信号与系统课后习题答案第7章
信号与系统课后习题与解答第七章
15- 分别绘出以下各序列的图形)()21()()1(n u n x n = )(2)()2(n u n x n =)()21()()3(n u n x n -= )()2()()4(n u n x n -=)1(2)()5(1-=-n u n x n )()21()()6(1n u n x n -=解)()1(n x 序列的图形如图5-1(a)所示。
)()2(n x 序列的图形如图5-1(b)所示。
)()3(n x 序列的图形如图5-1(c)所示。
)()4(n x 序列的图形如图5-1(d)所示。
)()5(n x 序列的图形如图5-1(e)所示。
(b)图5-1(a)(f)(e)(d)25- 分别绘出以下各序列的图形)()()1(n nu n x = )()()2(n nu n x --= )(2)()3(n u n x n -= )()21()()4(n u n x n --=)()21()()5(n u n x n --= )1()21()()6(1+=+n u n x n解) 序列的图形如图5-2(b)所示。
x()2(n 序列的图形如图5-2(c)所示。
x))3(n(x 序列的图形如图5-2(d)所示。
)4(n())5(n 序列的图形如图5-2(e)所示。
x()x 序列的图形如图5-2(f)所示。
())6(n(b)图5-2(c)(f)(e)(d)8-(a)35- 分别绘出以下各序列的图形)5sin()()1(πn n x =)510cos()()2(ππ-=n n x)5sin()65()()3(πn n x n =解)()1(n x 序列的图形如图5-3(a)所示。
)()2(n x 序列的图形如图5-3(b)所示。
)()3(n x 序列的图形如图5-3(c)所示。
图5-3(a)45- 判断以下各序列是否是周期性的,如果是周期性的,试确定其周期。
)873sin()()1(ππ-=n A n x)8()()2(π-=ne n x j解)1(因为3147322==πππw 是有理数,所以)(n x 是周期性的,且周期为14。
信号与系统 陈后金 第二版 课后习题答案(完整版)
(1) f (t) = 3sin 2t + 6 sinπ t
(2) f (t) = (a sin t) 2
(8)
f
(k)
=
cos⎜⎛ ⎝
πk 4
⎟⎞ ⎠
+
sin⎜⎛ ⎝
πk 8
⎟⎞ ⎠
−
2
cos⎜⎛ ⎝
πk 2
⎟⎞ ⎠
解:(1)因为 sin 2t 的周期为π ,而 sin πt 的周期为 2 。
显然,使方程
−∞
0
2-10 已知信号 f (t) 的波形如题 2-10 图所示,绘出下列信号的波形。
f (t)
2
1
−1 0
t 2
题 2-10 图
(3) f (5 − 3t) (7) f ′(t) 解:(3)将 f (t) 表示成如下的数学表达式
(5) f (t)u(1 − t)
由此得
⎧2
f
(t)
=
⎪ ⎨ ⎪ ⎩
f (t)u(1− t) 2
1
0.5
t
−1 0
1
(7)方法 1:几何法。由于 f (t) 的波形在 t = −1处有一个幅度为 2 的正跳变,所以 f ′(t) 在 此处会形成一个强度为 2 的冲激信号。同理,在 t = 0 处 f ′(t) 会形成一个强度为 1 的冲激信 号(方向向下,因为是负跳变),而在 0 < t < 2 的区间内有 f ′(t) = −0.5 (由 f (t) 的表达式可
第 1 页 共 27 页
《信号与系统》(陈后金等编)作业参考解答
(2)显然,该系统为非线性系统。 由于
T{f (t − t0 )}= Kf (t − t0 ) + f 2 (t − t0 ) = y(t − t0 )
陈后金《信号与系统》(第2版)配套题库【名校考研真题+课后习题+章节题库+模拟试题】(下册)
(4)若对3的结果M点DFT,且M>N,其中,对x(n)在N点之后补MN个零,试可以通过增大M来提高模拟频率分辨率吗?为什么?[西安交 通大学研]
解:
数字频率
(2)因为 ;x(n)为周期的,进行N点DFT时,应取
(4)不能提高连续频率的分辨率。 8.某连续时间信号的离散时间处理系统如图6-7所示。
图6-7
(1)数字滤波器的系统函数H(z)(应确定常数H0)及其收敛域;
(2)数字滤波器的频率响应 (或 )),并仍以N=2为例,概画出 幅频响应 和相频响应 它是什么类型(低通、高通、带通、全 通、线性相位等)滤波器?
(3)数字滤波器的单位冲激响应h(n),它是FIR还是IIR滤波器?并 以N=2为例,概画出h(n)的序列图形。
(1)求出h(t);
(2)证明: 解:(1) 利用对称性质,有
[电子科技大学研]
所以
(2)①证明:由于
所以
由于f(t)为实值信号,故
由于 为实偶函数,故其原函数f(τ)*f(-τ)为实偶函数,而 为奇函数,所以h(r)f(r)*f(-τ)为奇函数。
由①式可见
12.若f(t)的傅里叶变换F(ω)为ω的实因果信号,即F(ω)
图6-16 F(j ω)的最高频率
,故
14.如图6-17(a)输入信号f(t)的频谱F(j ω)如图6-17(b)所示,
,假设
,则
(1)要使采样信号 不发生混叠,T的最大值是多少?并画出此时 的频谱图;
(2)试问使得y(t)=f(t),滤波器H(jω)应选择何种类型的?其 H(j ω)的表达式是什么?[国防科技大学研]
图6-17 解:(1)由于
取其傅里叶变换,得
图6-17(c)画出当 时的 (虚线为n=1和n=-1时的结果)。从该 图中可看出,当 时,将发生混叠。所以为使采样信号不发生混叠, T的最大值应为 。图6-17(c)就是此时 频谱图。 (2)由图6-17(c)可看出,为使y(t)=f(t),滤波器H(j ω)应选 带通滤波器,其表达式为
信号与系统 高等教育何子述版 课后习题答案
二
g (t )
1
/2
y(t) 11d t / 2t
/ 2t
/2t
当 / 2 /2 t 即t 时
y(t) 0
信 号 与 系 统
习 题 二
t
y(t
)
t
0
t 0 0t
其它
y (t )
t
2) y(t) f (t) h(t) f ( )h(t )d
信
统
2
f[-n]
1
习
.
