结构力学第07章 位移法-1补(形常数载常数)之欧阳光明创编

合集下载

结构力学-位移法

结构力学-位移法
则梁端结点转角为0;若柱子不平行,则梁端结
点转角可由柱顶侧移表示出来。
(4)对于平行柱刚架不论横梁是平的,还是斜的, 柱子等高或不等高,柱顶线位移都相等。
a
Δ Δ
§7.4 位移法举例
例1:
q
B EI C
EI
杆长为:l
A
解:1.确定未知量
未知量为: B
2.写出杆端力的表达式
BC杆
M Bc

3
EI L
二、基本未知量的确定
1.无侧移结构基本未知量:所有刚结点的转角
1
2
1
2.有侧移结构
1
2
3
例1. B
C 例2. B
C
A
A
只有一个刚结点B,由于忽 略轴向变形,B结点只有 B
只有一个刚结点B, 由于忽略轴向变形及C 结点的约束形式,B结 点有一个转角和水平位 移 B BH
例3. B
l
A
F11

4EI A l

4EI A l
B
2
E l
I

A
θA
4i
2
E l
I

A

A

ql3 96 EI
4E l
I

A
基本体系法解题要点:
(1)位移法的基本未知量是结点位移;
(2)位移法的基本结构----单跨梁系; (3)位移法的基本方程是平衡方程; (4)建立基本方程的过程分为两步:
1)把结构拆成杆件,进行杆件分析; 2)再把杆件综合成结构,进行整体分析; (5)杆件分析是结构分析的基础。
第7章 位移法
基本要求:熟练掌握位移法解题的基本原理和超静定梁、刚架在荷 载作用下内力的计算。 掌握位移法方程建立的两种途径:一是利用直接平衡法 建立平衡方程,便于理解和手算;二是利用基本体系建 立典型方程,为矩阵位移法打基础,便于用计算机电算。 掌握对称性的利用。

结构力学I-第7章 位移法

结构力学I-第7章 位移法
4
Page
LOGO
§7-1位移法基本概念
位移法基本方程:

i 1 5
EAi sin 2 i FP li
FP EAi sin 2 i i 1 li
5

关键的一步!
将杆数由5减少为2,这时的结 构是静定的;如果杆数大于 (或等于)3时,结构是超静 定的。
以上两种情况都可以用上述 方法计算!
(2) 杆件转角以顺时针为正 , 反之为负。杆件两端在垂直 于杆轴方向上的相对线位移 ΔAB (侧移)以使杆件顺时针转 动为正,反之为负。 B A B A θB
θ
A
AB
2015-12-21
Page
14
浙江大学海洋学院 Tel : Email:
LOGO
§7-2 单跨超静定梁的形常数与载常数
ΔAB F M AB l
Page
23
LOGO
§7-2单跨超静定梁的形常数与载常数
3. 一端固定、一端定向的等截面直杆
MAB A A
A
β AB
F EI
B
B
AB
FQBA=0,ΔAB是θA 和θB的函 数,转角位移方程为
F M AB i AB A i AB B M AB F M BA i AB A i AB B M BA
2015-12-21
LOGO
§7-2单跨超静定梁的形常数与载常数
2. 一端固定、一端铰支的等截面直杆
MAB A A FS BA l FS BA
A
F EI
B
AB
MBA=0,θB 是θA 和ΔAB的函数,转角位移方程为
M AB 3i AB A 3i AB M BA 0

结构力学第7章 位移法(27-30)

结构力学第7章 位移法(27-30)

