3.1.1 随机事件的概率
3.1.1 随机事件的概率 精品教案
条件 S 的随机事件(random event),简称随机事件;确定事件和随机
事件统称为事件,用 A,B,C,…表示.
及
(5)频数与频率:在相同的条件 S 下重复 n 次试验,观察某一事件 A
方 是否出现,称 n 次试验中事件 A 出现的次数 na 为事件 A 出现的频数
法
(frequency);称事件 A 出现的比例 fn(A)= nA 为事件 A 出现的频率 n
数
nA
与试验总次数
n
的比值
nA n
,它具有一定的稳定性,总在某个常数
附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小.我们把 这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可 能性的大小.频率在大量重复试验的前提下可以近似地作为这个事件的 概率.
1
教学设计
问题与情境及教师活动
学生活动
骰子,结果都是出现 1 点.你认为这枚骰子的质地均匀吗?为什么? 这三个事件在一定的条件下是或者发生或不一定发生的,是模棱两可的. 2、活动
做抛掷一枚硬币的试验,观察它落地时哪一个面朝上.通过学生亲 自动手试验,突破学生理解的难点:“随机事件发生的随机性和随机性 中的规律性”.通过试验,观察随机事件发生的频率,可以发现随着实验 次数的增加,频率稳定在某个常数附近,然后再给出概率的定义.在这个 过程中,重视了掌握知识的过程,体现了试验、观察、探究、归纳和总 结的思想方法 具体如下:
积极参与、 思考问题
(relative frequency);对于给定的随机事件 A,如果随着试验次数的 增加,事件 A 发生的频率 fn(A)稳定在某个常数上,把这个常数记作 P (A),称为事件 A 的概率(probability). (6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次
高二数学:3.1.1 随机事件的概率 课件 (北师大必修3)
问题情境
木柴燃烧,产生热量
明天,地球还会转动
实心铁块丢入水中,铁块浮起
在00C下,这些雪融化
在一定条件下,事先就能断定发生或不发生某种 结果,这种现象就是确定性现象.
转盘转动后,指针指 向黄色区域
这两人各买1张彩票, 她们中奖了
在一定条件下,某种现象可能发生也可能不 发生,事先不能断定出现哪种结果,这种现象就 是随机现象.
班级 实验总次数 10 500
试验结果是 随机事件
正面朝上总次数 正面朝上的比例
正面朝上次数 频数 频率
0 1 2 3 4 5 6 7 8 9
10
Excel画条形图
• 总结掷硬币时“正面朝上”这个事件发 生的规律性 随着试验次数的增加,正面朝上的频率 稳定在0.5附近 • 如果再重复一次上面的试验,全班汇总 结果还会和这次汇总结果一样吗?为什 么么? 把试验结果看成样本,具有随机性
出现正 面的频 率m n
摸到红 试验次 球的次 数(n) 数(m) 10 200 1000 4
摸到红 球的频 m 率 n 0.4 0.69 0.685 0.6565 0.6838
0.2 0.54
138
685 1313 6838
276
2557 4948
0.552 0.5114
某篮球运动员在同一条件下进行投篮练习,结果如下表:
投篮次数 进球次数
8 6
0.75
10 8
0.80
15 12
0.80
20 17
0.85
30 25
0.83
40 32
0.80
50 39
0.78
进球频率
高二数学:3.1.1 随机事件的概率 课件 (北师大必修3)
试判断这些事件发生的可能性:
(1)木柴燃烧,产生热量 必然发生 (2)明天,地球仍会转动 必然发生 必然事件
(3)实心铁块丢入水中,铁块浮起 不可能发生 (4)在标准大气压00C以下,雪融化 不可能发生 (5)在刚才的图中转动转盘后,指针 指向黄色区域 可能发生也可能不发生 (6)两人各买1张彩票,均中奖 可能发生也可能不发生
某篮球运动员在同一条件下进行投篮练习,结果如下表:
投篮次数 进球次数
8 6
0.75
10 8
0.80
15 12
0.80
20 17
0.85
30 25
0.83
40 32
0.80
50 39
0.78
进球频率
(1)计算表中进球的频率; (2)这位运动员投篮一次,进球的概率约是多少? 概率约是0.8 (3)这位运动员进球的概率是0.8,那么他投10次篮一定能 投中8次吗? 不一定. 投10次篮相当于做10次试验,每次试验的结果都是随 机的, 所以投10次篮的结果也是随机的.
投掷一枚硬币,出现正面可能性有多大?
• 大家亲手做的试验才是真正的重复试验
• 计算机模拟只是掷硬币实验的一种近似, 它是用数学方法近似模拟这个试验的
活动 与 探究
抛硬币试验
试验次 数(n)
10 100 500 5000 10000 20000 50000 出现正 面的次 数(m) 2 54
摸彩球试验(3个球里有2个红球)
事件的表示:以后我们用A、B、C等大写字母表示随 机事件,简称事件.
数学运用
例1.判断哪些事件是随机事件,哪些是必然事件, 哪些是不可能事件? 事件A:抛一颗骰子两次,向上的面的数字之和 大于12. 不可能事件 事件B:抛一石块,下落
高二数学:3.1.1 随机事件的概率 课件 (北师大必修3)
件A发生的概率的近似值,
即
P ( A)
m n
,(其中P(A)为事件A发生的概率)
注意点:
1.随机事件A的概率范围 任何事件发生的概率都满足:0≤P(A)≤1
频率与概率的区别与联系
1、频率本身是随机的,在试验前 不能确定。做同样次数的重复试验 得到事件的频率会不同。 2、概率是一个确定的数,与每次 试验无关。是用来度量事件发生可 能性大小的量。
出现正 面的频 率m n
摸到红 试验次 球的次 数(n) 数(m) 10 200 1000 4
摸到红 球的频 m 率 n 0.4 0.69 0.685 0.6565 0.6838
0.2 0.54
138
685 1313 6838
276
2557 4948
0.552 0.5114
(1)试计算男婴各年出生频率(精确到0.001); (2)该市男婴出生的概率约是多少? 11453 0.524 . 解题示范: (1)1999年男婴出生的频率为:
21840
同理可求得2000年、2001年和2002年男婴出生的频率分别为:
0.521,0.512,0.512. (2)各年男婴出生的频率在0.51~0.53之间,故该市男婴出生
0.4948
2000 10000
20000 13459 0.67295 10000 10000 66979 0.66979 0 0 随着试验次数的增加,频率稳定在[0,1]间的一个常数上
10021 0.50105 25050 0.501 49876 0.49876
数学理论
一般地,如果随机事件A在n次试验中发生了m次,当试 验的次数n很大时,我们可以将事件A发生的频率 作为事
(人教a版)必修三同步课件:3.1.1随机事件的概率
0.89,0.91. (2)由于频率稳定在常数0.89附近,所以这个射手射击一次, 击中靶心的概率约是0.89.
