去分母去括号一元一次方程练习题精编版
七年级数学上册3-3 解一元一次方程(二)--去括号与去分母 同步习题精讲精练【含答案】
3.3 解一元一次方程(二)-去括号与去分母同步习题精讲精练【高频考点精讲】1.一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.2.规律总结:(1)解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.(2)在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c.使方程逐渐转化为ax=b的最简形式。
将ax=b系数化为1时,一是弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二是要准确判断符号,a、b同号x为正,a、b异号x为负.【热点题型精练】一、选择题1.方程3x﹣2(x﹣3)=5去括号变形正确的是( )A.3x﹣2x﹣3=5B.3x﹣2x﹣6=5C.3x﹣2x+3=5D.3x﹣2x+6=52.把方程去分母,下列变形正确的是( )A.2x﹣x+1=1B.2x﹣(x+1)=1C.2x﹣x+1=6D.2x﹣(x+1)=63.下列方程变形中,正确的是( )A.方程去分母,得5(x﹣1)=2xB.方程3﹣x=2﹣5(x﹣1)去括号,得3﹣x=2﹣5x﹣1C.方程3x﹣2=2x+1移项,得3x﹣2x=﹣1+2D.方程系数化为1,得t=14.一元一次方程的解为( )A.x=1B.x=﹣1C.x=﹣12D.x=125.解方程时,把分母化为整数,得( )A.B.C.D.6.解方程4(x﹣1)﹣x=2(x+)步骤如下:①去括号,得4x﹣4﹣x=2x+1;②移项,得4x+x﹣2x=4+1;③合并同类项,得3x=5;④化系数为1,x=.从哪一步开始出现错误( )A.①B.②C.③D.④7.若关于x的方程kx﹣2x=14的解是正整数,则k的整数值有( )个.A.1个B.2个C.3个D.4个8.某同学在解关于x的方程3a﹣x=13时,误将“﹣x”看成“x”,从而得到方程的解为x=﹣2,则原方程正确的解为( )A.x=﹣2B.x=﹣C.x=D.x=29.若“△”是新规定的某种运算符号,设x△y=xy+x+y,则2△m=﹣16中,m的值为( )A.8B.﹣8C.6D.﹣610.代数式2ax+5b的值会随x的取值不同而不同,如下表是当x取不同值时对应的代数式的值,则关于x的方程2ax+5b=0的解是( )x﹣4﹣3﹣2﹣102ax+5b12840﹣4A.0B.﹣1C.﹣3D.﹣4二、填空题11.当x= 时,代数式2x﹣与代数式x﹣3的值相等.12.方程1﹣=去分母后为 .13.小明解方程=﹣3去分母时,方程右边的﹣3忘记乘6,因而求出的解为x=2,则原方程正确的解为 .14.对于实数p、q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,若min{,1}=x,则x= .三、解答题15.解方程:(1)2(x+8)=3x﹣1(2)16.已知y=3是方程6+(m﹣y)=2y的解,那么关于x的方程2m(x﹣1)=(m+1)(3x﹣4)的解是多少?17.定义一种新运算“⊕”:a⊕b=a﹣2b,比如:2⊕(﹣3)=2﹣2×(﹣3)=2+6=8.(1)求(﹣3)⊕2的值;(2)若(x﹣3)⊕(x+1)=1,求x的值.18.(1)小玉在解方程去分母时,方程右边的“﹣1”项没有乘6,因而求得的解是x=10,试求a的值.(2)当m为何值时,关于x的方程5m+3x=1+x的解比关于x的方程2x+m=5m的解大2?3.3 解一元一次方程(二)--去括号与去分母同步习题精讲精练【高频考点精讲】1.一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.3.规律总结:(1)解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.(2)在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c.使方程逐渐转化为ax=b的最简形式。
一元一次方程(去分母、去括号)
关于解方程中的去分母的典型例题一例 解下列方程(1)22)5(54-=--+x x x (2)13.02.03.05.09.04.0=+-+y y(3)52221+-=--y y y (4)6.15.032.04-=--+x x(5)621223+-=--x x x (6)01.002.01.02.02.018+=--x x x 分析:①先找出各分母的最小公倍数,去掉分母.②分母出现小数,为了减少运算量,将分子、分母同乘以10,化小数为整数. 解:(1)去分母,得,)2(5)5(10)4(2-=--+x x x , 去括号,得,105501082-=+-+x x x . 移项合并后,6813=x .两边同时除以13,得1368=x . (2)原方程化为1323594=+-+yy ,去分母,得15)23(5)94(3=+-+y y , 去括号,得1510152712=--+y y , 移项合并后32=y . 系数化为1,得23=y . (3)去分母,得)2(220)1(510+-=--y y y去括号,得42205510--=+-y y y移项,得54202510--=+-y y y合并,得117=y系数化为1,得711=y (4)原方程可以化成6.15)3(102)4(10-=--+x x 去分母,得6.1)3(2)4(5-=--+x x去括号,得6.162205-=+-+x x移项,得2066.125---=-x x合并,得6.273-=x系数化为1,得2.9-=x(5)去分母,得)2(6)23(36+-=--x x x 去括号,得26696--=+-x x x移项,得92666+-=++x x x 合并,得1313=x 系数化为1,得1=x (6)原方程可化为21022108+=--x xx 去分母,得)210(2)210(16+=--x x x去括号,得42021016+=+-x x 移项,得10420216+=-+x x x 合并,得142=-x 系数化为1,得7-=x 说明:(2)去分母时要注意不要漏乘没有分母的项,当原方程的分母是小数时,可以先用分数基本性质把它们都化成整数后,再去分母;(3)分数线除了可以代替“÷”以外,还起着括号的作用,分子如果是一个式子时,应该看作一个整体,在去分母时,不要忘了将分子作为整体加上括号.解方程的过程是等式恒等变形的过程,计算中要注意括号、符号等,掌握正确计算的方法.关于解方程中的去分母的典型例题二例 代数式318x+与1+x 的值的和是23,求x 的值.分析:根据题意,可列方程23)1(318=+++x x,解x 即可. 解:得方程23)1(318=+++x x, 去分母,得693318=+++x x . 移项,合并得484=x . 所以,12=x即x 的值为12.说明:①方程的形式不同,解方程的步骤也不一定相同,五个步骤没有固定顺序,也未必全部用到.②解方程熟练以后,步骤可以简化.关于解方程中去分母的典型例题二例 汽车从甲地到乙地,用去油箱中汽油的41,由乙地到丙地用去剩下汽油的51,油箱中还剩下6升.(1)求油箱中原有汽油多少升?(2)若甲乙两地相距22千米,则乙丙两地相距多少千米?(3)若丁地距丙地为10千米,问汽车在不再加油的情况下,能否去丁地然后再沿原路返回到甲地?分析:①利用等量关系:甲乙路段的汽油+乙丙路段的汽油+剩余的汽油=油箱的总油量;②利用路程与油量成比例方程;③看油量6升能使用多少千米?解:(1)设油箱的总油量为x 升,则x x x x =+⨯⎪⎭⎫ ⎝⎛-+6514141, 整理得62012=x ,得10=x (升). (2)设乙、丙相距y 千米,则甲乙相距22千米,用油5.24110=⨯=(升) 每升油可行驶8.85.222=千米. 乙、丙之间用油5.151)5.210(=⨯-(升),所以2.135.18.8=⨯=y (千米).(3)若从丙地返回还需用4升油,因此还剩2升油要从丙到丁再返回,6.1728.8=⨯(千米).2升油可行驶17.6千米,而丙、丁来回10×2=20千米, 6.1720>,因此,不能沿原路返回.说明:①多个问题的题目,前面问题的解可作为后面问题的条件;②本题关键要找出每升汽油可行驶多少千米.关于解方程中去分母的典型例题三例 一件工作,甲单独做20小时完成,乙单独做12小时完成.现在先由甲单独做4小时,剩下的部分由甲、乙合做.剩下的部分需要几小时完成?解:设剩下的部分需要x 小时完成.根据两段工作量之和应是总工作量,得11220204=++x x 去分母,得605312=++x x移项及合并,得488=x 6=x答:剩下的部分需要6小时完成.说明:此问题里的相等关系可以表示为:全部工作量=甲独做工作量+甲、乙合做的工作量.于是问题转化为如何表示工作量,我们知道,工作量=工作效率×工作时间.这里的工作效率是用分数表示的:一件工作需要a 小时完成,那么1小时的工作效率为a1.由此可知:m 小时的工作量=工作效率a m m =⨯,全部工作量=工作效率1==⨯aaa ,即在工程问题中,可以把全部工作量看作是1.关于解方程中的去括号的典型例题一例 解下列方程:(1))72(65)8(5-=-+x x (2))1(2)1()1(3-=--+x x x (3)()[]{}1720815432=----x分析:方程中含有多重括号,一般方法是逐层去括号,但考虑到本题的特点,可先将-7移到右边,再两边除以2,自动地去掉了大括号,同理去掉中括号,再去掉小括号.解:(1)去括号,得42125405-=-+x x移项,得54042125+--=-x x合并,得777-=-x系数化为1,得11=x(2)去括号,得22133-=+-+x x x 移项,得13223+--=-+x x x 合并,得42-=x系数化为1,得2-=x(3)移项,得()[]{}820815432=---x 两边都除以2,得[]4208)15(43=---x 移项,得[]248)15(43=--x 两边都除以3,得88)15(4=--x 移项,得16)15(4=-x两边都除以4,得415=-x 移项,得55=x系数化为1,得1=x说明:去括号时要注意括号前面的符号,是负号时去掉括号后要改变括号内各项的符号;解方程的过程是等式恒等变形的过程,计算中要注意括号、符号等,掌握正确计算的方法.关于解方程中去括号的典型例题二例 某抗洪突击队有50名队员,承担着保护大堤的任务.已知在相同的时间内,每名队员可装土7袋或运土3袋.问应如何分配人数,才能使装好的土及时运到大堤上?解:设分配工人装土,则运土有)50(x -人.根据装上的袋数与运土的袋数相等的关系,列得)50(37x x -=去括号,得x x 31507-=移项及合并,得15010=x所以运土的人数为3550=-x .答:应分配15人装土,35人运土,才能使装好的土及时运到大堤上.说明:找准题目中的相等关系关键在于如何理解“装好的土及时运到大堤上”,即使得已装好土的袋数和运走的袋数是相同的,所以依靠总人数50人可没装土的人数为x 人,则可以用x 表示运土的人数.其实在题中还可以依靠其他的相等关系列方程,试试看.关于解方程中去括号的典型例题三例 蜘蛛有8条腿,蜻蜓有6条腿.现有蜘蛛、蜻蜓若干只,它们共有270条腿,且蜻蜓的只数是蜘蛛的2倍少5.问蜘蛛、蜻蜓各有多少只?解:设蜘蛛有x 只,则蜻蜓有)52(-x 只. 根据蜘蛛与蜻蜓共有270条腿,列得270)52(68=-+x x去括号,得27030128=-+x x移项及合并,得30020=x 15=x蜻蜓的只数为2552=-x答:蜘蛛有15只,蜻蜓有25只.说明:本题要求出两个未知数的值,但由于这两个未知数的关系为“2倍少5”,所以只要用x 表示其中的一个未知数,就可以用)52(-x 表示另一个未知数.如果设蜻蜓的只数为x ,那么应该如何列方程呢?应用题的答案与上面求得的答案一样吗?关于解方程中去括号的典型例题四例(北京崇文,2003)小王在超市中买了单价是2.8元的某品牌鲜奶若干袋,过了一段时间再去超市,发现这种鲜奶正进行让利销售,每袋让利0.3元,于是他比上次多买了2袋,只比上次多花了2元钱,问上次买了多少袋这样的鲜奶?分析:等量关系是:上次买牛奶的钱数+2=这次买牛奶的钱数. 解:设上次买了x 袋这样的鲜奶,依题意得)2(5.228.2+=+x x55.228.2+=+x x 255.28.2-=-x x 33.0=x 10=x答:小王上次买了10袋这样的鲜奶.说明:与市场经济相关联的方程应用题是当前中考的一个热点,要加强这方面的练习.关于解方程中去括号的典型例题五例(“希望杯”试题)方程0333321212121=-⎭⎬⎫⎩⎨⎧-⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-x 的解为__________. 分析:方程里的括号较多,要依次去掉. 解法1:去掉小括号,整理后03329412121=-⎭⎬⎫⎩⎨⎧-⎥⎦⎤⎢⎣⎡-x ,去掉中括号,整理后034218121=-⎭⎬⎫⎩⎨⎧-x , 去掉大括号,整理后0845161=-x . 去分母,得090=-x . 所以90=x .解法2:-3移到右边,去掉大括号(乘以2),得6333212121=-⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-x , -3移到右边,乘以2去掉中括号,得18332121=-⎪⎭⎫⎝⎛-x , -3移到右边,乘以2去掉小括号,得42321=-x 易得90=x说明:①解此方程要边去括号,边运算、化简;②解法2运算量小.关于解方程中去括号和去分母的选择题1.解方程1443312=---x x 时,去分母正确的是( ) A .1129)12(4=---x x B .12)43(348=---x x C .1129)12(4=+--x x D .12)43(348=-+-x x 2.将方程5)24(32=--x x 去括号正确的是( )A .52122=--x xB .56122=--x xC .56122=+-x xD .5632=+-x x 3.将方程131212=--+x x 去分母正确的是( ) A .62216=+-+x x B .62236=--+x x C .12236=+-+x x D .62236=+-+x x4.