M CB 2 1.15 4 4.89 41.7 24.5kN.m M CD 3 4.89 14.7kN.m M BE 3 1.15 3.4kN.m
M CF 2 4.89 9.78kN.m M FC 4.89kN.m
0
Δ=1
A B
0
2. 等截面梁的载常数
荷载引起的杆端内力称为载常数。
7-2 位移法的基本概念
知识点:
整体分析、杆件分析 位移法的基本原理
重点:
掌握位移法解题的基本过程。
14kN A B
θ
C
2m
2m
4m
力法求解:
三个多余未知力 解三元一次方程
未知位移角度: 一个未知位移 解一元一次方程 思考
ii 3EI i ki 3 2 3 hi hi
侧移刚度
(i 1, 2,3)
FQAB
k3 k1 k2 FP , FQ CD FP , FQ EF FP k k k
荷载FP (=总剪力)按侧移刚度分配给各柱,得各柱剪力, 可画弯矩图。----剪力分配法
(1)结构的独立结点位移
(2)结构拆成杆件,做杆件分析—荷载、变形
(3)平衡方程,求解
(4)回代,求杆端弯矩
小结
7-1 等截面杆件的形常数和载常数
知识点: 等截面梁的形常数
等截面梁的载常数 重点: 记忆等截面梁的形常数和载常数。
7-2 位移法的基本概念
知识点: 整体分析、杆件分析
力法解常见超静定结构
6m
3I0
20kN/m
A
D C 4I0 6m
4I0 4m
B 5I0 3I0

结构力学 7.位移法

结构力学 7.位移法
也称“先拆后搭”
§7-1 位移法的基本概念
2 位移法计算刚架的基本思路
(1)基本未知量——A 和。
(2)建立位移法基本方程 ■刚架拆成杆件,得出杆件的刚度方程。 ■杆件合成刚架,利用刚架平衡条件,建立位移法基本方程。
§7 – 2 等截面直杆的刚度方程 正负号规定
结点转角 A 、 B 、弦转角( = / l ) 和杆端弯矩M AB
0
0
6
5ql
3ql
3l / 8
8
8
9ql2 / 128
(↑) (↑)
2ql
ql
7
5
10
(↑) (↑)
8
9ql
11ql
40
40
(↑) (↑)
§7-2 等截面杆件的刚度方程
表1:载常数表(续)
序号 计算图及挠度图
弯矩图及固端弯矩
9
10
5FPl / 32
11
12
固端剪力
FQAB
FQBA
FPb(3l 2 b2 ) 2l 3
M AB
4i A
2i B
6i
l
M BA
2i A
4i B
6i
l
(1)B端为固定支座 B 0
FQ AB FQ BA
6i l
A
6i l
B
12i l2
(2)B端为铰支座 MBA 0
M AB
4i A
6i
l
M BA
2i A
6i
l
M AB
3i A
3i
l
§7-2 等截面杆件的刚度方程
M AB
24
25
26
27
固端剪力

结构力学第七章-位移法(一)

结构力学第七章-位移法(一)

由 M B = 0 同理可得,
FQAB 6i 6i 12i F A B 2 FQAB l l l
结构力学 第七章 位移法
2015年9月12日星期六
§7-2 等截面直杆的转角位移方程
等截面直杆的转角位移方程:

一端固端一端铰支的等截面直杆:
B端角位移不独立。
C
B A
AB:一端固定一端定向滑动 BC:一端固定一端定向滑动 BD:一端固定一端铰支
C
EI=c D B A
AB:两端固定 BC:一端固定一端定向滑动 BD:一端固定一端铰支
C
EI=c D B A
AB:两端固定 BC:两端固定 BD:一端固定一端铰支
C
EI=c D EI=c B A
AB:两端固定 BC:一端固定一端定向滑动 BD:两端固定
R1 = 0 R2 = 0 R3 = 0
R11 Z1
R21
R31
R12
R22 Z2
R32
R13
R23
R1P R33
R2P
P2
R3P
D EI=c A
E
F
D EI=c
E
F
D EI=c
E
F
P1
D EI=c A
E
F
B
C
A
B
C
A
B
C
B
C
(a)基本结构只发生 Z1
(b)基本结构只发生 Z 2
EI 1
B’ O
B
A’
EI
EI
EI
A EI
EI 1
不考虑杆件伸缩变形,AB 不能转动,无结点角位移
结构力学 第七章 位移法

