离散数学第2章习题解答
离散数学(第三版)陈建明-刘国荣课后习题答案
离散数学辅助教材概念分析结构思想与推理证明第一部分集合论刘国荣交大电信学院计算机系离散数学习题解答习题一(第一章集合)1. 列出下述集合的全部元素:1)A={x | x ∈N∧x是偶数∧x<15}2)B={x|x∈N∧4+x=3}3)C={x|x是十进制的数字}[解] 1)A={2,4,6,8,10,12,14}2)B=3)C={0,1,2,3,4,5,6,7,8,9}2. 用谓词法表示下列集合:1){奇整数集合}2){小于7的非负整数集合}3){3,5,7,11,13,17,19,23,29}[解] 1){n n I(m I)(n=2m+1)};2){n n I n0n<7};3){p p N p>2p<30(d N)(d1d p(k N)(p=k d))}。
3. 确定下列各命题的真假性:1)2)∈3){}4)∈{}5){a,b}{a,b,c,{a,b,c}}6){a,b}∈(a,b,c,{a,b,c})7){a,b}{a,b,{{a,b,}}}8){a,b}∈{a,b,{{a,b,}}}[解]1)真。
因为空集是任意集合的子集;2)假。
因为空集不含任何元素;3)真。
因为空集是任意集合的子集;4)真。
因为是集合{}的元素;5)真。
因为{a,b}是集合{a,b,c,{a,b,c}}的子集;6)假。
因为{a,b}不是集合{a,b,c,{a,b,c}}的元素;7)真。
因为{a,b}是集合{a,b,{{a,b}}}的子集;8)假。
因为{a,b}不是集合{a,b,{{a,b}}}的元素。
4. 对任意集合A,B,C,确定下列命题的真假性:1)如果A∈B∧B∈C,则A∈C。
2)如果A∈B∧B∈C,则A∈C。
3)如果A B∧B∈C,则A∈C。
[解] 1)假。
例如A={a},B={a,b},C={{a},{b}},从而A∈B∧B∈C但A∈C。
2)假。
例如A={a},B={a,{a}},C={{a},{{a}}},从而A∈B∧B∈C,但、A∈C。
离散数学 第2章 习题解答
第2章习题解答2.1 本题没有给出个体域,因而使用全总个体域.(1) 令x(是鸟xF:)(会飞翔.G:)xx命题符号化为xF∀.Gx→)())((x(2)令xx(为人.F:)(爱吃糖G:)xx命题符号化为xFx→G⌝∀))()((x或者Fx⌝x∧∃)))(((xG(3)令xx(为人.F:)G:)(爱看小说.xx命题符号化为xF∃.Gx∧(x())()(4) x(为人.xF:)(爱看电视.G:)xx命题符号化为Fx⌝∧⌝∃.xG()())(x分析 1°如果没指出要求什么样的个体域,就使用全总个休域,使用全总个体域时,往往要使用特性谓词。
(1)-(4)中的)F都是特性谓词。
(x2°初学者经常犯的错误是,将类似于(1)中的命题符号化为Fx∀Gx∧())()(x即用合取联结词取代蕴含联结词,这是万万不可的。
将(1)中命题叙述得更透彻些,是说“对于宇宙间的一切事物百言,如果它是鸟,则它会飞翔。
”因而符号化应该使用联结词→而不能使用∧。
若使用∧,使(1)中命题变成了“宇宙间的一切事物都是鸟并且都会飞翔。
”这显然改变了原命题的意义。
3° (2)与(4)中两种符号化公式是等值的,请读者正确的使用量词否定等值式,证明(2),(4)中两公式各为等值的。
2.2 (1)d (a),(b),(c)中均符号化为)(x xF ∀其中,12)1(:)(22++=+x x x x F 此命题在)(),(),(c b a 中均为真命题。
(2) 在)(),(),(c b a 中均符号化为)(x xG ∃其中02:)(=+x x G ,此命题在(a )中为假命题,在(b)(c)中均为真命题。
(3)在)(),(),(c b a 中均符号化为)(x xH ∃其中.15:)(=x x H 此命题在)(),(b a 中均为假命题,在(c)中为真命题。
分析 1°命题的真值与个体域有关。
2° 有的命题在不同个体域中,符号化的形式不同,考虑命题“人都呼吸”。
离散数学第3版习题答案
离散数学第3版习题答案离散数学是一门重要的数学学科,它研究的是离散对象和离散结构的数学理论。
离散数学的应用广泛,涉及到计算机科学、信息技术、通信工程等领域。
在学习离散数学的过程中,习题是不可或缺的一部分,通过解答习题可以加深对知识的理解和掌握。
本文将为大家提供《离散数学第3版》习题的答案,希望能对学习者有所帮助。
第一章:命题逻辑1.1 习题答案:1. (a) 真值表如下:p | q | p ∧ qT | T | TT | F | FF | T | FF | F | F(b) 命题“p ∧ q”的真值表如下:p | q | p ∧ qT | T | TT | F | FF | T | FF | F | F(c) 命题“p ∨ q”的真值表如下:p | q | p ∨ qT | T | TT | F | TF | T | TF | F | F(d) 命题“p → q”的真值表如下:p | q | p → qT | T | TT | F | FF | T | TF | F | T1.2 习题答案:1. (a) 命题“¬(p ∧ q)”等价于“¬p ∨ ¬q”。
(b) 命题“¬(p ∨ q)”等价于“¬p ∧ ¬q”。
(c) 命题“¬(p → q)”等价于“p ∧ ¬q”。
(d) 命题“¬(p ↔ q)”等价于“(p ∧ ¬q) ∨ (¬p ∧ q)”。
1.3 习题答案:1. (a) 命题“p → q”的否定是“p ∧ ¬q”。
(b) 命题“p ∧ q”的否定是“¬p ∨ ¬q”。
(c) 命题“p ↔ q”的否定是“(p ∧ ¬q) ∨ (¬p ∧ q)”。
(d) 命题“p ∨ q”的否定是“¬p ∧ ¬q”。
1.4 习题答案:1. (a) 命题“p → q”与命题“¬p ∨ q”等价。
离散数学课后习题答案(第二章)
