温差和汽泡的扰动所引起的,而管内沸腾则需外加的压差作用才能维持。

本节通过大容器沸腾的介绍阐明沸腾传热的机理和基本特点,管内沸腾则留待到沸腾传热的影响因素中去介绍。

7.4.1 大容器饱和沸腾的三个区域现在来做一个观察沸腾传热现象的实验。

在盛水的烧杯中置入一根不锈钢细管,通电加热以使其表面上产生汽泡。

烧杯底下的电热器用于将水加热到饱和温度,这样在不锈钢管表面上进行的沸腾称为饱和沸腾(saturated boiling)。

随着电流密度的加大,亦即表面温度与饱和温度的温差Δt = t w - t s(称为过热度)的增加,烧杯中的水与不锈钢管表面之间的热交换会依次出现以下区域(如图7-14所示):图7-14饱和水在水平加热面上沸腾的q~Δt曲线(p = 1.013×105Pa)(1)自然对流区:壁面过热度较小(对于水在一个大气压下的饱和沸腾为Δt < 4℃)时,壁面上没有汽泡产生,传热属于自然对流工况。

(2)核态沸腾区(nucleate boiling):当加热壁面的过热度Δt > 4℃后,壁面上个别地点(称为汽化核心)开始产生汽泡,汽化核心产生的汽泡彼此互不干扰,称孤立汽泡区,其沸腾景象如图7-15a所示。

随着Δt进一步增加,汽化核心增加,汽泡互相影响,并会合成气块及气柱,图景如图7-15b所示。

在这两个区中,汽泡的扰动剧烈,传热系数和热流密度都急剧增大。

由于汽化核心对传热起着决定性影响,这两区的沸腾统称为核态沸腾(或称泡状沸腾)。

凝结与沸腾传热知识点总结

凝结与沸腾传热知识点总结

凝结与沸腾传热知识点总结一、凝结传热1. 基本概念凝结传热是指气体或蒸汽在与冷凝器或凝析器接触时,由于在高温高压下从气态转变为液态而释放出的潜热,使得冷却表面获得热量,达到热交换的目的。