结构力学课件--7位移法1资料教程

结构力学课件--7位移法1资料教程
梁 MBC4B2C41.741.1524.8941.746.9kNm
..............................................
柱 MBE443B3B31.153.45kNm
MCF412C2C2(4.89)9.8kNm
43.5 46.9
24.5 14.7
A
3.45 B
Q
F BA
B
D
i1
q
i
i
A
C
其中
x 0 Q B A Q D C 0
QBAl32i
3ql 8
3i QDC l 2
6i l2
3ql 8
0
ql 3 16 i
QBA q
QDC
绘制弯矩图的方法:
(1)直接由外荷载及剪力计算;
(2)由转角位移方程计算。
课件
例:作图示刚架的弯矩图。忽略梁的轴向变形。
MBA4iB15 MBC3iB9
4、位移法基本方程(平衡条件) 5、各杆端弯矩及弯矩图
MB 0
MBAMBC 0
4iB 153iB 90
B
6 7i
16.72
11.57
M AB 2i7 6i1 51.7 6k2N m
M BA 4i7 6i1 51.5 1k7N m M BC 3i7 6i91.5 1k7N m
A31iMAB61iMBA
7
B61iMAB31iMBA
(2)由于相对线位移引起的A和B
A
B
l
以上两过程的叠加
A3 1iMAB 6 1iMBA l
A B
我们的任务是要由杆端位移求 杆端力,变换上面的式子可得:
B6 1iMAB 3 1iM BA l

结力I-07-超静定结构分析-位移法(1)20131111-18

结力I-07-超静定结构分析-位移法(1)20131111-18

(3)解基本方程求出基本未知量,代入杆件刚度方程求出杆件内力。
杆件分析是结构分析的基础
杆件的刚度方程式位移法基本方程的基础
4
3、位移法计算刚架的基本思路
A
q
P
(1)确定基本未知量θA、Δ;
A
A
M AC
C
(2)建立基本方程:
把刚架拆成杆件,进行杆件分析—— 杆件在已知端点位移和已知荷载作用下的 杆端力计算;
B 0.356 / i( )
D 3.911/ i( )
27
4)作弯矩图 将求得的 θB 、 θD 代入杆端弯矩表达式得:
M AB 0.71kN .m
M BA 1.42kN .m
4I0
A
D
C 4 I0
4I0 B 3I0
5I0
基本未知量的选取
1、结点角位移数:
结构上可动刚结点数即为位移法计算的结点角位移数。
2、结构独立线位移:
每个结点有两个线位移,为了减少未知量,引入与实际相符的两个假设:
(1)忽略轴向力产生的轴向变形---变形后的曲杆与原直杆等长; (2)忽略弯曲变形——变形后的曲杆长度与其弦等长。 上面两个假设导致杆件变形后两个端点距离保持不变。
位移法71位移法的基本概念72杆件的刚度方程杆件单元的形常数和载常数73位移法解无侧移刚架76位移法解对称结构74位移法解有侧移刚架75位移法的基本体系77支座位移和温度改变时的位移分析法71位移法的基本概念一超静定结构计算的总原则
第7章 位移法
§7-1 位移法的基本概念
§7-2 杆件的刚度方程——杆件单元的形常 数和载常数
MBA
因B = 0,代入(1)式可得
M AB 4i A M BA 6i l 6i 2i A l

结构力学 朱慈勉 第7章课后答案全解

结构力学 朱慈勉 第7章课后答案全解

结构力学第7章位移法习题答案7-1 试确定图示结构的位移法基本未知量数目,并绘出基本结构。

(a) (b) (c)1个角位移3个角位移,1个线位移4个角位移,3个线位移(d) (e) (f)3个角位移,1个线位移2个线位移3个角位移,2个线位移(g) (h)(i)一个角位移,一个线位移一个角位移,一个线位移三个角位移,一个线位移7-2 试回答:位移法基本未知量选取的原则是什么?为何将这些基本未知位移称为关键位移?是否可以将静定部分的结点位移也选作位移法未知量?7-3 试说出位移法方程的物理意义,并说明位移法中是如何运用变形协调条件的。

