2023高考数学二轮复习专项训练《一次函数与二次函数》(含解析)
高三数学一次函数与二次函数试题答案及解析
![高三数学一次函数与二次函数试题答案及解析](https://img.taocdn.com/s3/m/eb1436f4f80f76c66137ee06eff9aef8941e4899.png)
高三数学一次函数与二次函数试题答案及解析1.若函数f(x)=x2-ax-a在区间[0,2]上的最大值为1,则实数a等于()A.-1B.1C.2D.-2【答案】B【解析】∵函数f(x)=x2-ax-a的图象为开口向上的抛物线,∴函数的最大值在区间的端点处取得,∵f(0)=-a,f(2)=4-3a,∴或,解得a=1,∴选B.2.设函数f(x)=-2x2+4x在区间[m,n]上的值域是[-6,2],则m+n的取值所组成的集合为()A.[0,3]B.[0,4]C.[-1,3]D.[1,4]【答案】B【解析】由题意可得,函数f(x)=-2x2+4x图象的对称轴为x=1,故当x=1时,函数取得最大值2.因为函数的值域是[-6,2],令-2x2+4x=-6,可得x=-1或x=3.所以-1≤m≤1,1≤n≤3,所以0≤m+n≤4.故选B.3.如图,已知二次函数y=ax2+bx+c(a,b,c为实数,a≠0)的图像过点C(t,2),且与x轴交于A,B两点,若AC⊥BC,则实数a的值为________.【答案】-【解析】设点A(x1,0),B(x2,0),则=(x1-t,-2),=(x2-t,-2),所以·=x1x2-t(x1+x2)+t2+4=0.又x1x2=,x1+x2=-,所以t2+++4=0.又点C(t,2)在抛物线上,所以at2+bt+c=2,所以t2++=,即-4=,解得a=-.4.(5分)(2011•福建)已知函数f(x)=.若f(a)+f(1)=0,则实数a的值等于()A.﹣3B.﹣1C.1D.3【答案】A【解析】由分段函数f(x)=,我们易求出f(1)的值,进而将式子f(a)+f(1)=0转化为一个关于a的方程,结合指数的函数的值域,及分段函数的解析式,解方程即可得到实数a的值.解:∵f(x)=∴f(1)=2若f(a)+f(1)=0∴f(a)=﹣2∵2x>0∴x+1=﹣2解得x=﹣3故选A点评:本题考查的知识点是分段函数的函数值,及指数函数的综合应用,其中根据分段函数及指数函数的性质,构造关于a的方程是解答本题的关键.5.(2013•重庆)关于x的不等式x2﹣2ax﹣8a2<0(a>0)的解集为(x1,x2),且:x2﹣x1=15,则a=()A.B.C.D.【答案】A【解析】因为关于x的不等式x2﹣2ax﹣8a2<0(a>0)的解集为(x1,x2),所以x1+x2=2a…①,x1•x2=﹣8a2…②,又x2﹣x1=15…③,①2﹣4×②可得(x2﹣x1)2=36a2,代入③可得,152=36a2,解得a==,因为a>0,所以a=.故选A.6.在边长为2的等边中,是的中点,为线段上一动点,则的取值范围是()A.B.C.D.【答案】A【解析】设,.由.所以.故选A.【考点】1.向量的运算.2.二次函数的最值.3.平面向量的基本定理.7.已知函数在区间()上的最大值为4,最小值为3,则实数m的取值范围是( )A.B.C.D.【答案】A【解析】作出函数的图象如下图所示,从图可以看出当时,函数在区间()上的最大值为4,最小值为3.故选A.【考点】二次函数.8.已知函数对任意的满足,且当时,.若有4个零点,则实数的取值范围是.【答案】【解析】由题意得函数为偶函数,因此当有4个零点时,在上有且仅有两个零点,所以即【考点】二次函数的图象与性质,零点问题9.椭圆c:(a>b>0)的离心率为,过其右焦点F与长轴垂直的弦长为1,(1)求椭圆C的方程;(2)设椭圆C的左右顶点分别为A,B,点P是直线x=1上的动点,直线PA与椭圆的另一个交点为M,直线PB与椭圆的另一个交点为N,求证:直线MN经过一定点.【答案】(1);(2)证明详见解析【解析】(1)由已知可得,=1,解出a,b即可.(2)设P(1,t),则直线,联立直线PA方程和椭圆方程可得,同理得到,由椭圆的对称性可知这样的定点在轴,不妨设这个定点为Q,由,求得m的存在即可.试题解析:(1)依题意过焦点F与长轴垂直的直线x=c与椭圆联立解答弦长为=1, 2分所以椭圆的方程. 4分(2)设P(1,t),直线,联立得:即,可知所以,则 6分同理得到 8分由椭圆的对称性可知这样的定点在轴,不妨设这个定点为Q, 10分又,,,,. 12分【考点】1.椭圆方程的性质;2.点共线的证法.10.对于任意a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于零,那么x的取值范围是() A.(1,3)B.(-∞,1)∪(3,+∞)C.(1,2)D.(3,+∞)【答案】B【解析】f(x)=x2+(a-4)x+4-2a=(x-2)a+x2-4x+4,令g(a)=(x-2)a+x2-4x+4,由题意知即解得x>3或x<1,故选B.11.函数的图象和函数的图象的交点个数是。
高三数学一次函数与二次函数试题答案及解析
![高三数学一次函数与二次函数试题答案及解析](https://img.taocdn.com/s3/m/d0fd11c059f5f61fb7360b4c2e3f5727a5e9244e.png)