规律方法
1.频率是事件A发生的次数m与试验总次数n的比
值,利用此公式可求出它们的频率.频率本身是随机变量, 当n很大时,频率总是在一个稳定值附近左右摆动,这个稳定 值就是概率. 2.解此类题目的步骤是:先利用频率的计算公式依次计算频 率,然后用频率估计概率.
跟踪演练 3
下列说法:①频率反映事件发生的频繁程度,概
率反映事件发生的可能性大小;②做 n 次随机试验,事件 A 发 m 生 m 次,则事件 A 发生的频率 就是事件的概率;③百分率是 n 频率, 不是概率;④频率是不能脱离具体的 n 次试验的实验值, 而概率是具有确定性的不依赖于试验次数的理论值;⑤频率是 概率的近似值,概率是频率的稳定值.其中正确的是________.
例3 某射手在同一条件下进行射击,结果如下表所示:
射击次数n 击中靶心次数m m 击中靶心的频率 n
10 8
20 19
50 44
100 92
200 178
500 455
(1)填写表中击中靶心的频率; (2)这个射手射击一次,击中靶心的概率约是多少?
解
(1)表中依次填入的数据为:0.80,0.95,0.88,0.92,
(7)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”; (8)“某电话机在1分钟内收到2次呼叫”; (9)“没有水分,种子能发芽”;
(10)“在常温下,焊锡熔化”.
解
事件(1)(4)(6)是必然事件;事件(2)(9)(10)是不可能事件;
事件(3)(5)(7)(8)是随机事件.
规律方法
人教A版高中数学必修三 3.1.1 随机事件的概率(共19张PPT)
小硬币 大学问
如果继续增加试验次数,正面朝 上的频率又有怎样的波动规律?
• 链接:电脑摸拟2000次抛硬币试验
随机事件的概率
• 定义:在大量重复进行同一实验时,事件A发生的频
nA 率 n
总是接近于某个常数p,在它附近摆动,这时就把
这个常数叫做事件A的概率。记作P (A)
•
P(A) = p .
• 0 P(A) 1 。
随机事件的概率
• (以上知识点可以用框图表示)
随机事件A进行 大量重复试验
随机事件A发生的
频率
估 计 随机事件A发生的 概率
判断正误
1.概率是随机的,不进行大量重复的随机试验,随
机事件的概率就不能确定。( X )
2.当试验次数增大到一定的数量时,随机事件的频
率会等于概率。( X )
3.随机事件A在n次试验中发生了m次,则事件A 的
有关概念
在一定条件下可能发生也可能不发生的事件叫 做 随机事件 ; 在一定条件下必然发生的事件,叫 必然事件 ; 在一定条件下不可能发生的事件叫 不可能事件 ;
必然事件与不可能事件统称为 确定事件 ;
确定事件与随机事件统称为 事件 ,用大写字母A, B,C……表示 如:
记 “掷一枚硬币,出现正面朝上”为事件A ; 记 “我购买的下一期福利彩票中奖”为事件B ;
事件出现的频数与频率概念
• 在相同的条件S下重复n次试验,观察某一
事件A是否出现,称n次试验中事件A出现 的次数 nA 为事件A出现的 频数 。
称事件A出现的比例 fn(A)=
nA n
为事件A
出现的 频率 。
实验及事件的概率
• 思考:随机事件的“可能发生,也可能不发生 ”是不是没有任何规律地的随意发生呢?
3.1.1随机事件的概率
元谋一中2014届高一下学期 数学导学案 编写教师:文跃先 班级 姓名 小组 时间3.1.1 随机事件的概率学习目标:1、 了解随机事件、必然事件、不可能事件的概念;正确理解事件A 出现的频率的意义;2、 正确理解概率的概念,明确事件A 发生的频率f n (A)与事件A 发生的概率P (A )的区别与联系;教学重点:事件的分类;概率的定义以及概率和频率的区别与联系. 教学难点:随机事件及其概率,概率与频率的区别和联系. 一、课题引入:开奖游戏:双色球是我国福利彩票,彩票由7个号码组成,先从“红色球号码区”的1-33个号码中选择6个号码,从“蓝色球号码区”的1-16个号码中选择1个号码组成一注进行投注。
7个号码相符(6个红色球号码和1个蓝色球号码,红色球号码顺序不限)则中头奖。
(1)请同学们每个人选取一组号码,看看你会不会中头奖。
(2)请问,你有机会中头奖吗? 二、新课导学自学教材P 108-P 112,并对相关概念进行勾画。
新知1:事件的概念及分类① 必然事件: ② 不可能事件: ; ③ 确定事件: ④ 随机事件: 例题1:指出下列事件是必然事件、不可能事件还是随机事件。
(1)如果,a b 都是实数,a b b a +=+; (2)没有水分,种子发芽;(3)从分别标有1,2,3,4,5,6的6张号签中任取一张,得到4号签. (4)在标准大气压下且温度低于0°C 时,冰融化; (5)在常温下,铁熔化; (6)导体通电时,发热; (7)抛一石块,下落;(8)函数log (0,1)a y x a a =>≠是增函数。
做实验:每个同学拿出一个硬币,认真完成课本P 109页的抛掷硬币的实验,并完成课本P 109的三个表格及后面的两个思考题。
:新知2:随机事件的概率 1、频数与频率: 2、概率: 3、概率的取值范围: 。
特别地,必然事件的概率为: ,不可能事件的概率为 .4、频率与概率的区别与联系:练习1:某人进行打靶练习,共射击10次,其中有2次中10环,有3次环中9环,有4次中8环,有1次未中靶,试计算此人中靶的频率,假设此人射击1次,试问中靶的频率约为多大?中10环的概率约为多大?练习2①计算表中优等品的频率; ②该厂生产的电视机优等品的频率是多少?三、归纳小结,本课学习的主要内容是什么?它们之间有怎样的区别和联系?Note:对于概率的统计定义,应注意以下几点: ①求一个事件的概率的基本方法是通过大量的重复试验。
3.1.1随机事件的概率
析
提示:不能断定.因为周一下雨是随机事件,不是必然事件.
