奥林匹克数学竞赛试题
国际奥林匹克数学竞赛试卷
国际奥林匹克数学竞赛试卷一、选择题(每题5分,共30分)1. 已知实数a,b满足a + b = 5,ab = 3,则a^2+b^2的值为()A. 19B. 25C. 8D. 162. 在ABC中,∠ A = 60^∘,AB = 3,AC = 4,则BC的长为()A. √(13)B. √(19)C. √(37)D. 53. 若关于x的方程(2)/(x - 3)= (m)/(x - 3)+ 1无解,则m的值为()A. 2B. 3C. -2D. -34. 一个多边形的内角和是外角和的3倍,则这个多边形是()A. 六边形B. 七边形C. 八边形D. 九边形。
5. 已知二次函数y = ax^2+bx + c(a≠0)的图象经过点( - 1,0),且对称轴为x = 1,则下列结论正确的是()A. a + c = 0B. b^2-4ac>0C. 2a + b = 0D. 4a + c = 06. 若a,b为正整数,且3^a×3^b= 81,则a + b的值为()A. 4B. 5C. 6D. 7二、填空题(每题5分,共30分)1. 分解因式:x^3-2x^2+x=_ 。
2. 若√(x - 1)+√(1 - x)=y + 4,则x - y=_ 。
3. 已知圆锥的底面半径为3,母线长为5,则圆锥的侧面积为_ 。
4. 一次函数y = kx + b(k≠0)的图象经过点( - 2,3),且y随x的增大而减小,则不等式kx + b>3的解集是_ 。
5. 若关于x的一元二次方程x^2+mx + n = 0的两个根分别为x_1=2,x_2= - 3,则m=_ ,n=_ 。
6. 在平面直角坐标系中,点A( - 2,3)关于y轴对称的点A'的坐标为_ 。
三、解答题(每题20分,共40分)1. 已知函数y = (1)/(2)x^2+bx + c的图象经过点A( - 3,6),并且与x轴交于点B( - 1,0)和点C,顶点为P。
奥林匹克数学竞赛试题及答案
奥林匹克数学竞赛试题及答案奥林匹克数学竞赛是一项国际性的数学竞赛,旨在激发中学生对数学的兴趣和热爱。
以下是一份奥林匹克数学竞赛的模拟试题及答案,供参考:奥林匹克数学竞赛模拟试题一、选择题(每题2分,共10分)1. 如果一个数的平方等于它本身,那么这个数是:A. 0B. 1C. -1D. 0或12. 下列哪个数不是有理数?A. πB. √2C. -3D. 1/33. 将一个圆分成三个扇形,每个扇形的圆心角都是120°,那么这三个扇形的面积之和等于:A. 圆的面积B. 圆面积的1/3C. 圆面积的2/3D. 圆面积的1/24. 如果一个三角形的三边长分别为a, b, c,且满足a^2 + b^2 =c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定5. 一个数列的前三项为1, 1, 2,从第四项开始,每一项都是前三项的和。
这个数列的第10项是:A. 144B. 145C. 146D. 147二、填空题(每题3分,共15分)6. 一个数的立方根等于它本身,这个数可以是______。
7. 如果一个直角三角形的两条直角边长分别为3和4,那么它的斜边长是______。
8. 一个圆的半径为5,那么它的周长是______。
9. 一个等差数列的前5项之和为50,如果这个数列的公差为3,那么它的首项是______。
10. 如果一个多项式f(x) = ax^3 + bx^2 + cx + d,其中a, b, c, d是整数,且f(1) = 5,f(-1) = -1,那么a - d的值是______。
三、解答题(每题5分,共20分)11. 证明:对于任意的正整数n,1^3 + 1^2 + 1 + ... + 1/n^3总是大于1/n。
12. 解不等式:2x^2 - 5x + 3 > 0。
13. 一个圆的直径为10,求圆内接正六边形的边长。
14. 给定一个等比数列的前三项分别为2, 6, 18,求这个数列的第20项。
初中奥林匹克数学竞赛试题
初中奥林匹克数学竞赛试题一、选择题(每题3分,共30分)1. 若实数a,b满足 a + 2 +(b - 4)² = 0,则a + b的值为()。
A. - 2B. 2C. 6D. - 6答案:B。
解析:因为绝对值是非负的,一个数的平方也是非负的,要使 a + 2 +(b - 4)² = 0,那么a+2 = 0且b - 4 = 0,解得a=-2,b = 4,所以a + b=2。
2. 把多项式x² - 4x+4分解因式,结果正确的是()。
A. (x - 2)²B. (x+2)²C. (x - 4)²D. (x+4)²答案:A。
解析:x²- 4x + 4符合完全平方公式a²- 2ab+b²=(a - b)²的形式,这里a=x,b = 2,所以分解因式结果为(x - 2)²。
3. 已知一元二次方程x² - 3x - 2 = 0的两个实数根为x1,x2,则(x1 - 1)(x2 - 1)的值是()。
A. - 4B. - 2C. 0D. 2答案:C。
解析:根据韦达定理,对于一元二次方程ax²+bx + c = 0(a≠0),x1+x2=-b/a,x1x2=c/a。
在方程x² - 3x - 2 = 0中,a = 1,b=-3,c = - 2,所以x1+x2 = 3,x1x2=-2。
(x1 - 1)(x2 - 1)=x1x2-(x1+x2)+1=-2 - 3+1 = 0。
4. 一个三角形的三个内角之比为1:2:3,则这个三角形是()。
A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形答案:B。
解析:设三个内角分别为x,2x,3x,因为三角形内角和为180°,所以x+2x+3x = 180°,解得x = 30°,那么三个角分别为30°,60°,90°,所以是直角三角形。
小学奥林匹克数学竞赛试题
小学奥林匹克数学竞赛试题一、选择题1. 下列哪个数字是其他三个数字的规律?A. 2, 4, 6, 8B. 3, 6, 9, 12C. 1, 3, 6, 10D. 5, 10, 17, 262. 一个长方形的长是12厘米,宽是8厘米,那么它的周长是多少厘米?A. 20厘米B. 24厘米C. 40厘米D. 48厘米3. 一个数除以4余1,除以5余2,除以7余3,这个数最小是多少?A. 17B. 23C. 29D. 314. 一个班级有40名学生,其中男生和女生的比例为3:2,那么男生有多少名?A. 24名B. 26名C. 28名D. 30名5. 一个数的平方是81,这个数是多少?A. 9B. 8C. ±9D. ±8二、填空题6. 一个等差数列的前三项分别是2,5,8,那么这个等差数列的第n 项是多少?请用公式表示:_________。