高三数学一次函数与二次函数试题答案及解析1.已知函数.(1)设,,求的单调区间;(2)若对任意,,试比较与的大小.【答案】(1)单调递减区间是,单调递增区间是;(2).【解析】(1)根据题意,可以考虑利用导数来研究的单调性,当,时:,从而可得当时,,单调递减当时,,单调递增,因此单调递减区间是,单调递增区间是;(2)由条件可知为极小值点,从而有,,即,接下来考虑用作差法比较与的大小关系,,因此构造函数,通过导数研究的单调性,从而判断的取值情况:,令,得,当时,,单调递增,当时,,单调递减,,,即,故.试题解析:(1)由,,得, 2分∵,,∴, 3分令,得,当时,,单调递减, 4分当时,,单调递增,∴单调递减区间是,单调递增区间是; 6分(2)由题意可知,在处取得最小值,即是的极值点,∴,∴,即, 8分令,则,令,得, 10分当时,,单调递增,当时,,单调递减, 12分∴,∴,即,故. 14分.【考点】1.利用导数研究函数的单调性;2.函数与不等式综合.2.已知lgx+lgy=2 lg(2x-3y),求的值.【答案】2【解析】解:依题意可得:lg(xy)=lg(2x-3y)2,即xy=(2x-3y)2,整理得:4()2-13()+9=0,解得:=1或=,∵x>0,y>0,2x-3y>0,∴=,∴=2.3.(2013•重庆)关于x的不等式x2﹣2ax﹣8a2<0(a>0)的解集为(x1,x2),且:x2﹣x1=15,则a=()A.B.C.D.【答案】A【解析】因为关于x的不等式x2﹣2ax﹣8a2<0(a>0)的解集为(x1,x2),所以x1+x2=2a…①,x1•x2=﹣8a2…②,又x2﹣x1=15…③,①2﹣4×②可得(x2﹣x1)2=36a2,代入③可得,152=36a2,解得a==,因为a>0,所以a=.故选A.4.若一元二次不等式对一切实数都成立,则的取值范围为()A.B.C.D.【答案】D【解析】由题意,,解得.【考点】二次函数的图象和性质.5.椭圆c:(a>b>0)的离心率为,过其右焦点F与长轴垂直的弦长为1,(1)求椭圆C的方程;(2)设椭圆C的左右顶点分别为A,B,点P是直线x=1上的动点,直线PA与椭圆的另一个交点为M,直线PB与椭圆的另一个交点为N,求证:直线MN经过一定点.【答案】(1);(2)证明详见解析【解析】(1)由已知可得,=1,解出a,b即可.(2)设P(1,t),则直线,联立直线PA方程和椭圆方程可得,同理得到,由椭圆的对称性可知这样的定点在轴,不妨设这个定点为Q,由,求得m的存在即可.试题解析:(1)依题意过焦点F与长轴垂直的直线x=c与椭圆联立解答弦长为=1, 2分所以椭圆的方程. 4分(2)设P(1,t),直线,联立得:即,可知所以,则 6分同理得到 8分由椭圆的对称性可知这样的定点在轴,不妨设这个定点为Q, 10分又,,,,. 12分【考点】1.椭圆方程的性质;2.点共线的证法.6.已知是虚数单位,以下同)是关于的实系数一元二次方程的一个根,则实数,.【答案】【解析】由题意是方程的另一根,因此,,.【考点】实系数二次方程的复数根.7.已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值为8,求二次函数f(x)的解析式.【答案】f(x)=-4x2+4x+7【解析】(解法1:利用一般式)设f(x)=ax2+bx+c(a≠0),解得∴所求二次函数为f(x)=-4x2+4x+7.(解法2:利用顶点式)设f(x)=a(x-m)2+n,∵f(2)=f(-1),∴抛物线对称轴为x==,即m=;又根据题意,函数最大值ymax=8,∴n=8,∴f(x)=a2+8.∵f(2)=-1,∴a+8=-1,解得a=-4.∴f(x)=-42+8=-4x2+4x+7.(解法3:利用两根式)由题意知f(x)+1=0的两根为x1=2,x2=-1,故可设f(x)+1=a(x-2)(x+1),即f(x)=ax2-ax-2a-1.又函数有最大值ymax=8,即=8,解得a=-4或a=0(舍),∴所求函数的解析式为f(x)=-4x2-(-4)x-2×(-4)-1=-4x2+4x+78.设a>0,a≠1,函数f(x)=ax2+x+1有最大值,则不等式log(x-1)>0的解集为________.a【答案】(1,2)【解析】因为x2+x+1有最小值,函数f(x)=ax2+x+1有最大值,所以0<a<1,所以log(x-a 1⇔0<x-1<1,解得1<x<2.1)>0=loga9.设二次函数的图象在点的切线方程为,若则下面说法正确的有: .①存在相异的实数使成立;②在处取得极小值;③在处取得极大值;④不等式的解集非空;④直线一定为函数图像的对称轴.【答案】①④⑤【解析】设,则,所以在点处的切线方程为,即,所以,这是二次函数,则①正确;当的正负不确定,故不能确定其为极大值还是极小值,所以②③不正确;而当时,,所以其解集非空,④正确;易知一定是图像的对称轴.故①④⑤正确.【考点】1.二次函数的性质;2.函数的切线方程求解.10.函数在同一直角坐标系中的图像可能是()【答案】D【解析】,∴或,∴由图像可知,即,∴是减函数,∴A错,B错;C中,由图像可知,即,∴是增函数;D中,,即,∴是减函数,∴D正确;∴综上可知:D正确.【考点】二次函数和对数函数的图像.11.定义:如果函数在区间上存在,满足,则称是函数在区间上的一个均值点。
2023-2024学年高考数学一元二次函数、方程与不等式专项练习题(含答案)
![2023-2024学年高考数学一元二次函数、方程与不等式专项练习题(含答案)](https://img.taocdn.com/s3/m/48a70d4917fc700abb68a98271fe910ef12daeb8.png)