凝结传热广泛应用于蒸汽动力设备、空调制冷系统、核电站等领域。

2. 传热机理凝结传热的机理主要包括蒸汽在冷却表面附近冷凝成液态的过程。

蒸汽接触冷却表面后,从气态开始逐渐降温,当温度降至饱和温度时,蒸汽开始冷凝成液态,同时向冷凝器表面释放潜热。

这一过程中,冷凝器表面得到了传热,达到冷却的效果。

3. 影响因素凝结传热的影响因素主要包括冷凝器表面的特性、冷却介质的流动情况、冷凝器的结构设计等。

其中,冷凝器表面的特性对传热性能影响较大,如表面粗糙度、表面材质等都会对凝结传热产生影响。

二、沸腾传热1. 基本概念沸腾传热是指在液体受热时,液体表面发生气泡并从表面蒸发的过程,通过气泡与液体间传热的方式,将热量传递给液体。

沸腾传热广泛应用于锅炉、蒸馏器、冷却设备等领域。

2. 传热机理沸腾传热的机理主要包括液体受热后,液体表面产生气泡并从表面蒸发,同时气泡与液体之间发生传热。

气泡在液体中的形成、生长、脱离和再次形成的过程构成了沸腾传热的基本机理。

3. 影响因素沸腾传热的影响因素主要包括液体的性质、加热表面的特性、液体的流动情况等。

其中,液体的性质对沸腾传热产生较大影响,如液体的表面张力、黏度、温度等都会对沸腾传热产生影响。

三、凝结与沸腾传热的比较凝结传热与沸腾传热在传热机理、应用领域等方面存在显著差异。

凝结传热是气体或蒸汽在冷却表面附近冷凝成液态,释放潜热的过程,适用于蒸汽动力设备、空调制冷系统等领域。

而沸腾传热是液体受热后,液体表面产生气泡并从表面蒸发,通过气泡与液体间传热的方式,适用于锅炉、蒸馏器等领域。

在传热特性上,沸腾传热的传热系数通常比凝结传热高,因此在某些情况下,沸腾传热更适于热交换。

此外,在应用领域上,凝结传热主要应用于蒸汽动力设备、空调制冷系统等领域,而沸腾传热主要应用于锅炉、蒸馏器、冷却设备等领域。

沸腾传热 ppt课件

沸腾传热 ppt课件

影响池式沸腾的因素
系统压力 主流液体的温度(或欠热度):欠热度对传热
强度影响很小,但对qc有显著影响,qc随欠热 度的增加而升高。 加热表面粗糙度:壁表面越粗糙,泡化空穴越 大,使泡核沸腾传热增强; 壁面方位和尺寸。 其他如液-壁接触角和液体中含不凝气体等
控制热流密度加热时大空间 饱和沸腾换热的烧毁点:
临界热流密度
C点--临界热流密度点(CHF):标志着泡核沸 腾的上限。在C点之后由于部分加热表面被整 齐覆盖而使传热减弱。或者可能因为q的稍微 增加而导致壁温骤然增加(近1000℃),将可 能导致壁面烧毁。因此qmax亦称为烧毁点。
两种机理:1、汽泡合并;2、流体动力学不稳 定性(造成的结果都是蒸汽覆盖表面而传热恶 化)
随着q的增加,在 加热面上产生气泡, 但很快在跃离壁面 之前就被冷凝了, 在热边界层引起微 量的对流
当液体温度接近ts 时,气泡在加热面 上长大并跃离壁面, 它们升向自由表面 的过程中,被冷液 体所冷凝
当液体达到饱和温 度时,气泡将不再 在液体中凝结,而 是上升到自由表面
两种临界热流密度点(CHF)工况
TW TW TS TSUBTS Tf
大容积沸腾传热
定义:浸没在池内(大容积内)原来静止 (或流速很低)液体内的受热面上产生的 沸腾。又称池式沸腾。
当池内液体整体温度比系统压力下的饱和温度 低时的沸腾叫欠热沸腾;当池内液体处在与系 统压力相应的饱和温度时的沸腾叫饱和沸腾
饱和沸腾: tf ts,twts
,G是给定的,故易算出通道壁面温度超过液体饱和温度的起
in
➢ 当壁面温度超过饱和温度时,不会立即就形成稳定 的过冷沸腾
在液体的单相对流区与 充分发展的过冷区之间 存在一个“部分沸腾” 区