7-4 试回答:若考虑刚架杆件的轴向变形,位移法基本未知量的数目有无变化?如何变化?7-5 试用位移法计算图示结构,并绘出其内力图。

(a)解:(1)确定基本未知量和基本结构有一个角位移未知量,基本结构见图。

Z 1M 图(2)位移法典型方程11110p r Z R +=(3)确定系数并解方程iql Z ql iZ ql R i r p 24031831,821212111==-∴-==(4)画M 图M 图(b)4m 4m4m解:(1)确定基本未知量1个角位移未知量,各弯矩图如下1Z =1M 图32EIp M 图(2)位移法典型方程11110p r Z R +=(3)确定系数并解方程1115,352p r EI R ==- 153502EIZ -=114Z EI=(4)画M 图()KN mM ⋅图(c)解:(1)确定基本未知量一个线位移未知量,各种M 图如下6m 6m 9m1M 图1243EI 2243EI 1243EI p M 图F R(2)位移法典型方程11110p r Z R +=(3)确定系数并解方程1114,243p p r EI R F ==- 140243p EIZ F -=12434Z EI=(4)画M 图94M 图(d)解:(1)确定基本未知量一个线位移未知量,各种M 图如下a 2aa2aaF P11Z=1111r 252/25EA a 简化图1pR pp M(2)位移法典型方程11110p r Z R +=(3)确定系数并解方程11126/,55p p r EA a R F ==- 126055p EA Z F a -=13a Z EA=(4)画M 图图M(e)l解:(1)确定基本未知量两个线位移未知量,各种M 图如下图1=11211 EA r l r ⎛⇒=⎝⎭1M221EA r l ⎛=⎝⎭图12 0p p p R F R ⇒=-=p M pF(2)位移法典型方程1111221211222200p p r Z r Z R r Z r Z R ++=++= (3)确定系数并解方程11122122121,4414,0p p p EA r r r l l EA r l R F R ⎛=+== ⎝⎭⎛⎫=+ ⎪⎝⎭=-=代入,解得12p p lZ F EAlZ F EA=⋅=⋅(4)画M 图图M p7-6 试用位移法计算图示结构,并绘出M 图。

第七章 位移法(结构力学)

第七章 位移法(结构力学)

4m
用位移法计算并作图示结构M图,横梁 为无穷刚梁EI→∞,两柱刚度均为EI
7.5
典型方程法
↓↓↓↓↓↓↓↓↓↓
位移法典型方程
↓↓↓↓↓↓↓↓↓↓
q C
F1
q C
A l
βA EI=常数
A θA
F1=0
A A
B
A A A A
F1 0 F1 0
B l
基本体系 转化为原结构的 条件:基本结构 在给定荷载以及 结点位移∆1作用 下,附加约束反 力应等于零。
M AB
A
EI
B
M AB 3i A
A

A
A
i
B
l EI i l
A
M AB
i
3i l
B

M AB
3i 3i A l
3). 一端固定、一端滑动支座的梁
MAB
EI
MBA
A
A
B
EI i l
M AB i A
M BA i A
4). 等截面直杆只要两端的杆端位移对应相同, 则相应的杆端力也相同。
EI MBA A i l
MAB MAB
1) A
B

A
EI MBA A i l
B
M AB
6i 4i A l
M BA
6i 2i A l
单位杆端位移引起的杆端内力称为形常数. i=EI/l----线刚度
2.由荷载求固端弯矩(载常数教材表8-1)
荷载引起的杆端内力称为载常数.
• 主系数 kii── 基本体系在Δi=1单独作用时,在第 i个附加约 束中产生的约束力矩和约束力,恒为正; • 付系数 kij= kji── 基本体系在Δj=1单独作用时,在第 i个 附 加约束中产生的约束力矩和约束力,可正、可负、可为零; • 自由项 FiP── 基本体系在荷载单独作用时,在第 i个 附加约 束中产生的约束力矩和约束力,可正、可负、可为零;

结构力学-7 位移法1

结构力学-7 位移法1

第一种梁(两端固定):
MAFB,
MBFA,
FF QBA
第二种梁(另一端铰支):
MF AB
MAFB12MBFA
13
第二、三种梁的固端弯矩与第一种梁固端内力的关系
第一种梁(两端固定):
MAFB,
MBFA,
FF QBA
第三种梁(另一端滑动):
MF AB
MAFB
2l FQFBA
MF BA
MBFA2l FQFBA
B

l
以上两过程的叠加
A3 1iMAB 6 1iMBA l
A B
由杆端位移求杆端力,变换上 面的式子可得转角位移方程:

B6 1iMAB 3 1iM BA l
MAB4iA MBA2iA
2iB 4iB
6i 6i
l (1) l
q
EI l q
EI l
mABq82l
Q BA
mBA
Q BA
mBA


ql 2 8
Q AB


5 8
ql

Q BA

3 ql 8

Q AB


3 8
ql

Q BA
5 ql 8

»在已知荷载及杆端位移的共同作用下的杆端力一般公式(转角
位移方程):
MAB
4iA
14
Q A BQ B A 6 li A 6 li B 1 l2 i 2 6 (2 )
方法二:用力法求解单跨超静定梁
Δ
11X112X21CA 21X122X22CB
θA
X1
θB
X2

结构力学-第7章-位移法习题答案

结构力学-第7章-位移法习题答案

EA=∞ E
EA=∞ F
EI
2EI EI
A
B
C
6m
6m
解:(1)确定基本未知量 一个线位移未知量,各种 M 图如下
7- 34
(2)位移法典型方程
r11Z1 R1p 0
(3)确定系数并解方程
r11

4 243
EI , R1p

Fp
4 243
EIZ1

Fp

0
Z1

243 4EI
(4)画 M 图
(d)
E
F
EA
EA
A
B
FP aa
C EI1=∞
2a
D
FP a
解:(1)确定基本未知量 一个线位移未知量,各种 M 图如下
2a
7- 35
(2)位移法典型方程
r11Z1 R1p 0
(3)确定系数并解方程
r11

2 5
EA / a, R1p


6 5
Fp
2 5
EA a
Z1

6 5
Fp

0
Z1

3a EA
(4)求最终弯矩图
7- 41
(d)
l
E q
GB
D
ql F
EI=常数
A
C
l 2
l
l
l
解:(1)确定基本未知量 两个位移未知量,各种 M 图如下
7- 42
(2)位移法典型方程
r11Z1 r12Z2 R1 p 0 r21Z1 r22Z2 R2 p 0
(3)确定系数并解方程
r11

结构力学第7章 位移法(27-30)

结构力学第7章 位移法(27-30)
第 7 章 位移法
Displacement Method
第 7 章 位移法
教学内容 7-1 等截面杆件的形常数和载常数 7-2 位移法的基本概念
7-3 无侧移刚架的计算
7-4 有侧移刚架的计算
7-5 对称结构的计算
7-1 等截面杆件的形常数和载常数
知识点:
等截面梁的形常数 等截面梁的载常数
(1)结构的独立结点位移
(2)结构拆成杆件,做杆件分析—荷载、变形
(3)平衡方程,求解
(4)回代,求杆端弯矩
小结
7-1 等截面杆件的形常数和载常数
知识点: 等截面梁的形常数
等截面梁的载常数 重点: 记忆等截面梁的形常数和载常数。
7-2 位移法的基本概念
知识点: 整体分析、杆件分析
力法解常见超静定结构
m AB 15kN m
mBC ql 2 9kN m 8
(3) 列杆端转角位移方程
MAB
EI
P
B MBA
MBC B
q
EI
设i
EI 6
M AB 2i B 15
M BC 3i B 9
M BA 4i B 15
(4) 位移法基本方程(平衡条件)
4I0 4m
B 5I0
3I0
3I0 F 4m
M
F BA
E 4m 5m
(1)基本未知量B、C (2)固端弯矩
F M BC
F M CB 41.7kN m
20kN/m
A 4I0 4m B 5I0 C 4I0
D
3I0
E 4m 5m F 4m
各杆刚度取相对值计算,设EI0=1,则
iBA iBE

结构力学 第七章 位移法

结构力学 第七章 位移法

表示等截面直杆杆端力与杆端位移及杆上荷载间关系的表达式
B A
Δ
6i F M AB l 6i F M BA 2i A 4i B M BA l 6i 6i 12i F F QAB A B 2 FAB l l l M AB 4i A 2i B
B
4i
1
2i
6i l
12i
l
6i
3i
l
6i
0
l2
θ =1
B B
3i
3i l
l
2
1 θ =1
B
3i
i
l
0
A
-i
0
三 等截面直杆的载常数 由荷载作用所引起的杆端力(固端力)
单跨超静定梁简图
q A
↓↓↓↓↓↓ ↓↓↓↓↓↓ ↓↓
mAB
B
mBA
ql 2 12
Pl 8
ql 2 12
Pl 8
位移法方程实质上平衡方程
Z1
D i A 2i E
Z2
C 2i
i EI l
4m
EI
i B
A
B
4m
2m
2m
位移法基本体系
解:1 确定位移法基本体系 2 列位移法方程 k11Z1+ k12Z2+ F1P=0 k21Z1+ k22Z2+ F2P=0
3 计算系数和自由项 Z1=1
4i 4i D i8i A 2i 8i 2i E 2i i B C
M AB 2i B
M BC ql 2 4i B 12
ql 2 ql 2 ql 2 4i 96i 12 24