7. 一个圆的直径是10厘米,那么它的半径是_________厘米,面积是_________平方厘米。
8. 一个班级有男生x人,女生y人,已知x+y=40,且x-y=10,那么男生有_________人,女生有_________人。
9. 一个数除以3的余数是1,除以4的余数是2,除于5的余数是3,这个数最小是_________。
10. 一个长方体的长、宽、高分别是a、b、c,那么它的体积是_________。
三、解答题11. 一个班级有45名学生,其中有一部分学生参加了足球队,一部分学生参加了篮球队,还有一部分学生同时参加了两个队。
如果参加足球队的学生有20人,参加篮球队的学生有30人,那么有多少名学生同时参加了两个队?12. 一个数列的前五项是1, 1, 2, 3, 5,根据这个数列的规律,第六项是多少?13. 一个正方形的边长是6厘米,求这个正方形的对角线长度。
14. 一个班级有男生和女生两个小组,男生小组有10人,女生小组有15人。
现在要从男生小组中选出3人,女生小组中选出4人组成一个代表队,有多少种不同的组合方式?15. 一个数的三倍加上5等于17,求这个数的值。
国际奥林匹克数学竞赛试题
选择题:在国际奥林匹克数学竞赛中,参赛者主要需要展现哪方面的能力?A. 文学创作能力B. 音乐演奏能力C. 数学解题能力(正确答案)D. 体育运动能力国际奥林匹克数学竞赛通常几年举办一次?A. 每年B. 每隔一年(正确答案)C. 每隔两年D. 每隔三年下列哪个国家是国际奥林匹克数学竞赛的常客,且多次获得优异成绩?A. 巴西B. 俄罗斯(正确答案)C. 澳大利亚D. 墨西哥国际奥林匹克数学竞赛的试题难度通常被描述为:A. 非常简单B. 适中C. 极具挑战性(正确答案)D. 只为天才设计参加国际奥林匹克数学竞赛的学生通常需要经过怎样的选拔过程?A. 随机抽选B. 学校推荐后直接参赛C. 通过多轮数学竞赛选拔(正确答案)D. 无需选拔,自愿报名国际奥林匹克数学竞赛的题目通常涵盖哪些数学领域?A. 仅限基础算术B. 广泛涉及代数、几何、数论等多个领域(正确答案)C. 仅限高等数学D. 仅限概率统计下列哪项不是国际奥林匹克数学竞赛的目标之一?A. 促进国际间数学教育的交流B. 发掘和培养数学天才(正确答案)的反面,即“阻碍数学天才的发展”C. 提升青少年对数学的兴趣和热爱D. 推动数学科学的发展国际奥林匹克数学竞赛的奖牌通常包括哪几种?A. 金牌、银牌、铜牌(正确答案)B. 金牌、银牌、铁牌C. 金牌、铜牌、铝牌D. 银牌、铜牌、锡牌参加国际奥林匹克数学竞赛对参赛者的未来有何潜在影响?A. 必定成为数学家B. 对数学和科学领域的深造有积极影响(正确答案)C. 限定只能从事数学相关工作D. 对未来职业选择无影响。
奥林匹克数学小学竞赛试卷
一、选择题(每题3分,共15分)1. 小明有10个苹果,小红有15个苹果,他们一共有多少个苹果?A. 20个B. 25个C. 30个D. 35个2. 下列哪个数是质数?A. 18B. 19C. 20D. 213. 一个长方形的长是8厘米,宽是4厘米,它的周长是多少厘米?A. 16厘米B. 24厘米C. 32厘米D. 40厘米4. 下列哪个图形的面积最大?A. 正方形B. 长方形C. 三角形D. 梯形5. 下列哪个数是偶数?A. 23B. 24C. 25D. 26二、填空题(每题5分,共20分)6. 7 + 5 = ________,减去4后等于 ________。
7. 12 ÷ 3 = ________,加上6后等于 ________。
8. 3 × 4 = ________,再减去5后等于 ________。
9. 20 - 8 = ________,再乘以2后等于 ________。
10. 下列数列中,下一个数是 ________。
2, 4, 6, 8, 10, ________三、解答题(每题10分,共30分)11. 小华有25个铅笔,每天用掉3个,几天后小华的铅笔用完了?12. 小明有一些铅笔,小红有比小明多10个铅笔,如果小明再买5个铅笔,那么小明和小红一共有多少个铅笔?13. 小红的储蓄罐里有50元,小红每天存入5元,几天后小红的储蓄罐里的钱可以买一本书(书的价格是120元)?四、应用题(每题15分,共30分)14. 小明和小红一起摘了30个苹果,小明摘了其中的12个,小红摘了剩下的苹果。
请计算小红摘了多少个苹果?15. 一辆汽车从甲地出发前往乙地,甲乙两地相距120千米。
汽车每小时行驶50千米,请问汽车从甲地出发,几小时后可以到达乙地?注意:本试卷满分为100分,考试时间为60分钟。
请认真审题,仔细作答。
祝各位同学取得优异成绩!。
2023年全国中学生数学奥林匹克竞赛题目
2023年全国中学生数学奥林匹克竞赛题目1. 题目一设函数$f(x)$在区间$[a,b]$上连续,且满足$f(a)=-1$,$f(b)=3$。
证明:对于任意实数$k$,在区间$[a,b]$上至少存在一点$c$,使得$f(c)-f(a)=k(c-a)$。
2. 题目二已知正整数$n>1$,且$n$与$n+1$互质。
定义数列$\{a_k\}$满足$a_1=n$,$a_2=n+1$,且对于$k\geq 1$有\[a_{k+2}=\frac{a_{k+1}+a_k}{\text{gcd}(a_{k+1},a_k)}.\]证明:数列$\{a_k\}$中不存在连续的三个不等于1的整数。
3. 题目三平面上有$2023$个点,任意三点不共线。
现将这些点两两连接,得到若干条线段。
试证明:存在至少$10$条线段,它们共点于同一点上。
4. 题目四设$a,b$为正整数,且满足$(a+1)^{b+1}-(a-1)^{b+1}=2023$。
求$(a,b)$的所有可能的整数解。
5. 题目五将正整数$n$表示为两个不同素数的乘积,即$n=pq$,其中$p$和$q$均为素数,且$p < q$。
设$S=(p+1)^2+q^2$。
求满足条件的$n$的所有可能取值,并给出满足条件的所有$n$对应的$S$的最大值。
6. 题目六已知三角形$ABC$的三个内角$A,B,C$满足$\cos A+\cos B+\cos C = 2$。
证明:三角形$ABC$为等边三角形。
7. 题目七设函数$f(x)$在区间$[0,1]$上连续,且满足$f(0)=0$,$f(1)=1$。