沸腾传热过程的流体力学特性及其应用

沸腾传热过程的流体力学特性及其应用

沸腾传热过程的流体力学特性及其应用沸腾传热是在高温下,液体内部产生气泡并通过气泡的形成、生长和脱落来传递热量的一种传热方式。

沸腾传热广泛应用于多个领域,包括化工、电力、核工程等。

本文将探讨沸腾传热过程中的流体力学特性以及其在工程中的应用。

一、沸腾传热的基本原理沸腾传热的基本原理是液体受热后产生气泡,在气泡形成与脱落过程中传递热量。

沸腾传热过程中的三个关键阶段是沸腾核形成、沸腾核生长和沸腾核脱落。

沸腾传热的热阻主要集中在液体与气泡的传热界面上。

这种传热方式快速高效,能够在相对较小的温差下实现大量热能的传递。

二、沸腾传热的流体力学特性1. 沸腾区域分布:沸腾过程中存在沸腾区域和非沸腾区域。

沸腾区域通常位于热源附近,而非沸腾区域则是在沸腾区域边界及其外部。

沸腾区域的形状和大小与流体特性以及热源参数有关。

2. 沸腾传热系数:沸腾传热系数是评价沸腾传热效果的重要指标。

沸腾传热系数与沸腾区域的形态、液体和热源的性质以及流体边界层的热传导等因素密切相关。

提高沸腾传热系数可以通过增加沸腾区域的表面积、增加液体活力度以及改变热源参数等途径。

3. 带泡沸腾和无泡沸腾:沸腾传热可以分为带泡沸腾和无泡沸腾两种形式。

带泡沸腾是典型的沸腾现象,气泡在液体中形成、生长和脱落。

无泡沸腾则是在微米尺度下进行,液体在高温下发生相变,形成气体通道进行热传导。

三、沸腾传热的应用1. 化工工程:沸腾传热广泛应用于化工过程中的换热设备,如蒸发器、冷凝器等。

沸腾传热可以提高换热效率,加快传热速度,提高生产效率。

此外,在化工反应器的温度控制中,沸腾传热也有重要应用。

2. 电力工程:电力发电中的锅炉中广泛采用沸腾传热方式。

燃料在锅炉内燃烧产生高温烟气,通过锅炉水管中的沸腾传热将热能转化为蒸汽,用于推动汽轮机发电。

沸腾传热的高效率和可靠性使得电力工程中广泛采用。

3. 核工程:核反应堆中的沸腾传热是核能发电的重要环节。

核燃料的分裂产生大量热能,需要通过冷却剂来控制温度。

实验四传热实验

实验四传热实验

108 7.4 实验四 传热实验在工业生产中传热是一个重要的单元操作,其投资在化工厂设备投资中可占到40%以上。

换热器的种类繁多,各种换热器的性能差异很大,为了合理的选用、操作、设计换热器,应该对它们的性能有充分的了解,除了文献资料外,实验测定换热器的性能是重要的途径之一。

本传热实验是测定套管换热器的传热性能,装置有两根套管换热器,一根为普通套管换热器,另一根为内插螺旋线圈的套管换热器,用水蒸气加热空气,采用计算机数据在线采集和自动控制系统,可实行自动操作或手动操作。

7.4.1 实验目的(1)掌握传热系数K 、传热膜系数1α的测定方法,加深对其概念和影响因素的理解。

(2)学会用作图法或最小二乘法确定关联式mARe Nu =中常数A 、m 的值。

(3)通过对普通套管换热器和强化套管换热器的比较,了解工程上强化传热的措施。

7.4.2 实验原理流体在圆形直管中作强制湍流时,对流给热系数的准数关联式为:n m Pr BRe Nu = (7-4-1)系数B 与指数m 和n 则需由实验加以确定。

对于气体,Pr 基本上不随温度而变,可视为一常数,因此,式(7-4-1)可简化为:m ARe Nu = (7-4-2)式中: λα11d Nu = μρ11u d Re = Re 中流速1u 是通过测孔板流量计的压差求得,空气的密度ρ与粘度μ是测进、出口温度查物性数据或由公式计算得到。

Nu 通过1α求得。

对于一侧为饱和蒸汽加热另一侧空气的情况,由于蒸汽侧对流给热系数2α>>1α,且换热器内管为紫铜管,其热导率很大,管壁很薄,则211d d K α≈ (7-4-3)又 m 211m 122p 2s )(t A d d t KA t t c m Q ∆≈∆=-=α (7-4-4) 由式(7-4-4)可通过空气的质量流量、空气的进、出口温度和蒸汽温度(因为换热器内管为紫铜管,其导热系数很大,且管壁很薄,故认为内、外壁温度与壁面的平均温度近似相等,也等于蒸汽温度)反求出1α,即可得到不同流量下的Nu 和Re ,然后用作图法或线性回归方法(最小二乘法)确定关联式mARe Nu =中常数A 、m 的值。

凝结与沸腾换热

凝结与沸腾换热
随有相变的对流换热。 ③工程中广泛应用的是:冷凝器及蒸发器、再沸器、水冷壁
等。
3
7.1 凝结传热的模式
7.1.1 珠状凝结与膜状凝结
凝结换热:蒸汽与低于饱和温度的壁面接触时,将汽化潜 热释放给固体壁面,并在壁面上形成凝结液的过程。 分类:根据凝结液与壁面浸润能力不同分两种。
珠状凝结与膜状凝结
4
(1)膜状凝结
9
4. 蒸气流速 流速较高时(对于水蒸汽流速大于10m/s),蒸气流对液膜
表面产生模型的粘滞应力。如果蒸气流动与液膜向下的流动同 向时,使液膜拉薄,h增大;反之使h减小。
5. 过热蒸气 把计算式中的潜热改为过热蒸气与饱和液的焓差。
6. 液膜过冷度及温度分布的非线性 如果考虑过冷度及温度分布的实际情况,要用下式 代替计算公式中的r,
定义:指加热壁面沉浸在具有自由表面的液体中所发生的 沸腾称为大容器沸腾。 特点:气泡能自由浮升穿过液体自由面进入容器空间。
(2)管内沸腾 流体的运动需加外加的压差才能维持。
(3)饱和沸腾 定义:液体主体温度达到饱和温度,壁面温度高于饱和温 度所发生的沸腾称为饱和沸腾。 特点 : 随着壁面过热度的增高,出现4个换热规律全然不 同的区域。
32
qmax qmin
横坐标为壁面过热度(对数坐标);纵坐标为热流密度(算术密度)。33
从曲线变化规律可知:随壁面过热度的增大,区段Ⅰ、 Ⅱ、Ⅲ、Ⅳ将整个曲线分成四个特定的换热过程。
1 )单相自然对流段(液面汽 化段)
t4
壁面过热度小,沸腾尚未 开始,换热服从单相自然对流 规律。
34
2 )核态沸腾(饱和沸腾)
所以 Re 4 hl( ts tw )
r
对水平管,用 代r 替上式中的 。 l