.
-5 -4 -3 -2 -1 0 1 2 3 4 5 n
题
fo[n]
1
一
... ..
-5 -4 -3 -2 -1 0 1 2 3 4 5 n
1.18 已知连续时间信号 f (t) 如图 p1.18所示。
信
(1)用单位阶跃信号u(t)的延时组合写出信号 f (t) 的
号 与
表达式; (2)求下面各式并画出信号波形。
与
y[n] 2h[n] 2h[n 1] h[n 2] 3h[n 3]
系
2[n 2] 6[n 3] 7[n 4] 7[n 5] 7[n 6] 3[n 7]
统
即y[n] {2,6,7,7,7,3} n 2,3,4,5,6,7
2) F (x) 2 2x x2 3x4
当1 t 0 即t 1时 y(t) 0
号
当0 1 t 2 即1 t 1时
与
h(t)
1
y(t)
1t
cos(
)d
sin(t)
0
系
当2 1 t 4 即1 t 3时
统
1
1
t
1t
y(t) cos( )d 0 1t
信号与系统陈后金版答案
第二步:求差分方程的齐次 解: 2 求差分方程的齐次 第二步 h [ 0 ] = C 1 + C 2 r −5r /6 +1/ 6 = 0 1 k1 1 k 1 特征方程为: [ ( + 特征方程为=hCk1 ] = )[3 (C 2) ( −) 2 ( 求 ] u [ C ] = 3, C 2 = − 2 h [1] ⇒ ) 出 k1 ∴r =1/ 2, r2 =1/3 2 3 3 1 2
(3) 计算固有响应与强迫响应 计算固有响应与强迫响应:
1 7 1 k 4 1 k y[k ] = [ − ( ) + ( ) ]u[k ] 完全响应: 完全响应 2 2 2 3 3 7 1 k 4 1 k 固有响应: yh [k ] = [− ( ) + ( ) ]u[ k ] 固有响应 2 2 3 3 1 强迫响应: 强迫响应 y p [k ] = u[k ] 2 (4) 计算瞬态响应与稳态响应 计算瞬态响应与稳态响应:
特征根为 s1 = -2, s2 = -5, 又因为 n > m , 所以: 则 h ( t ) = K 1e − 2 t u ( t ) + K 2 e − 5 t u ( t )
h '(t ) = − 2 K 1e −2 t u (t ) + K 1δ (t ) − 5 K 2 e −5 t u (t ) + K 2δ (t ) = − 2 K 1e −2 t u (t ) − 5 K 2 e −5 t u (t ) + ( K 1 + K 2 )δ (t ) h ''(t ) = 4 K 1e −2 t u (t ) − 2 K 1δ (t ) + 25 K 2 e −5 t u (t ) − 5 K 2δ (t ) + ( K 1 + K 2 )δ '(t ) 代入方程有: = K 1 + K 2 = '( t ) = 2 K 2δ ( t ) + 5 K∴K2 + (7/3; K1 )δ −1/3; 2δ '( t ) + 3δ ( t ) 1δ ( t )
信号与系统第七、八章课后习题
N k
当
2
2.线性时不变离散时间系统 ①线性 线性=叠加性+均匀性(齐次性)
c1 x1 (n) c2 x2 (n)
系统
c1 y1 (n) c2 y2 (n)
②时不变
x(n N )
系统
y (n N )
x ( n)
1 E
y ( n)
y ( n)
a
ay(n)
单位延时
1 T D z ( )
已知激励初始状态y(-1)=0,y(-2)=1/2, fk=2ku(k),求系统 的零输入响应,零状态响应和全响应. 解: (1) 零输入响应 根据定义,零输入响应满足方程:
yx (k ) 3 yx (k 1) 2 yx (k 2) 0
其初始状态
1 yx (1) y (1) 0, yx 2 y 2 2
x(n)(n n0 ) x(n0 )(n n0 )
n
x(n)(n) x(0) (n) x(0)
n
n
x(n)(n n ) x(n ) (n n ) x(n )
0 0 n 0 0
x ( n)
k k 零状态响应
2 1 k k k (1) (2) (2) , k 0 3 3
离散时间系统的单位样值响应
(n)
零状态系统
h( n)
单位样值响应h(n)是系统在零状态时,由单位样值信 号作用之下产生的响应。因此,它是一个零状态响应。
同样,单位样值信号δ(n)仅在n=0时刻等于1,其它时 刻δ(n)=0,因此系统在n>0时的响应是零输入响应。
数字信号处理课后习题答案(全)1-7章
x(n)=-δ(n+2)+δ(n-1)+2δ(n-3)
h(n)=2δ(n)+δ(n-1)+ δ(n-2)
由于
x(n)*δ(n)=x(n)
1
x(n)*Aδ(n-k)=Ax(n-k)
2
故
第 1 章 时域离散信号和时域离散系统
y(n)=x(n)*h(n)
=x(n)*[2δ(n)+δ(n-1)+ δ(n-2) 1 2
(5) 系统是因果系统, 因为系统的输出不取决于x(n)的未来值。 如果
|x(n)|≤M, 则|y(n)|=|ex(n)|≤e|x(n)|≤eM,
7. 设线性时不变系统的单位脉冲响应h(n)和输入序列x(n)如题7图所示,
要求画出y(n)输出的波形。
解: 解法(一)采用列表法。
y(n)=x(n)*h(n)=
0≤m≤3
-4≤m≤n
非零区间如下:
第 1 章 时域离散信号和时域离散系统
根据非零区间, 将n分成四种情况求解: ① n<0时, y(n)=0
② 0≤n≤3时, y(n)= ③ 4≤n≤7时, y(n)= ④ n>7时, y(n)=0
1=n+1
n
1=8-m n0
3
mn4
第 1 章 时域离散信号和时域离散系统
第 1 章 时域离散信号和时域离散系统
(3) 这是一个延时器, 延时器是线性非时变系统, 下面证明。 令输入为
输出为
x(n-n1)
y′(n)=x(n-n1-n0) y(n-n1)=x(n-n1-n0)=y′(n) 故延时器是非时变系统。 由于
T[ax1(n)+bx2(n)]=ax1(n-n0)+bx2(n-n0) =aT[x1(n)]+bT[x2(n)]
奥本海姆《信号与系统》(第2版)课后习题-第7章至第9章(下册)(圣才出品)
第二部分课后习题第7章采样基本题7.1已知实值信号x(t),当采样频率时,x(t)能用它的样本值唯一确定。
问在什么ω值下保证为零?解:对于因其为实函数,故是偶函数。
由题意及采样定理知的最大角频率即当时,7.2连续时间信号x(t)从一个截止频率为的理想低通滤波器的输出得到,如果对x(t)完成冲激串采样,那么下列采样周期中的哪一些可能保证x(t)在利用一个合适的低通滤波器后能从它的样本中得到恢复?解:因为x(t)是某个截止频率的理想低通滤波器的输出信号,所以x(t)的最大频率就为=1000π,由采样定理知,若对其进行冲激采样且欲由其采样m点恢复出x(t),需采样频率即采样时间问隔从而有(a)和(c)两种采样时间间隔均能保证x(t)由其采样点恢复,而(b)不能。