2023-2024学年高考数学一元二次函数、方程与不等式小专题一、单选题1.下列命题正确的是( )A .若,则B .若,则a b >22ac bc>a b >-a b ->C .若,则D .若,则ac bc >a b>a b >a c b c->-2.若不等式的解集是,则不等式的解集是( 220ax x c ++<11(,)(,)32-∞-⋃+∞220cx x a -+≤ )A .B .11,23⎡⎤-⎢⎥⎣⎦11,32⎡⎤-⎢⎥⎣⎦C .D .[]2,3-[]3,2-3.若,且,则的最小值是( )0x >0y >21x y +=1xx y +A .B .C .2D .122+322+324.若正实数,满足,且恒成立,则实数的取值范围为( )x y 4x y xy +=234yx a a +>-a A .B .C .D .[]1,4-()1,4-[]4,1-()4,1-5.若对于任意,都有成立,则实数的取值范围是( )[],1x m m ∈+210x mx +-<m A .B .2,03⎛⎫- ⎪⎝⎭2,02⎛⎫- ⎪ ⎪⎝⎭C .D .2,03⎡⎤-⎢⎥⎣⎦2,02⎡⎤-⎢⎥⎣⎦6.已知,若关于的不等式在上恒成立,则的最小值为0a >x 31ax x +≥+()1,x ∈-+∞a ( )A .1B .2C .4D .87.若命题“”为假命题,则m 的取值范围是( )2000R,220x x mx m ∃∈+++<A .B .][(),12,-∞-⋃+∞()(),12,-∞-+∞ C .D .[]1,2-()1,2-8.设集合,.若中恰含有一个整数,{}260A x x x =+->{}210,0B x xax a =--≤>A B ⋂则实数的取值范围是( )a A .B .C .D .80,3⎛⎫⎪⎝⎭815,34⎡⎫⎪⎢⎣⎭8,3⎡⎫+∞⎪⎢⎣⎭815,34⎡⎤⎢⎥⎣⎦二、多选题9.下列说法正确的有( )A .的最小值为21x y x +=B .已知,则的最小值为1x >4211y x x =+--421+C .若正数x 、y 满足,则的最小值为323x y xy +=2x y +D .设x 、y 为实数,若,则的最大值为2291x y xy ++=3x y +221710.若正实数x ,y 满足x +y =1,且不等式有解,则实数m 的取值范围241312m mx y +<++是错误的是( )A .m <-3或m >B .-3<m <3232C .m ≤-3或m ≥D .-3≤m ≤323211.已知关于的不等式的解集为或,则下列结论中,正确结论x 20ax bx c ++≥{|3x x ≤}4x ≥的序号是( )A .0a >B .不等式的解集为0bx c +<{}4|x x <-C .不等式的解集为或20cx bx a -+<1|4x x ⎧<-⎨⎩13x ⎫>⎬⎭D .0a b c ++>12.若,,,则下列不等式对一切满足条件的,恒成立的是( )0a >0b >2a b +=a b A .B .1ab ≤2a b +≤C .D .222a b +≥112a b+≥三、填空题13.已知关于x 一元二次方程有两个实根,,(1)若比3大,比3240x x a -+=1x 2x 1x 2x 小,则a 的取值范围是 ;(2)把写成用含a 表达式为 .12x x -14.已知都是实数,一元二次方程有两个非零实根,且,则,,a b c 20ax bx c ++=12,x x 2b c == .1211+x x 15.已知函数,当时,恒成立,则的最大值为.()222=+-b a f x ax x []1,1x ∈-()12f x ≥-a b +16.中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为a ,b ,c ,三角形的面积S 可由公式求得,其中p 为三角形()()()S p p a p b p c =---周长的一半,这个公式也被称为海伦—秦九韶公式,现有一个三角形的边长满足,5a b +=,则此三角形面积的最大值为.3c =答案:1.D【分析】根据不等式的性质,令,可以判断A 的真假;由不等式的性质3,可以判断0c =B ,C 的真假;由不等式的性质1,可以判断D 的真假,进而得到答案.【详解】当时,若,则,故A 错误;0c =a b >22ac bc =若,则,故B 错误;a b >-a b -<若,当时,则;当时,则,故C 错误;ac bc >0c >a b >0c <a b <若,则,故D 正确a b >a c b c ->-故选:D 2.C【分析】依题意和是方程的两个实数根,利用韦达定理得到方程组13-12220ax x c ++=,即可求出,再解一元二次不等式即可.112321132a c a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩12,2a c =-=222120x x --≤【详解】因为不等式的解集是:,220ax x c ++<11(,)(,)32-∞-⋃+∞所以和是方程的两个实数根,13-12220ax x c ++=由,解得:,112321132a ca ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩12,2a c =-=故不等式,即为,220cx x a -+≤222120x x --≤解不等式,得:,260x x --≤23x -≤≤所求不等式的解集是.