沸腾传热过程

沸腾传热过程

C = 90W 0.33 /( m 0.66 ⋅ K )
17
沸腾传热系数计算
的绝对压力下, 例1 在1.013×105Pa的绝对压力下,水在 w=113.9℃的 × 的绝对压力下 水在t ℃ 铂质加热面上作大容器内沸腾, 铂质加热面上作大容器内沸腾,试求单位加热面积的汽 化率。 化率。 壁面过热度△ 从图6-6知处于核态 解: 壁面过热度△t=113.9-100 ℃,从图 知处于核态 沸腾区,因而可按式(6–18)求取 q 。 沸腾区,因而可按式 求取 从附表查得:对于水 铂组合 铂组合: 从附表查得:对于水-铂组合:C wl = 0.013 从附录查得, 时水和水蒸气的物性为: 从附录查得,t s = 100°C 时水和水蒸气的物性为:
St −1 = C wl ⋅ Re 0.33 ⋅ Prls
St = Nu r = Re⋅ Pr C pl ⋅ ∆t
式中, 汽化潜热; 式中,r — 汽化潜热; 饱和液体的比定压热容; Cpl — 饱和液体的比定压热容; g — 重力加速度; 重力加速度; 饱和液体的动力粘度; ηl —饱和液体的动力粘度; 饱和液体的动力粘度 Cwl — 取决于加热表面-液体组合 取决于加热表面- 情况的经验常数; 情况的经验常数; q — 沸腾传热的热流密度; 沸腾传热的热流密度; s — 经验指数,水s = 1,否则 经验指数, 否则s=1.7。 否则 。
C
D F
A B
E

9
沸腾传热机理 管内沸腾传热:
竖直管内强制对流沸腾: 流动类型 • 单相水 • 泡状流 • 块状流 • 环状流 • 单相汽 换热类型 • 单相对流换热 • 过冷沸腾 • 液膜对流沸腾 • 湿蒸汽换热 • 过热蒸汽换热
10

沸腾换热(课堂PPT)

沸腾换热(课堂PPT)

North China Electric Power University
.
44
Intel Pentium 42.8 GHz CPU 无风扇散热器
.
45
笔记本电脑冷却器
.
46
双极晶体管冷却器
.
47
振荡流热管换热器(一)
.
48
振荡流热管换热器(二)
.
49
干燥机余热回收器
铜管内径2 mm, 8弯, 32 组
a) 最小的气泡在壁面上;即:壁面上的凹缝,空隙等是 生成气泡核的最好地点。
b) Δt=tw-ts
R
气泡量增多 h
c) p 、 T s 、 r
R m in 气泡核增多
h
.
20
7-5 大容器沸腾传热实验关联式 7.5.1.大容器饱和核态沸腾换热计算公式 (1)米海耶夫公式(适用于水在105~4×106压力下大容器饱和 沸腾):
A
D
.
8
核态沸腾
.
9
过渡沸腾
.
10
膜态沸腾
.
11
沸腾危机:
(DNB: departure from nucleate boiling)偏离核沸腾点, 安全警界点
.
12
7.4.3 汽泡动力学简介
汽化核心:加热表面上能产生汽泡的地点。 (1)气泡得以存在的力学条件
气泡受到两种力作用: 表面张力σ、压强 p 表面张力σ使气泡表面积缩小 要使气泡长大,气泡内压力需 克服表面张力对外做功
.
22
Cwl 为根据加热面与液体种类选取的经验常数;
.
23
33% 100%
.
24
(3)库珀(Cooper)公式(适用于制冷剂):

