专题-物理-L28-万有引力计算天体质量和密度问题

合集下载

(2021年整理)万有引力求天体的质量

(2021年整理)万有引力求天体的质量

万有引力求天体的质量编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(万有引力求天体的质量)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为万有引力求天体的质量的全部内容。

求天体的质量(密度,加速度)1.根据天体表面上物体的重力近似等于物体所受的万有引力,由天体表面上的重力加速度和天体的半径求天体的质量由mg=G 2RMm得 G g R M 2=。

(式中M 、g 、R 分别表示天体的质量、天体表面的重力加速度和天体的半径.)2.根据绕中心天体运动的卫星的运行周期和轨道半径,求中心天体的质量卫星绕中心天体运动的向心力由中心天体对卫星的万有引力提供,利用牛顿第二定律得222224Tmr mr r v m r Mm G πω===若已知卫星的轨道半径r 和卫星的运行周期T 、角速度ω或线速度v ,可求得中心天体的质量为G r GT r G rv M 3223224ωπ===1。

下列几组数据中能算出地球质量的是(万有引力常量G 是已知的)( ) A.地球绕太阳运行的周期T 和地球中心离太阳中心的距离r B 。

月球绕地球运行的周期T 和地球的半径rC 。

月球绕地球运动的角速度和月球中心离地球中心的距离r D.月球绕地球运动的周期T 和轨道半径r[解析]解此题关键是要把式中各字母的含义弄清楚,要区分天体半径和天体圆周运动的轨道半径.已知地球绕太阳运行的周期和地球的轨道半径只能求出太阳的质量,而不能求出地球的质量,所以A 项不对.已知月球绕地球运行的周期和地球的半径,不知道月球绕地球的轨道半径,所以不能求地球的质量,所以B 项不对.已知月球绕地球运动的角速度和轨道半径,由22ωmr rMm G =可以求出中心天体地球的质量,所以C 项正确.由2224T mr r Mm G π=求得地球质量为2324GT r M π=,所以D 项正确2。

高中物理天体密度与质量求解问题

高中物理天体密度与质量求解问题

高中物理万有引力天体密度与质量的求解(1)利用天体表面的重力加速度g 和天体半径R .由于G Mm R 2=mg ,故天体质量M =gR 2G ,天体密度ρ=M V =M 43πR 3=3g4πGR .(2)通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r .①由万有引力等于向心力,即G Mm r 2=m 4π2T 2r ,得出中心天体质量M =4π2r 3GT 2;②若已知天体半径R ,则天体的平均密度ρ=M V =M 43πR 3=3πr 3GT 2R3.例题:1、2013年12月14日21时许,嫦娥三号携带“玉兔”探测器在月球虹湾成功软着陆,在实施软着陆过程中,嫦娥三号离月球表面4m 高时最后一次悬停,确认着陆点。

若总质量为M 的嫦娥三号在最后一次悬停时,反推力发动机对其提供的反推力为F ,已知引力常量为G ,月球半径为R ,则月球的质量为()A.FR 2MGB.FR MGC.MG FRD.MG FR 2【解析】在月球表面附近:Mg =G M 月MR2,嫦娥三号悬停时,F =Mg ,由以上两式解得:M 月=FR 2MG ,选项A 对。

【答案】A2、嫦娥五号探测器由轨道器、返回器、着陆器等多个部分组成。

探测器预计在2017年由长征五号运载火箭在中国文昌卫星发射中心发射升空,自动完成月面样品采集,并从月球起飞,返回地球,带回约2kg 月球样品。

某同学从网上得到一些信息,如表格中的数据所示,请根据题意,判断地球和月球的密度之比为()月球半径R 0月球表面处的重力加速度g 0地球和月球的半径之比RR 0=4地球表面和月球表面的重力加速度之比g g 0=6A.23B.32C .4D .6【解析】利用题给信息,对地球,有G Mm R 2=mg ,得M =gR 2G ,又V =43πR 3,得地球的密度ρ=M V =3g 4G πR ;对月球,有G M 0m R 20=mg 0,得M 0=g 0R 20G ,又V 0=43πR 30,得月球的密度ρ0=M 0V 0=3g 04G πR 0,则地球的密度与月球的密度之比ρρ0=32,故B 正确。

高考物理一轮复习专题:第28讲+万有引力定律的应用——求天体的质量

高考物理一轮复习专题:第28讲+万有引力定律的应用——求天体的质量

万有引力定律的应用--求天体质量(两种)①地上跑的:②天上飞的:总结:已知注意:R 指中心天体的球体半径,r 指行星或卫星的轨道半径。

若行星或卫星绕近中心天体表面运行,则有R=r 。

注意:只能求中心天体的质量 求天体密度的方法(两种)若为近地卫星公转周期已知,则r ≈R ,则 推导过程:结论:若要测某星球密度,最简单方式。

测其近地卫星的公转周期注意:只能求中心天体的密度mg R MmG =2GgR M 2==2r Mm G rv m 2r m 2ωr T m 224πG r v M 2=G r M 32ω=2324GT r M π=gR 中任两个、、r T v )(ωrr v v r T T,求出,可以根据:、不可缺,,二者不独立,相当于给了,故给了补充:ωωωπω==2VM=ρM gR 中任两个、、r T v )(ω334RV π=23GT πρ=3222344RV r T m r Mm G ππ==2324GT r M π=3233R GT r πρ=练习: g-R 型1.已知引力常量11226.6710N m /kg G -=⨯⋅,地球表面的重力加速度29.8m/s g =,地球半径6400R =km ,则地球质量的数量级为( )A .2010kgB .2210kgC .2410kgD .2610kg2.字航员在某星球将一物体从离地50米高度处释放使其做自由落体运动,经5s 落地。

已知该星球的半径是地球半径的2倍,地球表而重力加速度取210m/s ,设地球质量为M ,则该星球的质量为( ) A .85MB .MC .2MD .65M9.某同学在地球表面测量一圆锥摆在水平面内做匀速圆周运动的周期,当摆长为L ,稳定时圆周运动的圆心距离悬点为h ,周期为T ;某宇航员登陆某星球后,在星球表面也做了同样的圆锥摆实验,当摆长也为L ,稳定时圆周运动的圆心距离悬点为H 时,周期也为T 。

若该星球的半径和地球半径相等,则该星球质量与地球质量之比为( )A .H hB .2222L h L H --C .h HD .2222L h L B-- 3.假如人类发现了某星球,人类登上该星球后,进行了如下实验:在固定的竖直光滑圆轨道内部,一小球恰好能做完整的圆周运动,小球在最高点时的速度为v ,轨道半径为5r 。

新人教版高中物理必修二 《万有引力的应用之——计算天体质量与密度》课件共9张PPT

新人教版高中物理必修二 《万有引力的应用之——计算天体质量与密度》课件共9张PPT
2
m r⇒ M= ,已知卫星的 T v GT Mm 2π rv r 4π Gm = m ⇒ M = ,已知卫星的 r和 r ⇒ M = ,已知卫星的 r v r G T 2 GT Mm Mm r v G m ( M= ) r T G = m ⇒ ,已知卫星的 r 和 v r Mm T r ω v v r r mω r⇒ r G ,已知卫星的 r G = m ⇒ M=M= ,已知卫星的 r 和 r r G G
万有引力定律的应用之——计算天体质量和密度
复习巩固
将卫星绕地球运动看成匀速圆周运动,所需要的 向心力由万有引力提供,即:
Mm v2 2 2 2 G 2 m mr mr ( ) mra(2 f )2 r r T
一.计算天体质量(以计算地球质量为例) 1.已知卫星的轨道半径r和周期T,求地球质量M
4 GT 2
C.
GT 2 4
D.
3 GT 2
4.为了估算一个天体的质量,需要知道绕该天体作匀速圆周运动
的另一星球(或卫星)的条件是 : , A.质量和运行周期 B.运转周期和轨道半径 C.轨道半径和环绕速度 D.环绕速度和运转周期
BCD
2.用引力提供向心力的方法计算地球的质量需不需 要知道卫星的质量?为什么?
3.用引力提供向心力的方法能不能计算太阳的质量? 需要测出哪些物理量? 4.用引力提供向心力计算出的是环绕天体还是被绕中 心天体的质量? 总结推广:在用万有引力等于向心力列式求天体的 质量时,只能求出中心天体的质量,这种方法不仅 适用于地球,也适用于其他天体质量的计算.
)
2.若知道太阳的某一颗行星绕太阳运转的轨道半径为R,周期为T, 万有引力常量为G,则可求得: A.该行星的质量 C.该行星的密度 B.太阳的质量 D.太阳的平均密度

2024高考物理一轮复习--天体运动专题--开普勒定律、万有引力定律、天体的质量密度求解

2024高考物理一轮复习--天体运动专题--开普勒定律、万有引力定律、天体的质量密度求解

开普勒定律、万有引力定律、天体的质量密度求解一、开普勒行星运动定律定 律内 容图示或公式开普勒第一定律(轨道定律) 所有行星绕太阳运动的轨道都是椭圆,太阳处在 的一个焦点上开普勒第二定律(面积定律) 对任意一个行星来说,它与太阳的连线在相等的时间内扫过的面积相等开普勒第三定律(周期定律) 所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等k Ta 23,k 是一个与行星无关的常量注意:(1)行星绕太阳运动的轨道通常按圆轨道处理.(2)由开普勒第二定律可得12Δl 1r 1=12Δl 2r 2,12v 1·Δt ·r 1=12v 2·Δt ·r 2,解得v 1v 2=r 2r 1,即行星在两个位置的速度之比与到太阳的距离成反比,近日点速度最大,远日点速度最小. (3)开普勒第三定律a 3T2=k 中,k 值二、万有引力定律的理解1.万有引力与重力的关系地球对物体的万有引力F 表现为两个效果:一是重力mg ,二是提供物体随地球自转的向心力F 向.(1)在赤道上:G Mm R 2=mg 1+mω2R . (2)在两极上:G MmR 2=mg 0.(3)在一般位置:万有引力G MmR2等于重力mg 与向心力F 向的矢量和.越靠近南、北两极,g 值越大,由于物体随地球自转所需的向心力较小,常认为万有引力近似等于重力,即GMmR 2=mg .2.星球上空的重力加速度g ′星球上空距离星体中心r =R +h 处的重力加速度为g ′,mg ′=GmM (R +h )2,得g ′=GM(R +h )2.所以g g ′=(R +h )2R 2.3.万有引力的“两点理解”和“两个推论” (1)两点理解①两物体相互作用的万有引力是一对作用力和反作用力. ①地球上的物体受到的重力只是万有引力的一个分力.(2)两个推论: ①推论1:在匀质球壳的空腔内任意位置处,质点受到球壳的万有引力的合力为零,即∑F 引=0.①推论2:在匀质球体内部距离球心r 处的质点(m )受到的万有引力等于球体内半径为r 的同心球体(M ′)对其的万有引力,即F =G M ′m r2.三、天体质量和密度的计算类型方法已知量 利用公式 表达式 备注质量的 计 算利用运行天体r 、TG m 中m r 2=m 4π2T 2r m 中=4π2r 3GT 2只能得到中心天体的质量r 、vG m 中mr 2=m v 2rm 中=rv 2Gv 、T G m 中m r 2=m v 2r ,G m 中mr2=m 4π2T 2r m 中=v 3T 2πG利用天体表面重力加速度g 、Rmg =Gm 中m R2m 中=gR 2G—密 度 的 计 算利用运行天体r 、T 、RG m 中m r 2=m 4π2T 2r m 中=ρ·43πR 3ρ=3πr 3GT 2R 3 当r =R 时,ρ=3πGT2 利用近地卫星只需测出其运行周期利用天体表面重力加速度g 、Rmg =Gm 中m R 2,m 中=ρ·43πR 3ρ=3g4πGR—四、针对练习1、(多选)如图,海王星绕太阳沿椭圆轨道运动,P 为近日点,Q 为远日点,M 、N 为轨道短轴的两个端点,运行的周期为T 0,若只考虑海王星和太阳之间的相互作用,则海王星在从P 经过M 、Q 到N 的运动过程中( )A .从P 到M 所用的时间等于T 04B .从Q 到N 阶段,机械能逐渐变大C .从P 到Q 阶段,速率逐渐变小D .从M 到N 阶段,万有引力对它先做负功后做正功2、中国首个火星探测器“天问一号”,已于2021年2月10日成功环绕火星运动。