7.3在采样定理中,采样频率必须要超过的那个频率称为奈奎斯特率。
试确定下列各信号的奈奎斯特率:解:(a)x(t)的频谱函数为由此可见故奈奎斯特频率为(b)x(t)的频谱函数为由此可见故奈奎斯特频率为(c)x(t)的频谱函数为由此可见,当故奈奎斯特频率为7.4设x(t)是一个奈奎斯特率为ω0的信号,试确定下列各信号的奈奎斯特率:解:(a)因为的傅里叶变换为可见x(t)的最大频率也是的最大频率,故的奈奎斯特频率为0 。
(b)因为的傅里叶变换为可见x (t)的最大频率也是的最大频率.故的奈奎斯特频率仍为。
(c)因为的傅里叶变换蔓可见的最大频率是x(t)的2倍。
从而知x 2(t)的奈奎斯特频率为2(d)因为的傅里叶变换为,x(t)的最大频率为,故的最大频率为,从而可推知其奈奎斯特频率为7.5设x(t)是一个奈奎斯特率为ω0的信号,同时设其中。
当某一滤波器以Y(t)为输入,x(t)为输出时,试给出该滤波器频率响应的模和相位特性上的限制。
解:p(t)是一冲激串,间隔对x(t)用p(t-1)进行冲激采样。
先分别求出P(t)和P(t-1)的频谱函数:注意0ω是x(t)的奈奎斯特频率,这意味着x(t)的最大频率为02ω,当以p(t-1)对x(t)进行采样时,频谱无混叠发生。
信号与系统课后习题参考答案
信号与系统课后习题参考答案1试分别指出以下波形就是属于哪种信号?题图1-11-2试写出题1-1图中信号得函数表达式。
1-3已知信号与波形如题图1-3中所⽰,试作出下列各信号得波形图,并加以标注。
题图1-3⑴⑵⑶⑷⑸⑹⑺⑻⑼1-4已知信号与波形如题图1-4中所⽰,试作出下列各信号得波形图,并加以标注。
题图1-4⑴⑵⑶⑷⑸⑹⑺⑻⑼1-5已知信号得波形如题图1-5所⽰,试作出信号得波形图,并加以标注。
题图1-51-6试画出下列信号得波形图:⑴⑵⑶⑷1-7试画出下列信号得波形图:⑴⑵⑶⑷⑸⑹1-8试求出以下复变函数得模与幅⾓,并画出模与幅⾓得波形图。
⑴⑵⑶⑷1-9已知信号,求出下列信号,并画出它们得波形图。
1-10试作出下列波形得奇分量、偶分量与⾮零区间上得平均分量与交流分量。
题图1-101-11试求下列积分:⑴⑵⑶⑷⑸⑹1-12试求下列积分:⑴⑵⑴(均为常数)⑵⑶⑷⑸⑹⑺⑻1-14如题图1-14中已知⼀线性时不变系统当输⼊为时,响应为。
试做出当输⼊为时,响应得波形图。
题图1-14 1-15已知系统得信号流图如下,试写出各⾃系统得输⼊输出⽅程。
题图1-151-16已知系统⽅程如下,试分别画出她们得系统模拟框图。
⑴⑵⑶1-17已知⼀线性时不变系统⽆起始储能,当输⼊信号时,响应,试求出输⼊分别为与时得系统响应。
第⼆章习题2-1试计算下列各对信号得卷积积分:。
⑴(对与两种情况)⑵⑶⑷⑸⑹2-2试计算下列各对信号得卷积与:。
⑴(对与两种情况)⑵⑶⑷⑸⑹2-3试计算下图中各对信号得卷积积分:,并作出结果得图形。
题图2-32-4试计算下图中各对信号得卷积与:,并作出结果得图形。
题图2-42-5已知,试求:⑴⑵⑶2-7系统如题图2-7所⽰,试求系统得单位冲激响应。
已知其中各⼦系统得单位冲激响应分别为:题图2-72-8设已知LTI 系统得单位冲激响应,试求在激励作⽤下得零状态响应。
2-9⼀LTI 系统如题图2-9所⽰,由三个因果LTI ⼦系统级联⽽成,且已知系统得单位样值响应如图中。
信号与系统课后习题答案第7章
143
第7章 离散信号与系统的Z域分析 144
第7章 离散信号与系统的Z域分析
题图 7.7
145
第7章 离散信号与系统的Z域分析 146
第7章 离散信号与系统的Z域分析
题解图 7.31
147
第7章 离散信号与系统的Z域分析
(2) 由H(z)写出系统传输算子: 对应算子方程和差分方程为
148
7.25 已知一阶、二阶因果离散系统的系统函数分别如下, 求离散系统的差分方程。
111
第7章 离散信号与系统的Z域分析 112
第7章 离散信号与系统的Z域分析 113
第7章 离散信号与系统的Z域分析 114
第7章 离散信号与系统的Z域分析
7.26 已知离散系统如题图7.5所示。 (1) 画出系统的信号流图; (2) 用梅森公式求系统函数H(z); (3) 写出系统的差分方程。
① 或者
② 容易验证式①、②表示同一序列。
57
第7章 离散信号与系统的Z域分析 58
第7章 离散信号与系统的Z域分析 59
第7章 离散信号与系统的Z域分析 60
第7章 离散信号与系统的Z域分析 61
第7章 离散信号与系统的Z域分析
也可以将Yzs(z)表示为
再取Z逆变换,得 ②
自然,式①、②为同一序列。
44
第7章 离散信号与系统的Z域分析 45
第7章 离散信号与系统的Z域分析 46
第7章 离散信号与系统的Z域分析
7.10 已知因果序列f(k)满足的方程如下,求f(k)。
47
第7章 离散信号与系统的Z域分析 48
第7章 离散信号与系统的Z域分析
(2) 已知K域方程为
49
信号与系统第二版课后习题解答(6-7-9)奥本海姆
Chap 66.1 Consider a continuous-time LTI system with frequency response()()|()|H j H j H j e ωωω=and real impulse response h(t). Suppose that we apply an input 00()cos()x t t ωφ=+ to this system .The resulting output can be shown to be of the form0()()y t Ax t t =-Where A is a nonnegative real number representing anamplitude-scaling factor and 0t is a time delay.(a)Express A in terms of |()|H j ω.(b)Express 0t in terms of0()H j ω Solution:(a) For 0()()y t Ax t t =-So 0()()jt Y j AX j e ωωω-=0()()()j t Y j H j Ae X j ωωωω-== So |()|A H j ω=(b) for 0()H j t ωω=- So 0()H j t ωω=-6.3 Consider the following frequency response for a causal and stable LTI system:1()1j H j j ωωω-=+ (a) Show that |()|H j A ω=,and determine the values of A. (b)Determine which of the following statements is true about ()τω,the group delay of the system.