沸腾传热过程

沸腾传热过程
Cpl — 饱和液体的比定压热容; g — 重力加速度;
l —饱和液体的动力粘度;
Cwl — 取决于加热表面-液体组合 情况的经验常数;
q — 沸腾传热的热流密度;
s — 经验指数,水s = 1,否则s=1.7。
14
沸腾传热系数计算
表 取决于加热表面-液体组合情况的经验常数Cwl
15
沸该腾式传还可热以系改数写计成算以下便于计算的形式
汽泡的产生和脱离速度几乎不 变,在壁面上形成稳定的汽膜。
E 区:辐射比例小 F区:辐射所占比例越来越大
CDቤተ መጻሕፍቲ ባይዱ
F
AB
E
9
沸腾传热机理
管内沸腾传热:
➢ 竖直管内强制对流沸腾:
流动类型 • 单相水 • 泡状流 • 块状流 • 环状流 • 单相汽
换热类型 • 单相对流换热 • 过冷沸腾 • 液膜对流沸腾 • 湿蒸汽换热 • 过热蒸汽换热
上式可以改写为:
q
l
r
g(l
v
)
1
2
C pl
Cwl
r
t Prls
3
(*)
可见,q ~ t3 ,因此,尽管有时上述计算公式得到
的q与实验值的偏差高达100%,但已知q计算 t 时,
则可以将偏差缩小到33%。这一点在辐射换热种更为 明显。计算时必须谨慎处理热流密度。
16
沸腾传热系数计算
安全工程系列讲座 传热强化新技术及其工程应用
沸腾传热过程
周帼彦 副教授 2011-10-18
提纲
1 沸腾传热过程简介
2 沸腾传热机理 3 沸腾传热系数计算
4
影响沸腾传热的主要因素
5
沸腾传热过程强化

(完整版)《传热学》第7章_相变对流传热

(完整版)《传热学》第7章_相变对流传热
13
第7章 相变对流传热
3. 管内凝结 管内凝结传热情况与蒸气流速有很大关系:当蒸气流速较低时,凝结
液主要聚集在管子底部,蒸气在管子上半部;当蒸气流速比较高时,形成 环状流动,中间蒸气四周凝结液,随着流动进行,凝结液占据整个截面。
4. 蒸气流速 努塞尔理论分析忽略了流速的影响,只适于流速较低的场合。当蒸
16
第7章 相变对流传热
家用空调的冷凝器中已成功应用了二维和 三维的微肋管。 低肋管凝结传热的表面传热系数比光管提 高2-4倍,锯齿管可以提高一个数量级,微 肋管可以提高2-3倍。 及时排液的技术: 两种加快及时排液的方法: 第一:在凝液下流的过程中分段排泄,有效地控制了液 膜的厚度,管表面的沟槽又可以起到减薄液膜厚度的作 用。主要用于立式冷凝器。 第二:右图中的泄流板可以使布置在该板上不 水平管束上的冷凝液体不会集聚到其下的其它 管束上。主要用于卧式冷凝器。
的潜热改为过热蒸气与饱和液的焓差即可。 6. 液膜过冷度及温度分布的非线性
努塞尔理论分析忽略了液膜过冷度的影响,并假设液膜中的温度呈
线性分布,利用r`代替公式中的潜热r即可兼顾以上两个因素。
r r 0.68cp tr tw
上式也可以表示为:
r r1 0.68 Ja
其中,Ja是雅各布数,定义为
竖壁凝结传热壁面的平均表面传热系数可以表示为:
h hl
xc l
ht
1
xc l
hl,ht分别是层流和湍流层的平均表面传热系数, xc是流态转折点的高度,l为壁面的总高度
整个壁面的平均表面传热系数可以通过以下实验关联式计算:
Nu Ga1/3 58 Prw1/ 2
Prw/ Prs
Re 1/ 4 Re 3/ 4 253