应用万有引力定律估算天体质量和密度

应用万有引力定律估算天体质量和密度

0.4,故 B 正确。
7.(2020·全国卷Ⅲ)“嫦娥四号”探测器于 2019 年 1 月在月球背面成功着陆,着
陆前曾绕月球飞行,某段时间可认为绕月做匀速圆周运动,圆周半径为月球半径
的 K 倍。已知地球半径 R 是月球半径的 P 倍,地球质量是月球质量的 Q 倍,地球
表面重力加速度大小为 g。则“嫦娥四号”绕月球做圆周运动的速率为( )
F
F 7F
万有引力为 8,故剩余部分对质点 P 的万有引力为 F-8= 8 ,C 正确。
4.(万有引力定律的应用)理论上已经证明:质量分布均匀的球壳对壳内物体
的万有引力为零。假设地球是一个半径为 R、质量分布均匀的实心球体,O 为球
心,以 O 为原点建立坐标轴 Ox,如图所示。一个质量一定的小物体(可视为质
宏观性 巨大的天体之间或天体与其附近的物体之间,万有引力起着决定性作用
(2)应用万有引力定律的注意事项 在以下三种情况下可以直接使用公式 F=Gmr1m2 2计算: ①求两个质点间的万有引力:当两物体间距离远大于物体本身大小时,物体可看成质 点,公式中的 r 表示两质点间的距离。 ②求两个质量分布均匀的球体间的万有引力:公式中的 r 为两个球心间的距离。 ③一个质量分布均匀球体与球外一个质点间的万有引力:r 指质点到球心的距离。 (3)对于两个不能看成质点的物体间的万有引力,不能直接用万有引力公式求解,切不可 依据 F=Gmr1m2 2得出 r→0 时 F→∞的结论,违背公式的物理含义。
知月球绕地球做圆周运动的周期及月球与地球间的距离,可计算出地球的质量,
C 能;已知地球绕太阳做圆周运动的周期及地球与太阳间的距离只能求出太阳的
质量,不能求出地球的质量,D 不能。
例 2.(2021 全国乙卷 18,6 分) 科学家对银河系中心附近的恒星 S2 进行了多年的持续观测, 给出 1994年到 2002年间 S2 的位置如图所示。科学家认为 S2 的运动轨迹是半长轴约为1000AU (太阳到地球的距离为1AU )的椭圆,银河系中心可能存在超大质量黑洞。这项研究工作获