b) 他是田径或球类运动员。 解:设 S(x) :x 是田径运动员。B(x) :x 是球类运动员。h:他 则有 S(h)∨B(h) c) 小莉是非常聪明和美丽的。 解:设 C(x) :x 是聪明的。B(x) :x 是美丽的。l:小莉。 则有 C(l)∧ B(l) d)若 m 是奇数,则 2m 不是奇数。 解:设 O(x) :x 是奇数。 则有 O(m)→¬ O(2m) 。 e)每一个有理数是实数。 解:设 R(x) :x 是实数。Q(x) :x 是有理数。 则有 (∀x) (Q(x)→R(x) ) f) 某些实数是有理数。 解:设 R(x) :x 是实数。Q(x) :x 是有理数。 则有 (∃x) (R(x)∧Q(x) ) g) 并非每个实数都是有理数。 解:设 R(x) :x 是实数。Q(x) :x 是有理数。 则有 ¬(∀x) (R(x)→Q(x) ) h)直线 A 平行于直线 B,当且仅当直线 A 不相交于直线 B。 解:设 P(x,y) :直线 x 平行于直线 y,G(x,y) :直线 x 相交于直线 y。 则有 P(A,B)�¬G(A,B) (2) 找出以下十二个句子所对应的谓词表达式。 a) 所有的教练员是运动员。 (J(x),L(x)) 解:设 J(x):x 是教练员。L(x):x 是运动员。 则有 (∀x) (J(x)→L(x) ) b) 某些运动员是大学生。 (S(x)) 解:设 S(x):x 是大学生。L(x):x 是运动员。 则有 (∃x) (L(x)∧S(x) ) c) 某些教练是年老的,但是健壮的。 (O(x),V(x) ) 解:设 J(x):x 是教练员。O(x):x 是年老的。V(x) :x 是健壮的。 则有 (∃x) (J(x)∧O(x)∧V(x) ) d) 金教练既不老但也不健壮的。 (j) 解:设 O(x):x 是年老的。V(x) :x 是健壮的。j:金教练 则有 ¬ O(j)∧¬V(j) e) 不是所有的运动员都是教练。 解:设 L(x):x 是运动员。J(x):x 是教练员。 则 ¬(∀x) (L(x)→J(x) ) f) 某些大学生运动员是国家选手。 (C(x) )
离散数学(微课版) 第2章习题答案
离散数学(微课版)第2章习题答案习题 2.11. 给出以下相关数集的定义:•人类:所有人类的集合。
•学生:具有在某所学校注册学籍的人的集合。
•男学生:具有在某所学校注册学籍且性别为男性的学生的集合。
2. 判断以下命题是否为真:•男学生集合是人类集合的子集。
•学生集合是男学生集合的子集。
答案:1.人类集合和学生集合的关系可以表示为:学生集合是人类集合的子集。
因为学生是人类的一个子集,但并不是全部人类都是学生。
2.男学生集合是人类集合的子集,因为男学生是学生的一个子集,而学生又是人类的一个子集。
所以男学生集合也是人类集合的一个子集。
3.学生集合是男学生集合的超集,因为男学生是学生的一个子集,但并不是所有学生都是男学生。
所以学生集合包含了男学生集合。
习题 2.21. 给出以下关系的定义:•R = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)}。
2. 判断以下命题是否为真:•R 是对称关系。
•R 是自反关系。
答案:1.该关系 R 中的元素可以表示为有序对的形式,如 (1, 1) 表示元素 1 和元素 1 之间存在关系。
根据 R 的定义,可以发现所有的对称元素都存在于 R 中。
所以 R 是一个对称关系。
2.该关系 R 中包括了所有元素对 (x, x),表示每个元素和它自己之间都存在关系。
所以 R 是一个自反关系。
习题 2.31. 给出以下集合的定义:• A = {1, 2, 3, 4}• B = {2, 4, 6, 8}• C = {1, 3, 5, 7}2. 判断以下命题是否为真:• A ∩ B = {2, 4}• A ∪ C = {1, 2, 3, 4, 5, 7}答案:1. A ∩ B表示 A 和 B 的交集,即包含了同时属于 A 和B 的元素。
根据 A 和 B 的定义,可以发现共同元素为 {2, 4}。
所以命题A ∩ B = {2, 4} 是真的。
2. A ∪ C 表示 A 和 C 的并集,即包含了属于 A 或 C 的所有元素。
离散数学习题解答-第2章命题逻辑
(2) 有 4 个不同的命题变元,使公式的真值为 0 的赋值有 p 0, q 0, r 1, w 0 ;
p 0, q 1, r 0, w 1 ; p 0, q 1, r 1, w 0 ; p 1, q 1, r 0, w 1 ;
3
p 1, q 1, r 1, w 1 ; 使 公 式 的 真 值 为 1 有 赋 值 有 p 0 , q 0 ,r 0 ,w ; 0 p 0, q 0, r 0, w 1 ; p 0, q 0, r 1, w 1 ; p 0, q 1, r 0, w 0 ; p 0, q 1, r 1, w 1 ; p 1, q 0, r 0, w 0 ; p 1, q 0, r 0, w 1 ; p 1, q 0, r 1, w 0 ; p 1, q 0, r 1, w 1 ; p 1, q 1, r 0, w 0 ; p 1, q 1, r 1, w 0 ;
((p q) s) (r t )
3. 列出下列各公式的所有赋值, 并指出哪些赋值使公式的真值为 1, 哪些赋值使公式的真值 为 0。 (1) ( p q) r r (2) (w q) ( p r ) w (3) (( p q) ( p q)) p (4) ((u q) (t r )) (r u) (5) (m q) ((q r ) s) (6) (m q) (t r ) q 解 : (1) 有 3 个 不 同 的 命 题 变 元 , 使 公 式 的 真 值 为 0 的 赋 值 有 p 0, q 0, r 0 ;
p 0, q 0, r 1 ; p 0, q 1, r 0 ; p 0, q 1, r 1 ; p 1, q 0, r 1 ; p 1, q 1, r 0 ; p 1, q 1, r 1 . 使公式的真值为 1 有赋值有 p 1, q 0, r 0 .
离散数学(刘任任版)第2章答案
而关系图中任何两个结点之间的有向弧是单向的。 (即若关系R是反对称的,当且仅当关系矩阵中 以对角线对称的元素不能同时为1,在关系图上 任两个结点的定向弧线不可能成对出现)
5.
R·S={<1,4>,<1,3>},S·R={<3,4>}; R 2={<1,1>,<1,2>,<1,4>}; S 2={<2,2>,<3,4>,<3,3>}.
β(A×A-{<x,x>})=2n2-n
(4)共有2n 2n(n1)/ 2 2n(n1)/ 2 种定义在A上
的不同的对称关系; 说明: ∵A上的对称关系必须满足:如果<x,y>在
这个关系中,则<y,x>也必须在这个关系中。 ∴在构造A上的对称关系的时候可以先将所有 的<x,y>和<y,x>(其中x≠y)看成是一个整体。 ∴要考虑的序偶的个数有:
s(R1) s(R2 ) (R1 R11) (R2 R21)任取 x, y s(R1 R2 ) (R1 R2 ) (R1 R2 )1 (i)若 x,y (R1 R2 ),
则 x, y R1 R1 R11,且 x, y R2 R2 R21,从而 x,y (R1 R11) (R2 R21)
14.