证明:对于任意$\epsilon > 0$,存在有理数$m/n$,其中$m$为自然数,$n$为正整数,且$\left| \frac{m}{n} - f\left(\frac{m}{n}\right) \right| < \epsilon$。
8. 题目八已知正整数$a,b,c$满足$ab+bc+ca=2023$。
奥林匹克数学竞赛初三试题
1、若一个正方形的对角线长为10cm,则其面积为:A. 25cm²B. 50cm²C. 100cm²D. 200cm²解析:正方形的对角线将正方形分为两个等腰直角三角形,根据勾股定理,若对角线为c,边长为a,则c² = 2a²。
所以,10² = 2a²,解得a² = 50,正方形的面积为a² = 50cm²。
(答案:B)2、已知等腰三角形的两边长分别为3和7,则这个等腰三角形的周长为:A. 13B. 17C. 13或17D. 无法确定解析:等腰三角形的两腰相等,若3为腰,则两腰之和为6,小于第三边7,不能构成三角形。
所以,7为腰,周长为7 + 7 + 3 = 17。
(答案:B)3、在△ABC中,若∠A = ∠B + ∠C,则△ABC是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 无法确定解析:根据三角形内角和定理,∠A + ∠B + ∠C = 180°。
若∠A = ∠B + ∠C,则2∠A = 180°,∠A = 90°,所以△ABC是直角三角形。
(答案:B)4、若一个长方体的长、宽、高分别为3cm、4cm、5cm,则其体积为:A. 30cm³B. 40cm³C. 50cm³D. 60cm³解析:长方体的体积V = 长×宽×高 = 3cm × 4cm × 5cm = 60cm³。
(答案:D)5、已知一组数据:1,2,2,3,3,3,4,4,4,4,其众数为:A. 1B. 2C. 3D. 4解析:众数是一组数据中出现次数最多的数。
在这组数据中,数字4出现了4次,是出现次数最多的,所以众数为4。
(答案:D)6、在圆内接四边形ABCD中,若∠A = 90°,则∠C的度数为:A. 90°B. 小于90°C. 大于90°D. 无法确定解析:圆内接四边形的对角互补,即∠A + ∠C = 180°。
2023年世界少年奥林匹克数学竞赛决赛试卷(六年级)
2023年世界少年奥林匹克数学竞赛决赛试卷(六年级)一、填空题。
1.(3分)使得以下不等式成立的自然数有很多,所有满足题目要求的自然数之和是。
÷>2.(3分)计算:=.3.(3分)某种计算机病毒会“吃掉”硬盘空间。
第一天吃掉硬盘空间的二分之一,第二天吃掉剩下的三分之一,第三天吃掉剩下的四分之一,第四天吃掉剩下的五分之一,第五天吃掉剩下的六分之一。
此时,硬盘还剩下160G(G是硬盘大小的单位)。
这个硬盘本来一共有G。
4.(3分)=。
5.(3分)两圆公共部分的面积是大圆面积的九分之一,是小圆面积的十五分之四。
大圆面积比小圆面积大56平方厘米。
大圆面积是平方厘米?6.(3分)一个长方形的长与宽之比为13:8,在这个长方形中剪掉一个最大的正方形。
剩下的长方形长与宽的比值是。
7.(3分)今年是2021年,健康、幸福、爱情、和睦、勤奋、逐梦、富贵、崛起,这八个词每个词刚好是21划。
那么8个2021相乘的积有个因数。
8.(3分)如图,在正方形ABCD中,红色、绿色正方形的面积分别是125平方厘米和20平方厘米,且红、绿两个正方形有一个公共顶点。
黄色正方形的一个顶点位于红色正方形的中心,一个顶点位于绿色正方形的中心。
那么黄色正方形的面积是平方厘米。
9.(3分)在如图中,正方形ABCD的面积是196平方厘米,E、F分别是AB、AD的中点,2FG=5CG。
则阴影部分面积是平方厘米。
10.(3分)有一辆自行车,前轮和后轮都是新的,并且可以互换。
1个新轮胎在前轮位置可以行驶4000千米,在后轮位置可以行驶2400千米。
使用2个新轮胎,这辆自行车最多可行驶千米。
11.(3分)一个自然数分别除以3、4、6、7,所得余数分别为2、1、5、6,并且四个商的和为859。
这个自然数是。
12.(3分)如图,用一个斜边长43厘米的红色直角三角形,一个斜边长94厘米的蓝色直角三角形与一个黄色正方形正好拼成一个大的直角三角形。
红色三角形与蓝色三角形的面积之和是平方厘米?13.(3分)在如图中,正方形ABCD的面积是36平方米,AE=3EB,BF=4FC,CG:GD=4:11,DH:HA=1:5,阴影部分面积是平方分米。
四年级奥林匹克数学竞赛题目
四年级奥林匹克数学竞赛题目一、数字规律类1. 题目:找规律填数:1,4,9,16,(),36。
解析:观察这组数字,1 = 1×1,4 = 2×2,9 = 3×3,16 = 4×4,所以括号里的数应该是5×5 = 25。
2. 题目:2,3,5,8,13,()。
解析:从第三项起,每一项都是前两项之和。
2+3 = 5,3 + 5=8,5+8 = 13,那么8+13 = 21,括号里应填21。
二、简单运算类1. 题目:计算:125×32×25。
解析:把32分解成8×4,原式就变为125×8×4×25。
因为125×8 = 1000,4×25 = 100,所以结果为1000×100 = 100000。
2. 题目:99×99+99。
解析:根据乘法分配律,可以把式子转化为99×(99 + 1)=99×100 = 9900。
三、几何图形类1. 题目:一个长方形的长是12厘米,宽是8厘米,如果长增加4厘米,宽不变,这个长方形的面积增加了多少平方厘米?解析:原来长方形的面积是12×8 = 96平方厘米。
长增加4厘米后变为12 + 4 = 16厘米,新的面积是16×8 = 128平方厘米。
面积增加了128 96 = 32平方厘米。
2. 题目:一个等腰三角形的顶角是70°,那么它的底角是多少度?解析:等腰三角形的两个底角相等,三角形的内角和是180°。
所以底角的度数为(180°-70°)÷2 = 55°。
四、应用题类1. 题目:学校有图书1200本,其中故事书占30%,科技书占25%,其余的是文艺书,文艺书有多少本?解析:首先算出故事书的数量为1200×30% = 360本,科技书的数量为1200×25% = 300本。
初二奥林匹克数学竞赛试卷