高三 万有引力

高三 万有引力

万有引力与航天考点一 天体质量和密度的估算1.重力加速度法利用天体表面的重力加速度g 和天体半径R . (1)由G Mm R 2=mg 得天体质量M =gR 2G. (2)天体密度ρ=M V =M 43πR 3=3g 4πGR . 2.卫星环绕法测出卫星绕天体做匀速圆周运动的半径r 和周期T .(1)由G Mm r 2=m 4π2r T 2得天体的质量M =4π2r 3GT 2. (2)若已知天体的半径R ,则天体的密度ρ=M V =M 43πR 3=3πr 3GT 2R 3.若卫星绕中心天体表面运行时,轨道半径r =R ,则有ρ=3πGT 2. 【例1】 “嫦娥一号”是我国首次发射的探月卫星,它在距月球表面高度为200 km 的圆形轨道上运行,运行周期为127分钟.已知引力常量G =6.67×10-11 N·m 2/kg 2,月球半径约为1.74×103 km.利用以上数据估算月球的质量约为( )A .8.1×1010 kgB .7.4×1013 kgC .5.4×1019 kgD .7.4×1022 kg突破训练1(多选)(2014·广东高考)如图4-4-2所示,飞行器P 绕某星球做匀速圆周运动,星球相对飞行器的张角为θ,下列说法正确的是( )A .轨道半径越大,周期越长B .轨道半径越大,速度越大C .若测得周期和张角,可得到星球的平均密度D .若测得周期和轨道半径,可得到星球的平均密度考点二 卫星运行参量的比较与运算1.卫星的动力学规律由万有引力提供向心力,G Mm r 2=ma 向=m v 2r =mω2r =m 4π2r T 2. 2.卫星的各物理量随轨道半径变化的规律(1)G Mm r 2=m v 2r→v =GM r →v ∝1r . (2)G Mm r 2=mω2r →ω=GM r 3→ω∝1r 3. (3)G Mm r 2=m 4π2T 2r →T =4π2r 3GM→T ∝r 3. (4)G Mm r 2=ma →a =GM r 2→a ∝1r2. (5)mg =GMm R 2地(近地时)→GM =gR 2地. 3.极地卫星和近地卫星(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖.(2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s.图4-4-2【例2】 (2014·天津高考)研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时.假设这种趋势会持续下去,地球的其他条件都不变,未来人类发射的地球同步卫星与现在的相比( )A .距地面的高度变大B .向心加速度变大C .线速度变大D .角速度变大 突破训练2一人造地球卫星绕地球做匀速圆周运动,假如该卫星变轨后仍做匀速圆周运动,动能减小为原来的14,不考虑卫星质量的变化,则变轨前后卫星的( ) A .向心加速度大小之比为4∶1B .角速度大小之比为2∶1C .周期之比为1∶8D .轨道半径之比为1∶2考点三 赤道上物体、近地卫星、同步卫星的区别1.区别(1)同步卫星与地球赤道上的物体的周期都等于地球自转的周期,而不等于近地卫星的周期. (2近地卫星与地球赤道上的物体的运动半径都等于地球半径,而不等于同步卫星运动半径.(3)三者的线速度各不相同.2.求解此类题的关键(1)在求解“同步卫星”与“赤道上的物体”的向心加速度的比例关系时应依据二者角速度相同的特点,运用公式a =ω2r 而不能运用公式a =GM r 2. (2)在求解“同步卫星”与“赤道上的物体”的线速度比例关系时,仍要依据二者角速度相同的特点,运用公式v =ωr 而不能运用公式v =GM /r .(3)在求解“同步卫星”运行速度与第一宇宙速度的比例关系时,因都是由万有引力提供的向心力,故要运用公式v =GM /r ,而不能运用公式v =ωr 或v =gr .【例3】 有a 、b 、c 、d 四颗地球卫星,a 在地球赤道上未发射,b 在地面附近近地轨道上正常运动,c 是地球同步卫星,d 是高空探测卫星,各卫星排列位置如图4-4-3,则有( )A .a 的向心加速度等于重力加速度gB .c 在4 h 内转过的圆心角是π/6C .b 在相同时间内转过的弧长最长D .d 的运动周期有可能是20 h【反思总结】同步卫星的六个“一定”图4-4-3突破训练 3今年4月30日,西昌卫星发射中心发射的中圆轨道卫星,其轨道半径为2.8×107 m .它与另一颗同质量的同步轨道卫星(轨道半径为4.2×107 m)相比( )A .向心力较小B .动能较大C .发射速度都是第一宇宙速度D .角速度较小考点四 卫星的发射与变轨一、宇宙速度1.第一宇宙速度v 1=7.9 km/s ,既是发射卫星的最小发射速度,也是卫星绕地球运行的最大环绕速度.2.第一宇宙速度的求法:(1)GMm R 2=m v 21R,所以v 1=GM R. (2)mg =mv 21R ,所以v 1=gR . (3)第二、第三宇宙速度也都是指发射速度.二、卫星的变轨分析卫星的变轨问题可分为两类:大气层外的发动机变轨(跃迁式)和稀薄空气作用下的摩擦(连续)变轨.1.大气层外的发动机变轨又存在从较低轨道变轨到较高轨道和从较高轨道变轨到较低轨道两种情况,这两种情况互为逆过程.2.空气阻力使速度减少,G Mm r 2>m v 2r→向心运动→引力做正功→卫星动能增大→低轨道运行v ′=GM r ′. 【例4】 (多选)“嫦娥一号”探月卫星绕地运行一段时间后,离开地球飞向月球.图4-4-4是绕地飞行的三条轨道,1轨道是近地圆形轨道,2和3是变轨后的椭圆轨道,A 点是2轨道的近地点,B 点是2轨道的远地点,卫星在轨道1的运行速率为7.7 km/s ,则下列说法中正确的是( )A .卫星在2轨道经过A 点时的速率一定大于7.7 km/sB .卫星在2轨道经过B 点时的速率一定小于7.7 km/sC .卫星在3轨道所具有的机械能小于在2轨道所具有的机械能D .卫星在3轨道所具有的最大速率小于在2轨道所具有的最大速率【思维模板】问1:卫星由轨道1变成轨道2,在A 必须加速还是减速?提示:问2:在轨道2运行,由A 到B ,机械能守恒吗?提示:问3:卫星在轨道2和轨道3比较,在哪个轨道具有的机械能大?提示: .突破训练 4(多选)(2013·新课标全国卷Ⅰ)2012年6月18日,“神舟九号”飞船与“天宫一号”目标飞行器在离地面343 km 的近圆形轨道上成功进行了我国首次载人空间交会对接.对接轨道所处的空间存在极其稀薄的大气.下列说法正确的是( )图4-4-4A .为实现对接,两者运行速度的大小都应介于第一宇宙速度和第二宇宙速度之间B .如不加干预,在运行一段时间后,“天宫一号”的动能可能会增加C .如不加干预,“天宫一号”的轨道高度将缓慢降低D .航天员在“天宫一号”中处于失重状态,说明航天员不受地球引力作用【强化练习】[卫星运行比较]1.(2013·广东高考)如图4-4-6所示,甲、乙两颗卫星以相同的轨道半径分别绕质量为M 和2M 的行星做匀速圆周运动.下列说法正确的是( )A .甲的向心加速度比乙的小B .甲的运行周期比乙的小C .甲的角速度比乙的大D .甲的线速度比乙的大[天体质量的估算]2.2013年12月2日,我国成功发射了“嫦娥三号”,实施落月探测计划,进一步获取月球的相关数据.如果该卫星在月球上空绕月做匀速圆周运动,经过时间t ,卫星行程为s ,卫星与月球中心连线扫过的角度是1弧度,万有引力常量为G ,根据以上数据估算月球的质量是( )A.t 2Gs 3B.s 3Gt 2C.Gt 2s 3D.Gs 3t 2 [卫星或导弹的发射与变轨]3.(多选)2013年1月27日,我国在境内再次成功地进行了陆基中段反导拦截技术试验,中段是指弹道导弹在大气层外空间依靠惯性飞行的一段.如图4-4-7所示,一枚蓝军弹道导弹从地面上A 点发射升空,目标是攻击红军基地B 点,导弹升空后,红军反导预警系统立刻发现目标,从C 点发射拦截导弹,并在弹道导弹飞行中段的最高点D 将其击毁.下列说法正确的是( )A .图中E 到D 过程,弹道导弹机械能不断增大B .图中E 到D 过程,弹道导弹的加速度不断减小C .弹道导弹在大气层外运动轨迹是以地心为焦点的椭圆D .弹道导弹飞行至D 点时速度大于7.9 km/s4.小型登月器连接在航天站上,一起绕月球做圆周运动,其轨道半径为月球半径的3倍.某时刻,航天站使登月器减速分离,登月器沿如图4-4-8所示的椭圆轨道登月,在月球表面逗留一段时间完成科考工作后,经快速启动仍沿原椭圆轨道返回.当第一次回到分离点时恰与航天站对接.登月器快速启动时间可以忽略不计,整个过程中航天站保持原轨道绕月运行.已知月球表面的重力加速度为g 0,月球半径为R ,不考虑月球自转的影响,则登月器可以在月球上停留的最短时间约为 ( )A .4.7πR g 0B .3.6πR g 0C .1.7π R g 0D .1.4πR g 0 [同步卫星与其他卫星运行比较]5.如图4-4-9所示,a 是地球赤道上的一点,t =0时刻在a 的正上空有b 、c 、d 三颗轨道均位于赤道平面的地球卫星.这些卫星绕地球做匀速圆周运动的运行方向均与地球自转方向(顺时针转动)相同,其中c 是地球同步卫星.设卫星b 绕地球运行的周期为T ,则在t =14T 时刻这些卫星相对a 的位置最接近实际的是()图4-4-6图4-4-7 图4-4-8课时提升练 A 组 巩固基础知识1.(2014·浙江高考)长期以来“卡戎星(Charon)”被认为是冥王星唯一的卫星,它的公转轨道半径r 1=19 600 km ,公转周期T 1=6.39天.2006年3月,天文学家新发现两颗冥王星的小卫星,其中一颗的公转轨道半径r 2=48 000 km ,则它的公转周期T 2最接近于( )A .15天B .25天C .35天D .45天2.(多选)(2013·浙江高考)如图4-4-10所示,三颗质量均为m 的地球同步卫星等间隔分布在半径为r 的圆轨道上,设地球质量为M ,半径为R .下列说法正确的是( )A .地球对一颗卫星的引力大小为GMm (r -R )2B .一颗卫星对地球的引力大小为GMm r 2C .两颗卫星之间的引力大小为G m 23r 2 D .三颗卫星对地球引力的合力大小为3GMm r 2 3.(2012·浙江高考)如图4-4-11所示,在火星与木星轨道之间有一小行星带.假设该带中的小行星只受到太阳的引力,并绕太阳做匀速圆周运动.下列说法正确的是( )A .太阳对各小行星的引力相同B .各小行星绕太阳运动的周期均小于1年C .小行星带内侧小行星的向心加速度值大于外侧小行星的向心加速度值D .小行星带内各小行星圆周运动的线速度值大于地球公转的线速度值4.(2013·上海)小行星绕恒星运动,恒星均匀向四周辐射能量,质量缓慢减小,可认为小行星在绕恒星运动一周的过程中近似做圆周运动.经过足够长时间后,小行星运动的( )A .半径变大B .速率变大C .角速度变大D .加速度变大5.(2014·江苏高考)已知地球的质量约为火星质量的10倍,地球的半径约为火星半径的2倍,则航天器在火星表面附近绕火星做匀速圆周运动的速率约为( )A .3.5 km/sB .5.0 km/sC .17.7 km/sD .35.2 km/s6.(2014·福建高考)若有一颗“宜居”行星,其质量为地球的p 倍,半径为地球的q 倍,则该行星卫星的环绕速度是地球卫星环绕速度的( ) A.pq 倍 B.q p 倍 C.p q 倍 D.pq 3倍 7.(2013·海南高考)“北斗”卫星导航定位系统由地球静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成.地球静止轨道卫星和中轨道卫星都在圆轨道上运行,它们距地面的高度分别约为地球半径的6倍和3.4倍.下列说法正确的是( )A .静止轨道卫星的周期约为中轨道卫星的2倍B .静止轨道卫星的线速度大小约为中轨道卫星的2倍C .静止轨道卫星的角速度大小约为中轨道卫星的1/7D .静止轨道卫星的向心加速度大小约为中轨道卫星的1/78.(2013·安徽高考)质量为m 的人造地球卫星与地心的距离为r 时,引力势能可表示为E p =-GMm r,其中G 为引力常量,M 为地球质量.该卫星原来在半径为R 1的轨道上绕地球做匀速圆周运动,由于受到极稀薄空气的摩擦作用,飞行一段时间后其圆周运动的半径变为R 2,此过程中因摩擦而产生的热量为( )A .GMm (1R 2-1R 1)B .GMm (1R 1-1R 2) C.GMm 2(1R 2-1R 1) D.GMm 2(1R 1-1R2)图4-4-10图4-4-11B 组 深化训练——提升应考能力9.(多选)如果把水星和金星绕太阳的运动视为匀速圆周运动,从水星与金星在一条直线上开始计时,如图4-4-12所示.若天文学家测得在相同时间内水星转过的角度为θ1;金星转过的角度为θ2(θ1、θ2均为锐角),则由此条件可求得( )A .水星和金星绕太阳运动的周期之比B .水星和金星的密度之比C .水星和金星到太阳的距离之比D .水星和金星绕太阳运动的向心加速度大小之比 10.(多选)(2015·南昌一中检测)在四川汶川的抗震救灾中,我国自主研制的“北斗一号”卫星导航系统,在抗震救灾中发挥了巨大作用.北斗导航系统又被称为“双星定位系统”,具有导航、定位等功能.“北斗”系统中两颗工作卫星均绕地心O 做匀速圆周运动,轨道半径为r ,某时刻两颗工作卫星分别位于轨道上的A 、B 两位置(如图4-4-13所示).若卫星均按顺时针运行,地球表面处的重力加速度为g ,地球半径为R .不计卫星间的相互作用力.则以下判断中正确的是( )A .这两颗卫星的加速度大小相等,均为R 2g r 2B .卫星1向后喷气就一定能追上卫星2C .卫星1由位置A 运动到位置B 所需的时间为πr 3Rr g D .卫星1中质量为m 的物体的动能为12mgr 11.(2014·北京)万有引力定律揭示天体运动规律与地上物体运动规律具有内在一致性.(1)用弹簧秤称量一个相对于地球静止的小物体的重量,随称量位置的变化可能会有不同的结果.已知地球质量为M ,自转周期为T ,万有引力常量为G .将地球视为半径为R 、质量均匀分布的球体,不考虑空气的影响.设在地球北极地面称量时,弹簧秤的读数是F 0.a .若在北极上空高出地面h 处称量,弹簧秤读数为F 1,求比值F 1F 0的表达式,并就h =1.0%R 的情形算出具体数值(计算结果保留两位有效数字);b .若在赤道地面称量,弹簧秤读数为F 2,求比值F 2F 0的表达式. (2)设想地球绕太阳公转的圆周轨道半径为r 、太阳的半径为R S 和地球的半径R 三者均减小为现在的1.0%,而太阳和地球的密度均匀且不变,仅考虑太阳和地球之间的相互作用,以现实地球的1年为标准,计算“设想地球”的1年将变为多长?12.(2014·四川高考)石墨烯是近些年发现的一种新材料,其超高强度及超强导电、导热等非凡的物理化学性质有望使21世纪的世界发生革命性的变化,其发现者由此获得2010年诺贝尔物理学奖.用石墨烯制作超级缆绳,人类搭建“太空电梯”的梦想有望在本世纪实现.科学家们设想,通过地球同步轨道站向地面垂下一条缆绳至赤道基站,电梯仓沿着这条缆绳运行,实现外太空和地球之间便捷的物资交换.(1)若“太空电梯”将货物从赤道基站运到距地面高度为h 1的同步轨道站,求轨道站内质量为m 1的货物相对地心运动的动能.设地球自转角速度为ω,地球半径为R .(2)当电梯仓停在距地面高度h 2=4R 的站点时,求仓内质量m 2=50 kg 的人对水平地板的压力大小.取地面附近重力加速度g =10 m/s 2,地球自转角速度ω=7.3×10-5 rad/s ,地球半径R =6.4×103km.图4-4-13图4-4-12。

物理-L28-万有引力计算天体质量和密度问题

物理-L28-万有引力计算天体质量和密度问题

即mg海=G
可得 g海=
同理地球表面的重力加速度g地=
因g海≈g地,所以G =G
M海=16M地=9.6×1025 kg.
9
例题2 在某行星上宇航员用弹簧秤测质量为m的物体的重力为F,乘宇宙飞船在靠 近该行星的空间飞行,测得其环绕周期为T,根据这些数据求该星球的质量.
解题思路:在行星表面的物体的重力等于行星对它的万有引力, 在行星附近飞行的飞船,由万有引力提供其做圆周运动的向心力.
3


3 r3
GT 2R3
.
特别提醒 要注意R、r的区分.R指中心天体的半径,r指行星或卫星的轨道半径.若绕近地轨道运行,则有R=r.
23
24
25
M= 根据数学知识星球的体积V=πR3. 所以天体的密度ρ===. 若卫星距天体表面高为h处运行,则有 G=m(R+h)
3
(3)若已知月球运行的线速度v和运行周期T,由于地球对月球的引力等于月球做匀速圆周运 动的向心力,根据牛顿第二定律,得
G
=m月·v·
以上两式消去r,解得
G
=m月.
M地=v3T/(2πG). (4)若已知地球的半径R和地球表面的重力加速度g,根据物体的重力近似等于地球对物体的 引力,得
mg=G ,
解得地球质量为M地= .
4
由以上论述可知,在万有引力定律这一章中,求天体质量的方法主要有两种:一种方法是根 据天体表面的重力加速度来求天体质量,即g=G ,则M= ,另一种方法是根据天体的 圆周运动,即根据天体做匀速圆周运动的向心力由万有引力提供,列出方程: G =m r=m =mω2r来求得质量M= = = 用第二种方法只能求出圆心处天体质量(即中心天体).
21