[]23-,故选:C .3.A【分析】利用基本不等式可得答案.【详解】因为,且,0x >0y >21x y +=所以,1121222221++=++=++≥⨯=+x x x xx y x y x y x y x y y y当且仅当时等号成立,221,12x y =-=-故选:A.4.B【分析】根据题意,结合基本不等式的运算,由系数“1”的妙用可得,然后求解不等44yx +≥式,即可得到结果.【详解】因为正实数,满足,所以,x y 4x y xy +=411y x +=则,144422244444y y y x y xx x x y x y x y ⎛⎫⎛⎫+=++=++≥+⋅= ⎪ ⎪⎝⎭⎝⎭当且仅当时,即时,等号成立,此时取得最小值4,44411y x x y y x ⎧=⎪⎪⎨⎪+=⎪⎩2,8x y ==因为恒成立,所以,解得.234yx a a +>-243a a >-14a -<<实数的取值范围为.a ()1,4-故选:B 5.B【分析】利用一元二次函数的图象与性质分析运算即可得解.【详解】由题意,对于都有成立,[],1x m m ∀∈+2()10f x x mx =+-<∴,解得:,()()()()2221011110f m m m f m m m m ⎧=+-<⎪⎨+=+++-<⎪⎩202m -<<即实数的取值范围是.m 2,02⎛⎫- ⎪ ⎪⎝⎭故选:B.6.C【分析】利用基本不等式求解.【详解】因为,,1x >-10x +>所以,()1121121111a aax x x a x x x +=++-≥+⋅-=-+++当且仅当,即时,取得等号,11ax x +=+1x a =-所以有最小值为,1ax x ++21a -因为不等式在上恒成立,31ax x +≥+()1,x ∈-+∞所以,解得,所以的最小值为4,213a -≥4a ≥a 故选:C.7.C【分析】由题意结合命题和它的否定的真假性关系,以及一元二次不等式恒成立问题的充要条件即可求解.【详解】由题意命题“”为真命题,2000R,220x x mx m ∀∈+++≥所以当且仅当,()()22442420m m m m ∆=-+=--≤解得,即m 的取值范围是.12m -≤≤[]1,2-故选:C.8.B【分析】求出A 中的不等式的解集确定出A ,由A 与B 交集中恰有一个整数,求出的范围a 即可.【详解】解:,因为函数图象的对称{}{}26023A x x x x x x =+->=><-或()21f x x ax =--轴为直线,,根据对称性可知,要使中恰含有一个整数,02ax =>()3380f a -=+>A B ⋂则这个整数为3,所以有且,即,即,所以实数的取()30f ≤()40f >8301540a a -≤⎧⎨->⎩83154a a ⎧≥⎪⎪⎨⎪<⎪⎩a 值范围为.815,34⎡⎫⎪⎢⎣⎭故选:B 9.BCD【分析】利用基本不等式一一计算即可.【详解】显然当时,,故A 错误;=1x -102x y x +==<原式可化为:,()()44211221142111y x x x x =-++≥-⋅+=+--当且仅当即时取得等号,故B 正确;()4211x x -=-21x =+由,1223133x y xy y x +=⇒+=所以,()12225225222333333333x y x y x y x y y x y x y x ⎛⎫+=++=++≥⋅+= ⎪⎝⎭当且仅当即时取得等号,故C 正确;2233x yy x =1x y ==由,()()22225591315143131212x y xy x y xy x y x y ++=⇒+=+=+⨯⨯⨯≤++则,当且仅当时取得等号,()27122213131277x y x y +≤⇒+≤=2137x y ==故D 正确.故选:BCD 10.BCD【分析】使不等式有解,大于的最小值,根据题意先利241312m m x y+<++232m m+411x y ++用基本不等式求的最小值,再解不等式求m 的取值范围.411x y ++【详解】因为正实数x ,y 满足,所以,1x y +=(1)2x y ++=则=,411x y ++)1=44[2(1111(5)](211)y x y x x y y x ≥++++++++1119(52)=(54)22241x y y x +⋅+++=当且仅当,即时等号成立.411y x x y +=+1323x y ⎧=⎪⎪⎨⎪=⎪⎩因为不等式有解,所以,241312m m x y+<++23922m m +>即,,239022m m +->0()3)(32m m +>-解得或.3m <-32m >故选:BCD.11.AD【分析】根据不等式的解集,即可判断A 项;根据三个二次之间的关系,结合韦达定理可得出,进而代入不等式,化简、求解不等式,即可判断B 、C 、D 项.712b a c a =-⎧⎨=⎩【详解】对于A 项,由不等式的解集范围为两边,即可得出二次函数开口向上,即,0a >故A 项正确;对于B 项,由已知可得,3、4即为的两个解.20ax bx c ++=由韦达定理可得,,解得,34712ba c a ⎧-=+=⎪⎪⎨⎪=⎪⎩712b ac a =-⎧⎨=⎩代入可得.7120ax a -+<又,所以,所以解集为,故B 项错误;0a >127x >12|7x x ⎧⎫>⎨⎬⎩⎭对于C 项,由B 知,,,,7b a =-12c a =0a >代入不等式可得,21270ax ax a ++<化简可得,212710x x ++<解得,1134x -<<-所以,不等式的解集为,故C 项错误;20cx bx a -+<11|34x x ⎧⎫-<<-⎨⎬⎩⎭对于D 项,由已知可得,当时,有,故D 项正确.1x =71260a b c a a a a ++=-+=>故选:AD.12.ACD【分析】分别根据基本不等式即可求出.