一、选择题(每题5分,共20分)1. 下列数中,不是有理数的是()A. 2/3B. -1/4C. √2D. 3.142. 已知a=2,b=-3,那么a²+b²的值是()A. 1B. 5C. 13D. 173. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 等腰梯形D. 长方形4. 下列等式中,不成立的是()A. a²+b²=c²(c为直角三角形斜边)B. (a+b)²=a²+2ab+b²C. (a-b)²=a²-2ab+b²D. (a+b)(a-b)=a²-b²5. 已知函数f(x)=3x²-4x+1,当x=2时,f(x)的值是()A. 5B. 7C. 9D. 11二、填空题(每题5分,共20分)6. 分数4/5的倒数是__________。
7. 下列数中,最小的负整数是__________。
8. 一个等腰三角形的底边长为6cm,腰长为8cm,那么这个三角形的周长是__________cm。
9. 若a、b、c为三角形的三边,且满足a+b>c,b+c>a,a+c>b,那么这个三角形一定是__________三角形。
10. 在平面直角坐标系中,点A(2,3),点B(-1,-2),那么线段AB的中点坐标是__________。
三、解答题(每题20分,共80分)11. (10分)已知一元二次方程x²-5x+6=0,求它的两个根。
12. (10分)已知函数f(x)=2x+1,求函数f(x)的值域。
13. (10分)已知等差数列{an}的首项为2,公差为3,求第10项an的值。
14. (10分)已知直角三角形ABC中,∠C=90°,AB=10cm,BC=6cm,求AC的长度。
15. (10分)已知函数f(x)=ax²+bx+c(a≠0),若f(1)=2,f(2)=5,f(3)=10,求a、b、c的值。
国际奥林匹克数学竞赛题目解析
国际奥林匹克数学竞赛29.04.20211.(本题5分)计算 (210010002)2021.2.(本题10分)在点集 {(x,y,z)|x 232+y 222+z 252=1 }中求函数 u =4x −6y +12z −5 的最小值。
3.(本题9分)求级数 ∑sin nx n!∞n=1 的和函数。
4.(本题5分)计算极限: lim n→∞(cos x 2∙cos x 4∙…∙cos x 2n ).5.(本题5分)给定一个平行六面体,从任一顶点都可引出三条面对角线。
求证:以这些面对角线为棱所构建的平行六面体的体积是原平行六面体的2倍。
6.(本题6分)计算定积分:∫lnx 1+x 2dx a 1/a .7.(本题5分)已知方程 (x −1)f (x+1x−1)−f (x )=x 对任意的 x ∈R, x ≠1 均成立,求出所有满足上述条件的函数f(x)。
8.(本题9分)求微分方程y′′cos x+y′(5cos x−2sin x)+y(3cos x−5sin x)=e−x的通解。
9.(本题5分)证明不等式1 2∙34∙56∙78∙…∙99100<110.10.(本题11分)计算不定积分I=∫x2dx(sin x−x cos x)2.11.(本题8分)设p和q分别是闭区间[2,6],[0,4]中的数。
求方程x2+px+q=0有两个不相等实根的概率。
12.(本题9分)求解柯西方程:xyy′′−x(y′)2=2yy′,y(1)=e,y′(1)=3e.13.(本题7分)证明:多项式P(x)=x n sinϕ−ρn−1x sin nϕ+ρn sin(n−1)ϕ能被x2−2ρx cosϕ+ρ2整除。
14.(本题6分)求解微分方程: y′+2ye x−y2=e2x+e x.。
世界奥林匹克数学竞赛五年级试题
世界奥林匹克数学竞赛五年级试题一、试题1。
1. 题目:一个数除以5余3,除以6余4,除以7余5。
这个数最小是多少?2. 解析:- 一个数除以5余3,如果这个数加上2就能被5整除;除以6余4,加上2就能被6整除;除以7余5,加上2就能被7整除。
- 所以求出5、6、7的最小公倍数,然后减去2就是这个数。
- 5、6、7互质,它们的最小公倍数是5×6×7 = 210。
- 这个数最小是210 - 2=208。
二、试题2。
1. 题目:有一个长方形,如果长减少4米,宽减少2米,面积就比原来减少44平方米,且剩下部分正好是一个正方形。
求这个正方形的边长。
2. 解析:- 设正方形的边长为x米。
- 原来长方形的长为(x + 4)米,宽为(x+2)米。
- 根据长方形面积公式S =长×宽,可得到方程(x + 4)(x + 2)-x^2=44。
- 展开式子得x^2+2x + 4x+8 - x^2=44。
- 化简得6x+8 = 44。
- 移项得6x=44 - 8=36,解得x = 6米。
三、试题3。
1. 题目:在1 - 100的自然数中,既不是3的倍数也不是5的倍数的数有多少个?2. 解析:- 1 - 100中3的倍数有100÷3 = 33·s·s1,即33个。
- 5的倍数有100÷5 = 20个。
- 15的倍数(既是3的倍数又是5的倍数)有100÷15 = 6·s·s10,即6个。
- 是3或者5的倍数的数有33 + 20-6 = 47个。
- 既不是3的倍数也不是5的倍数的数有100 - 47 = 53个。
四、试题4。
1. 题目:把1/7化成小数,小数点后面第100位上的数字是多少?2. 解析:- 1÷7 = 0.1̇42857̇,循环节是142857,共6位。
- 100÷6 = 16·s·s4。
小学奥林匹克数学竞赛题精选
1、一个小数的小数点分别向右,左边移动一位所得两数之差为2.2,则这个小数用分数表示为。
2、某种皮衣标价为1650元,若以8折降价出售仍可盈利10%(相对于进价)那么若以标价1650元出售,可盈利元。
3、求多位数111……11(2000个)222……22(2000个)333……33(2000个)被多位数333……33(2000个)除所得商的各个数上的数字的和为。
4、计算(1/(1×2)+2/(1×2×3)+3/(1×2×3×4)+……+9/(1×2×3×……×10)的值为。
5、一只船顺流而行的航速为30千米/小时,已知顺水航行3小时和逆水航行5小时的航程相等,则此船顺水漂流1小时的航程为()千米。
6、某电视机厂计划15天生产1500台,结果生产5天后,由于引进新的生产线生产效率提高25%,则这个电视机厂会提前()天完成计划。
7、从1,2,3,4,5,6,7,8,9中任意选出三个数,使它们的和为偶数,则共有()种不同的选法。
8、某书的页码是连续的自然数1,2,3,4,…9,10…当将这些页码相加时,某人把其中一个页码错加了两次,结果和为2001,则这书共有()页。