7.4沸腾传热

7.4沸腾传热

一个平底紫铜锅的底部直径为0.3m,由电加热器维 持在118℃。计算使锅中的水沸腾所需的功率。蒸 发速率?临界热流密度?
g l v q l r
12
C pl t 2 863 kW / m s C wl r Prl
3 14 v ) v

式中,除了r 和 l 的值由饱和温度 ts 决定外,其余物 性均以平均温度 tm =( tw+ts ) / 2 为定性温度,特 征长度为管子外径d, 如果加热表面为球面,则上式中的 系数0.62改为0.67
(2)考虑热辐射作用
由于模态换热时,壁面温度一般较高,因此,有必要考 虑热辐射换热的影响,它的影响有两部分,一是直接增 加了换热量,另一个是增大了汽膜厚度,从而减少了换 热量。因此,必须综合考虑热辐射效应。 勃洛姆来建议采用如下超越方程来计算:
在室温下,玻璃的导热系数比空气大50倍以上, 因此希望采用双层结构的窗户,在这种结构中, 两层玻璃板之间有空气层。若通过空气层的传 热为导热,可以通过增大间隙厚度δ来提高相 应热阻。但是,这种方法的功效受到一些限制, 因为如果δ超过临界值就会引发对流流动,从 而使热阻降低。 考虑温度分别为22℃和-20℃的垂直玻璃板封 装的常压空气。要是通过空气的传热为导热, 允许的最大间距是多少?



产生沸腾的条件
(2) 液体过热
dW ( pv pl )dV dA
4 3 2 dW 0, dV d R , dA d 4R 3


2 pv pl R
pv pl , pl ps Tv Tl Ts
大容器沸腾换热计算式
1 大容器饱和核态沸腾
饱和水蒸汽在长2m,外径19mm的管外凝结, 如气压为0.074bar(绝对),管壁平均温度为2 5℃,求将管横放和竖放时的平均凝结换热系