解方程256133xx x -=--+,去分母所得结果正确的是( ) A .x x x -=+-+15132 B .x x x 315162-=+-+ C .x x x -=--+15162 D .x x x 315132-=+-+5.下列解方程的过程中正确的是( )A .将5174732+-=--x x 去分母得)17(4)75(52+-=--x x B .由102.07.015.03.0=--x x 得10027015310=--x xC .)28(2)73(540+=--x x 去括号得41671540+=--x xD .552=-x ,得225-=x 6.下列方程,解是0=x 的是( )A .8.034.057x x =-B .13423--=-x xC .()[]{}98765432=---xD .x x 322)73(72-=+7.方程)1(332+=-y y 的解是( )A .-6B .6C .54D .0 8.式子33+x 的值比式子512-x 的值大1,则x 为( ) A .3 B .4 C .5 D .6 9.若代数式23-y 的值比312-y 的值大1,则y 的值是( ) A .15 B .13 C .-13 D .-15 10.方程60)1(4)2(4=+--x x 的解是( )A .7=xB .76=xC .76-=x D .7-=x 11.若213+x 比322-x 小1,则x 的值为( )A .513B .-135C .-513D .13512.某项工作甲单独做4天完成,乙单独做6天完成,若甲先做一天,然后甲、乙合作完成此项工作,若甲乙共做了x 天,所列方程为( )A .1641=++x x B .1614=++x x C .1614=-+x x D .161414=+++x x 13.有m 辆客车及n 个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①1431040-=+m m ②4314010+=+n n ③4314010-=-n n ④1431040+=+m m 其中符合题意的是( ) (A )①② (B )③④ (C )①③ (D )②④14.若方程)23()12(3+-=++a x a x 的解是0,则a 的值等于( )A .51 B .53 C .-51 D .-53 15.(天津市,2001)甲、乙两人骑自行车同时从相距65千米的两地相向而行,2小时相遇,若甲比乙每小时多骑2.5千米,则乙的时速是( )A .12.5千米/时B .15千米/时C .17.5千米/时D .20千米/时参考答案:1.B 2.C 3.D 4.B 5.D 6.D 7.A 8.A 9.C 10.D 11.C 12. A 13.B 14.D 15.B关于解方程中去括号和去分母的填空题1.____=m 时,式子212-m 的值是3; 2.如果4是关于x 的方程a a x x a 2)(353++=-的解,则____=a ; 3.若x y x y -=+=8,3521,当1y 比2y 大于1时,____=x ; 4.关于x 的方程054)2(2=-++k kx x k 是一元一次方程,则____=k 5.若)9(312y --与)4(5-y 的值相等,则____=y 6.当____=x 时,31-x 的值比21+x 的值大-3 7.当____=m 时,方程3445-=+x x 和方程)2(2)1(2-=-+m m x 的解相同.8.要使21+m 与23-m 不相等,则m 不能取的值是_______ 9.方程332=-x 与方程0331=--xa 有相同的解,则____=a .10.某数x 的21倍比另一数y 的23倍多5,则____=y .11.一个两位数,两个数位上的数字之和为12,且个位数字比十位数字大2,则这个两位数为________________;12.某商品先按批发价a 元提高10%零售,后又按零售价降低10%出售,则它最后的单价是___________.13.甲能在11天内完成此项工作,乙的工作效率比甲高10%,那么乙完成这项工作的天数为_______天.14.(2003年河南省中考题)某超市规定,如果购买不超过50元的商品时,按全额收费,购买超过50元的商品时,超过部分按九折消费,某顾客在一次消费中向售货员交纳了212元,那么在此消费中该顾客购买的是价值________________元的商品.15.(济南市,2003)下面是甲商场电脑产品的进货单,其中进价一栏被墨迹污染.读了进货单后,请你求出这台电脑的进价,是__________元.供货单位 乙单位 品名与规格 P4200 商品代码DN-63D7 商品归属电脑专柜进价(商品的进货价格) 元 标价(商品的预售价格)5850元 折扣8折 利润(实际销售后的利润)210元售后服务 终生保修,三年内免收任何费用,三年后收取材料费,五日快修,周转机备用,回访.1.27 2.-16 3.1 4.-2 5.25 6.413 7.38- 8.1 9.2 10.310-x 11.57 12.0.99a 13.1014.答案:230.利用等量关系50元+九折消费=212元. 设购买的是价值x 元的商品,则212%90)50(50=⨯-+x去括号整理得2079.0=x ,解得230=x (元). 15.4470(设进价为x 元,则2101085850+=⨯x ,解得4470=x关于解方程中去括号和去分母的计算题1.解下列方程(1)521215++=--y y y (2)13.02.18.12.06.02.1=-+-x x(3)5162.15.032.08+-=--+x x x (4)23241233431=⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-x 2.解下列方程(1)250)104(2)3010(5-=--+x x(2)2233)5(54--+=--+x x x x (3)1612213-+=-x x(4)⎥⎦⎤⎢⎣⎡+-=⎪⎭⎫ ⎝⎛---4)3(551014224123x x x x (5)5:63:2=m(6)7:23:4t =(7))1(27)1(4)1(31)1(3+--=--+x x x x (8))1(32)1(2121-=⎥⎦⎤⎢⎣⎡--x x x 3.利用等式的性质解方程:(1))1(9)14(3)2(2x x x -=--- (2)37615=-y (3)14126110312-+=+--x x x (4)x x 5.12)73(72-=+ (5)103.02.017.07.0+-=x x (6)y y 535.244.2=-- 4.列方程求解:(1)已知6--x 的值与71互为倒数,求x ; (2)x 等于什么数时,133-+x 等于1752++x 的值? (3)x 取何值时,235x -和[])53(521--x x 互为相反数? (4)a 为何值时,关于x 的方程03=+a x 的解比方程0432=--x 的解大2? 5.已知2021at t v S +=,如果81,4,13===a t S ,求0v . 6.若4=y 是方程)(532m y m y -=-+的解,求13-m 的值.参考答案1.(1)两边乘以10得)2(210)1(52++=--y y y去括号,得95-=y 所以,59-=y (2)转化为1312182612=-+-x x 简化为14636=-+-x x 解得32=x (3)转化为5162.153********+-=--+x x x 去分母,得)16(212)3010(2)8010(5+-=--+x x x去括号整理得48032-=x ,解得15-=x(4)两边同乘以3,去掉中括号得632412334=-⎪⎭⎫ ⎝⎛-x 32-移到右边再乘以43,去掉小括号得 54123=-x 解得27=x 2.(1)10-=x (2)6=x (3)72-=x (4)4=x (5)8.1=m (6)314=t (7)5-=x (8)511=x 3.(1)10-=x (2)3=y (3)61=x (4)0=x (5)1714=x (6)4=y 4.(1)13,1)6(71-==--x x (2)36,1752133=++=-+x x x (3)10,0)]53(5[21235==--+-x x x x (4)解03=+a x 得,3a x -=,解0432=--x 得,6-=x ,依题意得2)6(3=---a ,∴12=a 5.3,48121413020=⨯⨯+=v v 6.将4=y 代入方程得)4(5324m m -=-+ 整理得m m 5202-=-,所以,29=m , 则22513=-m关于解方程中去括号和去分母的应用题1.小王在超市中买了单价是2.8元的某品牌鲜奶若干袋,过了一段时间再去超市,发现这种鲜奶正进行让利销售,每袋让利0.3元,于是他比上次多买了2袋,却只比上次多花了2元钱,问上次买了多少袋这样的鲜奶?2.冷饮厅中A 种冰激凌比B 种冰激凌贵1元,小明和同学要了3个B 种冰激凌、2个A 种冰激凌,一共花了16元.两种冰激凌每个多少钱?3.班级的书架宽88厘米,某一层上摆满一种历史书和一种文学书,共90本.小明量得一本历史书厚0.8厘米,一本文学书厚1.2厘米.你知道这层书架上历史书和文学书各有多少本吗?4.一个两位数,十位上的数比个位上的数小1,十位与个位上的数的和是这个两位数的51,求这个两位数. 5.元旦期间,某商场搞优惠促销,决定由顾客抽奖确定折扣.某顾客购买甲、乙两种商品,分别抽到7折和9折,共付款386元,这两种商品的原销售价之和为500元.问,这两种商品的原销售价分别为多少钱?6.一个蓄水池装有甲、乙、丙三个进水管.单独开放甲管,45分钟可以注满全池;单独开放乙管,60分钟可以注满全池;单独开放丙管,90分钟可以注满全池.现将三管一齐开放,多少分钟可以注满水池?7.某中学开展校外植树活动,六年级学生单独种植,需要7.5小时完成;七年级学生单独种植,需要5小时完成.现在六年级、七年级学生先一起种植1小时,再由七年级学生单独完成剩余部分.共需多少时间完成?8.朝阳中学在预防“非典”的活动中,初二(2)班45名同学被平均分配到甲、乙、丙三处打扫环境卫生.甲处的同学最先完成打扫任务,班卫生委员根据实际情况及时把甲处的同学全部调到乙、丙两处支援,调动后乙处的人数恰好为丙处人数的1.5倍.问从甲处调往乙、丙两处各多少人?9.国家从多方面保障农民的根本利益,重视农业的发展.王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,共用去了44 000元.其中种茄子每亩用了1700元,获纯利2 400元;种西红柿每亩用了1800元,获纯利2 600元.你知道王大伯今年一共获纯利多少元吗?10.我国古代数学问题:有大小两种盛米的桶,已经知道5个大桶加上1个小桶可以盛3斛米,1个大桶加上5个小桶可以盛2斛米.问1个大桶、1个小桶分别可以盛多少斛米?选自《九章算术》卷七“盈不足”.“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”11.我国古代数学问题:好马每天走240里,劣马每天走150里.劣马先走12天,好马几天可以追上劣马?选自《算学启蒙》.“良马日行二百四十里,劣马日行一百五十里.努马先行一十二日,问良马几何日追及之.”12.在城市中公交车的发车间隔时间是一定的.小明放学后走在回家的路上,他发现每隔6分钟从后面开来一辆公交车,每隔2分钟从前面开来一辆公交车,他想,公交车到底是几分钟发车一辆呢?你能帮他计算一下吗?13.某工程队每天安排120个劳力修建水库,平均每天每个劳力能挖土5方或运土3方,为了使挖出的土及时运走,问应如何安排挖土和运土的劳力?14.一个两位数,十位数字比个位数字的4倍多1,将两个数字调换顺序后所得数比原数小63,求原数.15.(宁波市,2000)某商店为了促销G 牌空调机,2000年元旦那天购买该机可分期付款,在购买时先付一笔款,余下部分及它的利息(年利率为5.6%)在2001年元旦付清,该空调机售价每台8224元.若两次付款数相同,问每次应付款多少元?16(2003年广东省中考题)某商场出售某种文具,每件可盈利2元,为了支援贫困山区,现在按原售价的7折出售给一山区学校,结果每件盈利0.2元.问该文具每件的进货价是多少元?17.某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.在安全检查中,对4道门进行了测试.当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生;当同时开启一道正门和一道侧门时,1分钟内可以通过200名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤(尽管有老师组织),出门的效率将降低10%;安全检查规定,在紧急情况下全大楼的师生应在5分钟内通过这4道门安全撤离.假设每间教室可容纳50名学生,此校教师是学生数的10%,教师通过门的速度快于学生,问:建造的这4道门是否符合安全规定?参考答案:1.设上次买了x 袋鲜奶,则128.2)2)(3.08.2(=+=+-x x x 2.设A 种冰激凌每个x 元,则8.3=x3.设书有x 本,则5088)90(2.18.0==-+x x x 4.设个位数字为x ,则5])1(10[511=+-=-+x x x x x ,此数为45 5.设甲种商品的原售价为x 元,则320%38)500%(90%70==-+x x x 6.设x 分可以注满水池,则201904560==++x x x x 7.设共需x 小时完成,则313)1(51515.711=-=⎪⎭⎫⎝⎛+-x x 8.设甲种调往乙处x 人,则12)1515(5.115=-+=+x x x9.设种茄子x 亩,则1044000)5(18001700==-+x x x ,总获利为:630002600)1025(240010=⨯-+⨯10.设1个小桶盛y 斛米,则247,3)52(5==+-y y y ,大桶可盛米:241352=-y 11.设好马x 天可以追上劣马,则1.20240)12(150==+⨯x xx 12.设公交车x 分钟发车一辆,则32266=-=-x x x13.设安排x 人挖土,则安排)120(x -人运土,则75120,45),120(35=-=-=x x x x (人)14.设个位数字为x ,则十位数字为14+x .2,63])14(10[1410=-=++-++x x x x x ,所以原数是92.15.分析:设第一次付款x 元,则第二次付款%)6.51)(8224(+-x 元,由两次付款数相同,可得 %)6.51)(8224(+-=x x .解:设第一次付款x 元,则%)6.51)(8224(+-=x x解得4224=x答:每次应付款4224元.说明:本题是分期付款问题,是一道紧扣生活实际和社会热点的好题.16.分析:利用等量关系盈利=售价-进价.解:设每件文具进货价为x 元,则标价为)2(+x 元,则x x -⨯+=%70)2(2.0, 整理后,2.13.0=x ,所以,4=x (元).因此,该文具每件的进价为4元.17.(1)设平均每分钟一道正门可以通过x 名学生,则一道侧门可以通过)200(x -名学生,则560)]200(2[2=-+x x解得120=x (名) 80200=-x 名所以,平均每分钟一道正门可以通过120名学生,一道侧门可以通过80名学生(2)这栋楼可容纳50×8×4=1 600(名)师生总和为1 600+1 600×10%=1 760(名)5分钟4道门能通过(120+80)×2×5=2 000(名)拥护时可通过2 000×(1-10%)=1 800(名)而17601800>且教师出门又快于学生所以,建造的4道门符合规定.。