9、现有21朵鲜花分给5人,若每个人分得的鲜花数各不相同,则分得鲜花最多的人至少分得()朵鲜花。
10、三名工人师傅张强、李辉和王充分别加工200个零件。
他们同时开始工作,当李辉加工200个零件的任务全部完成时,张强才加工了160个,王充还有48个没有加工。
当张强加工200个零件的任务全部完成时,王充还有__个零件没有加工。
11、有一块表在10月29日零点比标准时间慢4分半,一直到11月5日上午7时,这块表比标准时间快了3分钟,那么这块表正好指向正确的时间是在11月 日 时。
12、一个水箱中的水以等速流出箱外,观察到上午9:00时,水箱中的水是2/3满,到11点,水箱中只剩下1/6的水,那么到什么时间水箱中的水刚好流完?( )13、清华大学附中共有学生1800名,若每个学生每天要上8节课,每位教师每天要上4节课,每节课有45名学生和1位教师,据此请推出清华大学附中共有教师 名?14、某班45人参加一次数学比赛,结果有35人答对了第一题,有27人答对了第二题,有41人答对了第三题,有38人答对了第四题,则这个班四道题都对的同学至少有 人?15、一个数先加3,再除以3,然后减去5,再乘以4,结果是56,这个数是_______。
奥林匹克竞赛数学试题
奥林匹克竞赛数学试题一、选择题(每题5分,共30分)1. 下列哪个数不是素数?A. 2B. 3C. 4D. 52. 如果一个圆的半径是5,那么它的周长是多少?A. 10πB. 20πC. 25πD. 30π3. 以下哪个表达式代表的是完全平方数?A. \( 4^2 + 3^2 \)B. \( 5^2 - 2 \)C. \( 6^2 \)D. \( 7^2 + 1 \)4. 一个直角三角形的两条直角边分别为3和4,斜边的长度是多少?A. 5B. 6C. 7D. 85. 一个数列的前三项是2, 4, 6,这个数列是:A. 等差数列B. 等比数列C. 等和数列D. 等比数列和等差数列6. 如果\( a \)和\( b \)是两个不同的质数,那么\( a + b \)一定是:A. 质数B. 合数C. 偶数D. 奇数二、填空题(每题5分,共20分)7. 一个数的平方根是4,那么这个数是________。
8. 一个数的立方根是3,那么这个数是________。
9. 一个数的倒数是\( \frac{1}{5} \),那么这个数是________。
10. 如果\( x \)和\( y \)互为相反数,那么\( x + y = ________ \)。
三、解答题(每题25分,共50分)11. 证明:如果一个三角形的三边长分别为\( a \),\( b \),和\( c \),且满足\( a^2 + b^2 = c^2 \),那么这个三角形是直角三角形。
12. 解方程:\( 2x^2 - 5x - 3 = 0 \)。
结束语:奥林匹克数学竞赛是一项旨在培养学生数学思维和解决问题能力的竞赛。
通过解答这些题目,参赛者可以提高自己的逻辑推理能力、抽象思维能力以及数学知识的应用能力。
希望每位参赛者都能在竞赛中取得优异的成绩,不断挑战自我,追求卓越。
(本试题仅供参考,具体题目和答案可能会根据实际竞赛要求有所调整。
)。
奥林匹克数学竞赛试题
奥数(一)一、填空题:3.一个两位数,其十位与个位上的数字交换以后,所得的两位数比原来小27,则满足条件的两位数共有______个.5.图中空白部分占正方形面积的______分之______.6.甲、乙两条船,在同一条河上相距210千米.若两船相向而行,则2小时相遇;若同向而行,则14小时甲赶上乙,则甲船的速度为______.7.将11至17这七个数字,填入图中的○内,使每条线上的三个数的和相等.8.甲、乙、丙三人,平均体重60千克,甲与乙的平均体重比丙的体重多3千克,甲比丙重3千克,则乙的体重为______千克.9.有一个数,除以3的余数是2,除以4的余数是1,则这个数除以12的余数是______.10.现有七枚硬币均正面(有面值的面)朝上排成一列,若每次翻动其中的六枚,能否经过若干次的翻动,使七枚硬币的反面朝上______(填能或不能).二、解答题:1.浓度为70%的酒精溶液500克与浓度为50%的酒精溶液300克,混合后所得到的酒精溶液的浓度是多少?2.数一数图中共有三角形多少个?3.一个四位数,它的第一个数字等于这个数中数字0的个数,第二个数字表示这个数中数字1的个数,第三个数字表示这个数中数字2的个数,第四个数字等于这个数中数字3的个数,求出这个四位数.奥数(二)一、填空题:1.用简便方法计算:2.某工厂,三月比二月产量高20%,二月比一月产量高20%,则三月比一月高___%.3.算式:(121+122+…+170)-(41+42+…+98)的结果是______(填奇数或偶数).4.两个桶里共盛水40斤,若把第一桶里的水倒7斤到第2个桶里,两个桶里的水就一样多,则第一桶有______斤水.5.20名乒乓球运动员参加单打比赛,两两配对进行淘汰赛,要决出冠军,一共要比赛______场.6.一个六位数的各位数字都不相同,最左一位数字是3,且它能被11整除,这样的六位数中最小的是______.7.一个周长为20厘米的大圆内有许多小圆,这些小圆的圆心都在大圆的一个直径上.则小圆的周长之和为______厘米.8.某次数学竞赛,试题共有10道,每做对一题得8分,每做错一题倒扣5分.小宇最终得41分,他做对______题.9.在下面16个6之间添上+、-、×、÷(),使下面的算式成立:6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6=1997二、解答题:1.如图中,三角形的个数有多少?2.某次大会安排代表住宿,若每间2人,则有12人没有床位;若每间3人,则多出2个空床位.问宿舍共有几间?代表共有几人?3.现有10吨货物,分装在若干箱内,每箱不超过一吨,现调来若干货车,每车至多装3吨,问至少派出几辆车才能保证一次运走?4.在九个连续的自然数中,至多有多少个质数?奥数(三)一、填空题:1.用简便方法计算下列各题:(2)1997×19961996-1996×19971997=______;(3)100+99-98-97+…+4+3-2-1=______.2.右面算式中A代表______,B代表______,C代表______,D代表______(A、B、C、D各代表一个数字,且互不相同).3.今年弟弟6岁,哥哥15岁,当两人的年龄和为65时,弟弟______岁.4.