证明 S {Ai Bj | Ai Bj } (1)由S定义知, Ai Bj (2)任取Ai Bi S和Al Bm S, 1 i, j r,1 j, m s ( Ai Bj ) ( Al Bm ) ( Ai Am ) (Bj Bm )
离散数学-第二章命题逻辑等值演算习题及答案
第二章作业 评分要求:1. 每小题6分: 结果正确1分; 方法格式正确3分; 计算过程2分. 合计48分2. 给出每小题得分(注意: 写出扣分理由)3. 总得分在采分点1处正确设置.一. 证明下面等值式(真值表法, 解逻辑方程法, 等值演算法, 三种方法每种方法至少使用一次):说明证1. p ⇔(p ∧q)∨(p ∧¬q)解逻辑方程法设 p ↔((p ∧q)∨(p ∧¬q)) =0, 分两种情况讨论:⎩⎨⎧=⌝∧∨∧=0)()(1)1(q p q p p 或者 ⎩⎨⎧=⌝∧∨∧=1)()(0)2(q p q p p (1)(2)两种情况均无解, 从而, p ↔(p ∧q)∨(p ∧¬q)无成假赋值, 为永真式.等值演算法(p ∧q)∨(p ∧¬q)⇔ p ∧(q ∨¬q)∧对∨的分配率⇔ p ∧1 排中律⇔ p 同一律真值表法用真值表法和解逻辑方程法证明相当于证明为永真式1. (¬p→q)→(¬q∨p)解(¬p→q)→(¬q∨p)⇔(p∨q)→(¬q∨p)蕴含等值式⇔(¬p∧¬q)∨(¬q∨p)蕴含等值式, 德摩根律⇔(¬p∧¬q)∨¬q ∨p结合律⇔p∨¬q吸收律, 交换律⇔M1因此, 该式的主析取范式为m0∨m2∨m32. (¬p→q)∧(q∧r)解逻辑方程法设(¬p→q)∧(q∧r) =1, 则¬p→q=1且q∧r=1,解得q=1, r=1, p=0 或者q=1, r=1, p=1, 从而所求主析取范式为m3∨m7, 主合取范式为M0∧M1∧M2∧M4∧M5∧M6等值演算法(¬p→q)∧(q∧r)⇔ (p∨q)∧(q∧r) 蕴含等值式⇔ (p∧q∧r)∨(q∧r) ∧对∨分配律, 幂等律⇔ (p∧q∧r) ∨ (p∧q∧r)∨(⌝p∧q∧r) 同一律, 矛盾律, ∧对∨分配律⇔m7∨ m3主合取范式为M0∧M1∧M2∧M4∧M5∧M63. (p↔q)→r解逻辑方程法设(p↔q)→r =0, 解得p=q=1, r=0 或者p=q=0, r=0, 从而所求主合取范式为M0∧M6, 主析取范式为m1∨m2∨m3∨m4∨m5∨m7等值演算法(p↔q)→r⇔ ((p→q)∧(q→p))→r 等价等值式⇔⌝((p→q)∧(q→p))∨r 蕴含等值式⇔ (p∧⌝q)∨(q∧⌝p)∨r 德摩根律, 蕴含等值式的否定(参见PPT)⇔ (p∨q∨r)∧(⌝q∨⌝p∨r) ∨对∧分配律, 矛盾律, 同一律⇔M0∧ M6主析取范式为m1∨m2∨m3∨m4∨m5∨m74. (p→q)∧(q→r)解等值演算法(p→q)∧(q→r)⇔ (⌝p∨q)∧(⌝q∨r) 蕴含等值式⇔ (⌝p∧⌝q)∨(⌝p∧r)∨(q∧r) ∧对∨分配律, 矛盾律, 同一律⇔ (⌝p∧⌝q∧r)∨(⌝p∧⌝q∧⌝r) ∨ (⌝p∧q∧r)∨(⌝p∧⌝q∧r) ∨ (p∧q∧r)∨(⌝p∧q∧r)⇔m1∨ m0∨ m3∨ m7主合取范式为M2∧ M4∧ M5∧ M6.解逻辑方程法设(p → q) ∧ (q → r) = 1, 则p → q =1 且q → r =1.前者解得: p=0, q=0; 或者p=0, q=1; 或者p=1, q=1.后者解得: q=0, r=0; 或者q=0, r=1; 或者q=1, r=1.综上可得成真赋值为000, 001, 011, 111, 从而主析取范式为m0∨ m1∨ m3∨ m7, 主合取范式为M2∧ M4∧ M5∧ M6.真值表法公式(p → q) ∧ (q从而主析取范式为m0∨ m1∨ m3∨ m7, 主合取范式为M2∧ M4∧ M5∧ M6.。
离散数学 第2章 习题解答
习题 2.11.将下列命题符号化。
(1) 4不是奇数。
解:设A(x):x是奇数。
a:4。
“4不是奇数。
”符号化为:¬A(a)(2) 2是偶数且是质数。
解:设A(x):x是偶数。
B(x):x是质数。
a:2。
“2是偶数且是质数。
”符号化为:A(a)∧B(a)(3) 老王是山东人或河北人。
解:设A(x):x是山东人。
B(x):x是河北人。
a:老王。
“老王是山东人或河北人。
”符号化为:A(a)∨B(a)(4) 2与3都是偶数。
解:设A(x):x是偶数。
a:2,b:3。
“2与3都是偶数。
”符号化为:A(a)∧A(b)(5) 5大于3。
解:设G(x,y):x大于y。
a:5。
b:3。
“5大于3。
”符号化为:G(a,b)(6) 若m是奇数,则2m不是奇数。
解:设A(x):x是奇数。
a:m。
b:2m。
“若m是奇数,则2m不是奇数。
”符号化为:A(a)→A(b)(7) 直线A平行于直线B当且仅当直线A不相交于直线B。
解:设C(x,y):直线x平行于直线y。
设D(x,y):直线x相交于直线y。
a:直线A。
b:直线B。
“直线A平行于直线B当且仅当直线A不相交于直线B。
”符号化为:C(a,b)↔¬D(x,y)(8) 小王既聪明又用功,但身体不好。
解:设A(x):x聪明。
B(x):x用功。
C(x):x身体好。
a:小王。
“小王既聪明又用功,但身体不好。
”符号化为:A(a)∧B(a)∧¬C(a)(9) 秦岭隔开了渭水和汉水。
解:设A(x,y,z):x隔开了y和z。
a:秦岭。
b:渭水。
c:汉水。
“秦岭隔开了渭水和汉水。
”符号化为:A(a,b,c)(10) 除非小李是东北人,否则她一定怕冷。
解:设A(x):x是东北人。
B(x):x怕冷。
a:小李。
“除非小李是东北人,否则她一定怕冷。
”符号化为:B(a)→¬A(a)2.将下列命题符号化。
并讨论它们的真值。
(1) 有些实数是有理数。
解:设R(x):x是实数。
离散数学第二版 屈婉玲 1-5章(答案)