《解一元一次方程》去括号与去分母
方程两边同乘最简公分母
用方程两边的代数式分别乘以最简公分母
得到一个等式
特殊情况的处理
分母是小数时,需 要将小数化为分数
分子是多项式时, 需要分解因式
分母是负数时,需 要将负号提到分子 的位置
03
去括号与去分母的结合
先去括号,再去找最简公分母
先去括号
在解一元一次方程时,首先需要去掉方程中的括号。根据括 号前系数的正负,采取不同的去括号法则。
04
注意事项
注意符号问题
去括号时注意符号变化
在解一元一次方程的过程中,去括号时需 要注意括号前面是负号时,去掉括号后括 号内的各项都要变号。
避免粗心导致错误
有些学生在去括号时容易忽略符号问题, 导致解题错误,因此需要特别注意。
注意不改变原方程
不能随意去掉分母
在解一元一次方程时,不能随意去掉分母, 只有在确定分母为0时才能进行化简。
括号前是正号,去掉括号和正号,各项不变号
总结词
去掉括号和正号后,各项符号不发生改变。
详细描述
当一元一次方程中的括号前出现正号时,去掉括号和正号后,括号内的各项符号 保持不变。例如,$2(x+3)$ 可以化简为 $2x + 6$。
括号前有数字,要看清数字和符号的关系
总结词
括号前的数字和符号必须同时去除。
注意符号和增根问题
注意符号
在去括号和去分母的过程中,要特别留意 符号的变化。特别是当括号前系数为负数 时,需要将括号内的每一项都变号。
VS
增根问题
在去分母的过程中,可能会引入增根。增 根是方程的解在实际情况下无意义,但在 数学上却是有效的根。为了解决增根问题 ,通常需要在方程的两边同时除以同一个 不为零的数,以确保方程的解是有效的。
初一数学解一元一次方程——去括号与去分母试题
初一数学解一元一次方程——去括号与去分母试题1.某学生在一次考试中,语文、数学、外语三门学科的平均成绩为80分,物理、化学两门学科的平均成绩为x分,该学生这5门学科的平均成绩是82分,则x=____.【答案】85【解析】本题主要考查一元一次方程的应用。
根据题意得语文、数学、外语三门学科的总分是240分,物理、化学两门学科的总分是2x分,等量关系为5门学科的总分5=82,列方程得:解得x=852.方程2-去分母得()A.2-2(2x-4)=-(x-7)B.12-2(2x-4)=-x-7C.12-4x-8=-(x-7)D.12-2(2x-4)=x-7【答案】D【解析】本题主要考查解元一次方程。
去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.∵分母的最小公倍数6,∴方程两边同乘以6得:12-2(2x-4)=x-7.故选D.3.甲、乙两人练习赛跑,甲每秒钟跑7米,乙每秒钟跑6.5米,甲让乙先跑5米,•设甲出发x秒钟后,甲追上乙,则下列四个方程中不正确的是()A.7x=6.5x+5B.7x-5=6.5C.(7-6.5)x=5D.6.5x=7x-5【答案】B【解析】本题主要考查一元一次方程的应用。
首先理解题意找出题中存在的等量关系:乙跑的路程=甲跑的路程,根据此等式列方程即可.解:设甲出发x秒钟后追上乙,则甲所跑的路程为7x,而此时乙所跑的路程为6.5x+5;根据此时“甲追上乙”那么他们的总路程应该相同,即7x=6.5x+5.很显然题目中的第二个选项是错误的.故选B.4.解方程:【答案】(1)x=3(2)x=1 (3)x=-1【解析】本题主要考查解一元一次方程。
解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解解:(1)去分母得:2 (x-1)-x=3(4-x)去括号得2x-2-x=12-3x移项合并得4x=14,系数化为1得:x=3(2)原式变形为去分母得:30x-6=40x-16移项合并得:10x=10系数化为1得:x=1(3)由题意得去分母得:3(3-5x)-4(5+2x)+12=6(1-3x)去括号得:9-15x-20-8x+12=6-18x移项合并得:-5x=5系数化为1得:x=-15.七(一)班学生参加运土劳动,其中一部分人挑土,一部分人抬土,总共有40•支扁担和60只筐,设x人抬土,用去扁担x支和x只筐.挑土的人用(40-x)_____和(60-x)______,得方程60-x=2(40-x),解得x=_______.【答案】支扁担,只筐,40人【解析】本题主要考查解一元一次方程,去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.60-x=2(40-x)解:去括号得:60-x=80- x移项合并得:x=20解得: x=406.在一个笼子里面放着几只鸡与几只兔,数了数一共有14个头,44只脚.•问鸡兔各有几只?设鸡为x只得方程()A.2x+4(14-x)=44B.4x+2(14-x)=44C.4x+2(x-14)=44D.2x+4(x-14)=44【答案】A【解析】本题主要考查一元一次方程的应用。
七年级解一元一次方程经典50道练习题(带答案)
自我测试 60 分钟看看准确率 牛刀小试 相信自己一定行1、 2x +1=7 ;2、 5x -2=8 ;3、 3x +3=2x +7 ;4、 x +5=3x -7 ;解:(移项)(合并)(化系数为 1)5、 11x -2=14x -9 ;6、 x -9=4x +27 ;7、 2 x + 6=1;8、 10 x -3=9 ;解:(移项)(合并)(化系数为 1)9、 4x -2=3-x ; 10、 -7 x + 2=2x -4 ;11、 5x -2= 7x +8 ;12、 1 x =- 1 x +34 2解:(移项)(合并)(化系数为 113、 x = 3 x + 35 2 x + 1 x 21- x =3x + ; 15、 - x =- 2x - =- +16 14、 1; 16、 2 2 2 5 3 3解:(移项)(合并)(化系数为 1).( x +0.5)+ x =7 ( x -1)= 4 ( x -1)= 1 ; 20、 2-( 1- x )=- 217、 4 ; 18、-2 ; 19、 5 ;解:(去括号)(移项)(合并)(化系数为 1)11x +1=5(2x +1) 4x -(320- x )= 3 5( x +8)- 5=0 2 21、 ; 22、 . 23、 ; 24、 ;解:(去括号)(移项)(合并)(化系数为 1)25、 -3( x +3)= 24 ; 26、 - 2( x - 2)=12; 27、 12(2-3x )= 4x +4 ; 28、 6-(3 x + 2)= 2 ;3 3解:(去括号)(移项)(合并)(化系数为 1)29、 (2200-15x )= 70+25x ; + 2= x ; - x x30、 (32x +1)=12 .31、 x 32、 3 = +4 ;5 4 2 3解:(去分母)(去括号)(移项)(合并)(化系数为 1)1 1 1 12 x - x + 2 1 = -( x +1)= (2x -3) ( x +1)= ( x -1) 33、 3; 34、 4 ; 35、 3 4 ;7 3 解:(去分母) (去括号) (移项) (合并) (化系数为 1( x -1)= 2- ( x + 2) 37、 ( x +14)= ( x +20) ( x +15)= - ( x -7) 36、 1 1 . 1 1 ; 38、 1 1 1. 2 5 7 4 5 2 3解:(去分母)(去括号) (移项)(合并) (化系数为 11 1 3 7 x - 5 32 x - 5 x +1 1 9x -2 x -= = 1 = - =39、 ; 4 2 ; 40、 4 8; 41、 6 ; 42、 2 x 7 64 8解:(去分母)(去括号)(移项)(合并)(化系数为 11 12 x + 5 x - 1 x )= 1 - 143、 x - ( - 1 =1 (2 x +14)= 4-2x3 2 ; 44、 ; 45、 ;5 2 36 7解:(去分母)(去括号)(移项)(合并)(化系数为 146、 3( 200+ x )- 2(300- x )= 300 9 . 47、 (83x -1)-(95x -11)-(22x -7)=30 ;10 10 25解:(去分母)(去括号)(移项)(合并)(化系数为 148、 1 x + 1= 1 x - 1 ; 49、 0.5x -1- 0.1x +2=-1; 50、 x -1 - x + 2 =12 .2 3 4 5 0.2 0.3 0.3 0.5解:(化整)(去分母)(去括号)(移项)(合并)(化系数为 1【参考答案】1、【答案】 (1) x =3 ; (2) x = 2 ; (3) x =4 ; (4) x =6;( 5) x = 7 ; ( 6) x =-12 ; ( 7) x =4 ; (8) x =-32 . 31.1、【答案】 ( 9) x =- 5 ; ( 10) x = 6 ; ( 11) x =-5 ; ( 12) x =- 1 ; 2 5 3( 13) x =1; ( 14) x = 2 ; ( 15 ) x =- 5 ; ( ) x =1 . 3 3 162、【答案】( 17) x =1 ;(18) x =-1 ; (19) x = 6 ; ( 20 ) x =- 3 ; ( 21 ) x =4 ; ( ) x =9 .2252.1、【答案】(23) x =- 7 ; ( 24) x =- 3 ; (25) x =-11 ; (26) x =- 4 ; ( 27) x = 1 ;( 28) x = 10 ; 2 2 9 ( 29) x =6 ; ( ) x = 3 30 . 23、【答案】 ( 31) x =8 ; ( 32) x = 1 ; ( ) x =-16 ; ( 34) x =7 ; ( 35 ) x =- 2 ;5 33 5( 36) x =3 ; ( 37) x =- 28 ; (38) x =- 5 .163.1、【答案】 ( 39) x =5 ; ( 40) x = 13 ; ( ) x =-1 ;( ) x =- 20; ( 43) x = 25 ;14 41 42 3 12( 44) x =-3 ; ( 45) x = 7 ; ( 46) x =216 . 84、【答案】 ( 47) x =3 ; ( 48) x =- 32 ; ( 49) x =64 ; ( 50) x = 29 . 15 13 2。
解一元一次方程之(去括号与去分母)
5(3y-1)-20=4(5y-7)
解一元一次方程可通过 去分母 、去括号、 移项 、 合并同类项 、 系数化为1 等步骤, 使一元一次方程逐步向着x=a的形式转化.
一、精心选一选
x 3 1 2x 解方程 =1,下面去分母 8 4 正确的是 (C)
A、2(x+3)-(1-2x)=1 B、2(x+3)-1-2x=8
解一元一次方程(二)
----去括号、去分母
回顾篇
注意符号 1、2(X+8)= 2x+16
2、-3(3X+4)=-9x-12 注意符号
3、-(7y-5)= -7y+5
1.由a = b得12a =12b ,依据是 等式性质2 , 即等式两边乘同一个数,结果仍相等 。
例题 解下列方程:
2 x-( x+10)=5 x+2( x-1) (1 )
●处在印刷时被墨迹污染了,查后面答案,这 个方程解是x=2,那么●处应是数字 2 。
C、2(x+3)-(1-2x)=8
D、2x+6-1-2x=8
二、细心填一填
1 2 x 3x 1 将方程 3 = -3 7
去分母得 7(1-2x)=3(3x+1)-63
。
三、解方程(擂台赛)
3x 5 ① = 2x 1 3 2
②x+ 1 x
2
=2 x
6
③ ④
4m =2m 5
x3 -1= 7 6 3
x
四、综合运用
①已知式子x1 x 3
的值等于5 ,则x= 8
。
②在一卷公元前1700年左右遗留下的古埃及草 卷中记载着一些数字问题,其中有一个问题翻
2 译过来是:“啊哈,它的全部,它的3
《解一元一次方程(2)——去括号和去分母》习题1
《解一元一次方程(2)——去括号与去分母》习题
一、选择题.
1、方程5x -4 =-9+3x 移项后得( ).
(A )5x +3x =-9-4 (B )5x -3x =-9+4
(C )5x +3x =-4-9 (D )5x -3x =-4+9
2、方程23234
x x --=去分母后可得( ). (A )x -2=3-2x (B )4x -8=9-6x
(C )12x -24=36-24x (D )3x -6=12-8x
3、某商品的标价为336,若降价以八折出售,仍可获利5%,则该商品的进价是( ).
(A )298 (B )328 (C )320 (D )360
二、填空题.
1、日历中同一竖列相邻四个数的和是54,则最上边的数对的日期是___________,最下边的数对的日期是__________.
2、小红在商店打折时花210元买了一件衣服,这件衣服在商店里现在又在以原价的8折销售标价240元,小红是以衣服的原价的______折买的.
3、一船由甲地开往乙地,顺水航行要t 小时,逆水航行比顺水航行多用0.5小时,已知船在静水中的速度为v 千米/时,求水流速度.若设水流速度为x 千米/时,则可列方程______________________________________.
三、解方程.