万有引力与航天考点微专题3、 天体质量和密度的计算

万有引力与航天考点微专题3、 天体质量和密度的计算

万有引力与航天考点微专题3 天体质量和密度的计算一 知能掌握1、解决天体(卫星)运动问题的基本思路 (1)把天体的椭圆运动看做匀速圆周运动(2)是天体运动的向心力来源于天体之间的万有引力,即222r v m r Mm G ==r Tm 224πr m 2ω=;(3)地球对物体的万有引力近似等于物体的重力,由于地球自转缓慢,所以大量的近似计算中忽略了自转的影响,认为地球表面处物体所受到的地球引力近似等于其重力,即G 2R mM=mg (g 表示天体表面的重力加速度). 2.天体质量和密度的计算(1)利用天体表面的重力加速度g 和天体半径R .由于G Mm R 2=mg ,故天体质量M =gR 2G , 天体密度ρ=M V =M 43πR3=3g 4πGR.(2)通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r .①由万有引力等于向心力,即G Mm r 2=m 4π2T 2r ,得出中心天体质量M =4π2r3GT 2;②若已知天体半径R ,则天体的平均密度 ρ=M V =M 43πR3=3πr3GT 2R 3;③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R ,则天体密度ρ=3πGT2.可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度.3.估算天体质量和密度时应注意的问题(1)利用万有引力提供天体做圆周运动的向心力估算天体质量时,估算的只是中心天体的质量,并非环绕天体的质量.(2)区别天体半径R 和卫星轨道半径r ,只有在天体表面附近的卫星才有r ≈R ;计算天体密度时,V =43πR 3中的R 只能是中心天体的半径. 4. 天体质量、密度的计算方法汇总二 探索提升【典例1】地球可近视为一个R=6400km 的球体,在地面附近的重力加速度g=9.8m/s 2,试估算地球的平均密度ρ。

【答案】33/105.54334m kg GRgGR g ⨯===πρρπ【典例2】1798年,英国物理学家卡文迪许测出万有引力常量G ,因此卡文迪许被人们称为能称出地球质量的人.若已知万有引力常量G ,地球表面处的重力加速度g ,地球半径R ,地球上一个昼夜的时间T 1(地球自转周期),一年的时间T 2(地球公转周期),地球中心到月球中心的距离L 1,地球中心到太阳中心的距离L 2.你能计算出( )A .地球的质量m 地=gR 2GB .太阳的质量m 太=4π2L 32GT 22C .月球的质量m 月=4π2L 31GT 21D .可求月球、地球及太阳的密度【答案】AB【解析】对地球表面的一个物体m 0来说,应有m 0g =Gm 地m 0R 2,所以地球质量m 地=gR 2G,选项A 正确.对地球绕太阳运动来说,有Gm 太m 地L 22=m 地4π2T 22L 2,则m 太=4π2L 32GT 22,B 项正确.对月球绕地球运动来说,能求地球的质量,不知道月球的相关参量及月球的卫星的运动参量,无法求出它的质量和密度,C 、D 项错误. 【典例3】中子星是恒星演化过程的一种可能结果,它的密度很大。

万有引力与航天专题(天体质量和密度的计算、变轨问题、双星和多星问题、天体的追及相遇问题)

万有引力与航天专题(天体质量和密度的计算、变轨问题、双星和多星问题、天体的追及相遇问题)

万有引力与航天专题(天体质量和密度的计算、变轨问题、双星和多星问题、天体的追及相遇问题、不同轨道上卫星各物理量的比较)60分钟考点序号考点 考向 题型分布考点1万有引力与航天专题(天体质量和密度的计算、变轨问题、双星和多星问题、天体的追及相遇问题、不同轨道上卫星各物理量的比较)考向1:天体质量和密度的计算 考向2:不同高度重力加速度的计算 考向3:不同轨道上卫星各物理量的比较考向4:变轨问题 考向5:双星和多星问题考向6:卫星的追及相遇问题 14单选+4多选万有引力与航天专题(天体质量和密度的计算、变轨问题、双星和多星问题、天体的追及相遇问题、不同轨道上卫星各物理量的比较)(14单选+4多选) 1.(2024·河南·模拟预测)如图所示,A 、B 、C 分别表示太阳、水星和地球,假设水星和地球在同一平面内绕太阳做匀速圆周运动,水星公转半径为r ,地球公转半径为R ,此时AB 与BC 垂直.水星的公转周期为1T ,地球的公转周期为2T ,太阳质量为M ,引力常量为G ,所有天体均可视为质点,不考虑其他天体的影响,下列说法正确的是( )故选B 。

2.(2024·山西太原·三模)宇宙中行星A B 、的半径B A 2R R =,各自相应卫星环绕行星做匀速圆周运动,卫星轨道半径与周期的关系如图所示,若不考虑其它星体对A B 、的影响及A B 、之间的作用力,下列说法正确的是( )A .行星AB 、的质量之比为1:4 B .行星A B 、的密度之比为1:2C .行星A B 、的第一宇宙速度之比为1:2D .行星A B 、的同步卫星的向心加速度之比为1:8A .a 、b 、c 三物体,都仅由万有引力提供向心力B .周期关系为ac b T T T => C .线速度的大小关系为a c b v v v << D .向心加速度的大小关系为b c a a a a >>高度为h1的圆形轨道I上,在天目星经过A点时点火实施变轨进入椭圆轨道II,最后在椭圆轨道的远地点B 点再次点火将天目星送入距地面高度为h2的圆形轨道III上,设地球半径为R,地球表面重力加速度为g,则天目星沿椭圆轨道从A点运动到B点的时间为()A.神舟十八号在轨道Ⅰ上运行时的向心加速度大于其在地面上静止时的向心加速度B.神舟十八号在轨道Ⅱ上经过P点时的向心加速度小于经过Q点时的向心加速度C.神舟十八号在轨道Ⅱ上经过P点时的速度小于在轨道Ⅰ上经过P点时的速度D.神舟十八号在轨道Ⅱ上的机械能大于在轨道Ⅲ上的机械能11.(2024·河北·三模)有两颗人造地球卫星A和B的轨道在同一平面内,A、B同向转动,轨道半径分别为r和4r,每隔时间t会发生一次“相冲”现象,即地球、卫星A和B三者位于同一条直线上,且A、B位于地球的同侧,已知万有引力常量为G,则地球质量可表示为()A.飞船A和空间站A.23S S=B.行星Ⅱ与行星Ⅲ的运行周期相等C .行星Ⅱ与行星Ⅲ在P 点时的加速度大小不相等D .2312E B v v v v <<<A .恒星Q 的质量为2mA.A星球的轨道半径为B.B星球的轨道半径为C.双星运行的周期为。

万有引力计算天体的质量和密度

万有引力计算天体的质量和密度

万有引力和航天第一节:计算天体的质量和密度基础知识填空1、卡普勒第一定律是: ;卡普勒第二定律是: ;卡普勒第三定律是: ,其表达式是 ,当把轨道近似看作圆时,表达式可改写为 ,其中常数k 由 决定。

2、通过计算推导可得太阳对行星的引力F ∝2m r (m 是行星质量),由于太阳与行星间相互作用,两者的地位是相同的,既然太阳吸引行星,行星也必然吸引太阳,所以可推得行星对太阳的引力F’(设太阳质量为M )满足 ,而根据作用力和反作用力的关系,F 和F’的大小是相等的,所以我们可以推得太阳与行星间的引力满足 ,加入比例系数G ,写成等式就是 ,这就是 定律的表达式,(其中G 是 ,由 通过著名的 实验测量得到的)根据等式,该定律可表述为 。

3、不考虑地球自转时,万有引力等于 ,公式表达为 ,化简后得到黄金代换式 。

4、环绕模型算中心天体质量: 提供向心力,表达式写作=F n ,若向心力表达式用2n F m r ω=,则中心天体质量M = ,若向心力表达式用22n F m r T π⎛⎫= ⎪⎝⎭,则中心天体质量M = ,若向心力表达式用2n v F m r=,则中心天体质量M = 。

若该天体的半径为R ,则以上3种表达式下中心天体的密度可分别写作 , ,。

(请区分环绕半径r 和星球半径R )练习题(多选为7、8、9)1、在力学理论建立的过程中有许多伟大的科学家做出了贡献,下列有关科学家和他们的贡献说法错误的是( )A .卡文迪许通过实验测出了引力常量GB .惯性定律是可以被实验直接验证的C .伽利略斜面实验合理外推解释了自由落体是匀变速运动D .开普勒发现了行星运动的规律2、宇宙飞船在宇宙深处飞行过程中,发现A 、B 两颗均匀球形天体,两天体各有一颗靠近其表面飞行的卫星,测得两颗卫星的周期相等,以下判断正确的是( )A.天体A 、B 的质量一定相等B.两颗卫星的线速度一定相等C.天体A 、B 表面的重力加速度一定相等D.天体A 、B 的密度一定相等3、已知引力常量为G,根据下列所给条件不能估算出地球质量的是()A.月球绕地球的运行周期T和月球中心到地球中心间距离RB.人造地球卫星在地面附近运行的速度v和运行周期TC.地球绕太阳运行的周期T和地球中心到太阳中心的距离RD.地球半径R和地球表面重力加速度g4、据报道,一颗来自太阳系外的彗星于2014年10月20日擦火星而过.如图所示,设火星绕太阳在圆轨道上运动,运动半径为r,周期为T.该彗星在穿过太阳系时由于受到太阳的引力,轨道发生弯曲,彗星与火星在圆轨道的A点“擦肩而过”.已知万有引力恒量G,则()A.可计算出彗星的质量B.可计算出彗星经过A点时受到的引力C.可计算出彗星经过A点的速度大小D.可确定彗星在A点的速度大于火星绕太阳的速度5、2008年9月25日21时10分,载着翟志刚、刘伯明、景海鹏三位宇航员的“神舟七号”飞船在中国酒泉卫星发射中心发射成功.如果“神舟七号”飞船在离地球表面h高处的轨道上做周期为T的匀速圆周运动,已知地球的半径为R,引力常量为G,在该轨道上,关于“神舟七号”飞船,下列说法中正确的是()A.运行的角速度为ω2RB.地球表面的重力加速度大小可表示为C.运行时的向心加速度大小为D.运行的线速度大小为6、绕地球做匀速圆周运动的两颗卫星a、b,已知a的轨道半径大于b的轨道半径,则对于两颗卫星下列说法正确的是()A.a周期大B.a角速度变大C.a速度大D.a向心加速度大7、已知引力常量是G,在下列各组物理数据中,能够估算月球质量的是()A.月球绕地球运行的周期及月、地中心距离B.绕月球表面运行的飞船的周期及月球的半径C.绕月球表面运行的飞船的周期及线速度D.月球表面的重力加速度8、宇航员在宇宙飞船中测出自己绕地球做圆周运动的周期为T,离地高度为H,地球半径为R,则根据T、H、R和引力常量G,能计算出的物理量是()A.地球的质量和飞船的质量B.地球的平均密度C.飞船线速度的大小D.飞船所需的向心力9、假如一颗做匀速圆周运动的人造地球卫星的轨道半径增加为原来的2倍,仍做匀速圆周运动,则()A.根据公式F=,可知地球提供的向心力将减小为原来的B.根据公式v=,可知卫星运动的线速度将减小为原来的C.根据公式a=rω2可知卫星的向心力加速度将减小为原来的D.根据公式F=m rω2,可知地球提供的向心力将增大为原来的2倍10、2003年10月15日,我国神舟五号载人飞船成功发射.标志着我国的航天事业发展到了一个很高的水平.飞船在绕地球飞行的第5圈进行变轨,由原来的椭圆轨道变为距地面高度为h的圆形轨道.已知地球半径为R,地面处的重力加速度为g,引力常量为G,求:⑴地球的质量;⑵飞船在上述圆形轨道上运行的周期T.11、对某行星的一颗卫星进行观测,已知运行的轨迹是半径为r的圆周,周期为T,已知万有引力常量G,求:(1)该行星的质量多少?(2)测得行星的半径为卫星轨道半径的,则此行星表面重力加速度为多大?12、物体在月球表面上的重力加速度等于地球表面上重力加速度的,将物体以10m/s的初速度竖直上抛,(g地取10m/s2)求:(1)物体上升的最大高度是多少?(2)物体落回地面的时间是多少?13、一艘宇宙飞船绕一个不知名的、半径为R的行星表面飞行,环绕一周飞行时间为T (万有引力常量为G),求:该行星的质量M和平均密度ρ14、宇航员站在星球表面上某高处,沿水平方向抛出一小球,经过时间t小球落回星球表面,测得抛出点和落地点之间的距离为L.若抛出时的速度增大为原来的2倍,则抛出点到落地点之间的距离为L.已知两落地点在同一水平面上,该星球半径为R,已知引力常量为G,求该星球的质量及其表面的重力加速度大小.15、2005年10月12日,我国继“神舟”五号载人宇宙飞船后又成功地发射了“神舟”六号载人宇宙飞船.飞船入轨运行若干圈后成功实施变轨进入圆轨道运行,经过了近5天的运行后,飞船的返回舱于10月17日凌晨顺利降落在预定地点,两名宇航员安全返回祖国的怀抱.设“神舟”六号载人飞船在圆轨道上绕地球运行n圈所用的时间为t,若地球表面的重力加速度为g,地球半径为R.求:(1)飞船的圆轨道离地面的高度;(2)飞船在圆轨道上运行的角速度.计算天体的质量和密度参考答案1、【答案】B2、【答案】D3、【答案】C4、【答案】D5、【答案】C6、【答案】A7、【答案】BC8、【答案】BC9、【答案】AB10、【答案】(1)2gRMG=(2)32()2R hTgRπ+=11、【答案】(1)该行星的质量是.(2)测得行星的半径为卫星轨道半径的,则此行星表面重力加速度为12、【答案】(1)物体上升的最大高度为30m;(2)物体落回地面的时间为12s13、【答案】该行星的质量M是,平均密度是14、【答案】该星球的质量为,其表面的重力加速度大小为.15、【答案】(1)飞船的圆轨道离地面的高度是﹣R;(2)飞船在圆轨道上运行的角速度是.答案第1页,总1页。