《离散数学1-5章》练习题答案第2,3章(数理逻辑)1.答:(2),(3),(4)2.答:(2),(3),(4),(5),(6)3.答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是4.答:(4)5.答:⌝P ,Q→P6.答:P(x)∨∃yR(y)7.答:⌝∀x(R(x)→Q(x))8、c、P→(P∧(Q→P))解:P→(P∧(Q→P))⇔⌝P∨(P∧(⌝Q∨P))⇔⌝P∨P⇔ 1 (主合取范式)⇔ m0∨ m1∨m2∨ m3 (主析取范式)d、P∨(⌝P→(Q∨(⌝Q→R)))解:P∨(⌝P→(Q∨(⌝Q→R)))⇔ P∨(P∨(Q∨(Q∨R)))⇔ P∨Q∨R⇔ M0 (主合取范式)⇔ m1∨ m2∨m3∨ m4∨ m5∨m6 ∨m7 (主析取范式) 9、b、P→(Q→R),R→(Q→S) => P→(Q→S)证明:(1) P 附加前提(2) Q 附加前提(3) P→(Q→R) 前提(4) Q→R (1),(3)假言推理(5) R (2),(4)假言推理(6) R→(Q→S) 前提(7) Q→S (5),(6)假言推理(8) S (2),(7)假言推理d、P→⌝Q,Q∨⌝R,R∧⌝S⇒⌝P证明、(1) P 附加前提(2) P→⌝Q 前提(3)⌝Q (1),(2)假言推理(4) Q∨⌝R 前提(5) ⌝R (3),(4)析取三段论(6 ) R∧⌝S 前提(7) R (6)化简(8) R∧⌝R 矛盾(5),(7)合取所以该推理正确10.写出∀x(F(x)→G(x))→(∃xF(x) →∃xG(x))的前束范式。
解:原式⇔∀x(⌝F(x)∨G(x))→(⌝(∃x)F(x) ∨ (∃x)G(x))⇔⌝(∀x)(⌝F(x)∨G(x)) ∨(⌝(∃x)F(x) ∨ (∃x)G(x))⇔ (∃x)((F(x)∧⌝ G(x)) ∨G(x)) ∨ (∀x) ⌝F(x)⇔ (∃x)((F(x) ∨G(x)) ∨ (∀x) ⌝F(x)⇔ (∃x)((F(x) ∨G(x)) ∨ (∀y) ⌝F(y)⇔ (∃x) (∀y) (F(x) ∨G(x) ∨⌝F(y))(集合论部分)1、答:(4)2.答:323.答:(3)4. 答:(4)5.答:(2),(4)6、设A,B,C是三个集合,证明:a、A⋂ (B-C)=(A⋂B)-(A⋂C)证明:(A⋂B)-(A⋂C)= (A⋂B)⋂~(A⋂C)=(A⋂B) ⋂(~A⋃~C)=(A⋂B⋂~A)⋃(A⋂B⋂~C)= A⋂B⋂~C=A⋂(B⋂~C)=A⋂(B-C)b、(A-B)⋃(A-C)=A-(B⋂C)证明:(A-B)⋃(A-C)=(A⋂~B)⋃(A⋂⋂~C) =A⋂ (~B ⋃~C)=A⋂~(B⋂C)= A-(B⋂C)(二元关系部分)1、答:(1)R={<1,1>,<4,2>} (2) R1-={<1,1>,<2,4>}2.答:R R ={〈1,1〉,〈1,3〉,〈2,2〉,〈2,4〉}R-1 ={〈2,1〉,〈1,2〉,〈3,2〉,〈4,3〉}3.答:R={<1,1>,<2,2>,<3,3>,<4,4>,<5,5>,<6,6>,<1,2>,<1,3>,<1,4>,<1,5>,<1,6>,<2,4>,<2,6>,<3,6>}4.答:R 的关系矩阵=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡000000001000000001 R 1-的关系矩阵=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0000000100000000015、解:(1)R={<2,1>,<3,1>,<2,3>};M R =⎪⎪⎪⎭⎫ ⎝⎛001101000;它是反自反的、反对称的、传递的;(2)R={<1,2>,<2,1>,<1,3>,<3,1>,<2,3>,<3,2>};M R =⎪⎪⎪⎭⎫⎝⎛011101110;它是反自反的、对称的;(3)R={<1,2>,<2,1>,<1,3>,<3,3>};M R =⎪⎪⎪⎭⎫⎝⎛100001110;它既不是自反的、也不是反自反的、也不是对称的、也不是反对称的、也不是传递的。
离散数学(屈婉玲版)第二章习题答案
2.13 设解释I为:个体域D I ={-2,3,6},一元谓词F(X):X≤3,G(X):X>5,R(X):X≤7。
在I下求下列各式的真值。
(1)∀x(F(x)∧G(x))解:∀x(F(x)∧G(x))⇔(F(-2) ∧G(-2)) ∧(F(3) ∧G(3)) ∧(F(6) ∧G(6))⇔((-2≤3) ∧(-2>5)) ∧((3≤3) ∧(3>5)) ∧((6≤3) ∧(6<5))⇔((1 ∧0))∧((1 ∧0)) ∧((0 ∧0))⇔0∧0∧0⇔0(2) ∀x(R(x)→F(x))∨G(5)解:∀x(R(x)→F(x))∨G(5)⇔(R(-2)→F(-2))∧ (R(3)→F(3))∧ (R(6)→F(6))∨ G(5)⇔((-2≤7) →(-2≤3))∧ (( 3≤7) →(3≤3))∧ (( 6≤7) →(6≤3)) ∨ (5>5)⇔(1 →1)∧ (1 →1)∧ (1→0) ∨ 0⇔1∧ 1∧ 0 ∨ 0⇔0(3)∃x(F(x)∨G(x))解:∃x(F(x)∨G(x))⇔(F(-2) ∨ G(-2)) ∨ (F(3) ∨G(3)) ∨ (F(6) ∨G(6))⇔((-2≤3) ∨ (-2>5)) ∨ ((3≤3) ∨ (3>5)) ∨ ((6≤3) ∨ (6>5))⇔(1 ∨ 0) ∨ (1 ∨ 0) ∨ (0 ∨ 1)⇔1 ∨ 1 ∨ 1⇔12.14 求下列各式的前束范式,要求使用约束变项换名规则。
(1)⌝∃xF(x)→∀yG(x,y)(2) ⌝(∀xF(x,y) ∨∃yG(x,y) )解:(1)⌝∃xF(x)→∀yG(x,y)⇔⌝∃xF(x)→∀yG(z,y) 代替规则⇔∀x⌝F(x)→∀yG(z,y) 定理2.1(2 )⇔∃x(⌝F(x)→∀yG(z,y) 定理2.2(2)③⇔∃x∀y(⌝F(x)→G(z,y)) 定理2.2(1)④(2)⌝(∀xF(x,y) ∨∃yG(x,y) )⇔⌝(∀zF(z,y) ∨∃tG(x,t)) 换名规则⇔⌝(∀zF(z,y) )∧⌝(∃tG(x,t) )⇔∃z⌝F(z,y) ∧∀t⌝G(x,z)⇔∃z (⌝F(z,y) ∧∀t⌝G(x,z))⇔∃z ∀t(⌝F(z,y) ∧⌝G(x,t))2.15 求下列各式的前束范式,要求使用自由变项换名规则。