(1)4232+=-x x ; (2)2
1141+=--x x ; (3)
223131x x --=--; (4)32213415x x x --+=-; (5)5131+=-x x ; (6)5
1131+=--x x ; (7)512131+-=+-x x .。
七年级数学上,解一元一次方程2——去括号与去分母练习题
解一元一次方程 基础练习题2去括号去分母1.在解方程:()()312236x x --+=时,去括号正确的是A .31436x x --+=B .33466x x ---=C .31436x x +--=D .31466x x -+-=2.解方程342x x -+=()去括号正确的是A .3–x +2=xB .3–4x –8=xC .3–4x +8=xD .3–x –2=x 3.在解方程123123x x -+-=时,去分母正确的是 A .()()312231x x --+=B .()()312236x x --+=C .31431x x --+=D .31436x x --+= 4.解方程151412x x x +-=-时,去分母正确的是 A .3(x +1)=x –(5x –1)B .3(x +1)=12x –5x –1C .3(x +1)=12x –(5x –1)D .3x +1=12x –5x +1 5.在解方程1135x x -=-时,去分母后正确的是 A .()51531x x =--B .()131x x =--C .()5131x x =--D .()5331x x =-- 6.下列变形中: ①由方程1225x -=去分母,得x –12=10; ②由方程2992x =两边同除以29,得x =1; ③由方程6x –4=x +4移项,得7x =0; ④由方程53262x x -+-=两边同乘以6,得12–x –5=3(x +3). 错误变形的个数是 A .4个B .3个C .2个D .1个7.把方程2113332x x x -++=-去分母正确的是 A .3x +2(2x –1)=3–3(x +1)B .3x +(2x –1)=3–(x +1)C .18x +(2x –1)=18–(x +1)D .18x +2(2x –1)=18–3(x +1) 8.代数式12m +与m –14的值互为相反数,则m 的值为 A .32 B .–16 C .–13D .12 9.关于x 的方程2(x –2)–3(4x +1)=9,下面解答正确的是A .2x –4–12x +3=9,–10x =9+4–3=10,x =1B .2x –4–12x +3=9,–10x =10,x =–1C .2x –4–12x –3=9,–10x =16,x =–85D .2x –2–12x –3=9,–10x =2,x =–15 10.方程3x +2(1–x )=4的解是A .x =25B .x =65C .x =2D .x =111.在一个笼子里面放着几只鸡与几只兔,数了数一共有14个头,44只脚.问鸡兔各有几只?设鸡为x 只得方程A .2x +4(14–x )=44B .4x +2(14–x )=44C .4x +2(x –14)=44D .2x +4(x –14)=44 12.解方程21101136x x ++-=时,去分母正确的是 A .()211011x x +-+=B .411016x x +-+=C .()()2211011x x +-+=D .()()2211016x x +-+= 13.将方程21123x x -+-=去分母,得到的整式方程是 A .1–3(x –2)=2(x +1)B .6–2(x –2)=3(x +1)C .6–3(x –2)=2(x +1)D .6–3x –6=2x +2 14.在解方程14123x x -=+时,去分母后正确的是__________. 15.当y =__________时,1–256y -与36y -的值相等. 16.如果代数式16422x x ⎛⎫-+ ⎪⎝⎭与1713x ⎛⎫-- ⎪⎝⎭的值相等,那么x =__________.17.对于任意有理数a ,b ,定义关于“⊗”的一种运算如下:a ⊗b =2a –b ,例如:5⊗2=2×5–2=8,(–3)⊗4=2×(–3)–4=–10.若(x –3)⊗x =2011,则x 的值为__________.18.解方程:(1)4–3(2–x )=5x ;(2)2181236x x x -++-=-.19.解下列方程:(1)2(x +3)=5(x –3);(2)214335x x x --=-.20.已知关于x 的方程mx +2=2(m —x )的解满足|x –12|–1=0,求m 的值.21.对于非零的两个实数a 、b ,规定2a b b a ⊗=-,若111x ⊗+=(),则x 的值为A .1-B .1C .12D .022.解方程2x +3(2x –1)=16–(x +1)的第一步应是A .去分母B .去括号C .移项D .合并 23.解方程1–362x x +=,去分母,得 A .1–x –3=3xB .6–x –3=3xC .6–x +3=3xD .1–x +3=3x 24.若方程()3213x x -=的解与关于x 的方程()6223a x -=+的解相同,则a 的值为A .2B .2-C .1D .1- 25.把方程213148x x --=-去分母后,正确的结果是 A .2x –1=1–(3–x )B .2(2x –1)=1–(3–x )C .2(2x –1)=8–3+xD .2(2x –1)=8–3–x26.对方程21512034x x---+=去分母,正确的是A.4(2x–1)–3(5x–1)+2=0 B.4(2x–1)–3(5x–1)+24=12C.3(2x–1)–4(5x–1)+24=0 D.4(2x–1)–3(5x–1)+24=027.汪涵同学在解方程7a+x=18时,误将+x看作–x,得方程的解为x=–4,那么原方程的解为A.x=4 B.x=2 C.x=0 D.x=–228.对于有理数a,b,规定一种新运算:a⊕b=ab+b,则方程(x–4)⊕3=–6的解为__________.29.对任意四个有理数a,b,c,d定义新运算:a bc d=ad–bc,已知241xx-=18,则x=__________.30.阅读材料:规定一种新的运算:a bc d=ad–bc.例如:1234=1×4–2×3=–2.(1)按照这个规定,请你计算5624的值;(2)按照这个规定,当242122xx--+=5时,求x的值.31.老师在黑板上出了一道解方程的题212134x x -+=-,小明马上举手,要求到黑板上做,他是这样做的: ()()421132x x -=-+…………………①84136x x -=--………………………②83164x x +=-+………………………③111x =-…………………………………④111x =-…………………………………⑤ 老师说:小明解一元一次方程的一般步骤都知道却没有掌握好,因此解题时有一步出现了错误,请你指出他错在_________(填编号);然后,你自己细心地解下面的方程:(1)3(3x +5)=2(2x –1);(2)2157146y y ---=.32.已知关于x 的方程:()211x x -+=与()31x m m +=-有相同的解,求关于y 的方程3332my m y --=的解.A .2x –1+6x =3(3x +1)B .2(x –1)+6x =3(3x +1)C .2(x –1)+x =3(3x +1)D .(x –1)+x =3(x +1)35.(2017·武汉)解方程:432(1)x x -=-.参考答案1. B2. B3. B4. C5. A6. B7. D8. B9. C10. C11. A12. D13. C14. ()3186x x -=+.15. 816. 617. 201718. (1)x =–1.(2)x =3.19. (1)7;(2)1/220. 所以m 的值为10或25. 21. D22. B23. B24. D25. C26. D27. A28. 129. 330. (1)8;(2)1;31. ① 32. 1213y =-. 33. B34. -1735. 1/2。
3.3 解一元一次方程(去括号与去分母,分层练习)(原卷版)-2024-2025学年七年级数学上册同
3.3解一元一次方程(二) ——去括号与去分母一.选择题(共5小题) 1.(2023春•沈丘县期末)将方程3x−12−x+25=−2去分母得( )A .5(3x ﹣1)﹣(x +2)=﹣2B .5(3x ﹣1)﹣2(x +2)=﹣2C .5(3x ﹣1)﹣2(x ﹣2)=﹣20D .5(3x ﹣1)﹣2(x +2)=﹣202.(2023春•衡阳期末)解方程1−x+36=x2,去分母,得( ) A .1﹣x ﹣3x =3B .6﹣x ﹣3=3xC .6﹣x +3=3xD .1﹣x +3=3x3.(2022秋•天山区校级期末)解方程1−x+33=x2,去分母正确的是( ) A .1﹣2x ﹣3=3xB .1﹣2x ﹣6=3xC .6﹣2x ﹣6=3xD .6﹣2x +6=3x4.(2022秋•芙蓉区校级期末)在解方程x−13+x =3x+12时,方程两边同时乘以6,去分母后,正确的是( )A .2x ﹣1+6x =3(3x +1)B .2(x ﹣1)+6x =3(3x +1)C .2(x ﹣1)+x =3(3x +1)D .(x ﹣1)+x =3(x ﹣1)5.(2022秋•平泉市校级期末)方程:5x+13−2x−16=1的解为( )A .38B .−38C .83D .−83二.填空题(共3小题)6.(2022春•永春县月考)方程x ﹣4=0的解是 . 7.(2022•白云区二模)方程x+12=2−x 4的解是 .8.(2023•沙坪坝区校级开学)若2x ﹣1=0,则x 的值为 .三.解答题(共3小题)9.(2022秋•南岗区期末)解方程: (1)5x =1519; (2)14x −16x =4.10.(2022秋•芜湖期末)阅读材料:如何将0.7.化为分数形式. 探究过程:步骤①设x =0.7.;步骤②10x =10×0.7.;步骤③10x =7.7.,则10x =7+0.7.;步骤④10x =7+x ,解得x =79. 请你根据上述阅读材料,解答下列问题: (1)步骤①到步骤②的依据是 ; (2)仿照上述探究过程,请你把0.3.7.化为分数形式: 步骤①设x =0.3.7.,步骤②100x =100×0.3.7.; 步骤③ ;步骤④ ,解得x = ; (3)请你将0.48.化为分数形式,并说明理由. 11.(2022秋•邢台期末)解方程: (1)3(2x ﹣1)=5x +2; (2)5x+13−2x−16=1.一.选择题(共3小题)1.(2023•陇西县校级模拟)定义a ⓧb =2a +b ,则方程3ⓧx =4ⓧ2的解为( ) A .x =4B .x =﹣4C .x =2D .x =﹣22.(2022秋•惠东县期末)若代数式a+34比2a−37的值多1,则a =( ) A .﹣5B .−15C .5D .153.(2022秋•聊城期末)把方程3x 0.2−1=2x0.3的分母化为整数可得方程( )A .30x2−10=20x3B .30x2−1=20x3C .30x 2−10=2x 3D .3x 2−1=2x 3二.解答题(共1小题)4.(2022秋•川汇区期末)解方程: (1)5x +2(x ﹣1)=2x ﹣(x +10); (2)x+12=2−x 3+3.一.选择题(共3小题)1.(2023•平桥区校级开学)王涵同学在解关于x 的一元一次方程7a +x =18时,误将+x 看作﹣x ,得方程的解为x =﹣4,那么a 原方程的解为( ) A .x =4B .x =2C .x =0D .x =﹣22.(2022秋•潮安区期末)设a ⊕b =3a ﹣b ,且x ⊕(2⊕3)=1,则x 等于( ) A .3B .8C .43D .163.(2022秋•通川区校级期末)若关于x 的方程kx ﹣2x =14的解是正整数,则k 的整数值有( )个. A .1个B .2个C .3个D .4个二.解答题(共2小题)4.(2023春•襄汾县月考)解一元一次方程: (1)6(x −23)−(x +7)=11; (2)2x−13=2x+16−2.5.(2022秋•龙亭区校级期末)我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:例:将0.7⋅化为分数形式,由于0.7⋅=0.777…,设x =0.777…,① 得10x =7.777…,②②﹣①得9x =7,解得x =79,于是得0.7⋅=79.同理可得0.3⋅=39=13,1.4⋅=1+0.4⋅=1+49=139.根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)【类比应用】(1)4.6⋅= ; (2)将0.2⋅7⋅化为分数形式,写出推导过程; 【迁移提升】(3)0.2⋅25⋅= ,2.01⋅8⋅= ;(注0.2⋅25⋅=0.225225…,2.01⋅8⋅=2.01818…) 【拓展发现】(4)若已知0.7⋅14285⋅=57,则2.2⋅85714⋅= .。
(完整版)去分母解一元一次方程专项练习(有答案)ok