沸腾换热的传热特性及机理研究

沸腾换热的传热特性及机理研究

沸腾换热的传热特性及机理研究沸腾换热是一种广泛应用的传热方式,在工业和科技领域有着广泛的应用。

沸腾换热的特点是传热速度快,传热效果好,被广泛应用于工业领域中。

在沸腾换热过程中,液体接触到加热表面时,其表面温度超过了液体的饱和温度,从而形成了蒸汽泡。

这些蒸汽泡会在液体中上升,从而带走了液体中的热量,从而实现了传热。

沸腾换热的这种机制是一种非常重要的传热方式。

除了这种传热方式之外,沸腾换热还具有一些其他的特点。

沸腾换热传热速度很快,远远快于自然对流和强迫对流。

另外,沸腾换热还可以显著的提高传热系数,从而在工业和科技领域中被广泛应用。

在沸腾换热的研究中,还发现了一些有趣的现象。

例如,民族式沸腾,这是沸腾换热的一种反卷性状现象。

另外,在沸腾换热过程中,还存在着一些缺陷区域,这些区域可能会降低传热效果,从而影响工业生产的效率。

因此,在研究沸腾换热的过程中,需要注意到这些现象,以便更好地提高沸腾换热的效率。

此外,在研究沸腾换热的过程中,还需要考虑沸腾换热的机理。

沸腾换热的机理是非常重要的,因为只有了解了沸腾换热的机理,才能更好地提高沸腾换热的效率,并压缩设备成本。

沸腾换热的机理是非常复杂的。

大部分人可能会认为,沸腾换热的机理就是液体接触到加热表面时,蒸汽泡会形成。

但实际上,沸腾换热的机理还涉及到了很多因素,例如液体性质、加热方式、加热强度等。

因此,在研究沸腾换热的机理时,需要充分考虑这些因素的影响。

一些研究表明,在沸腾换热的过程中,液体的表面张力起着非常重要的作用,可以影响沸腾换热的传热效率。

另外,在不同的加热方式下,沸腾换热的机理也是不同的。

例如,在微重力下,沸腾换热的机理就与地球重力下的沸腾换热机理有所不同。

此外,加热强度也是影响沸腾换热机理的另一个重要因素。

在高加热强度下,沸腾换热机理受到的影响可能会超过其他因素的影响。

因此,研究沸腾换热的机理非常重要。

这种传热方式的高效、高速、低成本等特点,使得它在工业生产和科技创新中有着广泛的应用。

传热学《沸腾换热现象》PPT课件-10分钟试讲课件

传热学《沸腾换热现象》PPT课件-10分钟试讲课件

4 )稳定膜态沸腾
从 qmin 开始,随着 t 的上升, 气泡生长速度与跃离速度趋于平衡。 此时,在加热面上形成稳定的蒸汽膜 层,产生的蒸汽有规律地脱离膜层, 致使 t 上升时,热流密度 q 上升, 此阶段称为稳定膜态沸腾。
情况说明:
( 1 )峰值 qmax ,称为临界热流密度,亦称烧毁点。 对于依靠控制热流密度的设备如点加热器、核 反应堆,一旦热流密度超过峰值,工况将沿虚 线调至稳态膜态沸腾,温差将猛的突升1000℃,



研究表明:壁面上狭缝、凹坑、细缝等最有可能成为气化核心, 因为相比于平直面上的液体,这些地方的液体更容易受到加热的 影响,且狭缝更容易残留气体。
本章小结:
(1) 沸腾换热定义及分类 (2) 大容器饱和沸腾曲线 (3) 汽化核心形成
③随着 t 的增大, q 增大,当 t 增 大到一定值时, q 增加到最大值 ,汽 泡扰动剧烈,汽化核心对换热起决定作 用,则称该段为核态沸腾(泡状沸腾)。
其特点:温压小,换热强度大,其终点 的热流密度 q 达最大值 。工业设计中 应用该段。
3)过渡沸腾
从峰值点进一步提高 t ,热流密度 q 减小;当 增大到一定值时,热流密度 减小到 qmin ,这一阶段称为过渡沸腾。该 区段的特点是属于不稳定过程。 原因:汽泡的生长速度大于汽泡跃离加 热面的速度,使汽泡聚集覆盖在加热面 上,形成一层蒸汽膜,而蒸汽排除过程 恶化,致使 q m 下降。
不同的阶段:自然对流、核态沸
腾、过渡沸腾、稳定膜态沸腾, 如图所示:
从曲线变化规律可知:随壁面过热度的增大,区段Ⅰ、 Ⅱ、Ⅲ、Ⅳ将整个曲线分成四个特定的换热过程,其特 性如下: 1)自然对流段(液面汽化段)
壁面过热度小时(图中 t 4 ℃)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

影响核态沸腾的因素主要是过热度和汽化核心数,而
汽化核心数受材料、表面状况、压力等因素的支配,所以
沸腾换热的情况液比较复杂,导致计算公式分歧较大。目 前存在两种计算是,一种是针对某一种液体,另一种是广 泛适用于各种液体的。 为此,书中分别推荐了两个计算式
(1)米海耶夫公式——水
对于水的大容器饱和核态沸腾,教材推荐使用,压力范围: 105~4106 Pa
式中,
r — 汽化潜热; Cpl — 饱和液体的比定压热容 g — 重力加速度
Nu r St Re Pr C pl t
Re q l r
g ( l v )

l —饱和液体的动力粘度
P rl
C pl l
Cwl — 取决于加热表面-液体
组合情况的实验常数(表7-1) q — 沸腾传热的热流密度 s — 经验指数,水s = 1,否则,s=1.7
E
B Natural convection Nucleate boiling Transition boiling Film boiling A D
管内沸腾换热
产生沸腾的条件
(1) 汽化核心
实验表明,通常情况下,沸腾时汽泡只发生在加热面的某些点, 而不是整个加热面上,这些产生气泡的点被称为汽化核心.较普 遍的看法认为,壁面上的凹穴和裂缝易残留气体,是最好的汽 化核心,如图所示。
一个平底紫铜锅的底部直径为0.3m,由电加热器维 持在118℃。计算使锅中的水沸腾所需的功率。蒸 发速率?临界热流密度?
g l v q l r
12
C pl t 2 863 kW / m s C r Pr l wl
l
2 大容器沸腾的临界热流密度
书中推荐使用如下经验公式:
qmax

24
12 rv
g ( l v )1 4
物性值由饱和温度 ts 决定外
3 大容器膜态沸腾的实验关联式
(1)横管的模态沸腾
gr v ( l h 0.62 v d (t w t s )
3 14 v )v
Gr
gtl
3