结构力学_朱慈勉_第7章课后答案全解

结构力学_朱慈勉_第7章课后答案全解

结构力学第7章位移法习题答案7-1 试确定图示结构的位移法基本未知量数目,并绘出基本结构。

(a) (b) (c)1个角位移3个角位移,1个线位移4个角位移,3个线位移(d) (e) (f)3个角位移,1个线位移2个线位移3个角位移,2个线位移(g) (h)(i)一个角位移,一个线位移一个角位移,一个线位移三个角位移,一个线位移7-2 试回答:位移法基本未知量选取的原则是什么?为何将这些基本未知位移称为关键位移?是否可以将静定部分的结点位移也选作位移法未知量?7-3 试说出位移法方程的物理意义,并说明位移法中是如何运用变形协调条件的。

7-4 试回答:若考虑刚架杆件的轴向变形,位移法基本未知量的数目有无变化?如何变化?7-5 试用位移法计算图示结构,并绘出其内力图。

(a)解:(1)确定基本未知量和基本结构有一个角位移未知量,基本结构见图。

Z 1M 图(2)位移法典型方程11110p r Z R +=(3)确定系数并解方程iql Z ql iZ ql R i r p 24031831,821212111==-∴-==(4)画M 图M 图(b)4m 4m4m解:(1)确定基本未知量1个角位移未知量,各弯矩图如下p M 图(2)位移法典型方程11110p r Z R +=(3)确定系数并解方程1115,352p r EI R ==- 153502EIZ -=114Z EI=(4)画M 图()KN m M ⋅图(c)解:(1)确定基本未知量一个线位移未知量,各种M 图如下6m 6m 9m1M 图243EI 243EI 1243EI p M 图F R(2)位移法典型方程11110p r Z R +=(3)确定系数并解方程1114,243p p r EI R F ==- 140243p EIZ F -=12434Z EI=(4)画M 图94M 图(d)解:(1)确定基本未知量一个线位移未知量,各种M 图如下a 2aa2aaF P11Z=1111r 252/25EA a 简化图1pR pp M(2)位移法典型方程11110p r Z R +=(3)确定系数并解方程11126/,55p p r EA a R F ==- 126055p EA Z F a -=13a Z EA=(4)画M 图图M(e)l解:(1)确定基本未知量两个线位移未知量,各种M 图如下图1=11211 EA r l r ⎛⇒=⎝⎭1M221EA r l ⎛=⎝⎭图12 0p p p R F R ⇒=-=p M pF(2)位移法典型方程1111221211222200p p r Z r Z R r Z r Z R ++=++= (3)确定系数并解方程11122122121,1,0p p p EA r r r l EA r l R F R ⎛=== ⎝⎭⎛=⎝⎭=-=代入,解得12p p lZ F EAlZ F EA=⋅=⋅(4)画M 图图M p7-6 试用位移法计算图示结构,并绘出M 图。

结构力学课件--7位移法1-PPT资料32页

结构力学课件--7位移法1-PPT资料32页
(3) 平衡条件:MBA即位移M法BC 基本方程。
MBA4iB15 MBC3iB9
4、位移法基本方程(平衡条件) 5、各杆端弯矩及弯矩图
MB 0
MBAMBC 0
4iB 153iB 90
B