解一元一次方程专项练习247题(有答案)1..2.=﹣2;3.﹣2=.4.5..6.x ﹣=2﹣.8..9.10.11. ﹣6x=﹣x+1;12. y ﹣(y﹣1)=(y﹣1);13. [(x ﹣)﹣8]=x+1;15.﹣=1.16.17.2﹣=﹣.18.﹣1=﹣.19..20..21.22..23.;24. .25..26.27..28. 2﹣=x ﹣;29. ﹣1=.30..31.(x﹣1)=2﹣(x+2).32..33.34.35. ;36. .37..38.39.40.41.42. x ﹣43.;44. .45.(x﹣1)﹣(3x+2)=﹣(x﹣1).46.;47.;48. .49.+1=;50. 75%(x﹣1)﹣25%(x﹣4)=25%(x+6)51.52.53.54.55.56.57. ;58. .59. 2x ﹣(x﹣3)=[x ﹣(3x+1)].60.61.62.x+=1﹣63..64.65. ﹣=.66.=67.68.69.70.=;71. 3(x+2)﹣2(x ﹣)=5﹣4x.72. 2x ﹣73.74.[(﹣1)﹣2]﹣x=2.75.﹣1=.76.,77..78.79.80. ;81. .82.83.84.85. ﹣=.86.=1﹣.87.88..89..90..91. 92. ;93..94..95.;96. .97..98. ;99. [(x﹣1)﹣3]=2x﹣5;100..101.70%x+(30﹣x)×55%=30×65%.102.﹣=﹣x103.104.105.106.;107. ﹣=1.5.108. ﹣9.5 109.110.111.112.﹣=1;113. [(2x+2)﹣x]=.114.115.116.117.z+=z ﹣;118. ;119. .120..121.122. ;123. (5x﹣2)×30%=(7x+8)×20%.124..125. ;126. ;127. ;128. .129.130. 2{3[4(5x﹣1)﹣8]﹣20}﹣7=1;131.=1;132. x﹣2[x﹣3(x+4)﹣5]=3{2x﹣[x﹣8(x﹣4)]}﹣2;133. ;134. .135.136.137. {}=1138.139.﹣[x ﹣(x ﹣)]﹣=x+.140..141.=3.142.x ﹣=2﹣;143. ﹣=.144.145..146..147..148..149. .150..151.x ﹣[x ﹣(x﹣9)]=(x﹣9)152. .153..154..155.156..157. .158. .159. .160. .161..162..163.164. .165..166.167. .168..169. ;170. .171...172..=+2.173..174.﹣=1﹣.175..176..177..178.﹣=16.179. .180. =(x﹣1)﹣181. =0.182. .183..184.z+=z ﹣.185..186. 187. .188.189. ﹣=3190. .191. ;192. .193. +=1﹣x.194. .195.196. ﹣1197.198.199. .200. 4x+3(0.2﹣2x)=(8﹣6x)﹣2x;201. .202..203.﹣.204.y ﹣=3﹣205.+x=.206..207..208.(x﹣2)+2x=(7﹣5x);209. 0.7x+0.5(30﹣x)=30×0.6.210.﹣=5.211.212.213. .214. .215. 3x+.216..217.218. ﹣=1﹣219. ﹣=.220. ;221. .222. ﹣=1 223.224..225. ﹣(1﹣2x)=(3x+1)226. ﹣=﹣x227. .228. +=+1229..230..231.2[1﹣(x ﹣)]=3[﹣(2x ﹣)].232.{[(x+5)﹣4]+3}=1233..234.,235. .236.237..238..239..240.﹣=3﹣.241. 242. .243.244. .245..246.247..解一元一次方程247题参考答案:1.去分母得:3(2﹣x)﹣18=2x﹣(2x+3),去括号得: 6﹣3x﹣18=﹣3,移项合并得:﹣3x=9,∴x=﹣32.去分母得,3(x﹣1)=4(2x﹣1)﹣24,去括号得,3x﹣3=8x﹣4﹣24,移项、合并同类项得,5x=25,系数化为1得,x=5;3. 原方程变形为:﹣2=,去分母得,4(2x﹣1)﹣24=3(10x﹣10),去括号得,8x﹣4﹣24=30x﹣30,移项、合并同类项得,22x=2,系数化为1得,x=4.去分母得,7(1.7﹣2x)=3x﹣2.1去括号,11.9﹣14x=3x﹣2.1移项合并同类项得,﹣17x=﹣14系数化为1得,x=.5.原方程变形成5(3x+1)﹣20=3x﹣2﹣2(2x+3) 15x﹣15=﹣x﹣816x=7∴6.去分母得:6x﹣3(x﹣1)=12﹣2(x+2)去括号得:6x﹣3x+3=12﹣2x﹣4移项得:6x﹣3x+2x=12﹣4﹣3合并得:5x=5系数化为1得:x=1.7.去分母得:5(4﹣x)=3(x﹣3)﹣15,化简可得: 2x=11,系数化1得: x=8.原式可变形为:3(3y﹣1)﹣12=2(5y﹣7)去括号得: 9y﹣3﹣12=10y﹣14移项得: 9y﹣10y=﹣14+12+3合并得:﹣y=1系数化1得: y=﹣19.原方程分母化整得:去分母,得 5(x+4)﹣2(x﹣3)=1.6,系数化1,得 x=10.去分母得:4(x+1)=5(x+1)﹣6,去括号得: 4x+4=5x+5﹣6,移项、合并得:﹣x=﹣5,系数化为1得: x=5.11. 移项,合并得x=,化系数为1,得x=;12. 去分母,得6y﹣3(y﹣1)=4(y﹣1),去括号,得 6y﹣3y+3=4y﹣4,移项,合并得 y=7;13. 去括号,得(x ﹣)﹣6=x+1,x ﹣﹣6=x+1,移项,合并得x=;14. 原方程变形为﹣1=,去分母,得2(2﹣10x)﹣6=3(1+10x),去括号,得 4﹣20x﹣6=3+30x,移项,合并得﹣50x=5,化系数为1,得 x=﹣.15.去分母得:3(x﹣7)+4(5x﹣6)=12,去括号得: 3x﹣21+20x﹣24=12,移项得: 3x+6x=12+21+24,合并同类项得: 9x=57,化系数为1得: x=16.去分母:6(x﹣3)+4(6﹣x)=12+3(1+2x),去括号:6x﹣18+24﹣4x=12+3+6x,移项:6x﹣4x﹣6x=12+3+18﹣24,化简:﹣4x=9,化系数为1:x=﹣.17.去分母得:12﹣2(2x﹣4)=﹣(x﹣7),去括号得: 12﹣4x+8=﹣x+7,移项得:﹣4x+x=7﹣20,合并得:﹣3x=﹣13,系数化为1得: x=.18.去分母得:3(2x+1)﹣12=4(2x﹣1)﹣(10x+1),去括号得: 6x+3﹣12=8x﹣4﹣10x﹣1,移项合并同类项得: 8x=4,系数化为得: x=移项得: 10x﹣9x=﹣3+14﹣12系数化为1得: x=﹣120.去分母得:3(3x+4)﹣2(6x﹣1)=6去括号得: 9x+12﹣12x+2=6移项、合并同类项得:﹣3x=﹣8系数化为1得: x=21.去分母得:6(x+4)﹣30x+150=10(x+3)﹣15(x﹣2)去括号得: 6x+24﹣30x+150=10x+30﹣15x+30移项、合并得:﹣19x=﹣114化系数为1得: x=6.22.去分母得:4(2x﹣1)﹣3(3x﹣1)=24,去括号得: 8x﹣4﹣9x+3=24,移项合并得:﹣x=25,化系数为1得: x=﹣2523. 原方程可以变形为:5x﹣10﹣2(x+1)=3,5x﹣10﹣2x﹣2=3,3x=15,x=5;24. 原方程可以变形为[x ﹣(x ﹣x+)﹣]=x+,(x ﹣x+x ﹣﹣)=x+,(x ﹣)=x+,,,x=﹣25.﹣=﹣12(2x﹣1)﹣(5﹣x)=3(x+3)﹣62x=10x=526.去括号得:x ﹣﹣8=x,移项、合并同类项得:﹣x=8,系数化为1得: x=﹣8.27.,去分母得:2x﹣(3x+1)=6﹣3(x﹣1),去括号得: 2x﹣3x﹣1=6﹣3x+3,移项、合并同类项得:2x=10, 12﹣x﹣5=6x﹣2x+2﹣x﹣6x+2x=2﹣12+5﹣5x=﹣5x=1;29.4(10﹣20x)﹣12=3(7﹣10x)40﹣80x﹣12=21﹣30x﹣80x+30x=21﹣40+12﹣50x=﹣7.30.去分母得:3(2x+1)﹣12=12x﹣(10x+1),去括号得:6x﹣9=2x﹣1,合并得: 4x=8,化系数为1得: x=2.31.去分母得:5(x﹣1)=20﹣2(x+2),去括号得: 5x﹣5=20﹣2x﹣4,移项合并得: 7x=21,系数化为1得: x=3.32.原方程可化为:去分母得:40x+60=5(18﹣18x)﹣3(15﹣30x),去括号得:40x+60=90﹣90x﹣45+90x,移项、合并得: 40x=﹣15,系数化为1得: x=33.原方程变形为:50(0.1x﹣0.2)﹣2(x+1)=3,5x﹣10﹣2x﹣2=3,3x=15,x=5.34.去分母得:2(2x﹣1)=6﹣3x,去括号得: 4x﹣2=6﹣3x,移项得: 4x+3x=8,系数化为1得: x=35. 方程两边同乘15,得3(x﹣3)﹣5(x﹣4)=15,整理,得 3x﹣9﹣5x+20=15,解得﹣2x=4,x=﹣2.36. 方程两边同乘1,得50(0.1x﹣0.2)﹣2(x+1)=3,整理,得 5x﹣10﹣2x﹣2=3,解得: 3x=15,∴x=537.去分母得:3y﹣18=﹣5+2(1﹣y),去括号得:3y﹣18=﹣5+2﹣2y,移项合并得: 5y=15,38..解:去括号得:12﹣2y﹣2﹣3y=2,移项得:﹣2y﹣3y=2﹣12+2,合并同类项得:﹣5y=﹣8,系数化为1得:.39. 解:去分母得:3(2﹣x)﹣18=2x﹣(2x+3),去括号得:6﹣3x﹣18=2x﹣2x﹣3,移项得:﹣3x﹣2x+2x=﹣3﹣6+18(或﹣3x=﹣3﹣6+18),合并同类项得:﹣3x=9,系数化为1得:x=﹣340.去分母得:3x(x﹣1)﹣2(x+1)(x+6)﹣(x+1)(x﹣1)=6 去括号得:3x2﹣3x﹣2x2﹣14x﹣12﹣x2+1=6合并得:﹣17x=17化系数为1得:x=﹣141. 原式通分得:,整理得:,将其变形得:﹣x+3=6,∴x=﹣3.42. 原式变形为:x+3=,将其通分并整理得:10x﹣25+3x﹣6=15x+45,即﹣2x=76,∴x=﹣3843. 解:去分母得,3(x﹣7)﹣4(5x+8)=12,去括号得,3x﹣21﹣20x﹣32=12,移项合并同类项得,﹣17x=65,系数化为1得,x=;44. 解:去括号得,2x ﹣x+x ﹣=x ﹣,去分母得,24x﹣6x+3x﹣3=8x﹣8,移项合并同类项得,13x=﹣5,系数化为1得,x=﹣45.去分母得:15(x﹣1)﹣8(3x+2)=2﹣30(x﹣1),∴21x=63,∴x=346.去括号,得a ﹣﹣2﹣a=2,去分母,得a﹣4﹣6﹣3a=6,移项,合并得﹣2a=16,化系数为1,得a=﹣8;47. 去分母,得5(x﹣3)﹣2(4x+1)=10,去括号,得5x﹣15﹣8x﹣2=10,移项、合并得﹣3x=27,化系数为1,得x=﹣9;48. 把分母化为整数,得﹣=2,去分母,得5(10x+40)﹣2(10x﹣30)=20,去括号,得50x+200﹣20x+60=20,移项、合并得30x=﹣240,化系数为1,得x=﹣849. +1=解:去分母,得3x+6=2(2﹣x);去括号,得3x+6=4﹣2x移项,得3x+2x=4﹣6合并同类项,得5x=﹣2系数化成1,得x=﹣;50. 75%(x﹣1)﹣25%(x﹣4)=25%(x+6)解:将原方程等价为:0.75(x﹣1)﹣0.25(x﹣4)=0.25(x+6)去括号,得0.75x﹣0.75﹣0.25x+1=0.25x+1.5移项,得0.75x﹣0.25x﹣0.25x=1.5﹣1+0.75合并同类项,得0.25x=1.25系数化成1,得x=551. 去分母得:5(x﹣3)﹣2(4x+1)=10,去括号得:5x﹣15﹣8x﹣2=10,移项、合并得:﹣3x=27,系数化为1得:x=﹣9.52. 去括号得:2x﹣4﹣x+2=4,移项、合并得:x=6.53. 去分母得:12x﹣(2x+1)=12﹣3(3x﹣2),去括号得:12x﹣2x﹣1=12﹣9x+6,移项、合并得:19x=19,系数化为1得:x=154. 去括号得:x﹣1﹣3﹣x=2,移项,合并同类项得:﹣x=6,系数化为1得:x=﹣8.55 去分母得:18x+3(x﹣1)=18﹣2(2x﹣1),去括号得:18x+3x﹣3=18﹣4x+2,移项,合并得:25x=23,系数化为1得:x=.56. 去分母得:3x﹣7﹣2(5x+8)=4,去括号得:3x﹣7﹣10x﹣16=4,移项、合并得:﹣7x=27,系数化为1得:x=﹣.57. 去分母得:3(3x+5)=2(2x﹣1),去括号得:9x+15=4x﹣2,移项合并得:5x=﹣17,系数化为1得:;58. 去分母得:(5x+2)﹣2(x﹣3)=2,去括号得:5x﹣2x=﹣6+2﹣2,移项合并得:3x=﹣6,系数化为1得:x=﹣259.去小括号得:2x ﹣x+2=[x ﹣x ﹣],去中括号得:2x ﹣x+2=x ﹣x ﹣,去分母得:12x﹣4x+12=2x﹣3x﹣1,移项、合并得:9x=﹣13,系数化为1得:x=﹣60. ,去分母得3(x﹣15)=﹣15﹣5(x+7),∴3x﹣45=﹣15﹣5x﹣35,∴x=;61. ,方程变形为,去分母得20x﹣20x+30=﹣2x+6,∴x=﹣1262.去分母得:15x+5(x+2)=15﹣3(x﹣6)去括号得:15x+5x+10=15﹣3x+18移项得:15x+5x+3x=15+18﹣10合并得:23x=23系数化为1得:x=163.原方程可化为:﹣=,去分母得:4x+8﹣2(3x+4)=2(x﹣1),去括号得:4x+8﹣6x﹣8=2x﹣2,移项合并同类项得:﹣4x=﹣2,系数化为1得:x=64.原方程可化为:,去分母得:3(7x﹣1)=4(1﹣2x)﹣6(5x+1)去括号得:21x﹣3=4﹣8x﹣30x﹣6移项合并同类项得:59x=1系数化为1得:x=65.去分母得:4(3x﹣2)﹣6=7x﹣4.去括号得:12x﹣8﹣6=7x﹣4.移项、合并同类项得:5x=10.系数化为1得:x=2.66.原方程可以化为:=+1去分母得: 2(2x﹣1)=3(x+2)+6去括号得: 4x﹣2=3x+6+6即 x=1467 去分母得:4(2x﹣1)﹣3(2x﹣3)=12,整理得:2x﹣7=0,解得:x=3.5.68. 去括号,,∴,∴x+1=2,解得:x=169.去分母得:6(4x+9)﹣15(x﹣5)=30+20x 去括号得:24x+54﹣15x+75=30+20x移项,合并同类项得:﹣11x=﹣99化系数为1得:x=970. 去分母得:7(5﹣7x)=8(5x﹣2),去括号得:35﹣49x=40x﹣16,移项合并同类项得,﹣89x=﹣51,系数化为得:x=;71. 去括号得:3x+6﹣2x+3=5﹣4x,移项合并同类项得:5x=﹣4,系数化为得:x=﹣.72..去分母得:12x﹣2(5x﹣2)=24﹣3(3x+1),去括号得:12x﹣10x+4=24﹣9x﹣3,移项、合并得:11x=17,系数化为1得:x=.73.去分母得:6x﹣2(1﹣x)=(x+2)﹣6,去括号得:6x﹣2+2x=x+2﹣6,移项得:6x+2x﹣x=2﹣6+2,合并同类项得:7x=﹣2,系数化为得:x=74.去中括号得:(﹣1)﹣3﹣x=2,去括号、移项、合并得:﹣x=6,系数化为1得:x=﹣875. 去分母得:(2x+5)﹣24=3(3x﹣2),去括号得:8x+20﹣24=9x﹣6,移项得:8x﹣9x=﹣6﹣20+24,合并同类项得:﹣x=﹣2,系数化为1得:x=2.76.去括号得:x+++=1去分母得: x+1+6+56=64移项得: x=177.去分母得:3﹣(x﹣7)=12(x﹣10),去括号得:3﹣x+7=12x﹣120,移项、合并得:﹣13x=﹣130,系数化为1得:x=1078.去分母得:8﹣(7+3x)=2(3x﹣10)﹣8x 去括号得: 8﹣7﹣3x=6x﹣20﹣8x移项合并得:﹣x=﹣21系数化为1得: x=2179.去括号,得3(x ﹣)+1=5x,3x ﹣+1=5x,6x﹣3+2=10x,移项、合并同类项得:﹣4x=1,系数化为1得: x=80.4(2x﹣1)﹣12=3(5x﹣3)8x﹣4﹣12=15x﹣9﹣7x=7x=﹣1;81.5(3x﹣1)=2(4x+2)﹣1015x﹣5=8x+4﹣107x=﹣1x=﹣.82.去括号得,2(﹣1)﹣4﹣2x=3,x﹣2﹣4﹣2x=3,移项合并同类项得,﹣x=9,系数化为得, x=﹣983. 去括号得:x﹣2﹣3x+1=1﹣x,解得:x=﹣2.84. 原方程可化为:=﹣,去分母得:3(7x﹣1)=4(1﹣0.2x)﹣6(5x+1),去括号得:21x﹣1=4﹣0.8x﹣30x﹣6,移项、合并同类项得:51.8x=﹣1,系数化为1得:x=85.原方程化为:﹣=,整理得: 12x=6,解得: x=86.