离散数学答案第二章习题解答
离散数学答案第二章习题解答第二章谓词逻辑习题与解答1、将下列命题符号化:(1) 所有的火车都比某些汽车快。
(2) 任何金属都可以溶解在某种液体中。
(3) 至少有一种金属可以溶解在所有液体中。
(4) 每个人都有自己喜欢的职业。
(5) 有些职业就是所有的人都喜欢的。
解 (1) 取论域为所有交通工具的集合。
令x x T :)(就是火车, x x C :)(就是汽车, x y x F :),(比y 跑得快。
“所有的火车都比某些汽车快”可以符号化为))),()(()((y x F y C y x T x ∧?→?。
(2) 取论域为所有物质的集合。
令x x M :)(就是金属, x x L :)(就是液体, x y x D :),(可以溶解在y 中。
“任何金属都可以溶解在某种液体中” 可以符号化为))),()(()((y xD y L y x M x ∧?→?。
(3) 论域与谓词与(2)同。
“至少有一种金属可以溶解在所有液体中” 可以符号化为))),()(()((y x D y L y x M x →?∧?。
(4) 取论域为所有事物的集合。
令x x M :)(就是人, x x J :)(就是职业, x y x L :),(喜欢y 。
“每个人都有自己喜欢的职业” 可以符号化为))),()(()((y x L y J y x M x ∧?→?(5)论域与谓词与(4)同。
“有些职业就是所有的人都喜欢的”可以符号化为))),()(()((x y L y M y x J x →?∧?。
2、取论域为正整数集,用函数+(加法),?(乘法)与谓词<,=将下列命题符号化:(1) 没有既就是奇数,又就是偶数的正整数。
(2) 任何两个正整数都有最小公倍数。
(3) 没有最大的素数。
(4) 并非所有的素数都不就是偶数。
解先引进一些谓词如下:x y x D :),(能被y 整除,),(y x D 可表示为)(x y v v =??。
离散数学答案第二章习题解答
第二章 谓词逻辑习题与解答1、 将下列命题符号化:(1) 所有的火车都比某些汽车快。
(2) 任何金属都可以溶解在某种液体中。
(3) 至少有一种金属可以溶解在所有液体中。
(4) 每个人都有自己喜欢的职业。
(5) 有些职业就是所有的人都喜欢的。
解 (1) 取论域为所有交通工具的集合。
令x x T :)(就是火车, x x C :)(就是汽车, x y x F :),(比y 跑得快。
“所有的火车都比某些汽车快”可以符号化为))),()(()((y x F y C y x T x ∧∃→∀。
(2) 取论域为所有物质的集合。
令x x M :)(就是金属, x x L :)(就是液体, x y x D :),(可以溶解在y 中。
“任何金属都可以溶解在某种液体中” 可以符号化为))),()(()((y x D y L y x M x ∧∃→∀。
(3) 论域与谓词与(2)同。
“至少有一种金属可以溶解在所有液体中” 可以符号化为))),()(()((y x D y L y x M x →∀∧∃。
(4) 取论域为所有事物的集合。
令x x M :)(就是人, x x J :)(就是职业, x y x L :),(喜欢y 。
“每个人都有自己喜欢的职业” 可以符号化为))),()(()((y x L y J y x M x ∧∃→∀(5)论域与谓词与(4)同。
“有些职业就是所有的人都喜欢的”可以符号化为))),()(()((x y L y M y x J x →∀∧∃。
2、 取论域为正整数集,用函数+(加法),•(乘法)与谓词<,=将下列命题符号化:(1) 没有既就是奇数,又就是偶数的正整数。
(2) 任何两个正整数都有最小公倍数。
(3) 没有最大的素数。
(4) 并非所有的素数都不就是偶数。
解 先引进一些谓词如下:x y x D :),(能被y 整除,),(y x D 可表示为)(x y v v =•∃。
x x J :)(就是奇数,)(x J 可表示为)2(x v v =•⌝∃。
离散数学第四版课后标准答案
离散数学第四版课后答案第1章习题解答1.1 除(3),(4),(5),(11)外全是命题,其中,(1),(2),(8),(9),(10),(14),(15)是简单命题,(6),(7),(12),(13)是复合命题。
分析首先应注意到,命题是陈述句,因而不是陈述句的句子都不是命题。
本题中,(3)为疑问句,(5)为感叹句,(11)为祈使句,它们都不是陈述句,所以它们都不是命题。
其次,4)这个句子是陈述句,但它表示的判断结果是不确定。
又因为(1),(2),(8),(9),(10),(14),(15)都是简单的陈述句,因而作为命题,它们都是简单命题。
(6)和(7)各为由联结词“当且仅当”联结起来的复合命题,(12)是由联结词“或”联结的复合命题,而(13)是由联结词“且”联结起来的复合命题。
这里的“且”为“合取”联结词。
在日常生活中,合取联结词有许多表述法,例如,“虽然……,但是……”、“不仅……,而且……”、“一面……,一面……”、“……和……”、“……与……”等。
但要注意,有时“和”或“与”联结的是主语,构成简单命题。
例如,(14)、(15)中的“与”与“和”是联结的主语,这两个命题均为简单命题,而不是复合命题,希望读者在遇到“和”或“与”出现的命题时,要根据命题所陈述的含义加以区分。
1.2 (1)p: 2是无理数,p为真命题。
(2)p:5能被2整除,p为假命题。
(6)p→q。
其中,p:2是素数,q:三角形有三条边。
由于p与q都是真命题,因而p→q为假命题。
(7)p→q,其中,p:雪是黑色的,q:太阳从东方升起。
由于p为假命题,q为真命题,因而p→q为假命题。
(8)p:2000年10月1日天气晴好,今日(1999年2月13日)我们还不知道p的真假,但p的真值是确定的(客观存在的),只是现在不知道而已。
(9)p:太阳系外的星球上的生物。
它的真值情况而定,是确定的。
1(10)p:小李在宿舍里. p的真值则具体情况而定,是确定的。
离散数学第二章课后题目讲解