3.必然事件、不可能事件、随机事件概念中的“在条件S下” 能否去掉?
知
能 巩 固 提 升
提示:不能,事件的结果是相对于“一定条件”而言的,随着
条件的改变,其结果也会不同.
目 录 典 课 程 目 标 设 置 主 题 探 究 导 学 型 例 题 精
析
(D)在一次试验结束后,随机事件的频率是变化的
【解析】选C.A项错误,虽然随机事件的结果事先不确定,但 不等于没有结果;B项错误,随机事件的频率与概率有时会相 等;D项错误,试验已结束,频率便可算出,不会再变化.
知
能 巩 固 提 升
目 录 课 程 目 标 设 置 主 题 探 究 导 学
二、填空题(每题5分,共10分)
点击进入相应模块
目 录 典 课 程 目 标 设 置 主 题 探 究 导 学 型 例 题 精
析
知
能 巩 固 提 升
目 录 典 课 程 目 标 设 置 主 题 探 究 导 学 型 例 题 精
析
知
能 巩 固 提 升
目 录 典 课 程 目 标 设 置 主 题 探 究 导 学 型 例 题 精
析
知
能 巩 固 提 升
2.某人将一枚硬币连掷了10次,正面朝上的情形出现了6次,
典
若用A表示“正面朝上”这一事件,则A的(
(A)概率为 3 5 (C)频率为6 (B)频率为 3 5
)
型 例 题 精
(D)概率接近0.6
析
【解析】选B.在相同条件下,做n次实验,事件A出现的次数为
m m,则事件A出现的频率为 . n
知
能 巩 固 提 升
随机事件的概率教学反思及说课稿
《3.1.1随机事件的概率》说课稿梁潇一、教材的地位和作用“随机事件的概率”是人教A版《数学必修3》第三章第一节的内容,本节课是其中的第一课时.课程标准要求:“在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别”.并指出:“概率教学的核心问题是让学生了解随机现象与概率的意义”.要求“教师应通过日常生活中的大量实例,鼓励学生动手试验,正确理解随机事件发生的不确定性及其频率的稳定性,并尝试澄清日常生活遇到的一些错误认识.”本节课“随机事件的概率”主要研究事件的分类,概率的意义,概率的定义及统计算法。
现实生活中存在大量不确定事件,而概率正是研究不确定事件的一门学科。
作为“概率统计”这个学习领域中的第一节课它在人们的生活和生产建设中有着广泛的应用,它以初中概率学为基础,又为选修2-3重新进行了知识建构,所以它在教材中处于非常重要的位置。
二、教学目标1、教学目标:(1)知识目标:使学生了解必然事件,不可能事件,随机事件的概念;理解频率和概率的含义和两者的区别和联系.(2)能力目标:培养学生观察和思考问题的能力,提高综合运用知识的能力和分析解决问题的能力.(3)德育目标:结合随机事件的发生既有随机性,又存在着统计规律性,了解偶然性寓于必然性之中的辨证唯物主义思想.(4)情感目标:通过师生、生生的合作学习,培养学生团结协作的精神和主动与他人合作交流的意识.同时,概率的定义与性质是学生学习概率的基石,其中也蕴含了重要的数学思想,因此,我确定重点、难点和教学方法如下:2、教学重点:①事件的分类;②概率的统计定义;③概率的性质.3、教学难点:随机事件的发生所呈现的规律性.4、教学方法:以多媒体教学课件为教学辅助.三、学情分析学生在初中阶段学习了概率初步,对频率与概率的关联有一定的认识,有阅读、观察的基础,具备一定的合作交流,自主探究能力。
但学生的表达能力、归纳能力相对较弱,教学过程中要不断增强学生学习的兴趣,让学生主动发掘本节课的重点。
人教版高中数学必修三 3.1.1《随机事件的概率》要点梳理+跟踪检测
人教版高中数学必修三第三章统计3.1.1《随机事件的概率》要点梳理【学习目标】在具体情境中,了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.【要点梳理·夯实知识基础】12.频数与频率在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中______________为事件A出现的频数,称______________________为事件A 出现的频率.[答案]事件A出现的次数nA 事件A出现的比例fn(A)=nAn3.概率(1)含义:概率是度量随机事件发生的________的量.(2)与频率联系:对于给定的随机事件A,事件A发生的频率fn(A)随着试验次数的增加稳定于________,因此可以用__________来估计概率P(A).[答案](1)可能性(2)概率P(A) 频率fn(A)【考点探究·突破重点难点】考点一:事件类型的判断1.下列事件:①明天下雨;②3>2;③航天飞机发射成功;④x∈R,x2+2<0;⑤某艘商船遭遇索马里海盗;⑥任给x0∈R,x0+2=0.其中随机事件的个数为()A.1B.2C.3D.4答案:D2.下列说法正确的是()A.某人购买福利彩票一注,中奖500万元,是不可能事件B.三角形的两边之和大于第三边,是随机事件C.没有空气和水,人类可以生存下去,是不可能事件D.科学技术达到一定水平后,不需任何能量的“永动机”将会出现,是必然事件答案:C3.从一副牌中抽出5张红桃、4张梅花、3张黑桃放在一起洗匀后,从中一次随机抽出10张,恰好红桃、梅花、黑桃3种牌都抽到,这件事情()A.可能发生B.不可能发生C.很可能发生D.必然发生答案:D解析:∵若这10张牌中抽出了全部的红桃与梅花共9张,一定还有1张黑桃;若抽出了全部的梅花与黑桃共7张,则还会有3张红桃;若抽出了全部的红桃与黑桃共8张,则还会有2张梅花;∴这个事件一定发生,是必然事件.考点而:试验的结果分析4.下列命题中正确的个数是()①先后抛掷两枚质地均匀的硬币的结果为正面,正面;正面,反面;反面,反面,共计3种.②从12个同类产品(其中10个是正品,2个次品)中,任意抽取3个产品的每一个结果中一定含有正品.③某地举行运动会,从来自A学校的a,b志愿者中选一人,从来自B学校的c,d,e志愿者中选一人共2人为体操馆服务,则有ac,ad,ae,bc,bd,be,共6种选法. A.0 B.1 C.2 D.3答案:C解析:①中应该有4个结果,即正面,正面;正面,反面;反面,正面;反面,反面.故①不正确.②③正确.5.先后投掷2枚均匀的一分、二分的硬币,观察落地后硬币的正反面情况,则包含3个试验结果的是()A.至少一枚硬币正面向上B.