原式变形为:+=1,把小数化为分数、整理得:,去分母得:4(4﹣x)=12﹣(2x﹣6),去括号得16﹣4x=12﹣2x+6,移项、合并得:﹣2x=2,系数化为1得:x=﹣187.去大括号,得:,去中括号得:,去小括号得:=0,移项得:y=3,系数化1得:y=688..原方程化为:(1分)去分母得:3(5x+9)+5(x﹣5)=5(1+2x)化简得:10x=3解得:.89.去分母得:5(3x+2)﹣15=3(7x﹣3)+2(x﹣2)去括号得:15x+10﹣15=21x﹣9+2x﹣4移项合并得:﹣8x=﹣8系数化为1得:x=190.去分母得:2(2x﹣5)+3(3﹣x)=12,去括号得:4x﹣10+9﹣3x=12,移项、合并得:x=1391. 解:,,6x﹣3x+3=8x﹣8,6x﹣3x﹣8x=﹣8﹣3,﹣5x=﹣1,.92. 解:3(2x﹣1)=4(x﹣5)+12,6x﹣3=4x﹣20+12,6x﹣4x=﹣20+12+3,2x=﹣5,93.去分母得:4×3x﹣5(1.4﹣x)=2去括号得:12x﹣7+5x=0.2移项、合并得:17x=9系数化为1,得x=94.去分母得:2(3x﹣2)+10=5(x+3),去括号得:6x﹣4+10=5x+15,移项、合并同类项得:6x﹣5x=15﹣6,化系数为1得:x=995. 去分母,得3(x﹣3)﹣4(5x﹣4)=18,去括号,得3x﹣9﹣20x+16=18,移项、合并同类项,得﹣17x=11,系数化为1,得x=﹣;96. 去分母,得3(x+1)﹣12=2(2x﹣1),去括号,得3x+3﹣12=4x﹣2,移项、合并同类项,得﹣x=7,系数化为1,得x=﹣797.原方程可化为:(8x﹣3)﹣(25x﹣4)=12﹣10x,去括号得:8x﹣3﹣25x+4=12﹣10x,移项、合并同类项得:﹣7x=11,系数化为1得:x=98. 去分母得:4(2x+4)﹣6(4x﹣3)=3,去括号得:8x+16﹣24x+18=3,移项,合并同类项得:﹣16x=﹣31,系数化为1得:x=;99. 去中括号得:(x﹣1)﹣2=2x﹣5,去小括号得:x﹣1﹣2=2x﹣5,移项、合并同类项得:x=2100..把中分子,分母都乘以5得:5x﹣20,把中的分子、分母都乘以20得:20x﹣60.即原方程可化为:5x﹣20﹣2.5=20x﹣60.移项得:5x﹣20x=﹣60+20+2.5,合并同类项得:﹣15x=﹣37.5,化系数为1得:x=2.5101.去括号得:70%x+16.5﹣55%x=19.5.移项得:70%x﹣55%x=19.5﹣16.5.合并同类项得:0.15x=3.系数化为1得:x=20102.去分母得:2(x+3)﹣(2﹣3x)=4﹣8x去括号得:2x+6﹣2+3x=4﹣8x移项合并得:13x=0化系数为1得:x=0103. 原方程变形为:3x+9=6x﹣x+13x﹣5x=1﹣9﹣2x=﹣8∴x=4;104. 原方程移项得:﹣6x+=1﹣合并得:﹣x=﹣系数化为1得:x=105.把分母化为整数得:2.4﹣=20﹣40x去分母得:9.6﹣(10x﹣50)=80﹣160x去括号得:9.6﹣10x+50=80﹣160x移项、合并得:150x=20.4化系数为1,得x=0.136106. 去括号得:2﹣3x=﹣x﹣2x=﹣2,﹣2x=﹣,x=.107. 原方程变形为:6x﹣3﹣2(2﹣5x)=9,16x=16,x=1108.原方程变形为:200(2﹣3y)﹣4.5=﹣9.5,∴400﹣600y﹣4.5=1﹣100y﹣9.5 500y=404∴y=109.去分母得:18(x+1)﹣2(x﹣1)=24(x﹣1)﹣21(x+1),去括号得:18x+18﹣2x+2=24x﹣24﹣21x﹣21,移项、合并同类项得:13x=﹣65,系数化为1得:x=﹣5110. 去分母得:3(3x﹣1)+18=1﹣5x,去括号得:9x﹣3+18=1﹣5x,移项、合并得:14x=﹣14,系数化为1得:x=﹣1;111. 去括号得:x ﹣x+1=x,移项、合并同类项得:x=﹣1,系数化为1得:x=﹣.112. 原方程可化为:﹣=1,=1,x﹣0.4=0.6,x=1;113. 原方程可化为:(2x+2)﹣x=1,2(2x+2)﹣3x=6,4x﹣3x=6﹣4,x=2 114.,化简得:,去分母得:8﹣90x﹣6(13﹣30x)=4(50x+10),去括号、合并同类项得:110x=﹣110,系数化为1得:x=﹣1115.原方程可化为:6﹣10x﹣3+5x ﹣=去分母,得24﹣40x﹣12+20x﹣(3x﹣5)=2去括号,得24﹣40x﹣12+20x﹣3x+5=2移项、合并同类项,得﹣23x=﹣15系数化为1,得x=116.原方程可化为:﹣=去分母得:10(2﹣10x)﹣45=12(1﹣3x)去括号得:20﹣100x﹣45=12﹣36x移项、合并同类项得:﹣64x=37系数化为1得:x=117. 77z+18=14z﹣45,77z﹣14z=﹣45﹣18,63z=﹣63,z=﹣1;118. 3(2x﹣1)﹣3(4x+3)=3x,6x﹣3﹣12x﹣9=3x,﹣9x=12,;119. 3x﹣2+10=x+6, 2x=﹣2,x=﹣1120.原方程变形为,去分母,得3×(30x﹣11)﹣4×(40x﹣2)=2×(16﹣70x),去括号,得90x﹣33﹣160x+8=32﹣140x,移项,得90x﹣160x+140x=32+33﹣8,合并同类项,得70x=57,系数化为1,得.121.分母化整得:﹣=1去分母得:2(50x﹣10)﹣3(30x﹣12)=6去括号得:100x﹣20﹣90x+36=6移项、合并同类项得:10x=﹣10系数化1得:x=﹣1122.原式变形为:6(4x+9)﹣10(3x+2)=15(x﹣5)24x+54﹣30x﹣20=15x﹣75﹣21x=﹣109,∴x=;123. 原式变形为:3(5x﹣2)=2(7x+8)15x﹣6=14x+16∴x=22124.去分母得,20(x﹣3)﹣50(x+4)=16,去括号得20x﹣60﹣50x﹣200=16,移项合并得,﹣30x=276,系数化为1得,x=﹣9.2125. 2(x+1)+=﹣1,去分母得:12(x+1)+2(x﹣3)=21x﹣6,去括号得:12x+12+2x﹣6=21x﹣6,移项得:12x+2x﹣21x=﹣6+6﹣12合并同类项得:﹣7x=﹣12两边同除以﹣7得:x=;126. =3﹣,去分母得:4(1﹣x)=36﹣3(x+2),去括号得:4﹣4x=36﹣3x﹣6,移项得:﹣4x+3x=36﹣6﹣4,合并同类项得:﹣x=26,两边同除以﹣1得:x=﹣26127. 去分母得:3(4﹣x)﹣2(2x+1)=6去括号、移项合并得:﹣7x=﹣4系数化为1得:x=;128. 去分母得:10x﹣5(x﹣1)=20﹣2(x+2)去括号得:5x+5=16﹣2x移项合并得:7x=11系数化为1得:x=129.左右两边同乘6得:40x+16=42﹣90x,化简得:130x=26,解得:x=;故原方程的解为:x=.130. 2{3[4(5x﹣1)﹣8]﹣20}﹣7=1,去小括号,得2{3[20x﹣12]﹣20}﹣7=1,去中括号,得2{60x﹣56}﹣7=1,去大括号,得60x﹣56=4,移项,合并同类项,得60x=60,系数化为1,得x=1;131. 先去大括号,得=2,去中括号,得,去小括号,得,移项,系数化为1,得x=5;132. 先去小括号,再去中括号、大括号,及时合并同类项,得x﹣2[x﹣3x﹣12﹣5]=3{2x﹣[x﹣8x+32]}﹣2,x+4x+34=3{2x+7x﹣32}﹣2,5x+34=27x﹣98,﹣22x=﹣132,x=6;133. 先把系数化为整数,得,再去分母,两边都乘以60,得5(18﹣80x)﹣3(13﹣3x)﹣20(50x﹣4)=0,去括号,合并同类项,得﹣1310x+131=0,移项,系数化为1,得;134. 去分母,得,,去括号,整理,得,135. 分母化为整数得:﹣=,去分母得:6(4x+9)﹣15(x﹣5)=10(2x+3),去括号得:24x+54﹣15x+75=20x+30,移项得:11x=99,同除以11得:x=9.136. 去分母得:1﹣=4,再去分母得:3﹣1﹣(1﹣x)=12,去括号得:2﹣+x=12,移项得:x=10=,同除以得:x=21.137. 去小括号得:{[﹣﹣6]+4}=1,再去中括号得:{+4}=1,再去大括号得:,移项得:=,同除以得:x=5138.去分母可得:7(5x+15)﹣2(2x﹣10)=14;移项可得:31x+111=0;即x=.故原方程的解为x=139.去小括号得:﹣[x ﹣x+]﹣=x+,去中括号得:﹣x+x+﹣=x+,移项合并得:,系数化为1得:x=﹣140.整理,得,去分母,得6(4x+9)﹣10(3+2x)=15(x﹣5),去括号,得24x+54﹣30﹣20x=15x﹣75,移项,得24x﹣20x﹣15x=﹣75﹣54+30,合并,得﹣11x=﹣99,141.﹣=3,﹣=3,5x﹣10﹣20(x+1)=3,x=﹣2.2.142. 去分母、去括号,得10x﹣5x+5=20﹣2x﹣4,移项及合并同类项,得7x=11,解得x=;143.方程可以化为:﹣=,整理,得2(4x﹣1.5)﹣5(5x﹣0.8)=10(1.2﹣x),去括号、移项、合并同类项,得﹣7x=11,解得,x=﹣144.去分母得6+6x﹣2x+1=3x+2x﹣4移项、合并同类项得﹣x=﹣11解得x=11;145去分母得5x+5﹣2x+10=1移项、合并同类项得3x=﹣14解得146.去分母得:7(1﹣2x)=3(3x﹣4)+21×2去括号得:7﹣14x=9x﹣12+42移项合并同类项得:﹣23x=23系数化一得:x=﹣1147.去分母得3(x+1)﹣2(3x﹣2)=6(x﹣1),去括号得3x+3﹣6x+4=6x﹣6,移项得3x﹣6x﹣6x=﹣6﹣3﹣4,合并得﹣9x=﹣13,系数化为x=148.去分母得:x+6+12+24﹣48=0,移项得:x=48﹣24﹣12﹣6,合并同类项得:x=6.149. .去分母得:2(x﹣2)+6x=9(3x+5)﹣(1﹣2x),∴﹣21x=48,150.去分母的,2(x+4)﹣10(x﹣5)=5(x﹣2)﹣20,去括号得,2x+8﹣10x+50=5x﹣10﹣20,移项得,2x﹣10x﹣5x=﹣10﹣20﹣8﹣50,合并得,﹣13x=﹣88,系数化为1得,x=151.去括号得:x ﹣x+x﹣1=x﹣1,移项得:﹣x+x ﹣x=﹣1+1,合并同类项得:﹣x=0,把x的系数化为1得:x=0152.去分母得:4(3x+1)﹣2(5x﹣2)=8,去括号得:12x+4﹣10x+4=8,移项得:12x﹣10x=8﹣4﹣4,合并同类项得:2x=0,把x的系数化为1得:x=0153.原方程可化为,即9x﹣3=10x﹣14﹣12,∴9x﹣10x=﹣14﹣12+3,﹣x=﹣23,解得 x=23154.∵∴,∴30x﹣18+12x=4x+20,∴38x=38,∴x=1155解:去分母,得4(2y﹣1)﹣3(4y+1)=24,去括号,得8y﹣4﹣12y﹣3=24,移项,得8y﹣12y=24+4+3,合并同类项,得﹣4y=31,化系数为1,得y=﹣;156. 去括号,得x﹣1=x﹣3,去分母,得5x﹣10=4x﹣30,移项,得5x﹣4x=10﹣30,合并同类项,得x=﹣20157.方程两边同乘以10得:5(x﹣3)﹣2(4x+1)=10,整理得:5x﹣15﹣8x﹣2﹣10=0,即:﹣3x=27,x=﹣9移项,得:﹣2x﹣6x﹣6x=12﹣10﹣9合并同类项得:﹣14x=﹣7,解得:x=159.原方程可化为:,即,,解得x=6160.由原方程去分母,得7﹣14y=21﹣9y﹣6,移项、合并同类项,得﹣5y=8,化系数为1,得y=﹣161.去分母得:3(5x+)=2(6x ﹣)﹣(x+4),移项得:15x﹣12x+x=﹣5﹣4﹣7,合并同类项得:4x=﹣16,两边同除以4得:x=﹣4162.去分母得3(x+2)﹣4(1﹣)=2(2x﹣5),去括号得3x+6﹣4+4x﹣10=4x﹣10,移项得3x+4x﹣4x=﹣10+10﹣6+4,合并同类项得3x=﹣2,系数化为1得x=﹣163.去分母得:18y﹣6﹣24=20y﹣28,移项得:18y﹣20y=﹣28+6+24合并同类项得:﹣2y=2,系数化1得:y=﹣1;164.去中括号得:2(﹣1)﹣4﹣2x=3,去括号得:x﹣2﹣4﹣2x=3,移项得:x﹣2x=3+2+4,合并同类项得:﹣x=9,系数化1得:x=﹣9165.去分母,得,4(2x+1)﹣3(1﹣5x)=24,去括号,得8x+4﹣3+15x=24,移项、合并同类项,得23x=23,系数化为1,得x=1.166. 去分母,得6(x﹣2)﹣90=3(x+3)﹣10(2x﹣5),去括号、移项,得6x﹣3x+20x=9+50+12+90,合并同类项,23x=161,系数化为1,得x=7;167. 去分母,得6x﹣2(x+3)=3(﹣x+3),去括号、移项,得6x﹣2x+3x=9+6,合并同类项,7x=15,系数化为1,得x=168.等式的两边同时乘以0.6,得3x﹣0.6=3.4﹣4x+0.5+2x,移项、合并同类项,得5x=4.5,化未知数的系数为1,得x=0.9169. 去分母得3x﹣3=x﹣1,移项得3x﹣x=﹣1+3,合并得2x=2,系数化为1得x=1;170. 去母得5(x﹣2)﹣2(x+1)=3,去括号得5x﹣10﹣2x﹣2=3,移项得5x﹣2x=3+10+2,合并得3x=15,系数化为1得x=5171.由原方程去分母,得4(2x﹣5)=3(x﹣3)﹣1,去括号,得8x﹣20=3x﹣9﹣1,移项、合并同类项,得5x=10,化未知数的系数为1,得x=2172.去分母,得:3(3x﹣1)=(5x﹣7)+12,去括号,得:9x﹣3=10x﹣14+12,移项,得:9x﹣10x=﹣14+12+3合并同类项,得:﹣x=1,系数化为1得:x=﹣1173.整理得,﹣=1,去分母,得4(1﹣2x)﹣3(7﹣10x)=12,去括号,得4﹣8x﹣21+30x=12,移项、合并同类项,得22x=29,系数化为1,得x=174.去分母,得3(2x﹣1)﹣2(1+3x)=6﹣(x+4),去括号,得6x﹣3﹣2﹣6x=6﹣x﹣4,移项,得6x﹣6x+x=6﹣4+3+2,合并同类项,x=7175.去分母得:12x﹣4﹣6x﹣3=12,移项得:12x﹣6x=12+7,合并同类项得:6x=19,系数化1得:x=176.去分母,得6x﹣2.8﹣10x+19=15﹣10x,移项、合并同类项,得6x=﹣1.2将未知数的系数化为1,得x=﹣0.2177. 去分母,得18x﹣6﹣20x+28=24,移项、合并同类项,得﹣2x=2,化未知数的系数为1,得x=﹣1;178. 由原方程,得2(x﹣3)﹣5(x+4)=16,去括号,得2x﹣6﹣5x﹣20=16,移项、合并同类项,得﹣3x=42,化未知数的系数为1,得x=﹣14179.去分母得2(2x+1)﹣6=10x+1,去括号得4x+2﹣6=10x+1,移项得4x﹣10x=1﹣2+6,合并得﹣6x=5,系数化为1得x=﹣180. 去分母得:6(x﹣9)﹣22(x+2)=66(x﹣1)﹣33(x﹣2),去括号得:6x﹣54﹣22x﹣44=66x﹣66﹣33x+66,移项合并得:﹣49x=98,系数化为1得:x=﹣2;181. 方程可变形为﹣+=0,去分母得:5(2x+1)﹣2(4x﹣1)+25=0,去括号得:10x+5﹣8x+2+25=0,移项合并得:2x=﹣32,系数化为1得:x=﹣16182.