用谓词公式符号化上述三条公理。 [解]:设 N(x):x 是一个数。S(x,y):y 是 x 的后继数(即 x 是 y 的直接先行者,例如 z 的直接先行者是 1) 于是,(a)x(N(x)→(!y)(N(y)S∧(x,y))) (b)┐x (N(x)S∧(x,1) (c)x(N(x)┐S∧(x,z)→(!y)N(y)S∧(y,x)))
24(3)对下列谓词公式中的自由变元进行代入 (a)(yA(x,y)→xB(x,z))∧xzC(x,y,z); (b)(yP(x,y)∧Q(x,z))∨xR(x,y)。 [解] (a)(yA(u,y)→xB(x,v))∧xzC(x,t,z)。 (b)(yP(u,y)∧Q(u,z))∨xR(x,t)。
23(3)设 Q(x,y,z):x+y=z,(其中 x,y,z 均为实数)试确定如下两个命题的真假值: xyz Q(x,y,z); zxy Q(x,y,z)。 [解]: xyz Q(x,y,z)表示对任意实数 x,y 必存在实数 z 使 x+y=z。显然是真
命题。 zxy Q(x,y,z)表示存在实数 z,对任意实数 x,y 必有 x+y=z。当然这样
21(2)将下列命题符号化: (a) 所有的教练员是运动员(J(x),L(x));
(b) 某些运动员是大学生;(S(x)); (c) 某些教练是年老的,但是健壮的(Q(x),V(x)); (d) 不是所有的运动员都是教练; (e) 所有的运动员都钦佩某些教练(A(x,y)); (f) 有些大学生不钦佩运动员。
离散数学(微课版) 第2章习题答案
离散数学(微课版)第2章习题答案2.1 集合与运算习题1给定两个集合A={1,3,5,7,9}和B={2,4,6,8,10},求A∪B和A∩B。
解答:集合A和B的并集(A∪B)是包含了A和B中所有元素的集合。
根据题目给出的集合A和B,可以得到并集A∪B={1,2,3,4,5,6,7,8,9,10}。
集合A和B的交集(A∩B)是包含了A和B中共有的元素的集合。
根据题目给出的集合A和B,可以得到交集A∩B={},因为集合A和B中没有共有的元素。
习题2给定两个集合A={奇数}和B={偶数},求A和B的交集和并集。
如果集合B改为B={2,4,6,8},结果是否有变化?解答:集合A表示奇数,集合B表示偶数。
当集合A和B中元素的范围比较广泛时,它们的交集为{},因为奇数和偶数没有共有的元素。
当集合B改为B={2,4,6,8}时,集合A和B中共有的元素为{},并集为A∪B=奇数∪{2,4,6,8}={奇数,2,4,6,8}。
2.2 命题与逻辑运算习题3给定两个命题p:“小明喜欢篮球”和q:“小明是篮球队的队长”。
请判断以下复合命题是真还是假:(1)p∧q;(2)p∨q;(3)p→q。
解答:命题p:“小明喜欢篮球” 是真命题。
命题q:“小明是篮球队的队长” 是假命题。
(1)p∧q:当p和q都为真时,命题p∧q才为真。
根据题目中给出的p和q的真值,可以确定p∧q是假命题。
(2)p∨q:当p和q中至少一个为真时,命题p∨q就为真。
根据题目中给出的p和q的真值,可以确定p∨q是真命题。
(3)p→q:当p为真时,命题p→q为真,否则为假。
根据题目中给出的p和q的真值,可以确定p→q是真命题。
习题4给定一个命题p:“2是偶数”。
请判断以下复合命题是真还是假:(1)¬p;(2)p∧¬p;(3)¬p∨p。
解答:命题p:“2是偶数” 是真命题。
(1)¬p:取命题p的否定,即“2不是偶数”,根据命题p的真值,可以确定¬p是假命题。
离散数学课后习题答案二
离散数学课后习题答案二习题3.71. 列出关系}6|{=∈><+d c b a d c b a d c b a 且,,,,,,Z 中所有有序4元组。
解}6|{=∈><+d c b a d c b a d c b a 且,,,,,,Z,2,1,3,1,3,1,2,1,2,3,1,1,3,2,1,1,1,1,1,6,1,1,6,1,1,6,1,1,6,1,1,1{><><><><><><><><=><><><><><><><><2,1,1,3,3,1,1,2,1,2,1,3,1,3,1,2,1,1,2,3, 1,1,3,2,1,2,3,1,1,3,2,12. 列出二维表3.18所表示的多元关系中所有5元组。
假设不增加新的5元组,找出二维表3.18所有的主键码。
表3.18 航班信息航空公司航班登机口目的地起飞时间Nadir 112 34 底特律08:10 Acme 221 22 丹佛 08:17 Acme 122 33 安克雷奇 08:22 Acme 323 34 檀香山 08:30 Nadir 199 13 底特律 08:47 Acme 222 22 丹佛09:10 Nadir 32234底特律09:44解略3. 当施用投影运算5,3,2π到有序5元组><="">解略4. 哪个投影运算用于除去一个6元组的第一、第二和第四个分量?解略5. 给出分别施用投影运算4,2,1π和选择运算Nadir 航空公司=σ到二维表3.18以后得到的表。
解对航班信息二维表进行投影运算5,3,2π后得到的二维表航班登机口起飞时间 112 34 08:10 221 22 08:17 122 33 08:22 323 34 08:30 199 13 08:47 222 22 09:10 3223409:44对航班信息二维表进行选择运算Nadir 航空公司=后得到的二维表航空公司航班登机口目的地起飞时间Nadir 112 34 底特律08:10 Nadir 199 13 底特律 08:47 Nadir 32234底特律09:446. 把连接运算3J 用到5元组二维表和8元组二维表后所得二维表中有序多元组有多少个分量?解略7. 构造把连接运算2J 用到二维表3.19和二维表3.20所得到的二维表。
离散数学左孝陵版第二章答案
§5谓词演算的 等价式与蕴含式
命题逻辑 ¬ ¬ PP P∨PP
. . P→Q ¬ Q→ ¬ P PP∨Q PΛQ P . . .
谓词逻辑 ¬ ¬ P(x)P(x) P(x)∨P(x)P(x)
. . P(x)→Q(x) ¬ Q(x)→ ¬ P(x) P(x)P(x)∨Q(x) P(x)ΛQ(x) P(x) . . .