只有一枚硬币正面向上C.两枚硬币都是正面向上D.两枚硬币一枚正面向上,另一枚反面向上答案:A解析:“至少一枚硬币正面向上”包括“一分正面向上,二分正面向上”,“一分正面向上,二分正面向下”,“一分正面向下,二分正面向上”3种试验结果.6.同时转动如图所示的两个转盘,记转盘①得到的数为x,转盘②得到的数为y,结果为(x,y).(1)写出这个试验的所有结果.(2)“x+y=5”包含的结果有哪些?“x<3且y>1”呢? (3)“xy=4”包含的结果有哪些?“x=y ”呢?解:(1)结果为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).(2)“x+y=5”包含的结果为(1,4),(2,3),(3,2),(4,1).“x<3且y>1” 包含的结果为(1,2),(1,3),(1,4),(2,2),(2,3),(2,4). (3)“xy=4”包含的结果为(1,4),(2,2),(4,1). “x=y ”包含的结果为(1,1),(2,2),(3,3),(4,4). 考点三:随机事件的频率与概率7.下列说法:①频率反映的是事件发生的频繁程度.概率反映的是事件发生的可能性大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的频率nm就是事件A 的概率;③频率是不能脱离具体的n 次的试验值,而概率是确定性的,不依赖于试验次数的理论值;④频率是概率的近似值,概率是频率的稳定值.其中正确说法的序号是 . 答案:①③④解析:由频率及概率的定义可知①是正确的.在②中,nm是事件A 发生的频率,虽然概率是与频率接近的一个常数,但是概率不一定等于频率,故②是错误的.由概率的定义知③④是正确的.8.在抛掷骰子的游戏中,将一枚质地均匀的骰子抛掷6次,对于点数4的出现有下列说法:①一定会出现;②出现的频率为61;③出现的概率是61;④出现的频率是32.其中正确的是 . 答案:③9.李老师在某大学连续3年主讲经济学院的高等数学,下表是李老师这门课3年来学生的考试成绩分布:经济学院一年级的学生王小慧下学期将修李老师的高等数学课,用已有的信息估计她得以下分数的概率(结果保留到小数点后三位):(1)90分以上;(2)60~69分;(3)60分以下.解:由题意知总人数为40+200+400+100+40+20=800.则选修李老师高等数学的学生考试成绩在90分以上,60~69分,60分以下的频率分别为80040=201;800100=81;80060=403.用以上信息估计王小慧得分的概率情况如下:(1)“得90分以上”的概率为201,(2)“得60~69分”的概率为81,(3)“得60分以下”的概率为403.[3.1.1《随机事件的概率》跟踪检测一、选择题1.给出下列3种说法:①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛掷硬币的试验,结果3次出现正面,因此,出现正面的概率是m n =73; ③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数 是( ) A.0B.1C.2D.32.下面事件:①某项体育比赛出现平局;②抛掷一枚硬币,出现反面;③全球变暖会导致海平面上升;④一个三角形的三边长分别为1,2,3.其中是不可能事件的是( ) A.① B.② C.③ D.④ 3.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( ) A.必然事件B.随机事件C.不可能事件D.无法确定4.已知下列事件:①向区间(0,2)内投点,点落在(0,2)区间;②将一根长为a 的铁丝随意截成三段,构成一个三角形;③函数y=a x (a>0,且a ≠1)在R 上为增函数;④解方程x 2-1=0的根为2.其中是随机事件的个数是( ) A .1 B .2 C .3 D .45.下列事件中,不可能事件为( ) A.三角形内角和为180°B.三角形中大边对大角,大角对大边C.锐角三角形中两个内角和小于90°D.三角形中任意两边的和大于第三边6.袋内装有一个黑球与一个白球,从袋中取出一球,在100次摸球中,摸到黑球的频率为0.49,则摸到白球的次数为( ) A.49B.51C.0.49D.0.517.某班计划从A ,B ,C ,D ,E 这五名班干部中选两人代表班级参加一次活动,则可能的结果有( ) A .5种 B .10种 C .15种 D .20种 8.经过市场抽检,质检部门得知市场上食用油合格率为80%,经调查,某市市场上的食用油大约有80个品牌,则不合格的食用油品牌大约有 ( ) A.64个B.640个C.16个D.160个9.给出下列三个命题,其中正确命题的个数是( )①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是73;③随机事件发生的频率就是这个随机事件发生的概率. A.0 B.1 C.2 D.3 10.一个家庭有两个小孩儿,则可能的结果为( ) A.{(男,女),(男,男),(女,女)} B.{(男,女),(女,男)}C.{(男,男),(男,女),(女,男),(女,女)}D.{(男,男),(女,女)}11.从一批即将出厂的螺丝中抽查了100颗,仅有2颗是次品.下列说法正确的是( )A .从这批螺丝中随机抽取1颗,恰为次品的概率一定是2%B .从这批螺丝中随机抽取1颗,一定不是次品C .从这批螺丝中随机抽取100颗,必有2颗是次品D .从这批螺丝中随机抽取1颗,恰为次品的概率约是2%12.每道选择题有4个选项,其中只有1个选项是正确的.某次考试共有12道选择题,某人说:“每个选项正确的概率是41,我每题都选择第一个选项,则一定有3个题选择结果正确”这句话( ) A.正确B.错误C.不一定D.无法解释二、填空题13.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175.根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一位同学,估计该同学的身高在155.5~170.5 cm 范围内的概率为 (用分数表示).14.在一次掷硬币试验中,掷100次,其中有48次正面朝上,设反面朝上为事件A,则事件A 出现的频数为 ,事件A 出现的频率为 .15.