万有引力定律的应用

万有引力定律的应用

以跟赤道平面垂直,也可以跟赤道平面成任意角度.轨道平
面一定过地心,如下图.
2.人造卫星的线速度、角速度、周期、加速度与半径的 关系. v2 Mm 1 (1)由 G 2 =m 得 v= GM/r.即 v∝ ,说明卫星的运 r r r 动轨道半径越大,其运行线速度就越小. Mm 1 2 3 (2)由 G 2 =mrω 得 ω= GM/r ,即 ω∝ 3,说明卫星 r r 的运动轨道半径越大,角速度越小. Mm 4π2 r3 (3)由 G 2 =m 2 r 得 T=2π ,即 T ∝ r3 ,说 r T GM 明卫星运动的轨道半径越大,其运行周期越长. Mm GM 1 (4)由 G 2 =ma 得 a= 2 .即 a∝ 2,说明卫星运动的轨 r r r 道半径越大,其加速度越小.
例1.假设在半径为R的某天体上发射一颗该天体的卫 星,若它贴近该天体的表面做匀速圆周运动的周期为T1,已知 万有引力常量为G,则该天体的密度是多少?若这颗卫星距该 天体表面的高密度又是多少?
解析:设卫星的质量为 m,天体的质量为 M.卫星贴近天 Mm 4π2 4π2R3 体表面运行时有 G 2 =m 2 R,得 M= R T1 GT12 4 3 根据数学知识可知天体的体积 V= πR 3 M 故该天体密度 ρ= = V 4π2R3 3π = 2 4 GT 1 GT12·πR3 3
3.人造卫星环绕地球运转的速率v=
2 gR,其中 g为地面处的重 r
力加速度,R为地球半径,r为卫星离地球中心的距离.下列说法正确的
是( A )
A.从公式可见,环绕速度与轨道半径的平方根成反比 B.从公式可见,把人造卫星发射到越远的地方越容易 C.上面环绕速度的表达式是错误的 D.以上说法都错误
4.(双选)已知地球的质量为M,月球的质量为m,月球绕地球运行 的轨道半径为r,周期为T,万有引力常量为G,则月球绕地球运转轨道

[高一理化生]万有引力求天体的质量

[高一理化生]万有引力求天体的质量
若已知卫星的轨道半径r和卫星的运行周期T、角速度 或线速度v,可求得中心天体的质量为
1.下列几组数据中能算出地球质量的是(万有引力常量G是已知的)( )
A.地球绕太阳运行的周期T和地球中心离太阳中心的距离r
B.月球绕地球运行的周期T和地球的半径r
C.月球绕地球运动的角速度和月球中心离地球中心的距离r
A.运行的线速度大小为
B.运行的线速度小于第一宇宙速度
C.运行时的向心加速度大小
D.地球表面的重力加速度大小为
4.(05天津理综21)土星周围有美丽壮观的“光环”,组成环的颗粒是大小不等、线度从1μm到10m的岩石、尘埃,类似于卫星,它们与土星中心的距离从7.3×104km延伸到1.4×105km.已知环的外缘颗粒绕土星做圆周运动的周期约为14 h,引力常量为6.67×10-11N·m2/kg2,则土星的质量约为(估算时不考虑环中颗粒间的相互作用)( )
A.400gB. gC.20gD. g
答案 B
解析 质量分布均匀的球体的密度ρ=3M/4πR3
地球表面的重力加速度:g=GM/R2=
吴健雄星表面的重力加速度:g′=GM/r2=
g/g′=R/r=400,故选项B正确.
10.湖南省长沙市一中2010届高三第五次月考随着太空技术的飞速发展,地球上的人们登陆其它星球成为可能。假设未来的某一天,宇航员登上某一星球后,测得该星球表面的重力加速度是地球表面重力加速度的2倍,而该星球的平均密度与地球的差不多,则该星球质量大约是地球质量的( D )
A.地球的平均密度与月球的平均密度之比约为9∶8
B.地球表面重力加速度与月球表面重力加速度之比约为9∶4
C.靠近地球表面沿圆轨道运行的航天器的周期与靠近月球表面沿圆轨道运行的航天器的周期之比约为8∶9

2022-2023年高考物理一轮复习 万有引力与航天课件(重点难点易错点核心热点经典考点)

2022-2023年高考物理一轮复习 万有引力与航天课件(重点难点易错点核心热点经典考点)

1.不考虑自转问题时,有G
Mm R2
=mg,其中g为星球表面
的重力加速度,若考虑自转问题,如诊断卷第2题,则在两极
才有:GMRm2 =mg,而赤道上则有:GMRm2 -mg=m4Tπ22R。
2.根据自由落体、竖直上抛、平抛运动等知识计算出
星球表面的重力加速度g,再由mg=G
Mm R2
=m
v2 R
,去估算星
地球的质量)
()
A.M1=12M C.M1=14M
B.M1=2M D.M1=4M
解析:根据平抛运动规律:竖直方向h=12gt2,水平方向x
=vt,可计算星球表面重力加速度g=
2hv2 x2
,可得g1=
1 16
g,再由星球表面万有引力公式G
Mm R2
=mg,R1=2R,可
得M1=M4 ,C正确。
答案:C
Mm r2
=mrω2可
知,天宫二号的角速度大,所以“天链二号01星”不能一直
位于“天宫二号”的正上方,且会出现地球位于两卫星连线
中间的时刻,此时无法直接通信,B、C错误;同步轨道上
的“天链二号01星”相对地面静止,与赤道上物体具有相同
的角速度,根据a=rω2,“天链二号01星”的轨道半径大,
所以向心加速度大,D正确。 答案:AD
GMRm2 = mg 求出M,进而求得ρ=MV =43πMR3=4π3GgR。
2.利用环绕天体的轨道半径r、周期T:由G
Mm r2
4π2 =m__T__2_r
可得出M=
4π2r3 GT2
,若环绕天体绕中心天体
表面
做匀速圆周运
动时,轨道半径r=R,则ρ=43πMR3=G3Tπ2。

万有引力与航天 -典型例题(修改稿子)

万有引力与航天 -典型例题(修改稿子)