§4变元的约束
(2)个体域不同,则表示同一命题的值不同。Q(x): x<5
xQ(x)
xQ(x)
{-1,0,3} T T
{-3,6,2} F T
{15,30} F F
(3)对于同一个体域,用不同的量词时,特性谓词 加入的方法不同。 对于全称量词,其特性谓词以前件的方式加入; 对于存在量词,其特性谓词以与的形式加入。
§3谓词公式与翻译
⑸只有按⑴-⑷所求得的那些公式才是谓词公式(谓词公式又 简称“公式”)。
例1:任何整数或是正的,或是负的。 解:设:I(x): x是整数; R1(x):x是正数;R2(x):x是负 数。 此句可写成:x(I(x)(R1(x) R2(x) )。 例2:试将苏格拉底论证符号化:“所有的人总是要死的。 因为苏格拉底是人,所以苏格拉底是要死的。” 解:设M(x):x是人;D(x):x是要死的; M(s):苏格拉底是人;D(s):苏格拉底是要死的。
§4变元的约束
例: xP(x) yR(x,y)可改写成xP(x) zR(x,z) ,但不 能改成xP(x) xR(x,x) , xR(x,x)中前面的x原为自由 变元,现在变为约束变元了。 4.区别是命题还是命题函数的方法 (a)若在谓词公式中出现有自由变元,则该公式为命题 函数; (b)若在谓词公式中的变元均为约束出现,则该公式为 命题。 例: xP(x,y,z)是二元谓词, yxP(x,y,z)是一元谓词, 而谓词公式中如果没有自由变元出现,则该公式是一 个命题。
自考离散数学第二章答案
习题答案(从本章起,习题答案由jhju提供,晓津补充。
如有问题或不同意见,欢迎到分课论坛发表)1、用谓词表达式写出下列命题a)小张不是研究生;解:设A(x):x是研究生;a:小张;|A(a)。
b)他是跳高或篮球运动员;解:设A(x):x是跳高运动员;B(x):x是篮球运动员;a: 他;A(a)∨B(a) 。
c)晓莉非常聪明和能干;解:设 A(x):x非常聪明;B(x):x能干;l: 晓莉;A(l)∧B(l)d)若m是奇数则2m是偶数解:设 A(x): x是奇数B(y):y是偶数m:某数A(m)→ B(2m)2、将下列命题符号化并要分析到个体词及谓词a)长江流经四川省;解:B(x,y):x流经y;a:长江 b:四川省B(a,b)。
个体词:长江、四川省谓词:流经b)这架新式歼击机击沉了那艘老式快艇解:设A(x,y):x击沉了ya:新式歼击机 b:老式快艇A(a,b).个体词:歼击机、快艇谓词:击沉3、用谓词表达式符号化下列命题。
那位戴眼镜穿西服的大学生在看一本英文杂志。
解:设:A(x): x戴眼镜;B(x): x穿西服;C(x): x在看英文杂志;a: 那位大学生A(a)∧B(a)∧C(a)这个表达式的含义就是一个陈述句:那位大学生戴眼镜且那位大学生穿西服且那位大学生在看英文杂志。
个体词是:那位大学生。
谓词有:戴眼镜、穿西服、在看英文杂志。
习题答案(从本章起,习题答案由jhju提供,晓津补充。
如有问题或不同意见,欢迎到分课论坛发表)题号:1 2 3 4 5 61、对下列公式指出约束变元和自由变元,并指明量词的辖域。
a,(x)(P(x)—→Q(x))∧(x)R(x,y);(x)的指导变元是x,其辖域是(P(x)—→Q(x))(x)的指导变元是x,其辖域是R(x,y)对于(x)来说,x是约束出现,y则是自由出现。
b,(x)(y)(P(x)∨Q(y))—→(x)(R(x)∧S(z));(x)和(y)的指导变元是x,y,其辖域是(P(x)∨Q(y))(x)的指导变元是x,其辖域是(R(x)∧S(z))x,y在辖域是约束出现,z则是自由出现(注,教材中本题原来是多一个括号的(或者说少一个),现在jhju将它改成这个样子,请大家仔细在书中找BUG)c,(x)(y)(P(x,y)∧Q(z))(x)(y)的指导变元是x,y,自由变元是z,其辖域是P(x,y)∧Q(z)2、在下列公式中,对约束变元进行换名,对自由变量进行代入。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.4(1)对所有的x,存在着y,使得x y 0,在(a), (b)中为真命题,在(c),(d)中为假命题。
(2)存在着x,对所有的y,都有x y 0,在(a),(b)中为真命题,在(c),(d)中为假命题。
3)对所有x,存在着y,使得x y 1,在(a),(b)(c)中均为假命题,而在(d)中为真命题。
(F(a) yG(y)) (F(b) yG(y)) F(c) yG(y))
(F(a) (G(a) G(b) G(c)
(F(b) (G(a) G(c))
(F(c) (G(a) G(b) G(c))
(F(a) (F(b) (G(a) G(b) (c)).
显然这个演算比原来的演算麻烦多了
2.13在I下
(F( 2) G( 2)) (F(3) G(3)) F(6) G(6))
在一阶逻辑中,将命题符号化时,当引入特性谓词(如题中的F(x))之后,
全称量词后往往使用联结词→而不使用,而存在量词 后往往使用 ,而不使用→,如果用错了,会将真命题变成假命题,或者将假命题变成真命题。
2.6在解释R下各式分别化为
(1)x( x 0);
(2)x y(x y x);
(3)x y z(x y) (x z y z));
x(F(x) (G(x) H (x))
(2)令F(x):x是人,G(y):y是化,H (x) : x喜欢,命题符号化为x(F(x) y(G(y) H ( x, y)))
(3)令F(x):x是人,G(x) : x犯错误,命题符号化为
x(F(x) G(x)),
或另一种等值的形式为
x(F(x) G(x)
(4)令F(x): x在北京工作,G( x) : x是北京人,命题符号化为
“对于任意的实数x和y,如果x为有理数,y为元理数,则x y。” 这是假命题。
分析 闭式在任何解释下不是真就是假, 不可能给出解释I,使得闭式在I下真值不确定,这一点是闭式的一个重要特征。 而非封闭的公式就没有这个特征。
2.9取A1L(f(x,y),g(x,y))和A2x( f (x, y), x),则A1和A2都是非土产的公式,在A1中,x, y都是自由出现的,在A2中,y是自出现的。
“所有的人都不长绿色头发” 。
可见得“没有人长着绿色头发。 ”与“所有人都不长绿色头发。 ”是同一命题 的两种不同的叙述方法。
(2)令F(x) : x是北京人
G(x): x去过香山。命题直接符号化为
x(F(x) G(x))]
而x(F(x) G(x))
x(F(x) G(x))(双重否定律)
x (F(x)
(1 0) (1 0) (0 1) 0,
y(F(z) G(x,y)
( xF(x,y) yG(x, y))
x F(x,y) y G(x,y)
G(x))
(理词否定等值式)
x( F(x)
G(x))
(德·摩根律)
x(F(x)
G(x))
(蕴含等值式)
最后得到的公式满足要求(只含全称量词) ,将它翻译成自然语言,即为
并不是北京人都去过香山
可见,“有的北京人没过过香山。 ”与“并不是北京人都去过香山。 ”是同一 命题不同的叙述方法。
2.12(1)xF(x) yG(y)
当然非闭式 F(x)),也可能不存在其值不确定的解释。
2.10(1)
xA(x)
(A(a)
A(b)
A(c))
(消去量词等值式)
A(a)
A(b)
A(c)
(德·摩根律)
x A(x)
(消去量词等值式)
2)
xA(x)
(A(a)
A(b)
A(c))
3° (2)与(4)中两种符号化公式是等值的,请读者正确的使用量词否定 等值式,证明(2),(4)中两公式各为等值的。
2.2(1)d (a),(b),(c)中均符号化为
xF(x)
其中F(x):(x1)2x22x1,此命题在(a),(b),(c)中均为真命题。
(2)在(a),(b),(c)中均符号化为
2.5(1)取解释I1为:个体域D R(实数集合),F ( x) : x为有理数,G( x) : x能表示成分数,在I1下,x(F(x) G(x))的含义为
“对于叙何实数x而言,若x为有理数, 则x能表示成分数”,简言之为“有 理数都能表示成分数。 ”在此蕴含式中,当前件F ( x)为真时,后件G(x)也为真, 不会出现前件为真, 后件为假的情况, 所以在I1下,x(F(x) G (x))为真命题。
(F(a) F(b) F(c) (G(b) G(c)).