在某校周长400米的环形跑道上,每隔8米插一面红旗,然后在相邻两面红旗之间每隔2米插一面黄旗,应准备红旗______面,黄旗______面.5.在乘积1×2×3×…×98×99×100中,末尾有______个零.6.如图中,能看到的方砖有______块,看不到的方砖有______块.7.右图是一个矩形,长为10厘米,宽为5厘米,则阴影部分面积为______平方厘米.8.在已考的4次考试中,张明的平均成绩为90分(每次考试的满分是100分),为了使平均成绩尽快达到95分以上,他至少还要连考______次满分.9.现有一叠纸币,分别是贰元和伍元的纸币.把它分成钱数相等的两堆.第一堆中伍元纸币张数与贰元张数相等;第二堆中伍元与贰元的钱数相等.则这叠纸币至少有_____元.10.甲、乙两人同时从相距30千米的两地出发,相向而行.甲每小时走3.5千米,乙每小时走2.5千米.与甲同时、同地、同向出发的还有一只狗,每小时跑5千米,狗碰到乙后就回头向甲跑去,碰到甲后又回头向乙跑去,……这只狗就这样往返于甲、乙之间直到二人相遇而止,则相遇时这只狗共跑了______千米.二、解答题:1.右图是某一个浅湖泊的平面图,图中曲线都是湖岸(1)若P点在岸上,则A点在岸上还是水中?(2)某人过这湖泊,他下水时脱鞋,上岸时穿鞋.若有一点B,他脱鞋的次数与穿鞋的次数和是奇数,那么B点在岸上还是水中?说明理由.2.将1~3000的整数按照下表的方式排列.用一长方形框出九个数,要使九个数的和等于(1)1997(2)2160(3)2142能否办到?若办不到,简单说明理由.若办得到,写出正方框里的最大数和最小数.3.甲、乙、丙、丁四个人比赛乒乓球,每两人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,问丁胜了几场?4.有四条弧线都是半径为3厘米的圆的一部分,它们成一个花瓶(如图).请你把这个花瓶切成几块,再重新组成一个正方形,并求这个正方形的面积.奥数(四)一、填空题:1.41.2×8.1+11×9.25+537×0.19=______.2.在下边乘法算式中,被乘数是______.3.小惠今年6岁,爸爸今年年龄是她的5倍,______年后,爸爸年龄是小惠的3倍.4.图中多边形的周长是______厘米.5.甲、乙两数的最大公约数是75,最小公倍数是450.若它们的差最小,则两个数为______和______.6.鸡与兔共有60只,鸡的脚数比兔的脚数多30只,则鸡有______只,兔有__只.7.师徒加工同一种零件,各人把产品放在自己的筐中,师傅产量是徒弟的2倍,师傅的产品放在4只筐中.徒弟产品放在2只筐中,每只筐都标明了产品数量:78,94,86,77,92,80.其中数量为______和______2只筐的产品是徒弟制造的.8.一条街上,一个骑车人与一个步行人同向而行,骑车人的速度是步行人速度的3倍,每隔10分钟有一辆公共汽车超过行人,每隔20分钟有一辆公共汽车超过骑车人.如果公共汽车从始发站每次间隔同样的时间发一辆车,那么间隔______分发一辆公共汽车.9.一本书的页码是连续的自然数,1,2,3,…,当将这些页码加起来的时候,某个页码被加了两次,得到不正确的结果1997,则这个被加了两次的页码是______.10.四个不同的真分数的分子都是1,它们的分母有两个是奇数,两个是偶数,而且两个分母是奇数的分数之和等于两个分母是偶数的分数之和.这样的两个偶数之和至少为______.二、解答题:1.把任意三角形分成三个小三角形,使它们的面积的比是2∶3∶5.2.如图,把四边形ABCD的各边延长,使得AB=BA′,BC=CB′CD=DC′,DAAD′,得到一个大的四边形A′B′C′D′,若四边形ABCD的面积是1,求四边形A′B′C′D′的面积.3.如图,甲、乙、丙三个互相咬合的齿轮,若使甲轮转5圈时,乙轮转7圈,丙轮转2圈,这三个齿轮齿数最少应分别是多少齿?4.(1)图(1)是一个表面涂满了红颜色的立方体,在它的面上等距离地横竖各切两刀,共得到27个相等的小立方块.问:在这27个小立方块中,三面红色、两面红色、一面红色,各面都没有颜色的立方块各有多少?(2)在图(2)中,要想按(1)的方式切出120块大小一样、各面都没有颜色的小立方块,至少应当在这个立方体的各面上切几刀(各面切的刀数一样)?(3)要想产生53块仅有一面涂有红色的小方块,至少应在各面上切几刀?奥数(五)一、填空题:1.一个学生用计算器算题,在最后一步应除以10,错误的乘以10了,因此得出的错误答数500,正确答案应是______.2.把0,1,2,…,9十个数字填入下面的小方格中,使三个算式都成立:□+□=□□-□=□□×□=□□3.两个两位自然数,它们的最大公约数是8,最小公倍数是96,这两个自然数的和是______.4.一本数学辞典售价a元,利润是成本的20%,如果把利润提高到30%,那么应提高售价______元.5.图中有______个梯形.6.小莉8点整出门,步行去12千米远的同学家,她步行速度是每小时3千米,但她每走50分钟就要休息10分钟.则她______时到达.7.一天甲、乙、丙三个同学做数学题.已知甲比乙多做了6道,丙做的是甲的2倍,比乙多22道,则他们一共做了______道数学题.8.在右图的长方形内,有四对正方形(标号相同的两个正方形为一对),每一对是相同的正方形,那么中间这个小正方形(阴影部分)的面积为______.9.有a、b两条绳,第一次剪去a的2/5,b的2/3;第二次剪去a绳剩下的2/3,b绳剩下的2/5;第三次剪去a绳剩下的2/5,b绳的剩下部分的2/3,最后a剩下的长度与b剩下的长度之比为2∶1,则原来两绳长度的比为______.10.有黑、白、黄色袜子各10只,不用眼睛看,任意地取出袜子来,使得至少有两双袜子不同色,那么至少要取出______只袜子.二、解答题:1.字母A、B、C、D、E和数字1997分别按下列方式变动其次序:A B C D E 1 9 9 7B C D E A 9 9 7 1(第一次变动)C D E A B 9 7 1 9(第二次变动)D E A B C 7 1 9 9(第三次变动)……问最少经过几次变动后ABCDE1997将重新出现?2.把下面各循环小数化成分数:3.如图所示的四个圆形跑道,每个跑道的长都是1千米,A、B、C、D四位运动员同时从交点O出发,分别沿四个跑道跑步,他们的速度分别是每小时4千米,每小时8千米,每小时6千米,每小时12千米.问从出发到四人再次相遇,四人共跑了多少千米?4.