设集合A={x|x 2≤4,x ∈Z },a ,b ∈A ,设直线3x+4y=0与圆(x-a )2+(y-b )2=1相切为事件M ,用(a ,b )表示每一个基本事件,则事件M 所包含的结果为 . 16.则a= ,b= ,c= .据此可估计若掷硬币一次,正面向上的概率为.17.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:则落在桌面的数字不小于4的频率为 .18.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是 .三、解答题19.从含有两个正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次.(1)写出这个试验的所有可能结果.(2)设A为“取出两件产品中恰有一件次品”,写出事件A对应的结果.20.对一批U盘进行抽检,结果如下表:(1)计算表中各个次品频率.(2)从这批U盘中任抽一个是次品的概率是多少?(3)为保证买到次品的顾客能够及时更换,则销售2 000个U盘,至少需进货多少个U盘?21.:(1)在4月份任取一天,估计西安市在该天不下雨的概率;(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.22.为了估计水库中的鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.试根据上述数据,估计水库内鱼的尾数.3.1.1《随机事件的概率》跟踪检测解答一、选择题1.给出下列3种说法:①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛掷硬币的试验,结果3次出现正面,因此,出现正面的概率是m n =73; ③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数 是( ) A.0B.1C.2D.3答案:A2.下面事件:①某项体育比赛出现平局;②抛掷一枚硬币,出现反面;③全球变暖会导致海平面上升;④一个三角形的三边长分别为1,2,3.其中是不可能事件的是( ) A.① B.② C.③ D.④ 答案:D解析:三角形的三条边必须满足两边之和大于第三边.3.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( ) A.必然事件B.随机事件C.不可能事件D.无法确定答案:B4.已知下列事件:①向区间(0,2)内投点,点落在(0,2)区间;②将一根长为a 的铁丝随意截成三段,构成一个三角形;③函数y=a x (a>0,且a ≠1)在R 上为增函数;④解方程x 2-1=0的根为2.其中是随机事件的个数是( ) A .1 B .2 C .3 D .4 答案:B解析:①为必然事件;④为不可能事件. 5.下列事件中,不可能事件为( ) A.三角形内角和为180°B.三角形中大边对大角,大角对大边C.锐角三角形中两个内角和小于90°D.三角形中任意两边的和大于第三边 答案: C6.袋内装有一个黑球与一个白球,从袋中取出一球,在100次摸球中,摸到黑球的频率为0.49,则摸到白球的次数为( ) A.49B.51C.0.49D.0.51答案:B7.某班计划从A ,B ,C ,D ,E 这五名班干部中选两人代表班级参加一次活动,则可能的结果有( ) A .5种 B .10种 C .15种 D .20种 答案:B解析:从A ,B ,C ,D ,E 五人中选2人,不同的选法有:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E )共10种.8.经过市场抽检,质检部门得知市场上食用油合格率为80%,经调查,某市市场上的食用油大约有80个品牌,则不合格的食用油品牌大约有 ( ) A.64个B.640个C.16个D.160个答案: C9.给出下列三个命题,其中正确命题的个数是( )①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是73;③随机事件发生的频率就是这个随机事件发生的概率. A.0 B.1 C.2 D.3 答案:A解析:①错误;②出现正面的概率为21,故错误;③频率与概率不是一回事,故错误. 10.一个家庭有两个小孩儿,则可能的结果为( ) A.{(男,女),(男,男),(女,女)} B.{(男,女),(女,男)}C.{(男,男),(男,女),(女,男),(女,女)}D.{(男,男),(女,女)}答案: C11.从一批即将出厂的螺丝中抽查了100颗,仅有2颗是次品.下列说法正确的是( )A .从这批螺丝中随机抽取1颗,恰为次品的概率一定是2%B .从这批螺丝中随机抽取1颗,一定不是次品C .从这批螺丝中随机抽取100颗,必有2颗是次品D .从这批螺丝中随机抽取1颗,恰为次品的概率约是2% 答案: D解析:抽取出次品的频率是1002=2%,用频率估计概率,抽出次品的概率大约是2%. 12.每道选择题有4个选项,其中只有1个选项是正确的.某次考试共有12道选择题,某人说:“每个选项正确的概率是41,我每题都选择第一个选项,则一定有3个题选择结果正确”这句话( ) A.正确 B.错误 C.不一定D.无法解释答案: B 二、填空题13.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175.根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一位同学,估计该同学的身高在155.5~170.5 cm 范围内的概率为 (用分数表示).答案:52解析:数据在155.5~170.5之间有8名学生,则身高在此范围内的频率为208=52,所以概率约为52.14.在一次掷硬币试验中,掷100次,其中有48次正面朝上,设反面朝上为事件A,则事件A 出现的频数为 ,事件A 出现的频率为 .答案: 52 0.5215.设集合A={x|x 2≤4,x ∈Z },a ,b ∈A ,设直线3x+4y=0与圆(x-a )2+(y-b )2=1相切为事件M ,用(a ,b )表示每一个基本事件,则事件M 所包含的结果为 . 