(2)xF(x) yG(y)
xF(x) yG(y)(量词辖域收缩扩张等值式)
(F(a) F(b) F(c)) (G(a) G(b) (c)).
(3)x yH(x,y)
x(H(x,a) H (x,b) H(x,c)
(H(a,a) H (a,b) H(x,c)
(消去量词等值式)
2.11(1) 令F(x) : x为人。
G(x): x长着绿色头发。本命题直接符号化为
x(F(x) G(x))]
而x(F(x) G(x))
x (F(x) G(x))(量词否定等值式)
x( F(x) G(x))(德·摩根律)
x(F(x)G(x))(蕴含等值式)
最后一步得到的公式满足要求(使用全称量词) ,将它翻译成自然语言,即 为
(2)在I下,公式解释为
“如果存在着自然数为奇数, 并且存在着自然为偶数, 则存在着自然数既是 奇数,又是偶数。”
由于蕴含式的前件为真,后件为假,后以真值为假。
分析 本题说明全称量词对析取不满足分配律, 存在量词对合取不满足分配 律。
2.8令A x y(F(x) G(y) L(x,y)),在A中,无自由出现的个体变项,所以A为闭式。
x(F(x) G(x))
即用合取联结词取代蕴含联结词,这是万万不可的。将(1)中命题叙述得 更透彻些,是说“对于宇宙间的一切事物百言,如果它是鸟,则它会飞翔。 ”因而符号化应该使用联结词→而不能使用。若使用 ,使(1)中命题变成了 “宇 宙间的一切事物都是鸟并且都会飞翔。 ”这显然改变了原命题的意义。
在在I1下,x(F(x) G(x))的含义为
“对于任何实数x,x既为有理数,又能表示成分数。 ”
取x 2,则F( 2) g( 2)显然为假,所以,在I1下,x(F(x) G(x))为假命题.
(2)取解释I2为:个体域D=N(自然数集合),F(x):x为奇数,G(x):x为偶数,在I2下,x(F(x) G(x))的含义为
命题符号化为
x(F(x) G(x)).
(4)F(x) :x为人.
G(x): x爱看电视.
命题符号化为
x(F(x) G(x)).
分析1°如果没指出要求什么样的个体域, 就使用全总个休域, 使用全总个 体域时,往往要使用特性谓词。 (1)-(4)中的F ( x)都是特性谓词。
2° 初学者经常犯的错误是,将类似于(1)中的命题符号化为
“存在自然数x,x发既为奇数,又为偶数。 ”
取x2,则F(2)为假,于是F(2) G(2)为真,这表明x(F(x) G(x)为真命题。
分析本题说明
x(F(x) G(x)) x(F(x) G(x)), x(F(x) G(x)) x(F(x) G( x)),
这里,A B表示A与B不等值,以后遇到,含义相同。
取解释I为,个体域D=N(N为自然数集合),f(x,y,) x y,g(x,y) x y L(x,y)为x y。在I下,A1为x y x y为假,所以在I下,A1真值不确定,即在I下A2的真值也是命题。
在I下,A2为x(x y x),当y0时,它为真;y 0时为假,在I下A2的真值也不确定。
分析 非闭式与 闭式的显著区别是, 前者可能在某些解释下, 真值不确定, 而后者对于任何解释真值都确定,即不是真就是假。
第
2.1本题没有给出个体域,因而使用全总个体域.
(1)令F(x) :x是鸟
G(x): x会飞翔.
命题符号化为
x(F(x) G(x)).
(2)令F(x) : x为人.
G(x): x爱吃糖
命题符号化为
x(F(x) G(x))
或者
x(F(x) G(x))
(3)令F(x) : x为人.
G(x): x爱看小说.
( H (b,a) H (b,b) H (b, c)
(H(c,a) H(c,b) H (c,c)
分析 在有穷个体域内消去量词时, 应将量词的辖域尽量缩小, 例如,在(2) 中,首先将量词辖域缩小了(因为yG(y)中不含x,所以,可以缩小)。否则,演算是相当麻烦的。见下面的演算:
x(F(x) yG(y)
(4)存在着x,对所有的y,都有x y1,在(a),(b)(c)(d)中都是假命题。
(5)对所有的x,存在着y,使得x y x在(a),(b)(c)(d)中都是真命题。
(6)存在x,对所有的y,都有x y x,在(a),(b)中为真命题,在(c)(d)中 为假命题。
(7)对于所有的x和y,存在着z,使得x y z,在(a), (b)中为真命题,在(c)(d)中为假命题。
(4)x y(x x 2y).
易知,在解释R下,(1),(2)为假;,(3)(4)为真。
2.7给定解释I为:个体域D=N(自然数集合),F (x) : x为奇数,G(x):x为偶数。
(1)在解释I下,公式被解释为
“如果所有的自然数不是奇数就是偶数, 则所有自然数全为奇数, 或所有自 然数全为偶数。”因为蕴含式的前件为真,后件为假,所以真值为假。
在个体域为人类集合时,应符号化为
xF(x)