【详解】,当且仅当时取等号,故A 成立;2()12a b ab +≤=1a b ==假设,则,则,与已知矛盾,故B 不成立;2a b +≤22a b ab ++≤0ab ≤,当且仅当时取等号,故C 成立;2222()242()4222a b a b a b ab ++=+-≥-⨯=-=1a b ==,由A 可得,当且仅当时取等号,故D 成立.112a b a b ab ab ++==1122a b ab +=≥1a b ==故选:ACD .13.且3a <164a -4a ≤【分析】(1)设,则由题意可得,由此求得a 的范围;()24ax x x f =-+()330f a =-<(2)用韦达定理即可求解;【详解】(1)设,因为的图象是开口向上的抛物线,()24ax x x f =-+()24ax x x f =-+又一元二次方程有两个实根,,且 比3大,比3小,240x x a -+=1x 2x 1x 2x 所以,求得,()330f a =-<3a <(2)由关于x 一元二次方程有两个实根、,且,240x x a -+=1x 2x 1640a ∆=-≥所以,,且,得,124x x +=12x x a =4a ≤()21212124164x x x x x x a-=+-=-故;且3a <164a -4a ≤14.2-【分析】由根与系数关系得,再由及已知即可求值.1212,b c x x x x a a +=-=12121211x x x x x x ++=【详解】由题设,且,0a ≠1212,b cx x x x a a +=-=而,,则.12121211x x b x x x x c ++==-2b c =12112x x +=-故2-15.2【分析】将函数化简可得,结合题目要求的最大值,故考虑()2122x f x a x b⎛⎫=-+⋅ ⎪⎝⎭a b +,得出关于的不等式,进而取特殊值判断是否满足满足取等条件求解即可.2122xx -=a b +【详解】函数,对恒成立,令()221122222b a x f x ax x a x b ⎛⎫=+-=-+⋅≥- ⎪⎝⎭[]1,1x ∈-,则或,故,得,当时,2122xx -=12x =-1x =112442a b f ⎛⎫-=--≥- ⎪⎝⎭2a b +≤24,33a b ==满足,则的最大值为2.()2222121113333222f x x x x ⎛⎫=+-=+-≥-⎪⎝⎭a b +故216.3【分析】计算出,得到,由基本不等式求出.4p =24S ab =-243S ab =-≤【详解】因为,,所以,5a b +=3c =53422a b c p +++===故,()()()()()()44443244216424S a b a b a b ab ab =---=--=-++=-因为,当且仅当时,等号成立,()22544a b ab +≤=52a b ==故,25242434S ab =-≤⨯-=故3。
高三数学一次函数与二次函数试题答案及解析
![高三数学一次函数与二次函数试题答案及解析](https://img.taocdn.com/s3/m/ec1d6f0e591b6bd97f192279168884868762b8ae.png)
高三数学一次函数与二次函数试题答案及解析1.已知函数.(1)当时,求函数的极值;(2)若函数在区间上是减函数,求实数a的取值范围;(3)当时,函数图象上的点都在所表示的平面区域内,求实数a的取值范围.【答案】(1)极大值;(2);(3).【解析】本题主要考查导数的运算、利用导数判断函数的单调性、利用导数求函数的极值等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,将代入中,对求导,令,,判断函数的单调性,所以当时,函数取得极值;第二问,将题目转化为在上恒成立,再转化为在上恒成立,再转化为,利用配方法求函数的最小值,解出a的取值范围;第三问,将题目转化为当时,不等式恒成立,即,讨论a的值,在每一种情况下判断单调性,求函数最值,验证.试题解析:(1)当时,,,由解得,由解得,故当时,的单调递增;当时,单调递减,∴当时,函数取得极大值.(2),∵函数在区间上单调递减,∴在区间上恒成立,即在上恒成立,只需2a不大于在上的最小值即可. 6分而,则当时,,∴,即,故实数a的取值范围是. 8分(3)因图象上的点在所表示的平面区域内,即当时,不等式恒成立,即恒成立,设(),只需即可.由,(ⅰ)当时,,当时,,函数在上单调递减,故成立.(ⅱ)当时,由,令,得或,①若,即时,在区间上,,函数在上单调递增,函数在上无最大值,不满足条件;②若,即时,函数在上单调递减,在区间上单调递增,同样在上无最大值,不满足条件.(ⅲ)当时,由,因,故,则函数在上单调递减,故成立.综上所述,实数a的取值范围是. 12分【考点】导数的运算、利用导数判断函数的单调性、利用导数求函数的极值.2.若函数f(x)=x2-ax-a在区间[0,2]上的最大值为1,则实数a等于________.【答案】1【解析】函数f(x)=x2-ax-a的图像为开口向上的抛物线,∴函数的最大值在区间的端点取得,∵f(0)=-a,f(2)=4-3a,∴或解得a=1.3.