(Note()(())/d H j d τωωω=-,where ()H j ωis expressed in aform that does not contain any discontinuities.)1.()0 0for τωω=>2.()0 0for τωω>>3 ()0 0for τωω<>Solution:(a) for |()|1H j ω== So A=1(b) for )(2)()()1()1()(ωωωωωωarctg arctg arctg j j j H -=--=+∠--∠=∠ 212)()(ωωωωτ+=∠-=d j H d So ()0 0for τωω>>6.5 Consider a continuous-time ideal bandpass filter whose frequency response is⎩⎨⎧≤≤=elsewherej H c c,03||,1)(ωωωω (a) If h(t) is the impulse response of this filter, determine a functiong(t) such that)(sin )(t g tt t h c πω= (b) As c ω is increased, dose the impulse response of the filter get more concentrated or less concentrated about the origin?Solution(a) Method 1. Let1()()()()()()2h t x t g t H j X j G j ωωωπ=↔=* They are shown in the figures,where1,sin ()(){0,c c ctx t X j t ωωωωωωπ<=↔=> So we can get()2cos(2)()2[(2)(2)]c c c g t t G j ωωπδωωδωω=↔=-++Method 2. Using the inverse FT definition,it is obtained331(){}2c c c cj t j t h t e d e d ωωωωωωωωπ--=+⎰⎰ 11{sin 3sin }{sin }{2cos 2}c c c c t t t t t tωωωωππ=-= (b) more concentrated.Chap 77.1 A real-valued signal x(t) is know to be uniquely determined by its samples when the sampling frequency is 10,000s ωπ=.For what values of ω is ()X j ω guaranteed to be zero?Solution:According to the sampling theorem 2s M w w > That is 110000500022M s w w ππ<== So if 5000M w w π>=,0)(=jw X7.2 A continuous-time signal x(t) is obtained at the output of an ideal lowpass filter with cutoff frequency 1,000c ωπ=.If impulse-train sampling is performed on x(t), which of the following sampling periods would guarantee that x(t) can be recovered from its sampled version using an appropriate lowpass filter?(a) 30.510T -=⨯(b) 3210T -=⨯(c) 410T -= Solution: π1000==c M w wFrom the sampling theorem,∴π20002=>M s w w ,that is 3102000222-==<πππM s w T ∴the conditions (a) and (c) are satisfied with the sampling theorem,(b) is not satisfied.7.3 The frequency which, under the sampling theorem,must be exceeded by the sampling frequency is called the Nyquist rate. Determine the Nyquist rate corresponding to each of the following signals:(a)()1cos(2,000)sin(4,000)x t t t ππ=++ (b)sin(4,000)()t x t tππ=(c) 2sin(4,000)()()t x t t ππ= Solution: (a))4000sin()2000cos(1)(t t t x ππ++=max(0,2000,4000)4000M w πππ==∴ the Nyquist rate is 28000s M w w π>= (b) sin(4000)()t x t tππ= 4000M w π=∴ the Nyquist rate is 28000s M w w π>= (c) 2sin(4000)()t x t t ππ⎛⎫= ⎪⎝⎭ 2sin(4000)()t x tt ππ⎛⎫= ⎪⎝⎭221(1cos(8000))2t t ππ=- ∴8000M w π=∴the Nyquist rate is 216000s M w w π>=7.4 Let x(t) be a signal with Nyquist rate 0ω. Determine the Nyquist rate for each of the following signals:(a)()(1)x t x t +- (b)()dx t dt(c)2()x t(d)0()cos x t t ωSolution:(a) we let 1()()(1)y t x t x t =+-So 1()()()(1)()j j Y j X j e X j e X j ωωωωωω--=+=+So the Nyquist rate of signal (a) is 0ω.