万有引力与航天--例题考点一 天体质量和密度的计算1.解决天体(卫星)运动问题的基本思路(1)天体运动的向心力来源于天体之间的万有引力,即G Mm r 2=ma n =m v 2r =m ω2r =m 4π2r T 2 (2)在中心天体表面或附近运动时,万有引力近似等于重力,即G Mm R 2=mg (g 表示天体表面的重力加速度).2.天体质量和密度的计算(1)利用天体表面的重力加速度g 和天体半径R .由于G Mm R 2=mg ,故天体质量M =gR 2G, 天体密度ρ=M V =M 43πR 3=3g 4πGR . (2)通过观察卫星绕天体做匀速圆周运动的周期T 和轨道半径r .①由万有引力等于向心力,即G Mm r 2=m 4π2T 2r ,得出中心天体质量M =4π2r 3GT 2; ②若已知天体半径R ,则天体的平均密度ρ=M V =M 43πR 3=3πr 3GT 2R 3; ③若天体的卫星在天体表面附近环绕天体运动,可认为其轨道半径r 等于天体半径R ,则天体密度ρ=3πGT 2.可见,只要测出卫星环绕天体表面运动的周期T ,就可估算出中心天体的密度. 例1 1798年,英国物理学家卡文迪许测出万有引力常量G ,因此卡文迪许被人们称为能称出地球质量的人.若已知万有引力常量G ,地球表面处的重力加速度g ,地球半径R ,地球上一个昼夜的时间T 1(地球自转周期),一年的时间T 2(地球公转周期),地球中心到月球中心的距离L 1,地球中心到太阳中心的距离L 2.你能计算出( )A .地球的质量m 地=gR 2GB .太阳的质量m 太=4π2L 32GT 22C .月球的质量m 月=4π2L 31GT 21D .可求月球、地球及太阳的密度1.[天体质量的估算]“嫦娥一号”是我国首次发射的探月卫星,它在距月球表面高度为200 km的圆形轨道上运行,运行周期为127分钟.已知引力常量G =6.67×10-11 N·m 2/kg 2,月球的半径为1.74×103 km.利用以上数据估算月球的质量约为( )A .8.1×1010 kgB .7.4×1013 kgC .5.4×1019 kgD .7.4×1022 kg 2.[天体密度的计算]“嫦娥三号”探测器已于2013年12月2日1时30分,在西昌卫星发射中心成功发射.“嫦娥三号”携带“玉免号”月球车首次实现月球软着陆和月面巡视勘察,并开展月表形貌与地质构造调查等科学探测.已知月球半径为R 0,月球表面处重力加速度为g 0,地球和月球的半径之比为R R 0=4,表面重力加速度之比为g g 0=6,则地球和月球的密度之比ρρ0为( ) A.23 B.32C .4D .6估算天体质量和密度时应注意的问题(1)利用万有引力提供天体做圆周运动的向心力估算天体质量时,估算的只是中心天体的质量,并非环绕天体的质量.(2)区别天体半径R 和卫星轨道半径r ,只有在天体表面附近的卫星才有r ≈R ;计算天体密度时,V =43πR 3中的R 只能是中心天体的半径. 考点二 卫星运行参量的比较与计算1.卫星的各物理量随轨道半径变化的规律2.极地卫星和近地卫星(1)极地卫星运行时每圈都经过南北两极,由于地球自转,极地卫星可以实现全球覆盖.(2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于地球的半径,其运行线速度约为7.9 km/s.(3)两种卫星的轨道平面一定通过地球的球心.例2 (2013·广东·14)如图1,甲、乙两颗卫星以相同的轨道半径分别绕质量为M 和2M 的行星做匀速圆周运动,下列说法正确的是( )图1A .甲的向心加速度比乙的小B .甲的运行周期比乙的小C .甲的角速度比乙的大D .甲的线速度比乙的大3.[卫星运行参量的比较](2013·海南·5)“北斗”卫星导航定位系统由地球静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成.地球静止轨道卫星和中轨道卫星都在圆轨道上运行,它们距地面的高度分别约为地球半径的6倍和3.4倍.下列说法正确的是( )A .静止轨道卫星的周期约为中轨道卫星的2倍B .静止轨道卫星的线速度大小约为中轨道卫星的2倍C .静止轨道卫星的角速度大小约为中轨道卫星的17D .静止轨道卫星的向心加速度大小约为中轨道卫星的174.[同步卫星问题的有关分析]已知地球质量为M ,半径为R ,自转周期为T ,地球同步卫星质量为m ,引力常量为G .有关同步卫星,下列表述正确的是( )A .卫星距地面的高度为 3GMT 24π2B .卫星的运行速度小于第一宇宙速度C .卫星运行时受到的向心力大小为G Mm R2 D .卫星运行的向心加速度小于地球表面的重力加速度同步卫星的六个“一定”考点三 卫星变轨问题分析 1.当卫星的速度突然增大时,G Mm r 2<m v 2r,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的圆轨道,轨道半径变大,当卫星进入新的轨道稳定运行时由v = GM r可知其运行速度比原轨道时减小. 2.当卫星的速度突然减小时,G Mm r 2>m v 2r,即万有引力大于所需要的向心力,卫星将做近心运动,脱离原来的圆轨道,轨道半径变小,当卫星进入新的轨道稳定运行时由v = GM r可知其运行速度比原轨道时增大.卫星的发射和回收就是利用这一原理.例3 在完成各项任务后,“神舟十号”飞船于2013年6月26日回归地球.如图2所示,飞船在返回地面时,要在P 点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,Q 为轨道Ⅱ上的一点,M 为轨道Ⅰ上的另一点,关于“神舟十号”的运动,下列说法中正确的有( )图2A .飞船在轨道Ⅱ上经过P 的速度小于经过Q 的速度B .飞船在轨道Ⅱ上经过P 的速度小于在轨道Ⅰ上经过M 的速度C .飞船在轨道Ⅱ上运动的周期大于在轨道Ⅰ上运动的周期D .飞船在轨道Ⅱ上经过P 的加速度小于在轨道Ⅰ上经过M 的加速度5.[变轨中运行参量的比较]2013年12月2日,我国探月探测器“嫦娥三号”在西昌卫星发射中心成功发射升空,此飞行轨道示意图如图3所示,地面发射后奔向月球,在P 点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,Q 为轨道Ⅱ上的近月点.下列关于“嫦娥三号”的运动,正确的说法是( )图3A .发射速度一定大于7.9 km/sB .在轨道Ⅱ上从P 到Q 的过程中速率不断增大C .在轨道Ⅱ上经过P 的速度小于在轨道Ⅰ上经过P 的速度D .在轨道Ⅱ上经过P 的加速度小于在轨道Ⅰ上经过P 的加速度6.[变轨中运行参量的比较]如图4所示,搭载着“嫦娥二号”卫星的长征三号丙运载火箭在西昌卫星发射中心点火发射,卫星由地面发射后,进入地月转移轨道,经多次变轨最终进入距离月球表面100 km 、周期为118 min 的工作轨道,开始对月球进行探测,则( )图4A .卫星在轨道Ⅲ上的运动速度比月球的第一宇宙速度小B .卫星在轨道Ⅲ上经过P 点的速度比在轨道Ⅰ上经过P 点时的大C .卫星在轨道Ⅲ上运行周期比在轨道Ⅰ上短D .卫星在轨道Ⅲ上的运行周期比在轨道Ⅰ上长考点四 宇宙速度的理解与计算1.第一宇宙速度又叫环绕速度.推导过程为:由mg =m v 21R =GMm R 2得: v 1= GM R =gR =7.9 km/s. 2.第一宇宙速度是人造地球卫星在地面附近环绕地球做匀速圆周运动时具有的速度.3.第一宇宙速度是人造卫星的最大环绕速度,也是人造地球卫星的最小发射速度. 注意 (1)两种周期——自转周期和公转周期的不同.(2)两种速度——环绕速度与发射速度的不同,最大环绕速度等于最小发射速度.(3)两个半径——天体半径R 和卫星轨道半径r 的不同.(4)第二宇宙速度(脱离速度):v 2=11.2 km/s ,使物体挣脱地球引力束缚的最小发射速度.(5)第三宇宙速度(逃逸速度):v 3=16.7 km/s ,使物体挣脱太阳引力束缚的最小发射速度. 例4 “伽利略”木星探测器,从1989年10月进入太空起,历经6年,行程37亿千米,终于到达木星周围.此后在t 秒内绕木星运行N 圈后,对木星及其卫星进行考察,最后坠入木星大气层烧毁.设这N 圈都是绕木星在同一个圆周上运行,其运行速率为v ,探测器上的照相机正对木星拍摄整个木星时的视角为θ(如图5所示),设木星为一球体.求:图5(1)木星探测器在上述圆形轨道上运行时的轨道半径;(2)木星的第一宇宙速度.7.[第一宇宙速度的理解与计算]某人在一星球表面上以速度v 0竖直上抛一物体,经过时间t 后物体落回手中.已知星球半径为R ,那么沿星球表面将物体抛出,要使物体不再落回星球表面,抛射速度至少为( )A.v 0t RB. 2v 0R tC. v 0R tD.v 0Rt8.[宇宙速度的理解与计算]2011年中俄联合实施探测火星计划,由中国负责研制的“萤火一号”火星探测器与俄罗斯研制的“福布斯—土壤”火星探测器一起由俄罗斯“天顶”运载火箭发射前往火星.已知火星的质量约为地球质量的19,火星的半径约为地球半径的12.下列关于火星探测器的说法中正确的是( )A .发射速度只要大于第一宇宙速度即可B .发射速度只有达到第三宇宙速度才可以C .发射速度应大于第二宇宙速度而小于第三宇宙速度D .火星探测器环绕火星运行的最大速度为地球第一宇宙速度的23 考点五 双星或多星模型绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图6所示,双星系统模型有以下特点:图6(1)各自所需的向心力由彼此间的万有引力相互提供,即Gm 1m 2L 2=m 1ω21r 1,Gm 1m 2L 2=m 2ω22r 2 (2)两颗星的周期及角速度都相同,即T 1=T 2,ω1=ω2(3)两颗星的半径与它们之间的距离关系为:r 1+r 2=L(4)两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1(5)双星的运动周期T =2π L 3G (m 1+m 2)(6)双星的总质量公式m 1+m 2=4π2L 3T 2G例5 宇宙中,两颗靠得比较近的恒星,只受到彼此之间的万有引力作用相互绕转,称之为双星系统.在浩瀚的银河系中,多数恒星都是双星系统.设某双星系统A 、B 绕其连线上的O 点做匀速圆周运动,如图7所示.若AO >OB ,则( )图7A .星球A 的质量一定大于星球B 的质量B .星球A 的线速度一定大于星球B 的线速度C .双星间距离一定,双星的质量越大,其转动周期越大D .双星的质量一定,双星之间的距离越大,其转动周期越大(选做)9.[双星模型](2013·山东·20)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为( )A.n 3k 2TB.n 3kTC.n 2k T D.n kT (选做)10.[多星模型]宇宙中存在一些质量相等且离其他恒星较远的四颗星组成的四星系统,通常可忽略其他星体对它们的引力作用.设四星系统中每个星体的质量均为m ,半径均为R ,四颗星稳定分布在边长为a 的正方形的四个顶点上.已知引力常量为G .关于四星系统,下列说法正确的是( )A .四颗星围绕正方形对角线的交点做匀速圆周运动B .四颗星的轨道半径均为a 2C .四颗星表面的重力加速度均为Gm R2 D .四颗星的周期均为2πa 2a (4+2)Gm万有引力与航天--例题-答案例1解析 对地球表面的一个物体m 0来说,应有m 0g =Gm 地m 0R 2,所以地球质量m 地=gR 2G,选项A 正确.对地球绕太阳运动来说,有Gm 太m 地L 22=m 地4π2T 22L 2,则m 太=4π2L 32GT 22,B 项正确.对月球绕地球运动来说,能求地球的质量,不知道月球的相关参量及月球的卫星的运动参量,无法求出它的质量和密度,C 、D 项错误.答案 AB变式题组1答案 D解析 由G Mm (R +h )2=m (R +h )(2πT )2,解得月球的质量M =4π2(R +h )3/GT 2,代入数据得:M =7.4×1022 kg ,选项D 正确.2答案 B解析 设星球的密度为ρ,由G Mm ′R 2=m ′g 得GM =gR 2,ρ=M V =M 43πR 3,联立解得:ρ=3g 4G πR ,则:ρρ0=g ·R 0g 0·R ,将R R 0=4,g g 0=6代入上式,解得:ρρ0=32,选项B 正确. 例2答案 A解析 由万有引力提供向心力得G Mm r 2=m v 2r =mω2r =ma =m 4π2T 2r ,变形得:a =GM r2,v = GM r ,ω= GM r 3,T =2π r 3GM,只有周期T 和M 成减函数关系,而a 、v 、ω和M 成增函数关系,故选A.变式题组3答案 A4答案 BD解析 天体运动的基本原理为万有引力提供向心力,地球的引力使卫星绕地球做匀速圆周运动,即F 万=F 向=m v 2r =4π2mr T 2.当卫星在地表运行时,F 万=GMm R2=mg (R 为地球半径),设同步卫星离地面高度为h ,则F 万=GMm (R +h )2=F 向=ma 向<mg ,所以C 错误,D 正确.由GMm (R +h )2=m v 2R +h得,v = GM R +h < GM R ,B 正确.由GMm (R +h )2=4π2m (R +h )T 2,得R +h = 3GMT 24π2,即h = 3GMT 24π2-R ,A 错误.例3解析 由开普勒行星运动定律可知选项A 正确;飞船在轨道Ⅰ上做匀速圆周运动,故飞船经过P 、M 两点时的速率相等,由于飞船在P 点进入轨道Ⅱ时相对于轨道Ⅰ做向心运动,可知飞船在轨道Ⅱ上P 点速度小于轨道Ⅰ上P 点速度,故选项B 正确;根据开普勒第三定律可知,飞船在轨道Ⅱ上运动的周期小于在轨道Ⅰ上运动的周期,选项C 错误;根据牛顿第二定律可知,飞船在轨道Ⅱ上经过P 的加速度与在轨道Ⅰ上经过M 的加速度大小相等,选项D 错误.答案 AB递进题组5答案 ABC解析 “嫦娥三号”探测器的发射速度一定大于7.9 km/s ,A 正确.在轨道Ⅱ上从P 到Q 的过程中速率不断增大,选项B 正确.“嫦娥三号”从轨道Ⅰ上运动到轨道Ⅱ上要减速,故在轨道Ⅱ上经过P 的速度小于在轨道Ⅰ上经过P 的速度,选项C 正确.在轨道Ⅱ上经过P 的加速度等于在轨道Ⅰ上经过P 的加速度,D 错.6答案 AC[例4】答案 (1)v t 2πN (2)v sin θ2解析 (1)设木星探测器在题述圆形轨道运行时,轨道半径为r ,由v =2πr T可得:r =v T 2π由题意可知,T =t N 联立解得r =v t 2πN (2)探测器在圆形轨道上运行时,万有引力提供向心力,G mM r 2=m v 2r. 设木星的第一宇宙速度为v 0,有,G m ′M R 2=m ′v 20R联立解得:v 0= r Rv 由题意可知R =r sin θ2,解得:v 0=v sin θ2. 变式题组7答案 B解析 要使物体不再落回星球表面,抛射速度必须达到星球的第一宇宙速度,满足v =GM R =gR ,而由竖直上抛规律知v 0=12gt ,所以v = 2v 0R t ,B 对.8答案 CD解析 根据三个宇宙速度的意义,可知选项A 、B 错误,选项C 正确;已知M 火=M 地9,R 火=R 地2,则v m v 1=GM 火R 火∶GM 地R 地=23. 【例5】解析 设双星质量分别为m A 、m B ,轨道半径分别为R A 、R B ,两者间距为L ,周期为T ,角速度为ω,由万有引力定律可知: Gm A m BL 2=m A ω2R A ① Gm A m BL 2=m B ω2R B ② R A +R B =L ③由①②式可得m A m B =R BR A ,而AO >OB ,故A 错误. v A =ωR A ,v B =ωR B ,B 正确.联立①②③得G (m A +m B )=ω2L 3,又因为T =2πω,故T =2π L 3G (m A +m B ),可知C 错误,D 正确.答案 BD 变式题组 9答案 B解析 双星靠彼此的引力提供向心力,则有 G m 1m 2L 2=m 1r 14π2T 2 G m 1m 2L 2=m 2r 24π2T 2 并且r 1+r 2=L 解得T =2πL 3G (m 1+m 2)当两星总质量变为原来的k 倍,两星之间距离变为原来的n 倍时T ′=2πn 3L 3Gk (m 1+m 2)=n 3k ·T故选项B 正确. 10 ACD解析 其中一颗星体在其他三颗星体的万有引力作用下,合力方向指向对角线的交点,围绕正方形对角线的交点做匀速圆周运动,由几何知识可得轨道半径均为22a ,故A 正确,B 错误;在星体表面,根据万有引力等于重力,可得G mm ′R 2=m ′g ,解得g =GmR2,故C 正确;由万有引力定律和向心力公式得Gm 2(2a )2+2Gm 2a 2=m 4π2T 2·2a 2,T =2πa 2a(4+2)Gm ,故D 正确.