已知a、b为非零向量,,若,当且仅当时,取得最小值,则向量a、b的夹角为___________.【答案】【解析】设向量的夹角为,则,构造函数,因为当且仅当时,取得最小值,所以当时,函数有最小值,即时,函数有最小值,又,所以解得.【考点】1.向量;2.二次函数.4.已知二次函数f(x)=ax2+bx+c (a≠0)且满足f(-1)=0,对任意实数x,恒有f(x)-x≥0,并且当x∈(0,2)时,f(x)≤.(1)求f(1)的值;(2)证明:a>0,c>0;(3)当x∈[-1,1]时,函数g(x)=f(x)-mx (x∈R)是单调函数,求证:m≤0或m≥1.【答案】(1)f(1)=1. (2)见解析(3)见解析【解析】(1)解∵对x∈R,f(x)-x≥0恒成立,当x=1时,f(1)≥1,又∵1∈(0,2),由已知得f(1)≤=1,∴1≤f(1)≤1.∴f(1)=1.(2)证明∵f(1)=1,∴a+b+c=1.又∵a-b+c=0,∴b=.∴a+c=.∵f(x)-x≥0对x∈R恒成立,∴ax2-x+c≥0对x∈R恒成立.∴,∴∴c>0,故a>0,c>0.(3)证明∵a+c=,ac≥,由a>0,c>0及a+c≥2,得ac≤,∴ac=,当且仅当a=c=时,取“=”.∴f(x)=x2+x+.∴g(x)=f(x)-mx=x2+x+=[x2+(2-4m)x+1].∵g(x)在[-1,1]上是单调函数,∴2m-1≤-1或2m-1≥1.∴m≤0或m≥1.5.已知函数对任意的满足,且当时,.若有4个零点,则实数的取值范围是.【答案】【解析】由题意得函数为偶函数,因此当有4个零点时,在上有且仅有两个零点,所以即【考点】二次函数的图象与性质,零点问题6.已知是虚数单位,以下同)是关于的实系数一元二次方程的一个根,则实数,.【答案】【解析】由题意是方程的另一根,因此,,.【考点】实系数二次方程的复数根.7.若x1,x2是函数f(x)=x2+mx-2(m∈R)的两个零点,且x1<x2,则x2-x1的最小值是________.【答案】2【解析】Δ=m2+8>0(m∈R),x2-x1==≥28.已知函数f(x)=(1)若x<a时,f(x)<1恒成立,求a的取值范围;(2)若a≥-4时,函数f(x)在实数集R上有最小值,求实数a的取值范围.【答案】(1)a≤log2(2)a>时,函数f(x)有最小值【解析】(1)因为x<a时,f(x)=4x-4×2x-a,所以令t=2x,则有0<t<2a.当x<a时f(x)<1恒成立,转化为t2-4×<1,即>t-在t∈(0,2a)上恒成立.令p(t)=t-,t∈(0,2a),则p′(t)=1+>0,所以p(t)=t-在(0,2a)上单调递增,所以≥2a-,所以2a≤,解得a≤log2.(2)当x≥a时,f(x)=x2-ax+1,即f(x)=+1-,当≤a时,即a≥0时,f(x)=f(a)=1;min当>a时,即-4≤a<0,f(x)=f=1-.min当x<a时,f(x)=4x-4×2x-a,令t=2x,t∈(0,2a),则h(t)=t2-t=-,=h=-;当<2a,即a> 时,h(t)min当≥2a,即a≤时,h(t)在开区间t∈(0,2a)上单调递减,h(t)∈(4a-4,0),无最小值.综合x≥a与x<a,所以当a> 时,1>-,函数f(x)=-;min当0≤a≤时,4a-4<0<1,函数f(x)无最小值;当-4≤a<0时,4a-4<-3≤1-,函数f(x)无最小值.综上所述,当a>时,函数f(x)有最小值.9.设函数f(x)的定义域为D,若存在非零实数n使得对于任意x∈M(M⊆D),有x+n∈D,且f(x +n)≥f(x),则称f(x)为M上的n高调函数.如果定义域为[-1,+∞)的函数f(x)=x2为[-1,+∞)上的k高调函数,那么实数k的取值范围是________.【答案】[2,+∞)【解析】即(x+k)2≥x2在[-1,+∞)上恒成立,即2kx+k2≥0在x∈[-1,+∞)上恒成立,故实数k满足2k>0且-2k+k2≥0,解得k≥2.10.已知函数的值域是,则实数的取值范围是 ( )A.;B.;C.;D..【答案】C【解析】二次函数的图象是开口向下的抛物线,最大值为4,且在时取得,而当或时,,(也可考虑在是单调递增,在上单调递减),故本题中的取值范围是.【考点】二次函数的的值域.11.已知向量,,其中.函数在区间上有最大值为4,设.(1)求实数的值;(2)若不等式在上恒成立,求实数的取值范围.【答案】(1)1;(2) .【解析】(1)通过向量的数量积给出,利用数量积定义求出,发现它是二次函数,利用二次函数的单调性可求出;(2)由此,不等式在上恒成立,观察这个不等式,可以用换元法令,变形为在时恒成立,从而,因此我们只要求出的最小值即可.下面我们要看是什么函数,可以看作为关于的二次函数,因此问题易解.试题解析:(1)由题得又开口向上,对称轴为,在区间单调递增,最大值为4,所以,(2)由(1)的他,令,则以可化为,即恒成立,且,当,即时最小值为0,【考点】(1)二次函数的单调性与最值;(2)换元法与二次函数的最小值.12.如图,长为20m的铁丝网,一边靠墙,围成三个大小相等、紧紧相连的长方形,那么长方形长、宽、各为多少时,三个长方形的面积和最大?【答案】小长方形的长和宽分别是,2.5时,三个长方形的面积最大为25.【解析】通过假设小长方形的一边再根据周长为20m,即可表示出小长方形的另一边.因为这三个长方形是大小相等长方形,所以可以表示出三个长方形的面积和并求出面积的最大值.