某路公共汽车,包括起点和终点共有15个车站,有一辆车除终点外,每一站上车的乘客中,恰好有一位乘客到以后的每一站下车,为了使每位乘客都有座位,问这辆公共汽车最少要有多少个座位?奥数(六)一、填空题:2.把33,51,65,77,85,91六个数分为两组,每组三个数,使两组的积相等,则这两组数之差为______.大的分数为______.4.如图,一长方形被一条直线分成两个长方形,这两个长方形的宽的比为1∶3,若阴影三角形面积为1平方厘米,则原长方形面积为______平方厘米.5.字母A、B、C代表三个不同的数字,其中A比B大,B比C大,如果用数字A、B、C 组成的三个三位数相加的和为777,其竖式如右,那么三位数ABC是______.7.如图,在棱长为3的正方体中由上到下,由左到右,由前到后,有三个底面积是1的正方形高为3的长方体的洞,则所得物体的表面积为______.8.有一堆糖果,其中奶糖占45%,再放入16块水果糖后,奶糖就只占25%,那么,这堆糖中有奶糖______块.10.某地区水电站规定,如果每月用电不超过24度,则每度收9分;如果超过24度,则多出度数按每度2角收费.若某月甲比乙多交了9.6角,则甲交了______角______分.二、解答题:1.求在8点几分时,时针与分针重合在一起?2.如图中数字排列:问:第20行第7个是多少?3.某人工作一年酬金是1800元和一台全自动洗衣机.他干了7个月,得到490元和一台洗衣机,问这台洗衣机为多少元?4.兄弟三人分24个苹果,每人所得个数等于其三年前的年龄数.如果老三把所得苹果数的一半平分给老大和老二,然后老二再把现有苹果数的一半平分给老大和老三,最后老大再把现有苹果数的一半平分给老二和老三,这时每人苹果数恰好相等,求现在兄弟三人的年龄各是多少岁?奥数(七)一、填空题:2.将一张正方形的纸如图按竖直中线对折,再将对折纸从它的竖直中线(用虚线表示)处剪开,得到三个矩形纸片:一个大的和两个小的,则一个小矩形的周长与大矩形的周长之比为______.么回来比去时少用______小时.4.7点______分的时候,分针落后时针100度.5.在乘法3145×92653=29139□685中,积的一个数字看不清楚,其他数字都正确,这个看不清的数字是______.7.汽车上有男乘客45人,若女乘客人数减少10%,恰好与男乘客人8.在一个停车场,共有24辆车,其中汽车是4个轮子,摩托车是3个轮子,这些车共有86个轮子,那么三轮摩托车有______辆.9.甲、乙两人轮流在黑板上写不超过10的自然数,规定每人每次只能写一个数,并禁止写黑板上数的约数,最后不能写者败.若甲先写,并欲胜,则甲的写法是______.10.有6个学生都面向南站成一行,每次只能有5个学生向后转,则最少要做______次能使6个学生都面向北.二、解答题:1.图中,每个小正方形的面积均为1个面积单位,共9个面积单位,则图中阴影部分面积为多少个面积单位?2.设n是一个四位数,它的9倍恰好是其反序数(例如:123的反序数是321),则n是多少?3.自然数如下表的规则排列:求:(1)上起第10行,左起第13列的数;(2)数127应排在上起第几行,左起第几列?4.任意k个自然数,从中是否能找出若干个数(也可以是一个,也可以是多个),使得找出的这些数之和可以被k整除?说明理由.奥数(八)一、填空题:2.在下列的数字上加上循环点,使不等式能够变正确:0.9195<0.9195<0.9195<0.9195<0.91953.如图,O为△A1A6A12的边A1A12上的一点,分别连结OA2,OA3,…,OA11,图中共有______个三角形.4.今年小宇15岁,小亮12岁,______年前,小宇和小亮的年龄和是15.5.在前三场击球游戏中,王新同学得分分别为139,143,144,为使前4场的平均得分为145,第四场她应得______分.6.有这样的自然数:它加1是2的倍数,加2是3的倍数,加3是4的倍数,加4是5的倍数,加5是6的倍数,加6是7的倍数,在这种自然数中除了1以外最小的是______.7.如图,半圆S1的面积是14.13cm2圆S2的面积是19.625cm2那么长方形(阴影部分)的面积是______cm2.8.直角三角形ABC的三边分别为AC=3,AB=1.8,BC=2.4,ED垂直于AC,且ED=1,正方形的BFEG边长是______.9.有两个容器,一个容器中的水是另一个容器中水的2倍,如果从每个容器中都倒出8升水,那么一个容器中的水是另一个容器中水的3倍.有较少水的容器原有水______升.10.100名学生要到离校33千米处的少年宫活动.只有一辆能载25人的汽车,为了使全体学生尽快地到达目的地,他们决定采取步行与乘车相结合的办法.已知学生步行速度为每小时5千米,汽车速度为每小时55千米.要保证全体学生都尽快到达目的地,所需时间是______(上、下车所用的时间不计).二、解答题:1.一个四边形的广场,它的四边长分别是60米,72米,96米,84米.现在要在四边上植树,如果四边上每两树的间隔距离都相等,那么至少要种多少棵树?2.一列火车通过一条长1140米的桥梁(车头上桥直至车尾离开桥)用了50秒,火车穿越长1980米的隧道用了80秒,问这列火车的车速和车身长?3.能否把1,1,2,2,3,3,…,50,50这100个数排成一行,使得两个1之间夹着这100个数中的一个数,两个2之间夹着这100个数中的两个数,……两个50之间夹着这100个数中的50个数?并证明你的结论.4.两辆汽车运送每包价值相同的货物通过收税处.押送人没有带足够的税款,就用部分货物充当税款.第一辆车载货120包,交出了10包货物另加240元作为税金;第二辆车载货40包,交给收税处5包货,收到退还款80元,这样也正好付清税金.问每包货物销售价是多少元?奥数(九)一、填空题:1.在下面的四个算式中,最大的得数是______:(1)1994×1999+1999,(2)1995×1998+1998,(3)1996×1997+1997,(4)1997×1996+1996.2.今有1000千克苹果,刚入库时测得含水量为96%;一个月后,测得含水量为95%,则这批苹果的总重量损失了______.3.填写下面的等式:4.任意调换五位数54321的各个数位上的数字位置,所得的五位数中的质数共有______.5.下面式子中每一个中文字代表1~9中的一个数码,不同的文字代表不同的数码:则被乘数为_____.6.如图,每个小方格的面积是1cm2,那么△ABC的面积是______cm2.7.如图,A1,A2,A3,A4是线段AA5上的分点,则图中以A,A1,A2,A3,A4,A5这六个点为端点的线段共有______条.8.10点15分时,时针和分针的夹角是______.9.一房间中有红、黄、蓝三种灯,当房间中所有灯都关闭时,拉一次开关,红灯亮;第二次拉开关,红黄灯都亮;第三次拉开关,红黄蓝三灯都亮;第四次拉开关,三灯全关闭,现在从1~100编号的同学走过该房间,并将开关拉若干次,他们拉开关的方式为:编号为奇数者,他拉的次数就是他的号数;编号为偶数者,其编号可以写成2r·p(其中p为正奇数,r为正整数),就拉p次,当100人都走过房间后,房间中灯的情况为______.10.老师带99名同学种树100棵,老师先种一棵,然后对同学们说:“男生每人种两棵,女生每两人合种一棵。