由原方程,得化简,得即∴=,去分母,得 10=35﹣25x解得 x=1183.去分母得,(2x+1)﹣(4x﹣5)=1,去括号得,2x+1﹣4x+5=1,移项得,2x﹣4x=1﹣5﹣1,合并同类项得,﹣2x=﹣5,系数化为1,x=184.移项得:z ﹣z=﹣﹣,合并同类项得:z=﹣1185. 去分母得:5(3x﹣1)﹣2(5x﹣6)=2,去括号得:15x﹣5﹣10x+12=2,移项合并得:5x=﹣5,解得:x=﹣1186.去分母得:3(x﹣1)﹣12=2(2x+1),去括号得:3x﹣3﹣12=4x+2,移项合并得:﹣x=17,解得:x=﹣17;187. 方程变形得:5(x﹣1)﹣2(x+1)=2,去括号得:5x﹣5﹣2x﹣2=2,移项合并得:3x=9,解得:x=3188. 去分母得,3(x﹣1)=8x+6,去括号得,3x﹣3=8x+6,移项得,3x﹣8x=6+3,合并同类项得,﹣5x=9,系数化为1得,x=﹣;189. 方程可化为﹣=3,即5x﹣10﹣2x﹣2=3,移项得,5x﹣2x=3+10+2,合并同类项得,3x=15,系数化为1得,x=5;190. 去分母得,3(x+2)﹣12=2(2x﹣1),去括号得,3x+6﹣12=4x﹣2,移项得,3x﹣4x=﹣2﹣6+12,合并同类项得,﹣x=4,系数化为1得,x=﹣4191.解:去分母,得3(x+2)﹣2(x﹣3)=12 去括号,得3x+6﹣2x+6=12移项、合并同类项,得X=0;192 .解:去中括号,得=1,去小括号,得﹣1+3﹣x=1移项,合并同类项,得﹣x=﹣1系数化为1,得x=193.去分母得,2(x﹣1)+3(2x﹣1)=6﹣6x,去括号得,2x﹣2+6x﹣3=6﹣6x,移项得,2x+6x+6x=6+3+2,合并同类项得,14x=11,系数化为1得,x=194.去分母得,6(3x+4)﹣12=7﹣2x,去括号得,18x+24﹣12=7﹣2x,移项得,18x+2x=7﹣24+12,合并同类项得,20x=﹣5,系数化为1得,x=﹣195.去分母得:6x﹣3﹣4x﹣10=6x﹣7﹣6,移项合并得:4x=0,系数化为1得:x=0196. 去分母得:4(2x﹣1)=3(x+2)﹣12,去括号得:8x﹣4=3x+6﹣12,移项、合并得:5x=﹣2,系数化为1得:x=﹣;197. 化简得:,去分母得:﹣7﹣30x=6x﹣20﹣8x,移项,合并得:﹣28x=﹣13,系数化1,得:x=198.去分母得:10x+15﹣2x+14=5,移项合并得:8x=﹣24,系数化为1得:x=﹣3199.原方程去括号得:x ﹣=1,移项得,x=1+,合并同类项得,x=,系数化为1得,x=×120=125200. 去括号,得4x+﹣6x=4﹣3x﹣2x移项,合并同类项,得3x=系数化为1,得x=.201. 去小括号,得[﹣﹣2]+2x=3去中括号,得x ﹣+2x=3移项,合并同类项,得3x=系数化为1,得x=202.原方程即:=﹣1去分母得:4(2y﹣10)=3(y+20)﹣12去括号得:8y﹣40=3y+60﹣12移项得:8y﹣3y=60﹣12+40即:5y=88解得:y=203.去分母得:3(x﹣2)=12﹣2(4﹣3x)﹣(2﹣3x),去括号得:3x﹣6=12﹣8+6x﹣2+3x,移项合并得:﹣6x=8,解得:x=﹣204.去分母,得10y﹣5(y﹣1)=30﹣2(y+2),去括号,得10y﹣5y+5=30﹣2y﹣4,移项合并同类项,得7y=21,系数化为1,得y=3.205.把分母化为整数得:+x=,去分母得:3(10x﹣6)+12x=4(x+10),去括号得:30x﹣18+12x=4x+40,移项、合并同类项得:x=206.去分母得,4(2t﹣6)﹣3(2t﹣4)=24,去括号得,8t﹣24﹣6t+12=24,移项得,8t﹣6t=24+24﹣12,合并同类项得,2t=36,系数化为1得,t=18207.去分母得,2(x+1)﹣4=8+2﹣x,去括号得,2x+2﹣4=8+2﹣x,移项得,2x+x=8+2﹣2+4,合并同类项得,3x=12,系数化为1得,x=4208. 去分母,得2x﹣4+8x=7﹣5x,移项、合并同类项,得15x=11,化未知数系数为1,得x=;209. 去括号,得0.7x+15﹣0.5x=18,移项、合并同类项,得0.2x=3,化未知数系数为1,得x=15210.去分母得:5x﹣(x﹣6)=10,去括号、移项得:5x﹣x=10﹣6,合并同类项得:4x=4,系数化为1得:x=1.211. 去分母得,5(2x﹣1)﹣15=3(3x+1),去括号得,10x﹣5﹣15=9x+3,移项得,10x﹣9x=3+5+15,合并同类项得,x=23;212. 把方程两边同时乘以得,﹣=﹣0.13,去分母得,5(x+4)﹣2(x﹣3)=﹣1.3,去括号得,5x+20﹣2x+6=﹣1.3,移项得,5x﹣2x=﹣1.3﹣6﹣20,合并同类项得,3x=﹣27.3,化系数为1得,x=﹣9.1;213. 去小括号得,2[x ﹣x+]=,去中括号得,x﹣3x+=,移项得,x﹣3x=﹣,合并同类项得,﹣x=0,系数化为1得,x=0214. .去分母得:5(x+1)﹣3(x﹣2)=45,去括号得:5x+5﹣3x+6=45,移项合并得:2x=34,解得:x=17215.去分母得,18x+3(x﹣1)=18﹣2(2x﹣1),去括号得,18x+3x﹣3=18﹣4x+2,移项得,18x+3x+4x=18+2+3,合并同类项得,25x=23,系数化为1得,x=216.去分母(方程两边都乘以12)得,4(2x+1)﹣3(5x﹣2)=24,去括号得,8x+4﹣15x+6=24,移项得,8x﹣15x=24﹣4﹣6,合并同类项得,﹣7x=14,系数化为1得,x=﹣2217.去括号得:[x ﹣x+]=x+,x+=x+,去分母得:4x+2=18x+9,移项得:4x﹣18x=9﹣2,合并同类项得:﹣14x=7,系数化为1得:x=﹣.218. 去分母得:2y﹣5(y﹣1)=10﹣2(y+2),去括号、移项得:2y﹣5y+2y=10﹣4﹣5,合并同类项得:﹣5y=1,系数化为1得:y=﹣;219. 原方程变形为:,去分母得:5(18﹣80x)﹣3(13﹣30x)=20(50x﹣4),去括号、移项得,1000x+400x﹣90x=90﹣39+80,合并同类项得,1310x=131,系数化为1得:x=.220. 1﹣x=x+,移项得:x﹣x=﹣1,合并同类项得:﹣x=﹣,系数化1得:x=.221. 去中括号得:2x﹣1﹣x=2,移项合并同类项得:x=3222.原方程可化为:﹣=1,去分母得:30x﹣119+140x=21,移项合并得:170x=140,系数化为1得:x=223. 移项得,5(x ﹣)﹣(x ﹣)=,合并同类项得,4(x ﹣)=,即x ﹣=,移项得,x=1;224. 原式可化为:﹣=,去分母得,20x﹣8+15x=31x+8,移项得,20x+15x﹣31x=8+8,合并同类项得,4x=16,系数化为1得,x=4225. 解:﹣7(1﹣2x)=3×2(3x+1),﹣7+14x=18x+6,﹣4x=13,x=﹣;226. 2(x+3)﹣(2﹣3x)=4﹣8x,2x+6﹣2+3x=4﹣8x,13x=0,x=0227.去分母得:3(x+1)+6=8x+1,去括号得:3x+3+6=8x+1,移项合并得:﹣5x=﹣8,解得:x=228.去分母得:3(x﹣1)+2(2x+1)=3x+2+6,去括号得:3x﹣3+4x+2=3x+2+6,移项得:3x+4x﹣3x=2+6+3﹣2,合并同类项得:4x=9,系数化为1得:x=229.解:去分母,得:7﹣14x=9x+3﹣63移项,得:23x=67.解得:x=230.去分母得,3x﹣(5x+11)=6﹣2(2x﹣4),去括号得,3x﹣5x﹣11=6﹣4x+8,移项得,3x﹣5x+4x=6+8+11,合并同类项得,2x=25,系数化为1得,x=.231.去中括号得:2﹣(x ﹣)=﹣(2x ﹣),去小括号得:2﹣x+=﹣3x+,去分母得:36﹣12x+4x+4=9x﹣54x+90﹣63x,移项合并得:100x=50,化系数为1得:x=232.{[(x+5)﹣4]+3}=1,[(x+5)﹣4]+3=2,(x+5)﹣4+9=6,x+5﹣16+36=24,整理得:x=﹣1,解得:x=﹣5233.两边都乘以6得:9y﹣3﹣2×(5y+1)=6﹣7y﹣1,去括号得:9y﹣3﹣10y﹣2=5﹣7y,移项及合并得:6x=10,系数化为1得:y=234..去分母得,10﹣36x=﹣21x+6,移项得,﹣36x+21x=6﹣10,合并同类项得,﹣15x=﹣4,系数化为1得,x=;235. 去括号得,[x ﹣x+]=x ﹣,[x+]=x ﹣,x+=x ﹣,去分母得,3x+3=8x﹣8,移项得,3x﹣8x=﹣8﹣3,合并同类项得,﹣5x=﹣11,系数化为1得,x=236. 去括号得:x ﹣=1﹣x ﹣,移项、合并得:x=,系数化为1得:x=.237. 去分母得:3﹣3x=8x﹣2﹣6,移项、合并得:11x=11,系数化为1得:x=1238.去分母得,4(2x﹣1)﹣2(10x﹣1)=3(2x+1)﹣12,去括号得,8x﹣4﹣20x+2=6x+3﹣12,移项得,8x﹣20x﹣6x=3﹣12+4﹣2,合并同类项得,﹣18x=﹣7,系数化为1得,x=239.去括号得,3﹣16x﹣3x﹣2=20,移项得,﹣16x﹣3x=20﹣3+2,合并同类项得,﹣19x=19,系数化为1得,x=﹣1240.去分母得:2(x﹣2)﹣(x+3)=30﹣5(3x﹣5),去括号得:2x﹣4﹣x﹣3=30﹣15x+25,移项合并得:16x=48,系数化为1得:得x=3241. 解:去分母得12﹣(x+5)=6x﹣2(x﹣1),去括号得:12﹣x﹣5=6x﹣2x+2,移项得:﹣x﹣6x+2x=2+5﹣12,合并同类项得:﹣5x=﹣5,∴x=1;242. 解:原方程可化为,去分母得10x﹣(3﹣2x)=2,去括号得:10x﹣3+2x=2,移项、合并同类项得:12x=5,∴x=243. 去分母得:10x+20﹣15x+15=30﹣6x,移项、合并得:x=﹣5;244. 将小数化为整数得:2x ﹣=1,去分母得:6x﹣23+20x=3,移项、合并得:26x=26,化系数为1得:x=1245.去分母得,5(3x+1)﹣20=(3x﹣2)﹣2(2x+3),去括号得,15x+5﹣20=3x﹣2﹣4x﹣6,移项得,15x﹣3x+4x=﹣2﹣6﹣5+20,合并同类项得,16x=7,系数化为1得,x=246. 解:去分母得:2(7x﹣5)=3,去括号得:14x﹣10=3,移项、合并同类项得:14x=13,∴x=.247. 解:去分母得:15(x﹣1)﹣8(3x+2)=2﹣30(x ﹣1),去括号得:15x﹣15﹣24x﹣16=2﹣30x+30,移项得:15x﹣24x+30x=2+30+15+16,合并同类项得:21x=63,∴x=3。
七年级数学上册解一元一次方程去括号与去分母练习题
七年级数学上册解一元一次方程去括号与去分母练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、填空题1.有理数a 在数轴上的对应点的位置如图所示,化简2a a --的结果是______.2.把同类项的系数_______,所得的结果作为_____,字母和字母的指数______.3.有理数a 满足等式|-4|2|-1|a a =,则a 所有可能的值为____.4.若x =3是关于x 的一元一次方程mx ﹣n =3的解,则代数式10﹣3m +n 的值是___.5.若关于x 的方程()22x m x +=-的解满足方程112x -=,则m 的值是________. 6.定义:对于任意两个有理数a ,b ,可以组成一个有理数对(a ,b ),我们规定(a ,b )=a +b -1.例如(2,5)2512-=-+-=.根据上述规定解决下列问题:(1)有理数对(2,1)-=_______;(2)当满足等式(5,32)5x m -+=的x 是正整数时,则m 的正整数值为_______.二、单选题7.下列图形都是由同样大小的黑色正方形纸片组成,其中第1个图有3张黑色正方形纸片,第2个图有5张黑色正方形纸片,第3个图有7张黑色正方形纸片,…,按此规律排列下去,若第n 个图中有201张黑色正方形纸片,则n 的值为( )A .99B .100C .101D .1028.一本故事书,小明看了全书的14后,还剩90页没有看,这本故事书的总页数为( )A .360B .120C .72D .1509.若方程2(21)33x x +=+的解与关于x 的方程262(3)k x +=+的解相同,则k 的值为( )A .1B .1-C .7D .7-10.数学实践活动课上,陈老师准备了一张边长为a 和两张边长为()b a b >的正方形纸片如图1、图2所示,将它们无重叠的摆放在矩形ABCD 内,矩形未被覆盖的部分用阴影表示,设左下阴影矩形的周长为1l ,右上阴影矩形的周长为2l .陈老师说,如果126l l -=,求a 或b 的值.下面是四位同学得出的结果,其中正确的是( )A .甲:6a =,4b =B .乙:6a =,b 的值不确定C .丙:a 的值不确定,3b =D .丁:a ,b 的值都不确11.下列说法中,不正确的个数是( ) ①若a +b =0,则有a ,b 互为相反数,且a b=﹣1;①若|a |>|b |,则有(a +b )(a ﹣b )是正数;①三个五次多项式的和也是五次多项式;①a +b +c <0,abc >0,则||ab ab ﹣||bc bc +||ac ac ﹣||abc abc 的结果有三个;①方程ax +b =0(a ,b 为常数)是关于x 的一元一次方程.A .1个B .2个C .3个D .4个12.如图,已知数轴上点A 表示的数为a ,点B 表示的数为b,(a ﹣10)2+|b +6|=0.动点P 从点A 出发,以每秒8个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.若点P 、Q 同时出发,当P 、Q 两点相距4个单位长度时, t 的值为( )A .3B .5C .3或5D .1或53三、解答题13.解方程:(1)()()413217x x --+=; (2)12123x x -+-=. 14.求未知数x . (1)916x =1336(2)(1-23)x =20 (3)58+2x =7815.已知关于x 的方程2233x m x x ---=的解是非负数,m 是正整数,求m 的值.参考答案:1.2-【分析】由题意可得a >2,利用绝对值化简可求解.【详解】解:由题意可得:a >2,222,a a a a --=--=-∴故答案为:2-【点睛】本题考查绝对值的化简,利用数轴比较数的大小从而正确化简计算是解题关键.2. 相加 系数 保持不变【解析】略3.2±【分析】根据绝对值的性质分类讨论,去掉绝对值符号,即可求解.【详解】当4a ≥时,()421a a -=-,解得:2a =-,不合题意,舍去;当14a ≤<时,()421a a -=-,解得:2a =;当1a <时,()421a a -=--,解得:2a =-;综上,2a =±,故答案为:2±.