本小题主要是以二次函数的最值为知识点形成一个简单的应用题.试题解析:设长方形长为x m,则宽为 m,所以,总面积= =.所以,当时,总面积最大,为25,此时,长方形长为 2.5 m,宽为 m.【考点】1.二次函数的应用.2.二次最的求法.13.已知点,点在曲线:上.(1)若点在第一象限内,且,求点的坐标;(2)求的最小值.【答案】(1);(2).【解析】 (1) 本小题可以通过坐标法来处理,首先根据点在第一象限内设其(),然后根据两点间距离公式,再结合点在曲线:上,联立可解得,即点的坐标为;(2) 本小题根据(1)中所得其中代入可得(),显然根据二次函数可知当时,.试题解析:设(),(1)由已知条件得 2分将代入上式,并变形得,,解得(舍去)或 4分当时,只有满足条件,所以点的坐标为 6分(2)其中 7分() 10分当时, 12分(不指出,扣1分)【考点】1.坐标法;2.二次函数求最值14.已知数列满足且是函数的两个零点,则等于()A.24B.32C.48D.64【解析】由题意,则,两式相除,所以成等比数列,成等比数列,而,则,所以,又,所以.故选D【考点】1.二次函数根与系数的关系;2.等比数列的性质.15.已知定义在R上的偶函数f(x)满足:∀x∈R恒有f(x+2)=f(x)-f(1).且当x∈[2,3]时,(x+1)在(0,+∞)上至少有三个零点,则实数a的取值范围为f(x)=-2(x-3)2.若函数y=f(x)-loga___________.【答案】.【解析】由题意得当时,即,又函数为偶函数,则有,所以,则有,可知函数的周期为2,并且当时,,可得函数在上的图像如图所示,要使在上至少有三个零点,则,且,所以,即,则.【考点】二次函数和对数函数的图像与性质.16.设不等式的解集为M.(1)如果,求实数的取值范围;(2)如果,求实数的取值范围.【答案】(1)或;(2).【解析】本题考查含参一元二次不等式的解法及二次函数图像的性质等基础知识,考查转化思想、分类讨论思想等数学思想方法.第一问,由于抛物线开口向上,要使不等式的解集不为,只需;第二问,一元二次不等式含参数,对应的一元二次方程是否有解取决于,所以本问讨论的三种情况,在每一种情况下,求出方程的根,写出不等式的解集,利用子集关系列出不等式,求的取值范围.试题解析:(1),,∴或. 4分(2)①当,即时,,满足题意; 6分②当时,或,时,,不合题意;时,,满足题意; 8分③当,即或时,令,要使,只需, 10分得,综上,. 12分【考点】1.二次函数的判别式;2.含参一元二次不等式的解法.17.已知函数的定义域是R,则实数的取值范围是( )A.(0,2)B.(-2,2)C.[-2,2]D.【解析】由已知得,恒成立,所以,解得.【考点】二次函数的图像与性质18.椭圆的左右焦点分别为、,点是椭圆上任意一点,则的取值范围是()A.B.C.D.【答案】D【解析】由椭圆定义知,,且椭圆的长轴长为,焦距为,所以,令,则,令,由二次函数的性质可知,函数在处取得最大值,即,函数在或处取得最小值,由于,故,即的取值范围是,故选D.【考点】1.椭圆的定义;2.二次函数的最值19.已知二次函数,满足,且,若在区间上,不等式恒成立,则实数m的取值范围为 .【答案】【解析】由可知,那么,所以由,化简整理得:,所以有,,所以二次函数的解析式为:.由已知得在区间上,不等式恒成立,即恒成立,只要即可.又,对称轴是,开口向上,所以函数在区间是单调递减的,所以函数在区间上的最小值是:,所以.【考点】1.求二次函数的解析式;2.二次函数的图像与性质;3.二次函数在闭区间上的最值;4.函数与不等式的恒成立问题20.已知函数,若且对任意实数均有成立.(1)求表达式;(2)当是单调函数,求实数的取值范围.【答案】(1);(2).【解析】本题考查导数的运算以及二次函数的判别式、单调性等基础知识,考查运算能力和分析问题解决问题的能力,考查数形结合思想.第一问,对求导得到解析式,因为,所以得到,又因为恒成立,所以,两式联立解出和,从而确定解析式;第二问,先利用第一问的结论,得到的解析式,再根据二次函数的单调性,确定对称轴与区间端点的大小关系解出的取值.试题解析:(1)∵,∴.∵,∴,∴,∴.∵恒成立,∴∴∴,从而,∴.(6分)(2) .∵在上是单调函数,∴或,解得,或.∴的取值范围为.(12分)【考点】1.导数的运算;2.二次函数的性质.21.设,二次函数的图象为下列之一,则的值为()A.B.C.1D.【答案】D【解析】因为,故对称轴不可能为轴,由给出的图可知对称轴在轴右侧,故,所以二次函数的图象为第三个图,图象过原点,故又,所以,选D.【考点】二次函数图象和性质.22.函数.若的定义域为,求实数的取值范围.【答案】.【解析】由的定义域为可知恒成立,这时要分和两种情况讨论,当时,比较简单,易得结果,当时,函数为二次函数,要使恒成立,由二次函数的图象应有,,如此便可求出的取值范围.试题解析:(1)当时,,的定义域为,符合题意;(2)当时,,的定义域不为,所以;(3)当时,的定义域为知抛物线全部在轴上方(或在上方相切),此时应有,解得;综合(1),(2),(3)有的取值范围是.【考点】二次函数、函数的定义域.23.二次函数f(x)满足f (x+1)-f (x)=2x且f (0)=1.⑴求f (x)的解析式;⑵在区间[-1,1]上,y=f (x)的图象恒在y=2x+m的图象上方,试确定实数m的范围.【答案】(1);(2).