2024奥林匹克数学竞赛试题
2024奥林匹克数学竞赛试题一、代数部分小明发现有一个数,当它加上5之后再乘以3,然后减去12,最后除以2得到的结果是21。
这个数就像个调皮的小捣蛋,躲在算式后面,你能把它找出来吗?有两个数字兄弟,哥哥比弟弟大3。
如果把哥哥数字的平方减去弟弟数字的平方,结果是33。
你能说出这兄弟俩数字分别是多少吗?这就像在数字家族里玩一场猜谜游戏呢!有一列分数列车,第一个车厢是1/2,第二个车厢是2/3,第三个车厢是3/4,按照这个规律一直排下去。
那第100个车厢里的分数是多少呢?就像沿着分数轨道去寻找宝藏分数一样。
二、几何部分有一个三角形,它的三条边长度分别是3厘米、4厘米和5厘米。
现在这个三角形想长胖一点,每条边都增加相同的长度x厘米后,它的面积变成了原来的2倍。
这个x就像是三角形的成长魔法数字,你能算出它是多少吗?这就好比给三角形吃了神奇的成长药丸。
有一个圆形池塘,它的半径是5米。
现在池塘周围要建一圈很窄的环形小路,小路的面积是18π平方米。
那这个环形小路的外半径是多少呢?就像圆形池塘在进行一场向外扩张的大冒险。
有一个正六边形和一个正方形,它们的边长之和是20厘米。
如果正六边形的面积比正方形的面积大12平方厘米,那它们各自的边长是多少呢?这就像是多边形们在开一场比大小、比边长的聚会。
三、组合数学部分老师有10颗不同口味的糖果,要分给3个小朋友。
每个小朋友至少得到一颗糖果,而且不同的分配方式代表不同的甜蜜方案。
那一共有多少种甜蜜的分配方案呢?这就像在糖果的世界里玩一场复杂的分配游戏。
有10个同学要排成一排照相。
但是其中有两个同学是好朋友,他们必须要挨在一起。
那这样的排队方式有多少种呢?这就像是在安排一场有特殊要求的同学聚会排队。
有五张数字卡片,上面分别写着1、2、3、4、5。
把它们排成一排,要求所有奇数数字都要相邻。
那有多少种神奇的排列方式呢?这就像是在数字卡片的魔法世界里寻找特定的排列咒语。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
奥林匹克数学竞赛试题(几何部分)Mathematics Olympic test
(geometric part)
1.已知在梯形ABCD中,AD∥BC,∠B=40°,∠C=50°,点E,F,M,N
分别为四条边的中点,求证:BC=EF+MN.【简单】
2.已知在平行四边形ABCD中,对角线AC与BD相交于点O,P为平
行四边形ABCD外一点,且∠APC=∠BPD=90°,求证:平行四边形ABCD为矩形.【简单】
3.已知在三角形ABC中,AB=AC,CD⊥AB于D,P为BC上一点,PE⊥AB 于E,PF⊥AC于F.求证:PE+PF=CD.【简单】
4.已知在等腰三角形ABC中,AB=AC,CD⊥AB,AH⊥FH,EF⊥AB,求证:EF=CD+FH.【简单】
5.已知三角形ABC和三角形BDE都是等腰直角三角形,连结AD,延长CE交AD与F,求证:CF⊥AD.【简单】
6.已知三角形ABC和三角形BDE都是正三角形,连结AD交BE于F,连结CE交AB于G,连结FG,求证:FG∥CD.【简单】
7.已知三角形ABC为正三角形,内取一点P,向三边作垂线,交AB 于D,BC于E,AC于F,求证:PD+PE+PF=三角形的高.【简单】
8.已知三角形ABC为正三角形,AD为高,取三角形外一点P,向三边(或边的延长线)作垂线,交AB的延长线AE于M,交AC的延长线AF于N,交BC于Q,求证:PM+PN-PQ=AD.【中等】
9.已知在矩形ABCD中,对角线AC,BD相交于O,DE平分∠ADC交AC 于F,若∠BDE=15°,求∠COE的度数.【中等】
10.已知三角形ABC是直角三角形,∠BAC=90°,AD⊥BC,AE平分∠CAD,BF平分∠ABC,交AD于G,交AE于H,连结EG,求证:EG∥AC.【中等】
11.已知三角形ABC和三角形BDE都是正三角形,连结AE,CD,取AE 的中点N,取CD的中点M,连结BM,BN,MN.求证:三角形BMN是等边三角形.【中等】
12.已知在正方形ABCD中,作对角线AC的平行线EG,作BC=CH,连结BE,延长HG交BE于F,连结CF,求证:BC=CF.【中等】
13.已知在直角梯形ABCD中,AD∥BC,AD=3,BC=5,将腰CD绕点D 逆时针旋转90°至DE,连结AE,求三角形ADE的面积.【中等】
14.已知在任意四边形ABCD中,AB=CD,P,Q,R分别为AD,BC,BD的中点,∠ABD=25°,∠BDC=65°,求∠PQR的度数.【中等】
15.已知在梯形ABCD中,AD∥BC,E为AB的中点,求证:S三角形CDE=S三角形ADE+S三角形BCE.【较难】
16.已知矩形ABCD,在CD的延长线上取一点E,在BC的延长线上取一点F,使得∠DAE=∠DAF,AF和CD交于G,求证:S矩形ABCD=S三角形AEF.【较难】
17.已知在等腰直角三角形ABC中,∠BAC=90°,AD=AE,AF⊥BE交BC于F,过F作FG⊥CD交BE的延长线于G,求证:BG=AF+FG. 【很难】【提示:过C点作AC的垂线,延长AF,交垂线于H.】
18.已知在正九边形ABCDEFGHI中,连结AE,AE=1,求AH+AI 的长.【很难】【提示:延长AH使HK=HG,连结KG.】
19.已知正方形ABCD内有一点P,且PB:PC:PD=3:2:1,求证:∠CPD=135°.【超难】【提示:过C作PC的垂线CP’,使CP=CP’.】
20.已知在任意四边形ABCD中,点E,F分别将AD,BC分成m:n两部
分,AF和BE交于P,CE和DF交于Q,求证:S四边形EPFQ=S三角形CDQ+S三角形ABP.【超难】
.. 完美格式可编辑版。