(b) we let 2()()dx t y t dt= So 2()()Y j j X j ωωω=So the Nyquist rate of signal (b) is 0ω.(c) we let 23()()y t x t = So 31()()*()2Y j X j X j ωωωπ= So the Nyquist rate of signal (c) is 20ω.(d) we let 40()()cos y t x t t ω=For 000cos [()()]FT t ωπδωωδωω→-++ So 4001()((()(())2Y j X j X j ωωωωω=-++ So the Nyquist rate of signal (d) is 03ω7.9 Consider the signal 2sin 50()()t x t tππ= Which we wish to sample with a sampling frequency of 150s ωπ= to obtain a signal g(t) with Fourier transform ()G j ω.Determine the maximum value of 0ω for which it is guaranteed that0()75() ||G j X j for ωωωω=≤Where ()X j ω is the Fourier transform of x(t).Solution: 2sin(50)()t x t t ππ⎛⎫= ⎪⎝⎭))100cos(1(2122t t ππ-= ∴100M w π=But π150=s wthe figure about before-sampling and after-sampling of )(jw H isWe can see that only when π500≤w , the before-sampling and after-sampling of )(jw H have the same figure.So if 0..)..(75)(w w for jw X jw G ≤=The maximum value of 0w is π50.Chap 99.2 Consider the signal 5()(1)tx t e u t -=- and denote its Laplace transform by X(s).(a)Using eq.(9.3),evaluate X(s) and specify its region of convergence. (b)Determine the values of the finite numbers A and 0t such that theLaplace transform G(s) of 50()()t g t Ae u t t -=-- has the same algebraic form as X(s).what is the region of convergencecorresponding to G(s)?Solution:(a). According to eq.(9.3), we will getdt e t x s X st -∞∞-⎰=)()(dt e t u e st t --∞∞--=⎰)1(5dt e t s )5(1+-∞⎰= )5()5()5()5()5(1)5(+=+--=+-=+-+-∞+-s e s e s e s s t s ROC: Re{s}>-5(b). )()(05t t u Aet g t --=-−→←LT 0)5(5)(t s e s A s G ++-=, Re{s}<-5 ∴If )()(s X s G =then it ’s obviously that A=-1, 10-=t , Re{s}<-5.9.5 For each of the following algebraic expressions for the Laplace transform of a signal, determine the number of zeros located in the finite s-plane and the number of zeros located at infinity: (a)1113s s +++ (b) 211s s +- (c) 3211s s s -++ Solution :(a).1, 1 )3)(1(423111+++=+++s s s s s ∴it has a zero in the finite s-plane, that is 2-=sAnd because the order of the denominator exceeds the order of the numerator by 1∴ X(s) has 1 zero at infinity.(b). 0, 1 11)1)(1(1112-=-++=-+s s s s s s ∴it has no zero in the finite s-plane.And because the order of the denominator exceeds the order of the numerator by 1∴ X(s) has 1 zero at infinity.(c). 1, 0 11)1)(1(112223-=++++-=++-s s s s s s s s s ∴it has a zero in the finite s-plane, that is 1=sAnd because the order of the denominator equals to the order of the numerator∴ X(s) has no zero at infinity.9.7 How many signals have a Laplace transform that may be expressed as 2(1)(2)(3)(1)s s s s s -++++ in its region of convergence?Solution:There are 4 poles in the expression, but only 3 of them have different real part.∴ The s-plane will be divided into 4 strips which parallel to the jw-axis and have no cut-across.