答案:(-1,2),(1,-2) 解析:由直线与圆相切知,543b a +=1,所以3a+4b=±5,依次取a=-2,-1,0,1,2,验证知,只有⎩⎨⎧=-=21b a ,⎩⎨⎧==2-1b a 满足等式.16.则a= ,b= ,c= .据此可估计若掷硬币一次,正面向上的概率为 . 答案: 0.51 241 800 0.5解析:a=200102=0.51,b=500×0.482=241;c=505.0404=800. 易知正面向上的频率在0.5附近,所以若掷硬币一次,正面向上的概率应为0.5.17.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:则落在桌面的数字不小于4的频率为 . 答案: 0.3518.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是 . 答案: 0.03 三、解答题19.从含有两个正品a 1,a 2和一件次品b 1的三件产品中,每次任取一件,每次取出后不放回,连续取两次.(1)写出这个试验的所有可能结果.(2)设A 为“取出两件产品中恰有一件次品”,写出事件A 对应的结果. [解析](1)试验所有结果:a 1,a 2;a 1,b 1;a 2,b 1;a 2,a 1;b 1,a 1;b 1,a 2.共6种. (2)事件A 对应的结果为:a 1,b 1;a 2,b 1;b 1,a 1;b 1,a 2. 20.对一批U 盘进行抽检,结果如下表:(1)计算表中各个次品频率.(2)从这批U 盘中任抽一个是次品的概率是多少?(3)为保证买到次品的顾客能够及时更换,则销售2 000个U 盘,至少需进货多少个U 盘?[解析](1)表中各个次品频率分别为0.06,0.04,0.025,0.017,0.02,0.018. (2)当抽取件数a 越来越大时,出现次品的频率在0.02附近摆动,所以从这批U 盘中任抽一个是次品的概率是0.02.(3)设需要进货x 个U 盘,为保证其中有2 000个正品U 盘,则x(1-0.02)≥2 000,因为x 是正整数,所以x ≥2 041,即至少需进货2 041个U 盘.21.:(1)在4月份任取一天,估计西安市在该天不下雨的概率;(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.解:(1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率为1513.(2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等).这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为87.以频率估计概率,运动会期间不下雨的概率为87.22.为了估计水库中的鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.试根据上述数据,估计水库内鱼的尾数.[解析] 设水库中鱼的尾数为n,从水库中任捕一尾,每尾鱼被捕的频率(代替概率)为n2000,第二次从水库中捕出500尾,带有记号的鱼有40尾,则带记号的鱼被捕 的频率(代替概率)为50040,由n 2000=50040,得n=25 000.所以水库中约有25 000尾.。
3.1.1 随机事件的概率 课件
m≤n
0.4948 0.50105 0.501 0.49876
随机事件及其概率
很多 当抛掷硬币的次数很多时,出现正面 常数 的频率值是稳定的,接近于常数0.5,在它 稳定
附近摆动.
随机事件及其概率
某种油菜籽在相同条件下的发芽试验结果 表:
很多 当试验的油菜籽的粒数很多时,油菜籽 m 常数 发芽的频率 接近于常数0.9,在它附近摆 n 动。
不可能事件
事件B:抛一石块,下落
必然事件
事件C:打开电视机,正在播放新闻
随机事件
事件D:在下届亚洲杯上,中国足球队以2:0 战胜日本足球队
随机事件
练一练
指出下列事件是必然事件,不可能事件还是随机事件?
(1)我国东南沿海某地明年将3次受到热带气旋的侵袭; 随机事件 (2)若a为实数,则|a+1|+|a+2|=0; 不可能事件
(3)江苏地区每年1月份月平均气温低于7月份月平均气温;
必然事件 (4)发射1枚炮弹,命中目标. 随机事件
活动与探究:
投掷一枚硬币,出现正面 的可能性有多大?
探究:投掷一枚硬币,出现正面可能性有多大?
活动 与 探究
——抛硬币试验
出现正面的次 出现正面的频 试验次数(n) m 数(m) 率 n 2 0.2 10 54 0.54 100 0.552 276 500 0.5114 5000 2557 10000 20000 50000 100000 4948 10021 25050 49876
(5)在刚才的图中转动转盘后,指针 指向黄色区域 可能发生也可能不发生 (6)两人各买1张彩票,均中奖 可能发生也可能不发生
确 定 事 件
随机事件
在一定条件下可能发生也可 能不发生的事件叫随机事件。
3.1.1随机事件的概率(教学设计)
数学·必修3·第三章·概率3.1.1 随机事件的概率(教学设计)【教材内容分析】概率论是统计学的基础,在学习完第二章《统计》的知识后,马上安排概率的知识可以让学生了解概率与统计之间的关系,并将第二章所学知识应用于概率的探索中;本节是第三章的起始课,包含了章引言,在章引言中,从学生熟悉的例子(彩票、飞镖、天气预报、遗传规律)谈起,让学生了解生活中的许多事情的结果都是无法预知的,我们把这些事情称为随机事件,了解这些事件发生的概率对于我们做出正确的决策起着重要作用;作为第一个课时的内容,本节课主要是了解事件的分类,概率与频率的定义以及关系,了解通过试验可以获得随机事件的概率,因此,本节课主要采用了学生动手试验、观察、分析试验结果,归纳总结的方法来进行教学,旨在让学生理解概率与频率的关系,运用第二章《统计》的知识,收集数据与分析数据,体会随机事件在一次试验中发生的偶然性与进行大量重复试验后频率的规律性,了解用频率估计概率的可行性。
【学情分析】学生在九年级上册已经学习过“概率的初步”,了解了事件的分类、用列举法求等可能事件的概率、用频率估计概率等内容,时间间隔不长,所以学生对概率的知识其实并不陌生,在授课时事件的分类类似于复习旧知,让学生举例说明即可,因此本课的重点应放在让学生自己动手做试验,并尝试用第二章《统计》的知识来分析收集到的数据,去体会频率估计概率的可行性,由于数学试验课在整个高中课堂教学中出现的次数不多,因此在试验前一定要讲清试验规则和要求,以确保试验结果的有效性,并指导学生认真完成。