高考模拟 明确考向1.(2014·新课标Ⅱ·18)假设地球可视为质量均匀分布的球体.已知地球表面重力加速度在两极的大小为g 0,在赤道的大小为g ,地球自转的周期为T ,引力常量为G .地球的密度为( )A.3π(g 0-g )GT 2g 0 B.3πg 0GT 2(g 0-g ) C.3πGT 2 D.3πg 0GT 2g 2.(2014·福建·14)若有一颗“宜居”行星,其质量为地球的p 倍,半径为地球的q 倍,则该行星卫星的环绕速度是地球卫星环绕速度的( )A.pq 倍B.qp倍C.p q倍 D.pq 3倍3.(2014·天津·3)研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时.假设这种趋势会持续下去,地球的其他条件都不变,未来人类发射的地球同步卫星与现在的相比( )A .距地面的高度变大B .向心加速度变大C .线速度变大D .角速度变大4.冥王星与其附近的另一星体卡戎可视为双星系统,质量比约为7∶1,同时绕它们连线上某点O 做匀速圆周运动.由此可知,冥王星绕O 点运动的( )A .轨道半径约为卡戎的17B .角速度大小约为卡戎的17C .线速度大小约为卡戎的7倍D .向心力大小约为卡戎的7倍练出高分一、单项选择题1.(2013·江苏单科·1)火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知( )A .太阳位于木星运行轨道的中心B .火星和木星绕太阳运行速度的大小始终相等C .火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D .相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积2.2013年6月13日,神舟十号与天宫一号成功实现自动交会对接.假设神舟十号与天宫一号都在各自的轨道做匀速圆周运动.已知引力常量为G ,下列说法正确的是( ) A .由神舟十号运行的周期和轨道半径可以求出地球的质量 B .由神舟十号运行的周期可以求出它离地面的高度C .若神舟十号的轨道半径比天宫一号大,则神舟十号的周期比天宫一号小D .漂浮在天宫一号内的宇航员处于平衡状态(删)3.一人造地球卫星绕地球做匀速圆周运动,假如该卫星变轨后仍做匀速圆周运动,动能减小为原来的14,不考虑卫星质量的变化,则变轨前、后卫星的( )A .向心加速度大小之比为4∶1B .角速度大小之比为2∶1C .周期之比为1∶8D .轨道半径之比为1∶24.随着我国登月计划的实施,我国宇航员登上月球已不是梦想.假如我国宇航员登上月球并在月球表面附近以初速度v 0竖直向上抛出一个小球,经时间t 后小球回到出发点.已知月球的半径为R ,引力常量为G ,则下列说法正确的是( )A .月球表面的重力加速度为v 0tB .月球的质量为2v 0R2GtC .宇航员在月球表面获得v 0Rt的速度就可能离开月球表面围绕月球做圆周运动 D .宇航员在月球表面附近绕月球做匀速圆周运动的绕行周期为 Rtv 05.小型登月器连接在航天站上,一起绕月球做圆周运动,其轨道半径为月球半径的3倍.某时刻,航天站使登月器减速分离,登月器沿如图1所示的椭圆轨道登月,在月球表面逗留一段时间完成科考工作后,经快速启动仍沿原椭圆轨道返回.当第一次回到分离点时恰与航天站对接.登月器快速启动时间可以忽略不计,整个过程中航天站保持原轨道绕月运行.已知月球表面的重力加速度为g 0,月球半径为R ,不考虑月球自转的影响,则登月器可以在月球上停留的最短时间约为( )图1A .4.7πRg 0 B .3.6πR g 0 C .1.7πRg 0D .1.4πR g 06.2012年,天文学家首次在太阳系外找到一个和地球尺寸大体相同的系外行星P ,这个行星围绕某恒星Q 做匀速圆周运动.测得P 的公转周期为T ,公转轨道半径为r .已知引力常量为G ,则( )A .恒星Q 的质量约为4π2r 3GT 2B .行星P 的质量约为4π2r 3GT2C .以7.9 km/s 的速度从地球发射的探测器可以到达该行星表面D .以11.2 km/s 的速度从地球发射的探测器可以到达该行星表面7.2012年7月,一个国际研究小组借助于智利的甚大望远镜,观测到了一组双星系统,它们绕两者连线上的某点O 做匀速圆周运动,如图2所示.此双星系统中体积较小成员能“吸食”另一颗体积较大星体表面物质,达到质量转移的目的.假设在演变的过程中两者球心之间的距离保持不变,则在最初演变的过程中( )图2A .它们做圆周运动的万有引力保持不变B .它们做圆周运动的角速度不断变大C .体积较大星体圆周运动轨迹半径变大,线速度也变大D .体积较大星体圆周运动轨迹半径变大,线速度变小 二、多项选择题8.为了对火星及其周围的空间环境进行探测,我国发射了一颗火星探测器.假设探测器在离火星表面高度分别为h 1和h 2的圆轨道上运动时,周期分别为T 1和T 2.火星可视为质量分布均匀的球体,且忽略火星的自转影响,万有引力常量为G .仅利用以上数据,可以计算出( ) A .火星的质量 B .探测器的质量 C .火星对探测器的引力 D .火星表面的重力加速度9.一行星绕恒星做匀速圆周运动.由天文观测可得,其运行周期为T ,速度为v ,引力常量为G ,则( ) A .恒星的质量为v 3T2πGB .行星的质量为4π2v 3GT 2C .行星运动的轨道半径为v T2πD .行星运动的加速度为2πvT.10.我国于2013年6月11日17时38分发射“神舟十号”载人飞船,并与“天宫一号”目标飞行器对接.如图3所示,开始对接前,“天宫一号”在高轨道,“神舟十号”飞船在低轨道,各自绕地球做匀速圆周运动,距离地面的高度分别为h 1和h 2(设地球半径为R ),“天宫一号”的运行周期约为90分钟.则以下说法正确的是( )图3A .“天宫一号”跟“神舟十号”的线速度大小之比为h 2h 1B .“天宫一号”跟“神舟十号”的向心加速度大小之比为(R +h 2)2(R +h 1)2C .“天宫一号”的角速度比地球同步卫星的角速度大D .“天宫一号”的线速度大于7.9 km/s 三、非选择题11.(2014·北京·23)万有引力定律揭示了天体运动规律与地上物体运动规律具有内在的一致性. (1)用弹簧秤称量一个相对于地球静止的小物体的重量,随称量位置的变化可能会有不同的结果.已知地球质量为M ,自转周期为T ,万有引力常量为G .将地球视为半径为R 、质量均匀分布的球体,不考虑空气的影响.设在地球北极地面称量时,弹簧秤的读数是F 0.a .若在北极上空高出地面h 处称量,弹簧秤读数为F 1,求比值F 1F 0的表达式,并就h =1.0%R的情形算出具体数值(计算结果保留两位有效数字);b .若在赤道地面称量,弹簧秤读数为F 2,求比值F 2F 0的表达式.(2)设想地球绕太阳公转的圆周轨道半径为r 、太阳的半径为R S 和地球的半径R 三者均减小为现在的1.0%,而太阳和地球的密度均匀且不变.仅考虑太阳和地球之间的相互作用,以现实地球的1年为标准,计算“设想地球”的一年将变为多长?高考模拟 明确考向1答案 B解析 物体在地球的两极时,mg 0=G Mm R 2,物体在赤道上时,mg +m (2πT )2R =G Mm R 2,又M =43πR 3ρ,联立以上三式解得地球的密度ρ=3πg 0GT 2(g 0-g ).故选项B 正确,选项A 、C 、D 错误.2答案 C解析 卫星绕行星做匀速圆周运动的向心力由行星对卫星的万有引力提供.设地球质量为M ,半径为R ,根据GMm R 2=m v 2R 得地球卫星的环绕速度为v = GMR ,同理该“宜居”行星卫星的环绕速度v ′= GpM qR ,故v ′为地球卫星环绕速度的pq 倍.选项C 正确.3答案 A解析 地球的自转周期变大,则地球同步卫星的公转周期变大.由GMm (R +h )2=m 4π2T 2(R +h ),得h= 3GMT 24π2-R ,T 变大,h 变大,A 正确.由GMm r 2=ma ,得a =GMr2,r 增大,a 减小,B 错误.由GMm r 2=m v 2r ,得v = GM r ,r 增大,v 减小,C 错误.由ω=2πT 可知,角速度减小,D 错误.4答案 A解析 本题是双星问题,设冥王星的质量、轨道半径、线速度分别为m 1、r 1、v 1,卡戎的质量、轨道半径、线速度分别为m 2、r 2、v 2,由双星问题的规律可得,两星间的万有引力分别给两星提供做圆周运动的向心力,且两星的角速度相等,故B 、D 均错;由G m 1m 2L2=m 1ω2r 1=m 2ω2r 2(L为两星间的距离),因此r 1r 2=m 2m 1=17,v 1v 2=ωr 1ωr 2=m 2m 1=17,故A 对,C 错.练出高分1答案 C解析 火星和木星在各自的椭圆轨道上绕太阳运动,速度的大小不可能始终相等,因此B 错;太阳在这些椭圆的一个焦点上,因此A 错; 在相同时间内,火星与太阳连线在相同时间内扫过的面积相等,木星与太阳连线在相同时间内扫过的面积相等,但这两个面积不相等,因此D 错.本题答案为C. 2答案 A解析 神舟十号和天宫一号都绕地球做匀速圆周运动,万有引力提供向心力,则有GMm(R +h )2=m (R +h )4π2T2,得T =4π2(R +h )3GM,已知周期和轨道半径,又知道引力常量G ,可以求出地球质量M ,A 对.只知道周期而不知道地球质量和轨道半径无法求出高度,B 错.由T =4π2(R +h )3GM 可知轨道半径越大,则周期越大,若神舟十号的轨道半径比天宫一号大,则神舟十号的周期比天宫一号大,C 错.漂浮在天宫一号内的宇航员和天宫一号一起做匀速圆周运动,不是处于平衡状态,D 错. 3答案 C解析 根据E k =12m v 2得v =2E k m ,所以卫星变轨前、后的速度之比为v 1v 2=21.根据G Mmr 2=m v 2r,得卫星变轨前、后的轨道半径之比为r 1r 2=v 22v 21=14,选项D 错误;根据G Mmr 2=ma ,得卫星变轨前、后的向心加速度大小之比为a 1a 2=r 22r 21=161,选项A 错误;根据G Mmr2=mω2r ,得卫星变轨前、后的角速度大小之比为ω1ω2= r 32r 31=81,选项B 错误;根据T =2πω,得卫星变轨前、后的周期之比为T 1T 2=ω2ω1=18,选项C 正确.4答案 B解析 根据竖直上抛运动规律可得t =2v 0g ,g =2v 0t ,A 项错误;由GMm R 2=mg =m v 2R =m (2πT)2R可得:M =2v 0R 2Gt ,v = 2v 0R t ,T =2π Rt2v 0,故B 项正确,C 、D 项错误.5答案 A解析 由题可知,月球半径为R ,则航天站的轨道半径为3R ,设航天站转一周的时间为T ,则有GM 月m (3R )2=m 4π2T 2(3R ),对月球表面的物体有m 0g 0=GM 月·m 0R 2,联立两式得T =63πR g 0.登月器的登月轨道是椭圆,从与航天站分离到第一次回到分离点所用时间为沿椭圆运行一周的时间T ′和在月球停留时间t 之和,若恰好与航天站运行一周所用时间相同时t 最小,则有:t min。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.天文学家根据观察研究得出:银河系中心可能存在一个大“黑洞”,距“黑洞”6×109km的星球以 2.0×106 m/s速度绕它旋转.已知万有引力常量G=6.67 ×10-11N·m2/kg2,求该“黑洞”的质量.
2.太空中有一颗绕恒星做匀速圆周运动的行星,此行星上一昼夜的时间是6h,在行星的赤道处用弹 簧测力计测量物体的重力的读数比在两极时测量的读数小10%.已知引力常量G=6.7×10-11N· m2/kg2, 求此行星的平均密度.
特别提醒
要注意R、r的区分.R指中心天体的半径,r指行星或卫星的轨道半径.若绕近地轨道运行,则有R=r.
M= 根据数学知识星球的体积V=πR3. 所以天体的密度ρ===. 若卫星距天体表面高为h处运行,则有 G=m(R+h)
4π2R3 2 4 GT0· πR3 3 M V 4π2R3 2 GT0 3π GT2 0 4 3 4π2 T2 Mm R+h2
Mm 4 3 由mg G 2 和M R , R 3 3g 得 . 4 GR
巩固练习1:宇航员在某星球表面,将一小球从离地面为h高处以初速度v0水平抛出,测出小球落地点 与抛出点间的水平位移为s,若该星球的半径为R,万有引力恒量为G,求该星球的质量多大?
巩固练习2:地球绕太阳公转的轨道半径为1.49 ×1011m,公转的周期是3.16×107s,太阳的质量是多 少?
引力,得
mg=G , .
解得地球质量为M地=
由以上论述可知,在万有引力定律这一章中,求天体质量的方法主要有两种:一种方法是根 据天体表面的重力加速度来求天体质量,即g=G ,则M= ,另一种方法是根据天体的 圆周运动,即根据天体做匀速圆周运动的向心力由万有引力提供,列出方程: G =m r=m =mω 2r来求得质量M= = =
解析:设在赤道和两极处重力的读数分别为F1和F2,在赤道上,物体受万有引力和拉力F1作用绕行星 做圆周运动,由牛顿第二定律得G-F1=mR
在两极上,物体平衡,有G=F2 又F2-F1=10%F2得M=
Mm R2 4π2 T2 Mm R2 40π2R3 GT2
G
=m月
.
解得地球的质量为M地=rv2/G.
(3)若已知月球运行的线速度v和运行周期T,由于地球对月球的引力等于月球做匀速圆周运 动的向心力,根据牛顿第二定律,得 G =m月·v· G =m月.
以上两式消去r,解得
M地=v3T/(2πG).
(4)若已知地球的半径R和地球表面的重力加速度g,根据物体的重力近似等于地球对物体的
解析: 利用公式M= ,计算出天体质量,再利用ρ = 计算天体的密度.
其中r为天体运动的轨道半径,R为中心天体的半径, 只有贴近中心天体表面运行时才有r=R.设卫星的质量为m, 天体的质量为M,卫星在天体表面运行时,G 得M = 根据数学知识星球的体积V=4/3 πR3. 所以天体的密度ρ =M/V = =m R,
若卫星距天体表面高为h处运行,则有
本课小结
动力学分析
计算方法
典型例题
下节课 再见
一、计算天体的质量 1.地球质量的计算 利用地球表面的物体,若不考虑地球自转,质量为m的物体的重力等于地球对物体的万有引
2 gR GMm 力,即mg= ,由于g、R已经测出,因此可计算出地球的质量. 2 ,则M= G R
同理地球表面的重力加速度g地=
因g海≈g地,所以G =G
M海=16M地=9.6×1025 kg.
例题2 在某行星上宇航员用弹簧秤测质量为m的物体的重力为F,乘宇宙飞船在靠 近该行星的空间飞行,测得其环绕周期为T,根据这些数据求该星球的质量.
解题思路:在行星表面的物体的重力等于行星对它的万有引力, 在行星附近飞行的飞船,由万有引力提供其做圆周运动的向心力.
解析: 设行星的质量为M,半径为R,表面的重力加速度为g,由万有引力定律得 F=mg= ①
飞船沿星球表面做匀速圆周运动,由牛顿第二定律得 =m R ②
联立以上两式得
例题3 假设在半径为R的某天体上发射了一颗该天体的卫星,若它贴近该天体的表 面做匀速圆周运动的周期为T0.已知万有引力常量为G,则该天体的平均密度是多少? 若这颗卫星距该天体表面的高度为h,测得在该处做圆周运动的周期为T,则该天体 的密度又是多少?
物理专题
万有引力计算ቤተ መጻሕፍቲ ባይዱ体质量和密度
一、天体质量计算的几种方法 万有引力定律从动力学角度解决了天体运动问题.天体运动遵循与地面上物体相同的动 力学规律.行星(或卫星)的运动可视为匀速圆周运动,由恒星对其行星(或行星对其卫星)的 万有引力提供向心力.
应用万有引力定律,不仅可以计算太阳的质量,还可以计算其他天体的质量.下面以地
得ρ =
当天体的卫星环绕天体表面运动时,其轨道半径r等于天体半径R, 则天体密度为:ρ =
3π 2 . GT
例题1 已知海王星的直径为地球直径的4倍,海王星表面的重力加速度与地球表面 重力加速度大致相等,试估算海王星的质量.(已知地球质量M地=6.0×1024 kg)
解析: 设海王星质量M海,半径为R海,地球质量M地,半径R地,对海王星而言,处于海王星表面的 物体受到海王星作用的重力就是海王星与物体之间的万有引力. 即mg海=G 可得 g海=
解析:设该星球表面重力加速度为g,物体水平抛出后经时间t落地,则h=gt2 ① s=v0t 该星球质量M:g= 由①②③式得M=. ② ③
1 2 GM R2 2 2hv2 0R Gs2
(2)若天体的某个卫星的轨道半径为r,周期为T,则由
Mm 4 2 4 G 2 mr 2 和M R 3 , r T 3 3 r 3 得 . 2 3 GT R
一、天体质量的估算(以地球质量的计算为例) 1.已知卫星绕地球做匀速圆周运动的周期为T,半径为r,
二、天体密度的估算 1.密度公式