∴ There are 4 signals having the same Laplace transform expression.9.8 Let x(t) be a signal that has a rational Laplace transform with exactly two poles located at s=-1 and s=-3. If2()() ()t g t e x t and G j ω=[ the Fourier transform of g(t)]converges, determine whether x(t) is left sided, right sided, or two sided.Solution:)()(2t x e t g t =∴)2()(-=s X s G ROC: R(x)+Re{2}And x(t) have three possible ROC strips:),1(),1,3(),3,(+∞-----∞∴g(t) have three possible ROC strips: ),1(),1,1(),1,(+∞---∞ IF jw s s G jw G ==|)()(Then the ROC of )(s G is (-1,1)∴)(t x is two sides. 9.9 Given that1(),{}Re{}sat e u t Re s a s a -↔>-+ Determine the inverse Laplace transform of22(2)(),Re{}3712s X s s s s +=>-++ Solution: It is obtained from the partial-fractional expansion:22(2)2(2)42()712(4)(3)43s s X s s s s s s s ++-===+++++++,Re{}3s >-We can get the inverse Laplace transform from given formula and linear property.43()4()2()t t x t e u t e u t --=-9.10 Using geometric evaluation of the magnitude of the Fourier transform from the corresponding pole-zero plot ,determine, for each of the following Laplace transforms, whether the magnitude of the corresponding Fourier transform is approximately lowpass, highpass, or bandpass. (a):1}Re{,.........)3)(1(1)(1->++=s s s s H (b):221(),{}12s H s e s s s =ℜ>-++ (c):232(),{}121s H s e s s s =ℜ>-++ Solution:(a). 1}Re{,.........)3)(1(1)(1->++=s s s s H It ’s lowpass.(b).21}Re{,.........1)(22->++=s s s s s H It ’s bandpass.(c). 1}Re{., (1)2)(223->++=s s s s s H It ’shighpass.9.13 Let ()()()g t x t x t α=+- ,Where ()()t x t e u t β-=. And the Laplace transform of g(t) is 2(),1{}11s G s e s s =-<ℜ<-. Determine the values of the constants αand βSolution:()()()g t x t x t α=+-,and ()()t x t e u t β-=The Laplace transform : ()()()G s X s X s α=+- and ()1X s s β=+,Re{}1s >-From the scale property of Laplace transform,()1X s s β-=-+,Re{}1s < So 2(1)(1)()()()111s G s X s X s s s s βαββαβαα--+=+-=+=+-+-,1Re{}1s -<< From given 2()1s G s s =-,1Re{}1s -<< We can determine : 11,2αβ=-=。
信号与系统第二版课后答案燕庆明
信号与系统第二版课后答案燕庆明《信号与系统》(第二版)课后习题解析燕庆明主编高等教育出版社xaqZ 目录第1章习题解析 (2)第2章习题解析 0第3章习题解析 (10)第4章习题解析 (17)第5章习题解析 (25)第6章习题解析 (35)第7章习题解析 (43)第8章习题解析 (49)第1章习题解析1-1 题1-1图示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?(c) (d)题1-1图解 (a)、(c)、(d)为连续信号;(b)为离散信号;(d)为周期信号;其余为非周期信号;(a)、(b)、(c)为有始(因果)信号。
1-2 给定题1-2图示信号f ( t ),试画出下列信号的波形。
[提示:f ( 2t )表示将f ( t )波形压缩,f (2t )表示将f ( t )波形展宽。
] (a) 2 f ( t - 2 )(b) f ( 2t )(c) f ( 2t ) (d) f ( -t +1 )题1-2图解 以上各函数的波形如图p1-2所示。
第2章习题解析2-1 如图2-1所示系统,试以u C ( t )为输出列出其微分方程。
题2-1图解 由图示,有 t u C R u i d d C C L += 又⎰-=t t u u L i 0C S L d )(1 故C C C S )(1u C Ru u u L ''+'=- 从而得)(1)(1)(1)(S C C C t u LCt u LC t u RC t u =+'+''2-2 设有二阶系统方程0)(4)(4)(=+'+''t y t y t y在某起始状态下的0+起始值为2)0(,1)0(='=++y y试求零输入响应。
解 由特征方程λ2 + 4λ + 4 =0得 λ1 = λ2 = -2则零输入响应形式为t e t A A t y 221zi )()(-+=由于-2A 1 + A 2 = 2所以A 2 = 4故有0,)41()(2zi ≥+=-t e t t y t2-3 设有如下函数f ( t ),试分别画出它们的波形。