我用来上课的班级高一12班,全班52名同学,属于年级的重点班,回答问题比较积极,学习比较主动,因此本节课的大部分时间主要放在让学生做试验,观察,讨论、并归纳出试验次数对频率的影响,体会随机事件的随机性与规律性的关系。
【教学目标】1.在具体情境中,了解随机事件发生的不确定性和频率的稳定性;2.学会用《统计》的知识来分析收集到的数据;3.进一步了解概率的意义以及概率与频率的区别与联系。
高中概率知识点高考考点易错点归纳
高中概率知识点高考考点易错点归纳高中数学——概率知识要点3.1 随机事件的概率3.1.1 随机事件的概率在条件S下,一定会发生的事件称为相对于条件S的必然事件。
在条件S下,一定不会发生的事件称为相对于条件S的不可能事件。
必然事件和不可能事件统称相对于条件S的确定事件。
在条件S下可能发生也可能不发生的事件称为相对于条件S的随机事件。
在相同条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数为事件A出现的频数nA。
事件A出现的比例称为频率f(A)=nA/nn。
随机事件A的概率是频率的稳定值,反之,频率是概率的近似值。
3.1.2 概率的意义随机事件在一次试验中发生与否是随机的,但随机性中含有规律性。
认识了这种随机中的规律性,可以比较准确地预测随机事件发生的可能性。
抽签的公平性是游戏的公平性的一个例子。
在从多个可选答案中挑选出正确答案的决策任务中,“使得样本出现的可能性最大”可以作为决策的准则。
极大似然法和小概率事件也与概率思想相关。
天气预报的概率解释是明天本地下雨的机会是70%。
XXX的豌豆试验是试验与发现的例子。
遗传机理中的统计规律也与概率相关。
3.1.3 概率的基本性质对于事件A与事件B,如果事件A发生,则事件B一定发生,称事件B包含事件A(或事件A包含于事件B),记作B A(或A B)。
不可能事件记作。
若B A且A B,则称事件A与事件B相等,记作A=B。
事件A与事件B的并事件(和事件)是某事件发生当且仅当事件A发生或事件B 发生。
事件A与事件B的交事件(积事件)是某事件发生当且仅当事件A发生且事件B发生。
事件A与事件B互斥是AB为不可能事件,即AB=,即事件A与事件B在任何一次试验中并不会同时发生。
事件A与事件B互为对立事件是AB为不可能事件,AB为必然事件,即事件A与事件B在任何一次试验中有且仅有一个发生。
概率的几个基本性质包括:1)0≤P(A)≤1;2)必然事件的概率为1,即P(E)=1;3)不可能事件的概率为0,即P(F)=0.3.2 古典概型古典概型是一种具有有限个基本事件且每个基本事件出现的可能性相等的概率模型。
人教版高中数学必修三第三章第1节 3.1.1 随机事件的概率 课件(共25张PPT)
事件“甲乙两人进行‘石头剪刀布’的 游戏,结果甲获胜”是哪一类事件?
为了估计上述随机事件发生的概率,我 们可以采用何种方法?
知识小结
1.随机事件的概念
在一定条件下可能发生也可能不发生的 事件,叫做随机事件. 2.随机事件的概率的统计定义
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0
25
10 70 130 310 700 1500 2000 3000 试验次数
结论:当试验的油菜籽的粒数很多时,油菜籽发 芽的频率 m 接近于常数0.9,在它附近摆动。
n
思考:
1.事件A发生的频率 fn(A) 是不是不变的? 2.事件A的概率P(A)是不是不变的? 3.它们之间有什么区别与联系?
优等品的频率 1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0 50
100
200
500
1000 2000 试验次数
结频论率:m 当接抽近查于的常球数数0.很95多,时在,它抽附到近优摆等动品。的
n
某种油菜籽在相同条件下的发芽试验结果表:
某种油菜籽在相同条件下的发芽试验结果表:
发芽的频率
随机事件的概率
1. 引言
在一些人看来,总觉得数学都是研究现实世界中确定性 现象的数量规律,其实不然。大家知道,任何事物的发展 是既有偶然性又有必然性,为了研究一些无法确定的现象 的规律,早在十七世纪数学的重要分支概率统计便应运而 生,最初是欧洲保险业的发展促成这门学科的诞生,经过 几百年的发展和应用概率统计已遍布所有的领域,你比如 利用概率统计,二战中美军破译日军的电报密码,;利用概 率统计我国数学家得出《红楼梦》的前八十回与后四十回 出自两位作家的手笔,解决了红学家长期争论不休的问题; 还是利用概率统计使我们对变化莫测的天气的预报越来越 准……,总之,概率统计这门古老又十分有用的学科,如今 它已经渗透到生活的方方面面。
人教必修3第三章概率之3.1.1随机事件的概率(市公开课,竞赛课件)(免费下载)
课本P117页T6.
一、教学目标: 1、知识与技能: (1)正确理解事件的包含、并事件、交事件、相等 事件,以及互斥事件、对立事件的概念; (2)概率的几个基本性质; (3)正确理解和事件与积事件,互斥事件与对立事件 的区别与联系. 2、过程与方法:通过事件的关系、运算与集合的关 系、运算进行类比学习,培养学生的类化与归纳的数 学思想。 3、情感态度与价值观:通过数学活动,了解教学与 实际生活的密切联系,感受数学知识应用于现实世界 的具体情境,从而激发学习 数学的情趣。 二、重点与难点: 概率的加法公式及其应用,事件的关系与运算。
尽管每次摸到黄球的概率为0.1,但摸10次 球,不一定能摸到黄球.
〖思考4〗如果某种彩票的中奖率为 么买1000张这种彩票一定能中奖吗?(假设该彩票 有足够多的张数.)请用概率的意义解释. 点评:不一定.因为每张彩票是否中奖是随 机的,1000张彩票有几张中奖也是随机的.这就 是说,每张彩票既可能中奖也可能不中奖,因此 1000张彩票中可能没有一张中奖,也可能有一 张、两张乃至多张中奖. 虽然中奖张数是随机的,但这种随机性中 具有规律性.即随着所买彩票张数的增加,其中 中奖彩票所占的比例可能越接近于1/1000.
