约 瑟 夫 环 问 题 的 三 种 解 法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

约瑟夫环问题的简单解法(数学公式法)

关于约瑟夫环问题,无论是用链表实现还是用数组实现都有一个共同点:要模拟整个游戏过程,不仅程序写起来比较烦,而且时间复杂度高达O(nm),当n,m非常大(例如上百万,上千万)的时候,几乎是没有办法在短时间内出结果的。我们注意到原问题仅仅是要求出最后的胜利者的序号,而不是要读者模拟整个过程。因此如果要追求效率,就要打破常规,实施一点数学策略。

为了讨论方便,先把问题稍微改变一下,并不影响原意:

问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人继续从0开始报数。求胜利者的编号。

我们知道第一个人(编号一定是m%n-1) 出列之后,剩下的n-1个人组成了一个新的约瑟夫环(以编号为k=m%n的人开始): k k+1 k+2 … n-2, n-1, 0, 1, 2, … k-2并且从k开始报0。

现在我们把他们的编号做一下转换:

k-2 – n-2

k-1 – n-1

解x’ —- 解为x

注意x’就是最终的解

变换后就完完全全成为了(n-1)个人报数的子问题,假如我们知道这个子问题的解:例如x是最终的胜利者,那么根据上面这个表把这个x变回去不刚好就是n个人情况的解吗?!!变回去的公式很简单,

相信大家都可以推出来:x’=(x+k)%n

如何知道(n-1)个人报数的问题的解?对,只要知道(n-2)个人的解就行了。(n-2)个人的解呢?当然是先求(n-3)的情况—- 这显然就是一个倒推问题!下面举例说明:

假设现在是6个人(编号从0到5)报数,报到(2-1)的退出,即 m=2。那么第一次编号为1的人退出圈子,从他之后的人开始算起,序列变为2,3,4,5,0,即问题变成了这5个人报数的问题,将序号做一下转换:

现在假设x为0,1,2,3,4的解,x’设为那么原问题的解(这里注意,2,3,4,5,0的解就是0,1,2,3,4,5的解,因为1出去了,结果还是一个),根据观察发现,x与x’关系为x’=(x+m)%n,因此只要求出x,就可以求x’。x怎么求出呢?继续推导吧。0,1,2,3,4,,同样是第二个1出列,变为(2,3,4,0),转换下为

很简单,同样的道理,公式又出来了,x=(x”+m)%5,这里变成5了。即求n-1个人的问题就是找出n-2的人的解,n-2就是要找出n-3,等等

因此,就可以回去看上面的推导过程了。

好了,思路出来了,下面写递推公式:

令f[i]表示i个人玩游戏报m退出最后胜利者的编号,最后的结果自然是f[n]

递推公式

f[i]=(f[i-1]+m)%i; (i1)

有了这个公式,我们要做的就是从1-n顺序算出f[i]的数值,最后结果是f[n]。因为实际生活中编号总是从1开始,我们输出f[n]+1 由于是逐级递推,不需要保存每个f[i],程序也是异常简单:

#include stdio.h

int main()

int n, m, i, s = 0;

printf ("N M = ");

scanf("%d%d", n, m);

for (i = 2; i = n; i++)

s = (s + m) % i;

printf ("The winner is %d", s+1);

这个算法的时间复杂度为O(n),相对于模拟算法已经有了很大的提高。算n,m等于一百万,一千万的情况不是问题了。可见,适当地运用数学策略,不仅可以让编程变得简单,而且往往会成倍地提高算法执行效率。

else {x=(jos(n-1,k)+k)%n;if(x==0)x=n;}

for (int i = 2; i = number; i++) {

System.out.println("出圈的顺序为:");

编号为4的人又从1开始报数,这时编号为4的人是这个队伍的头,则第二轮死去的人是6号。

50 public int PlayNum { get; set; }-*每次游戏丢PlayNum 次手绢*-

又假设关键数(要数的那个数)m=3,那么第一轮出局的将会是表头下一个的下一个(表头的第三个),如图所示:

std::cout"The link is must be longer than 1"endl;

约瑟夫环问题:已知n个人(以编号1,2,3.n分别表示)围坐在一张圆桌周围。从编号为k的人开始报数,数到k的那个人被杀掉;他的下一个人又从1开始报数,数到k的那个人又被杀掉;依此规律重复下去,直到圆桌周围的人只剩最后一个。

--总共有13人,从第1位开始报数,每隔两位踢出1个。?

{f(1)=0f(n)=(f(n?1)+m)%nbegin{cases}f(1) = 0f(n) = (f(n-1)+m)%nend{cases}{f(1)=0f(n)=(f(n?1)+m)%n?

相关文档
最新文档