M 4 3 R 3
, 只要先得出天体的质量和半径就可代入此式计算天体的密度.
2.计算天体密度的两种常用方法
(1)由天体表面的重力加速度g和半径R求此天体的密度.
2.太阳质量的计算 利用某一行星:由于行星绕太阳的运动,可看做匀速圆周运动,行星与太阳间的万有引力 充当向心力,即G =mω 2r,而ω = . ,则可以通过测出行星绕太阳运转的周期和轨道
半径,得到太阳质量M=
3.其他行星质量的计算
利用绕行星运转的卫星,测出该卫星绕行星运转的周期和轨道半径同样可得出行星的质量.
球质量的计算为例,介绍几种计算天体质量的方法:
(1)若已知月球绕地球做匀速圆周运动的周期为T,半径为r,根据万有引力等于向心力, 即 =m月 r2,可求得地球质量M地= .
(2)若已知月球绕地球做匀速圆周运动的半径r和月球运动的线速度v,由于地球对月球的引力 等于月球做匀速圆周运动的向心力,根据牛顿第二定律,得
用第二种方法只能求出圆心处天体质量(即中心天体).
二、天体密度的计算 (1)利用天体表面的重力加速度来求天体的自身密度. 由mg= 得ρ = . 和M=ρ · πR3,
其中g为天体表面重力加速度,R为天体半径.
(2)利用天体的卫星来求天体的密度. 设卫星绕天体运动的轨道半径为r,周期为T,天体半径为R,则可列出方程: G =m r,M=ρ · πR3, = = .
相关文档
最新文档