信号与系统课后答案(西南交大)
y x (t ) = 3e −2 t − 2 e−3 t t ≥ 0 y f ( t ) = te−2 t − e−2 t + e −3 t t ≥ 0
自由响应 2 e−2 t − e −3 t 强迫响应 te−2 t 稳态响应 0
暂态响应 te−2 t + 2e −2 t − e− 3t t ≥ 0
2.19 y f ( t ) =
2.22① t 3 u( t ) ④(
②∞
③( t−
1 2
1 1 −2 t + e )u( t ) 4 4
sin t + cost 1 −t − e )u( t ) ⑤ eu (t − 3) + e t − 2 u( 3 − t ) ⑥ cos(ωt + 45° ) 2 2 1 − cosπt cosπt − 1 1 1 2.23① u( t ) + u( t − 2) ② t 2 u( t ) − ( t − 1)2 u( t − 1) π π 2 2
3.6 f (t ) =
1 − j 3 ω0 t 3 − j 2 ω 0 t 3 1 e + e + e − jω 0 t + 1 + e jω 0 t + e j 2 ω0 t + e j 3 ω 0t 2 2 2 2
3.7 f (t ) = cos( 4ω0 t + 20°) + 2 cos( 2ω0 t + 30 °) + 3 cos(ω 0 t + 10° ) + 2
p2 + p +1 2.3 H ( p ) = 3 p + 2 p2 + 3p + 2 p2 + 3 p + 2 2.4 H ( p ) = 2p2 +3p +2
《信号与系统》第二版课后答案_(郑君里)_高等教育出版社
5t −∞
e2
(τ
)
dτ
= c1r1 (t ) + c2r2 (t )
∫ ∫ ∫ ( ) ( ) ( ) ( ) ( ) 时变:输入 e t − t0
,输出
5t
e
−∞
τ
− t0
τ −t0 = x
dτ =
e 5t −t0
−∞
x
dx ≠
e 5(t−t0 )
−∞
x
dx = r
t − t0
非因果: t
= 1时,
解题过程: (1)方法一:
f (t)
1
f (t − 2)
1
→
-2
-1
f (3t − 2)
0
1
→
1
2
f (−3t − 2)
1
→
3
2/3 1
-1 -2/3
方法二:
f (t)
f (3t )
1
1
→
→
-2
-1
f (3t − 2)
0
1
-2/3
→
1/3
f (−3t − 2)
2/3 1 方法三:
-1 -2/3
1
f (t)
(2) r (t ) = e(t )u (t )
线性:设 r1 (t ) = e1 (t )u (t ) 、 r2 (t ) = e2 (t )u (t ) , 则 ⎡⎣c1e1 (t ) + c2e2 (t )⎤⎦ u (t ) = c1r1 (t ) + c2r2 (t )
6
时变:输入 e (t − t0 ) ,输出 e (t − t0 )u (t ) ≠ e (t − t0 )u (t − t0 ) = r (t − t0 ) 因果: r (t ) 仅与此时刻 e (t ) 有关 (3) r (t ) = sin ⎡⎣e(t )⎤⎦ u (t ) 非线性:设 r1 (t ) = sin ⎡⎣e1 (t )⎤⎦ u (t ) 、 r2 (t ) = sin ⎡⎣e2 (t )⎤⎦ u (t ) , 则 sin ⎡⎣c1e1 (t ) + c2e2 (t )⎤⎦ u (t ) ≠ sin ⎡⎣c1e1 (t )⎤⎦ u (t ) + sin ⎡⎣c2e2 (t )⎤⎦ u (t ) 时变:输入 e (t − t0 ) ,输出 sin ⎡⎣e (t − t0 )⎤⎦ u (t ) ≠ sin ⎡⎣e(t − t0 )⎤⎦ u (t − t0 ) = r (t − t0 ) 因果: r (t ) 仅与此时刻 e (t ) 有关 (4) r (t ) = e (1− t ) 线性:设 r1 (t ) = e1 (1− t ) 、 r2 (t ) = e2 (1− t ) ,则 c1e1 (1− t ) + c2e2 (1− t ) = c1r1 (t ) + c2r2 (t ) 时变:设 e1 (t ) = u (t ) − u (t −1.5) ,则 r1 (t ) = u (t + 0.5) − u (t ) e2 (t ) = e1 (t − 0.5) = u (t − 0.5) − u (t − 2) ,则 r2 (t ) = u (t +1) − u (t − 0.5) ≠ r1 (t − 0.5) 非因果:取 t = 0 ,则 r (0) = e (1) ,即 t = 0 时刻输出与 t = 1时刻输入有关。 (5) r (t ) = e(2t ) 线性:设 r1 (t ) = e1 (2t ) 、 r2 (t ) = e2 (2t ) ,则 c1e1 (2t ) + c2e2 (2t ) = c1r1 (t ) + c2r2 (t ) 时变:设 e1 (t ) = u (t ) − u (t − 2) ,则 r1 (t ) = u (t ) − u (t −1) e2 (t ) = e1 (t − 2) = u (t − 2) − u (t − 4) ,则 r2 (t ) = u (t −1) − u (t − 2) ≠ r1 (t − 2) 非因果:取 t = 1,则 r (1) = e (2) ,即 t = 1时刻输出与 t = 2 时刻输入有关。 (6) r (t ) = e2 (t ) 非线性:设 r1 (t ) = e12 (t ) 、 r2 (t ) = e22 (t ) , 则 ⎡⎣c1e1 (t ) + c2e2 (t )⎤⎦2 = c12e12 (t ) + c22e22 (t ) + 2c1c2e1 (t ) e2 (t ) ≠ c1r1 (t ) + c2r2 (t ) 时不变:输入 e (t − t0 ) ,输出 e2 (t − t0 ) = r (t − t0 ) 因果: r (t ) 仅与此时刻 e (t ) 有关
郑君里《信号与系统》(第3版)课后习题详解(7-9章)【圣才出品】
,已知 y(-1)=0,y(-2)=0。 。
即
,解得
故全解为:
代入初始条件
,解得:
所以
y(n)
=
−
1 2
tan1 cos
nπ 2
+
1 2
sin
n
+
1 2
tan1
cos
n
u(n)
。
7-18 解差分方程
,已知 y(-1)=0
解得:
,故全解为:
代入初始条件 y(-1)=0,解得:
,
所以
。 。
7-15 解差分方程
,已知 y(0)=1。
解:由差分方程可得特征方程为 a+2=0,解得特征根 a=-2,故可设齐次解为
。