6 7i
16.72
11.57
M AB 2i7 6i1 51.7 6k2N m
8
40
MB FCq1l2241.7
MCFB41.7
计算线刚度i,设EI0=1,则
iABElAAIBBE44I0 1
iBC 1,iCD 1,iBE 4 3,iCF 1 2
梁 M B A 3 iAB B M B F A 3B 4M 0 C B4C2B4.7 1
M BA 4i7 6i1 51.5 1k7N m M BC 3i7 6i91.5 1k7N m
15.85
3.21 课件
M图 kNm
15
q
B EI C EI
杆长为:L A
1. 确定未知量
未知量为: B
2. 写出杆端力的表达式
BC杆 MBc 3ELIBq8L2
E
F
4m 5m
4m
(4) 解方程
19
B 1.15 C 4.89 (相对值)
(5) 杆端弯矩及弯矩图
MBA3iABBmBA3B4031.154043.5kNm
梁 MBC4B2C41.741.1524.8941.746.9kNm
P
J i
P Q1
柱底弯矩:M=Qihi

PJ i J
hi
P
h1 h2 h3
Δ
I2 Q2
M
Δ 22
I3 Q3

结构力学第7章 位移法

结构力学第7章   位移法
第7章 位 移 法
§7-1 位移法的基本概念 §7-2 等截面直杆的刚度方程 §7-3 无侧移刚架的计算 §7-4 有侧移刚架的计算
§7-5 位移法的基本体系
§7-6 对称性的应用 §7-7 支座移动和温度改变时的计算
§7-8 小结
§7-1
1
位移法的基本概念
关于位移法的简例
■ 对称结构承受对称荷载,结点B只发生竖向位移Δ。
§7-3 无侧移刚架的计算
(3)建立位移法基本方程
结点B力矩平衡:
(4)求出基本未知量
M BA M BC M BE 0
10 B 2C 1.7 0
结点C力矩平衡:
B 1.15, C 4.89
(5)求出各杆最终杆端弯矩:
M BA 3 1.15 40 43.5kN.m M BC 4 1.15 2 4.89 41.7 46.9kN.m
F M BA 3iBA B M BA 3 B 40 F M BC 4iBC B 2iBCC M BC 4 B 2C 41.7 F M CB 2iBC B 4iBCC M CB 2 B 4C 41.7
M CD 3iCDC 3C M BE 4iBE B 3 B , M EB 2iBE B 1.5 B M CF 4iCF C 2C , M FC 2iCF C C
■ 若求出位移Δ,则各杆件的变形和内力都可求出。
■ 取位移Δ作为位移法基本未知量。
§7-1 位移法的基本概念
第一步,从结构中取 出一个杆件 进行分析。 第二步,把各杆综合成结构。 各杆的杆端位移与基本 位置量的关系为
EAi FNi ui li
杆件的刚度方程

第07章位移法

第07章位移法
22
2、结点转角 结点转角以顺时针方向为正,逆时针方向为负。 FP A D B C
B( )
C( )
3、杆件两端相对侧移 杆件两端相对侧移的正负号与弦转角的正负号 一致。而以顺时针方向为正,逆时针方向为负。 A
l
B

A
l
B
23
二、等截面直杆的刚度方程(形常数)
此时B结点产生固端弯矩。
12
q A B
q
B 0
F M BA 0
C B
F M BC
C
F M BC
ql 2 8
3、令B结点产生转角B( 单跨超静定梁。 A i A i
)。
此时AB、BC杆类似于B端为固端且产生转角B的 B i B
B
C
i
B 3i B
B
3i B
B
EI —线刚度 l
20
§7-2 等截面直杆的刚度方程
位移法计算的基础是:单跨超静定梁具有支座
移动和外荷载作用时的杆端力的计算。 位移法将整体结构拆成的杆件不外乎三种“单 跨超静定梁”:两端固定梁;一端固定、一端简支 梁;一端固定、一端滑动梁。 用到的数据是:形常数和载常数。 (1) 已知杆端位移求杆端弯矩——形常数;
D值法(广义反弯点法)。
2
§7-1 位移法基本概念
一、位移法的基本思路
将结构拆成杆件,再由杆件过渡到结构。即: 结构
拆成 搭接成 杆件 第二步 第一步
结构
第一步:杆件分析 找出杆件的杆端力与杆端位 移之间的关系。即:建立杆件的刚度方程。
第二步:结构分析 找出结构的结点力与结点位
移之间的关系。即:建立结构的位移法基本方程。
( a) B A C D E F G (b) B C D E F G
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档