【点睛】本题考查了绝对值的应用,对a 的取值分类讨论是解题的关键.4.7【分析】根据题意得到﹣3m +n =﹣3,然后代入代数式10﹣3m +n 求解即可.【详解】解:由题意得:3m ﹣n =3,①﹣3m +n =﹣3,①原式=10﹣3=7.故答案为:7.【点睛】此题考查了一元一次方程的解的含义以及解一元一次方程,解题的关键是熟练掌握一元一次方程的解的含义.5.14或134 【分析】根据112x -=解出x 的值,代入()22x m x +=-,即可求解 【详解】解112x -=,得 112x -=±, 112x ∴=±+, 32x ∴= 或12x =-, 代入()22x m x +=-,得22x m x +=+, 134m ∴= 或14, 故答案为14或134. 【点睛】本题考查解绝对值方程与根据解的情况求解参数,属于基础题.6. 0 1或4##4或1【分析】(1)根据定义求解即可;(2)由定义可得53215x m -++-=,解方程得1123m x -=,再由题意,可得1123,1129m m -=-=,求出相应的m 值即可.【详解】解:(1)①(a ,b )=a +b -1①(2,1)=2+(1)1=11=0----故答案为:0;(2)①(5,32)5x m -+=①53215x m -++-= ①1123m x -= ①x 是正整数,m 的值也是正整数①1123,1129m m -=-=解得,41m m ==,故答案为:4或1【点睛】本题考查新定义,理解定义,将所求问题转化为一元一次方程进行求解即可.7.B【分析】仔细观察图形知道第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,由此得到规律,第n 个图形中正方形的个数为201求解即可.【详解】解:观察图形知:第一个图中有3=1+2×1个正方形,第二个图中有5=1+2×2个正方形,第三个图中有7=1+2×2个正方形,…故第n 个图中有1+2×n =2n +1=201(个)正方形,解得n =100故选B .【点睛】此题主要考查了图形的变化规律,是根据图形进行数字猜想的问题,关键是通过归纳与总结,得到其中的规律,然后利用规律解决一般问题.8.B【分析】设这本故事书共有x 页,根据总页数-已经看的页数=还没有看的页数,列方程运算即可.【详解】解:设这本故事书共有x 页,根据总页数-已经看的页数=还没有看的页数, 列方程为1904x x -=, 解得120x =.故选:B .【点睛】本题主要考查一元一次方程的实际应用,属于基础题,比较简单,根据题意列出合适的方程是解题的关键.9.A【分析】先解方程2(21)33x x +=+可得1x =,再将1x =代入方程262(3)k x +=+,得262(13)k +=⨯+,由此即可求得k 的值.【详解】解:2(21)33x x +=+,去括号,得:4233x x +=+,移项,得:4332x x -=-,合并同类项,得:1x =,将1x =代入方程262(3)k x +=+,得:262(13)k +=⨯+,整理,得:268k +=,解得:1k =,故选:A .【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的基本步骤(去分母、去括号、移项、合并同类项,系数化为1)是解决本题的关键.10.C【分析】设左下阴影矩形的宽为x ,则AB =CD =a +x , 分别表示出左下阴影矩形的周长为1l ,右上阴影矩形的周长为2l ,根据已知条件即可求得3b =,进而即可求解.【详解】设左下阴影矩形的宽为x ,则AB =CD =a +x ,∴右上阴影矩形的宽为a +x -2b∴左下阴影矩形的周长l1=2(a +x ),右上阴影矩形的周长l 2=2(a +x -b )∴l 1-l 2=2(a +x )-2(a +x -b )=2b ,即2b =6,解得b =3,此时a 不确定,故选C.【点睛】本题考查了整式加减的应用,一元一次方程的应用,数形结合是解题的关键.11.C【分析】根据相反数的概念、平方差公式、合并同类项、一元一次方程的概念判断.【详解】解:①若a +b =0,则有a ,b 互为相反数,当a =b =0时,a b无意义,不正确; ①①|a |>|b |,①a 2>b 2,①(a +b )(a ﹣b )=a 2﹣b 2>0,是正数,正确;①(2a 5+a ﹣3)+(﹣a 5+2a ﹣3)+(﹣a 5+a 2﹣30)=a 2+3a ﹣36,则三个五次多项式的和不一定是五次多项式,不正确;①当a +b +c <0,abc >0时,a 、b 、c 有一个正数、两个负数,当a>0,b<0,c<0时,原式=-1-1-1-1=-4;当a<0,b>0,c<0时,原式=-1+1+1-1=0;当a<0,b<0,c>0时,原式=1+1-1-1=-2; ①||ab ab ﹣||bc bc +||ac ac ﹣||abc abc 的结果有三个,正确; ①方程ax +b =0(a ,b 为常数),当a =0时,不是关于x 的一元一次方程,不正确;故选:C .【点评】本题考查了相反数的概念、绝对值的定义、平方差公式、整式的加减、一元一次方程的概念,熟练掌握定义是解答本题的关键.12.C【分析】根据(a ﹣10)2+|b +6|=0,得a =10,b =﹣6,由已知得P 表示的数是10﹣8t ,Q 表示的数是﹣6﹣4t ,而P 、Q 两点相距4个单位长度,故可列方程|(10﹣8t )﹣(﹣6﹣4t )|=4,即可解得答案.【详解】解:①(a ﹣10)2+|b +6|=0,①a ﹣10=0,b +6=8,①a =10,b =﹣6,①动点P 从点A 出发,以每秒8个单位长度的速度沿数轴向左匀速运动,以每秒8个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒6个单位长度的速度沿数轴向左匀速运动,①P 表示的数是10﹣8t ,Q 表示的数是﹣6﹣6t ,①|(10﹣8t )﹣(﹣6﹣6t )|=4,即|16﹣4t |=6,解得t =3或t =5,故选:C .【点睛】本题考查了数轴上两点间的距离,一次方程的应用,解题的关键是用含t 的代数式表示P 、Q 表示的数,再列方程解决问题.13.(1)x =-7;(2)x =1.【分析】(1)去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.(1)解:去括号,得:4x -4-6x -3=7,移项,得:4x -6x =7+4+3,合并同类项,得:-2x =14,系数化为1,得:x=-7.(2)解:去分母,得:6-3(x-1)=2(x+2),去括号,得:6-3x+3=2x+4,移项,得:-3x-2x=4-6-3,合并同类项,得:-5x=-5,系数化为1,得:x=1.【点睛】此题主要考查了解一元一次方程的方法,要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.14.(1)x=52 81(2)x=60(3)x=1 8【分析】(1)将系数化为1即可求出答案;(2)将系数化为1即可求出答案;(3)移项,将系数化为1即可求出答案.(1)解:916x=133613165236981x=⨯=;(2)解:(1-23)x=20120 3x=60x=;(3)解:58+2x=78 124 x=18x . 【点睛】本题主要考查解一元一次方程,掌握解一元一次方程的方法是解题的关键. 15.m 的值为1或2【分析】先求出方程2233x m x x ---=的解,再由x 为非负数,可得到关于m 的不等式,解出即可. 【详解】解:2233x m x x ---= 去分母得:()322x x m x --=- , 解得:x =22m -, 因为x 为非负数,所以22m -≥0,即m ≤2, 又m 是正整数,所以m 的值为1或2.【点睛】本题主要考查了方程的解和解一元一次不等式,根据题意得到关于m 的不等式是解题的关键.。
解一元一次方程50道练习题(经典、强化、带答案)
解一元一次方程1234解:(移项)(合并)(化系数为1)5678解:(移项)(合并)(化系数为1)9101112解:(移项)(合并)(化系数为113141516解:(移项)(合并)(化系数为1).17、;18、;19、;20、解:(去括号)(移项)(合并)(化系数为1)21222324、解:(去括号)(移项)(合并)(化系数为1)25;26、;27;28、解:(去括号)(移项)(合并)(化系数为1)293032解:(去分母)(去括号)(移项)(合并)(化系数为1)333435解:(去分母)(去括号)(移项)(合并)(化系数为1363738解:(去分母)(去括号)(移项)(合并)(化系数为139404142解:(去分母)(去括号)(移项)(合并)(化系数为1434445解:(去分母)(去括号)(移项)(合并)(化系数为14647解:(去分母)(去括号)(移项)(合并)(化系数为1484950解:(化整)(去分母)(去括号)(移项)(合并)(化系数为1【参考答案】1、【答案】(1(2(3(4(5(6(7(81.1、【答案】(9(10(11(12(13(14(15(162、【答案】(17(18(19(20(21(22)2.1、【答案】(23(24(25(26(27(28)(29(303、【答案】(31(32(33(34(35(36(37(383.1、【答案】(39(40(41(42(43(44(45(464、【答案】(47(48(49(50。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
去括号解一元一次方程练习题
1.方程4(2-x)-4(x+1)=60的解是
A.7 B。
6/7 C。
-6/7 D。
-7
2.解方程4(x-1)-x=2(x+0.5)步骤如下○1去括号,得4x-4-x=2x+1 ○2移项得4x+x-2x=1+4 ○3合并同类项得3x=5 ○4系数化为1得x=5/3其中错误的是
A ○1 B. ○2 C. ○3 D.○4
3.某中学进行义务劳动,去甲处劳动的有30人,去乙处得有24人,从乙处调一部分人到甲处,使甲处的人数是乙处人数的2倍,若设从乙处调x人到甲处,则所列方程为
A.2(30+X)=24-X
B.30+X=2(24-X)
C.30-X=2(24+X)
D.2(30-X)=24+X
4.下列变形正确的是
A.a2-(2a-b+c)=a2-2a-b+c B。
(a+1)-(-b+c)=a+1+b+c
C.3a-【5b-(2c-1)】=3a-5b+2c-1 D.a-b+c-d=a-(b+c-d)
5.三个连续奇数的和是21,则他们的积为------
6.当x=3时,代数式x(3-m)+4的值为16,求当x=-5时,此代数式的值为------
7.一元一次方程(2+5x)-(x-1)=7的解是--------
8.若5a+0.25与5(x-0.25)的值互为相反数,则a的值为---------
9,。
解下列方程
(1)2(x-1)+4=0 (2)4-(3-x)=-2
(3)(x+1)-2(x-1)=1-3x (4)2(x-2)-6(x-1)=3(1-x)
(5)2(0.3x+4)=5+5(0.2x-7) (6)8(1-x)-5(x-2)=4(2x+1)
(7)4(x-1)-10(1-2x)=-3(2x+1) ( 8)2(x+3)-5(1-x)=3(x-1)
(9)2(2x+1)=1-5(x-2) (10) 6x+(3x+2)=4 (11)7x+2(3x-3)=20 (12)8y-3(3y+2)=3
(13)4x+3(2x-3)=12-(x-10)(14)3(x-2)=2-5(-x+2)(15)2)3y-(4y-2)=3 (16) 3(x+1)-2(x+2)=2x+3
(17) 2a+3(5-4a)= 15-10a (18)(4)、-3[1-3(x-1)]= 9x-12 ; (19)2- 3(x-5)=2x (20) 4(4-y) =3(y-3);
(21)2(2x-1)=1-(3-x) (22)2(x-1)-(x-3= 2(1.5x-2.5)
23. 3x-2[3(x-1)-2(x+2)]=3(18-x)
24.化简(x-1)-(1-x)+(x+1)的结果等于()
A.3x-3B.x-1C.3x-1D.x-3
25.已知2x+1与-12x+5的3倍值互为相反数,求x的值。
26.将方程(3+m-1)x=6-(2m+3)中,x=2时,m的值是()
A.m=-1/4 B.m=1/4 C.m=-4 D.m=4
27.学校团委组织65名同学为学校建花坛搬砖,女同学每人搬6块,男同学每人搬8块,,如果他们一次性搬了400块,那么参加搬砖的女同学有多少人?
28.一架飞机飞行在两个城市之间,顺风需2小时,逆风需3小时,已知风速为20千米/时,求两个城市之间的距离
29.一次数学试卷共30道题,规则规定答对一题得4分,答错或不答得-1分,小明在这次考试中得了90分,问他答对了几道题
30.小明和小东个有课外读物若干本,小明的课外读物的数量是小东的2倍,小明送给10本,小东的课外读物的数量是小明剩余数量的3倍,求小明和小东原来各有课外读物多少本。
解一元一次方程(三)
----去分母
[学习目标] 会运用等式性质2正确去分母解一元一次方程。
[重点难点] 重点:去分母解方程。
难点:去分母时,不含分母的项会漏乘公分母,及没有对分子加括号。
[学习过程]
[复习]1、解方程:
(1)95)3(+=--x x ;(2))2
12(22--=-x x
2、求下列各数的最小公倍数:
(1)2,3,4
(2)3,6,8。
(3)3,4,18。
**在上面的复习题1中,可以保留分母,也可以去掉分母,得到整数系数,这样做比较简便。
所以若方程中含有分母,则应先去掉分母,这样过程比较简便。
[例1] 解方程:4
3312-=-x x 解:两边都乘以 ,去分母,得
去括号,得 ,
移项,得 ,
合并同类项,得 ,
系数化为1,得。
[同步练习一] 解方程:
655314+=-x x
[例2] 解方程:3
1241213--+=-+x x x x
解:两边都乘以 ,去分母,得
去括号,得
移项, 得
合并同类项,得
系数化为1, 得
[同步练习二] 解方程:632141+-
=+-x x
[练习三] 解方程:(1)51
31+
=-x x ;
(2)51
131+=--x x ;
(3)51
2131
+-=+-x x ;
[小结]1、含有分母的方程的解法。
2、解一元一次方程的一般步骤为:①分母,②去括号,③移项,④合并同类项,⑤ 系数化为1 .
2、 去分母时要注意什么?(两点)
[课后作业] A 组 解方程:
(1)42
32
+=-x x ;
(2)21
141+=--x x
;
(3)223131x
x --=--;
(4)3221
3415x
x x --+=-;
(5)162
312=+
-+x x ;
(6)
5
124121223+--=-+x x x ;
(7)5222123--=--
x x x
(8)3
2221+-=--
x x x 。
B 组 1、k 取何值时,代数式31+k 的值比2
13+k 的值小1?
2、一件工作由一个人做要50小时完成,现在计划由一部分人先做5小时,再增加8人和他们一起做10小时,完成了这项工作,问:先安排多少人工作?。