根据自由项形式设特解为
,将其代入原差分方程,则有
解得:
,故全解为:
。
代入初始条件 y(0)=1,解得:
,
所以
。
7-16 解差分方程
。 代入初始条件
,解得特征根 ,得
,解得
所以
。
(2)由特征方程
,解得特征根
。
代入初始条件
,得
,解得
所以
。
(3)由特征方程
,解得特征根
10 / 108
,故可设齐次解 ,故可设齐次解为: ,故可设齐次解为:
。 代入初始条件
所以
,得 ,解得
。
7-13 解差分方程
解:根据差分方程,可得特征方程为
4 / 108
所以 (3)当
时,有
,波形图如图 7-5(b)所示。
所以 所示。
,波形图如图 7-5(c)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7章离散信号与系统
➢
➢ 的Z域分析
1
第7章 离散信号与系统的Z域分析
7.1 用定义求下列信号的双边Z变换及收敛域。
2
第7章 离散信号与系统的Z域分析 3
第7章 离散信号与系统的Z域分析 4
第7章 离散信号与系统的Z域分析 5
第7章 离散信号与系统的Z域分析 6
(3) 因为
第7章 离散信号与系统的Z域分析
所以
27
第7章 离散信号与系统的Z域分析 28
第7章 离散信号与系统的Z域分析 29
第7章 离散信号与系统的Z域分析 30
第7章 离散信号与系统的Z域分析 31
第7章 离散信号与系统的Z域分析 32
第7章 离散信号与系统的Z域分析 33
第7章 离散信号与系统的Z域分析 34
第7章 离散信号与系统的Z域分析 35
第7章 离散信号与系统的Z域分析
解 本题练习K域卷积和性质及其应用。 (1) 因为
所以
36
(2) 因为
第7章 离散信号与系统的Z域分析
所以
37
第7章 离散信号与系统的Z域分析 38
第7章 离散信号与系统的Z域分析 39
第7章 离散信号与系统的分析
第7章 离散信号与系统的Z域分析
解 (1) 因为
19
第7章 离散信号与系统的Z域分析 20
第7章 离散信号与系统的Z域分析 21
第7章 离散信号与系统的Z域分析
7.5 已知双边Z变换为
(1) |z|>4,求原函数f(k); (2) |z|<2,求原函数f(k); (3) 3<|z|<4,求原函数f(k)。
① 或者
② 容易验证式①、②表示同一序列。
57
第7章 离散信号与系统的Z域分析 58
第7章 离散信号与系统的Z域分析 59
第7章 离散信号与系统的Z域分析 60
第7章 离散信号与系统的Z域分析 61
第7章 离散信号与系统的Z域分析
也可以将Yzs(z)表示为
再取Z逆变换,得 ②
自然,式①、②为同一序列。
第7章 离散信号与系统的Z域分析 7
第7章 离散信号与系统的Z域分析 8
第7章 离散信号与系统的Z域分析 9
第7章 离散信号与系统的Z域分析 10
第7章 离散信号与系统的Z域分析 11
第7章 离散信号与系统的Z域分析 12
第7章 离散信号与系统的Z域分析 13
第7章 离散信号与系统的Z域分析
22
第7章 离散信号与系统的Z域分析 23
第7章 离散信号与系统的Z域分析
(3) 当3<|z|<4时,f(k)是双边序列。根据收敛域情况,可将 F(z)展开式中第一、二项对应为因果序列,而将第三项对应为 反因果序列,即有
24
第7章 离散信号与系统的Z域分析 25
第7章 离散信号与系统的Z域分析 26
7.3 已知f(k)的双边Z变换为F(z),F(z)的收敛域为α<|z|<β, 求下列信号的双边Z变换。
14
第7章 离散信号与系统的Z域分析
解 应用Z变换性质求序列的Z变换。 (1) 因为 所以
15
第7章 离散信号与系统的Z域分析 16
第7章 离散信号与系统的Z域分析 17
第7章 离散信号与系统的Z域分析 18
解 常用单边Z逆变换方法包括: 变换对公式法、Z变换性 质法和部分分式展开法。F(z)的单边Z逆变换,其原函数都是 因果序列。
40
第7章 离散信号与系统的Z域分析 41
第7章 离散信号与系统的Z域分析 42
第7章 离散信号与系统的Z域分析 43
(5) 因为
第7章 离散信号与系统的Z域分析
所以
第7章 离散信号与系统的Z域分析
7.20 已知因果离散系统的系统函数如下,求系统的频率 响应,粗略画出系统的幅频响应和相频响应曲线。
83
第7章 离散信号与系统的Z域分析 84
第7章 离散信号与系统的Z域分析
其幅频和相频响应为
85
第7章 离散信号与系统的Z域分析 86
第7章 离散信号与系统的Z域分析
第7章 离散信号与系统的Z域分析 70
将f(k)的Z变换
第7章 离散信号与系统的Z域分析
代入式①,整理得
③
71
第7章 离散信号与系统的Z域分析
最后,对式②、③取Z逆变换,求得系统单位响应和零状态响 应为
72
第7章 离散信号与系统的Z域分析 73
第7章 离散信号与系统的Z域分析 74
第7章 离散信号与系统的Z域分析 75
44
第7章 离散信号与系统的Z域分析 45
第7章 离散信号与系统的Z域分析 46
第7章 离散信号与系统的Z域分析
7.10 已知因果序列f(k)满足的方程如下,求f(k)。
47
第7章 离散信号与系统的Z域分析 48
第7章 离散信号与系统的Z域分析
(2) 已知K域方程为
49
第7章 离散信号与系统的Z域分析 50
第7章 离散信号与系统的Z域分析 76
第7章 离散信号与系统的Z域分析 77
第7章 离散信号与系统的Z域分析 78
第7章 离散信号与系统的Z域分析 79
第7章 离散信号与系统的Z域分析 80
第7章 离散信号与系统的Z域分析
对上面的方程取单边Z变换,有
81
第7章 离散信号与系统的Z域分析 82
62
第7章 离散信号与系统的Z域分析 63
第7章 离散信号与系统的Z域分析 64
第7章 离散信号与系统的Z域分析 65
第7章 离散信号与系统的Z域分析
(3) 对差分方程 取单边Z变换,得
66
第7章 离散信号与系统的Z域分析 67
第7章 离散信号与系统的Z域分析 68
第7章 离散信号与系统的Z域分析 69
第7章 离散信号与系统的Z域分析 51
第7章 离散信号与系统的Z域分析 52
第7章 离散信号与系统的Z域分析
由终值定理,得
53
第7章 离散信号与系统的Z域分析 54
第7章 离散信号与系统的Z域分析 55
第7章 离散信号与系统的Z域分析 56
第7章 离散信号与系统的Z域分析
两边同乘z, 得 所以,系统零状态响应为
其幅频、相频响应分别为
87
第7章 离散信号与系统的Z域分析
7.21 求题图7.1所示离散系统的单位响应h(k)和单位阶跃序 列响应g(k)。图中,各子系统的单位响应分别为h1(k)=δ(k-1), h2(k)=ε(k),h3(k)=ε(k-3)。
88
第7章 离散信号与系统的Z域分析
题图 7.1