2
Nu C (Gr Pr)
n
因此,g Nu 换热加强。
5 沸腾表面的结构 沸腾表面上的微小凹坑最容易产生汽化核心,因此,凹坑 多,汽化核心多,换热就会得到强化。近几十年来的强化 沸腾换热的研究主要是增加表面凹坑。目前有两种常用的 手段: (1) 用烧结、钎焊、火焰喷涂、电离沉积等物理与化学手段 在换热表面上形成多孔结构。 (2) 机械加工方法。
沸腾传热
7.4 沸腾传热的模式 7.5 大容器沸腾传热的实验关联式 7.6 沸腾传热的影响因素及其强化
基本概念
定义:
a 沸腾:工质内部形成大量气泡并由液态转换到气态
的一种剧烈的汽化过程
b 沸腾换热:指工质通过气泡运动带走热量,并使壁
面冷却的一种传热方式
沸腾换热也是对流换热的一种,因此,牛顿冷却公式仍然适用
沸腾分类
大空间沸腾 s t t s
过冷沸腾
基本概念
大空间沸腾:高于饱和温度的热壁面沉浸在具有自由 表面的液体中进行沸腾
特点:蒸气泡自由浮升,进入容器空间 壁面附近的流体运动是由自然对流及气泡的生长和脱离导致的混 合而引起的
管内沸腾:因空间限制,蒸气和液体混合在一起,构 成汽液两相流
h
43

43 hc
43 hr
hr
4 (Tw Ts4 )
Tw Ts
影响沸腾换热的因素
沸腾换热是我们学过的换热现象中最复杂的,影响因素也 最多,由于我们只学习了大容器沸腾换热,因此,影响因 素也只针对大容器沸腾换热。 1 不凝结气体 液体中的不凝结气体会使沸腾换热得到某种程度的强化 2 过冷度 只影响过冷沸腾,不影响饱和沸腾,因自然对流换热 时, h (t w t f ) n ,因此,过冷会强化换热。
h 0.533q p
0.7

0.15

q ht
h 0.122t
2.33
p
0.5
(2)罗森诺公式——多种液体
既然沸腾换热也属于对流换热,那么,st = f ( Re, Pr ) 也应该适用。罗森诺正是在这种思路下,通过大量实验得出 了如下实验关联式:
St 1 Cwl Re 0.33 Prls



产生沸腾的条件
(2) 液体过热
dW ( pv pl )dV dA
4 3 2 dW 0, dV d R , dA d 4R 3 2 pv pl , pl ps pv pl R Tv Tl Ts


大容器沸腾换热计算式
1 大容器饱和核态沸腾

式中,除了r 和 l 的值由饱和温度 ts 决定外,其余物 性均以平均温度 tm =( tw+ts ) / 2 为定性温度,特 征长度为管子外径d, 如果加热表面为球面,则上式中的 系数0.62改为0.67
(2)考虑热辐射作用
由于模态换热时,壁面温度一般较高,因此,有必要考 虑热辐射换热的影响,它的影响有两部分,一是直接增 加了换热量,另一个是增大了汽膜厚度,从而减少了换 热量。因此,必须综合考虑热辐射效应。 勃洛姆来建议采用如下超越方程来计算:
特点:沸腾状态随流向不断改变 流体的运动是由外部手段及自然对流和气泡引发的混合而引起的
将同样的两滴水分别滴在温度为120℃和300 ℃的锅面上,试问哪只锅上的水先被烧干, 为什么?
大容器饱和沸腾曲线
C Departure from Nucleate boiling
t t w t s 0
3
液位高度
当传热表面上的液位足够高时, 沸腾换热表面传热系数与液位 高度无关。但当液位降低到一 定值(临界液位)时,表面传热 系数会明显地随液位的降低而 升高。
4 重力加速度 随着航空航天技术的进步,超重力和微重力条件下的传热规律 得到蓬勃发展,但目前还远没到成熟的地步,就现有的成果表 明,从0.1 ~ 1009.8 m/s2 的范围内,g对核态沸腾换热规律没 有影响,但对自然对流换热有影响,由于
相关文档
最新文档