√
(2)明天本地下雨的机会是70%.
例:生活中,我们经常听到这样的议论: “天气预报说昨天降水概率为90%,结果根本 一点雨都没下,天气预报也太不准确了。”学 了概率后,你能给出解释吗? 解:天气预报的“降水”是一个随机事 件,概率为90%指明了“降水”这个随机事 件发生的概率,我们知道:在一次试验中, 概率为90%的事件也可能不出现,因此, “昨天没有下雨”并不说明“昨天的降水概 率为90%”的天气预报是错误的。
举例, 如: • (1)当x是实数时,x2≥0; • (2)天上掉馅饼; • (3)某人随意按了一个号码,刚好是朋友的 电话号码。
数学:3.1.1《随机事件的概率》课件(人教a版必修3)
练习:
1、下列事件: (1)口袋里有伍角、壹角、壹元的硬币若干 枚,随机地摸出一枚是壹角。 (2)在标准大气压下,水在90℃沸腾。
(3)射击运动员射击一次命中10环。
(4)同时掷两颗骰子,出现的点数之和不超 过12。 其中是随机事件的有 ( C)
A、 (1) B、(1)(2) C、(1)(3)
D、(2)(4)
是多少?
事件A的概率:一般地,在大量重复进行同 一试验时,事件A发生的频率 f n ( A) 总是接 近于某个常数,在它附近摆动。这个常数叫 做事件A的概率,记作P(A)。 注: 事件A的概率: nA (1)频率 f n ( A) n 总在P(A)附近摆动,当n越
大时,摆动幅度越小。 (2)0≤P(A)≤1 不可能事件的概率为0, 必然事件为1,随机事件的概率大于0而小于1。
② 理解频数、频率的意义。 ③理解随机事件的发生在大量重复试验下, 呈现规律性,它的频率接近一个常数。
课堂小结:
2、必然事件、不可能事件、随机事件是在一 定的条件下发生的,当条件变化时,事件的性质 也发生变化。 3、必然事件与不可能事件可看作随机事件的 两种特殊情况。因此,任何事件发生的概率都满 足:0≤P(A)≤1。 4、随机事件在相同的条件下进行大量的试验 nA 时,呈现规律性,且频率 f n ( A) n 总是接近于常 数P(A),称P(A)为事件的概率。
4、下面四个事件: (1)在地球上观看:太阳升于西方,而落于东方。 (2)明天是晴天。 (3)下午刮6级阵风。 (4)地球不停地转动。
其中随机事件有
A、(1)(2) B、(2)(3)
( B)
C、(3)(4) D、(1)(4)
课堂小结:
1、本节课需掌握的知识:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.事件的分类
随机事件
必然事件:
事件
在条件S下,一定会发生的事件
确定事件
不可能事件:
在条件S下,一定不会发生的事件
判断下面各事件是随机事件还是确定事件
(1)导体通电时发热;
(2)李强射击一次,中靶; (3)抛出一石块,石块会下落; (4)在常温下,铁熔化; (5)抛一枚硬币,正面朝上;
(6)明天太阳照常升起
频率(m ) n
0.5181 0.5069 0.5016 05005 0.4996 0.5011
1.频数,频率的定义:
重复n次试验,称n次试验中事件A出现 的次数nA为事件A出现的频数,称事件A出 现的比例fn(A)=nA/n为事件A出现的频 率。
2. 频率的取值范围是什么?
Байду номын сангаас 结论:
随机事件A在每次试验中是否发 生是不能预知的,但是在大量重复 实验后,随着次数的增加,事件A 发生的频率会逐渐稳定在区间[0,1] 中的某个常数上。
(1)频率是概率的近似值,随着试验 次数的增加,频率会越来越接近概率。
(2)频率本身是随机的,在试验前不 能确定。
(3)概率是一个确定的数,是客观存在 的,与每次试验无关。
(4)必然事件的频率为1,不可能事件的
频率为0.因此 0 PA 1 .
例1下列事件中,哪些是不可能事件?哪 些是必然事件?哪些是随机事件?
(1)若a、b、c 都是实数,则 abc abc ;
(2)没有空气,动物也能生存下去; (3)一个袋内装有性状大小相同的一个白球和 一个黑球,从中任意摸出1个球则为白球.
(4)直线y kx 1过定点 1,0 ;
(5)某一天内电话收到的呼叫次数为0;
因此,可以用事件A发生的频率f(A) 来估计事件A发生的概率P(A)
概率的定义:
对于给定的随机事件A,如 果随着实验次数的增加,事件A 发生的频率fn(A)稳定在某个常 数上,把这个常数记作P(A), 称为事件A的概率,简称为A的 概率。
例2根据某批乒乓球产品质量检查结果表判断 从这品球中抽到一个优等品乒乓球的概率。
抽取球数 m
优等品数 n
50 100 200 500 1000 2000 45 92 194 470 954 1902
优等品频率 m 0.9 0.92 0.97 0.94 0.954 0.951
n
。
当抽查的球数很多时,抽到优等品的频率 m n
接近于常数0.95,顾抽到优等品的概率为0.95
总结: 概率与频率的关系
二.概率 作用:研究随机事件发生的可能性大小
研究方法:最直接的方法就是试验
例如:抛掷一枚硬币落地时正面朝上
这个事件的概率
历史上曾有人做过抛掷硬币的大量重复 试验,结果如下表 :
抛掷次数(m ) 正面向上次数
(频数n )
2048 4040 12000 24000 30000 72088
1061 2048 6019 12012 14984 36124
3.1.1 随机事件的概率
在自然界和实际生活中,我们会遇到 各种各样的事件.如果从结果能否预
知的角度来看,可以分为两大类:
(1)一类事件的结果总是确定的,即在 一定的条件下,它所出现的结果是可以 预知的,这类事件称为确定事件;
(2)另一类事件的结果是无法预知的,即 在一定的条件下,出现那种结果是无法预 先确定的,这类事件称为随机事件.