【解析】(1)根据二次函数满足条件,及,可求,,从而可求函数的解析式;(2)在区间上,的图象恒在的图象上方,等价于在上恒成立,等价于在上恒成立,求出左边函数的最小值,即可求得实数的取值范围.试题解析:(1)由,令,得;令,得.设,故解得故的解析式为.(2)因为的图像恒在的图像上方,所以在上,恒成立.即:在区间恒成立.所以令 ,故在上的最小值为,∴ .【考点】二次函数的性质.24.已知函数是二次函数,不等式的解集是,且在区间上的最大值为12.(1)求的解析式;(2)设函数在上的最小值为,求的表达式.【答案】(1);(2)①当,即时,;②当时,;③当,即时,.【解析】(1)由题意先设函数的解析式,再由条件解其中的未知数,可得二次函数解析式;(2)由(1)知函数的解析式,可得函数的对称轴为,再讨论对称轴是在区间上,还是在区间外,分别得的表达式.试题解析:(1)是二次函数,且的解集是可设 2分在区间上的最大值是由已知,得 5分. 6分(2)由(1)知,开口向上,对称轴为, 8分①当,即时,在上是单调递减,所以; 10分②当时,在上是单调递减,所以; 12分③当,即时,在对称轴处取得最小值,所以. 14分【考点】1、二次函数的解析式的求法;2、二次函数的性质.25.设为实数,则___________【答案】4【解析】本题先得到x的范围,然后利用配方法将关于x的二次函数配方,进而求出最大值。
2025届高考数学二轮复习函数典型例题第3讲函数的单调性含解析
![2025届高考数学二轮复习函数典型例题第3讲函数的单调性含解析](https://img.taocdn.com/s3/m/afb9856e0a4c2e3f5727a5e9856a561252d321af.png)
第3讲函数的单调性典型例题【例1】求函数()f x x=的值域.【答案】99⎡-⎢⎣⎦. 【解析】()()f x xf x ==--,()f x 是奇函数.t =,则01t ,即10t -.()222f x x =()()()()()22112111t t t t t =-+=+-+()()()1122t t t =++-()()()3112264327t t t ⎡⎤++++-=⎢⎥⎣⎦, 当且仅当31t =,即3x =±时,上式取等号. 因为()00f =,所以()()01y f x x=的值大于或等于0,其值域为0,9⎡⎢⎣⎦.由奇函数的性质可得原函数的值域为99⎡-⎢⎣⎦. 【例2】求函数()4321x y x =+的值域.【答案】40,27⎡⎤⎢⎥⎣⎦.【解析】令tan ,,22x ππθθ⎛⎫=∈-⎪⎝⎭, 则()44232tan sin cos 1tan y θθθθ==+2221sin sin 2cos 2θθθ=⋅32221sin sin 2cos 42327θθθ⎛⎫++= ⎪⎝⎭, 当且仅当2tan2θ=时等号成立,所以函数()4321x y x =+的值域为40,27⎡⎤⎢⎥⎣⎦. 【例3】已知函数()22,11,1ax x x f x ax x ⎧+=⎨-+>⎩≤在R 上为增函数,则实数a 的取值范围为。
【答案】11,2⎡⎤--⎢⎥⎣⎦【解析】函数()22,1,1,1ax x x f x ax x ⎧+=⎨-+>⎩在R 上为增函数,则有11,0,21,a a a a ⎧-⎪⎪<⎨⎪+-+⎪⎩解得112a --.故答案为11,2⎡⎤--⎢⎥⎣⎦.【例4】已知函数()2f x x x m m =-+.(1)若函数()f x 在[]1,2上单调递增,求实数m 的取值范围;(2)若函数()f x 在[]1,2上的最小值为7,求实数m 的值.【答案】(1)][()(),14,;22m ∞∞-⋃+=-或1【解析】(1)()2222,,,.x mx m x m f x x mx m x m ⎧-+=⎨-++<⎩ (i)当0m =且0x 时,()2f x x =,此时()f x 在[]1,2上单调递增,可取0m =.(ii)当0m <时,][)1,2,m ∞⎡⊆+⎣,且当x m 时,()22f x x mx m =-+.二次函数22y x mx m =-+的图象开口向上,对称轴为直线02mx =<,如图()1,f x 在[]1,2上单调递增,可取0m <.(iii)当0m >时,如图2,若()f x 在[]1,2上单调递增,则22m或1m ,得01m <或4m .综上所述,实数m 的取值范围是(],1∞-[)4,∞⋃+.图1 图2(2)(i)当1m 时,()f x 在[]1,2上单调递增,()2min ()117f x f m m ==-+=,即260m m --=,解得3m =(舍去)或2m =-.(ii)同(2)(i),当4m 时,()f x 在[]1,2上单调递增,可解得m =均舍去); 当34m <时,可解得12m -±=(均舍去); 当23m <<时,可解得1m =;当12m <时,可解得m =均舍去).综上,2m =-或1.【例5】已知函数()([]11,2,42f x x x x=-∈,求函数()f x 的值域.【答案】11,44⎡⎤⎢⎥⎣⎦.【解析】解法1:()(112f x x x =-+1112x ⎛=-+ ⎝1112x ⎡⎢=-+⎢⎣. 令1m x =,则11,42m ⎡⎤∈⎢⎥⎣⎦, 构造函数()1g m m =-+()1m =-=,则()g m 是11,42⎡⎤⎢⎥⎣⎦上的增函数,从而()11,22g m ⎡⎤∈⎢⎥⎣⎦,因此()11,44f x ⎡⎤∈⎢⎥⎣⎦. 解法()112:12f x x ⎡⎢=-⎢⎣.令1311tan ,,42x θθ⎡⎤-=∈--⎢⎥⎣⎦为第四象限角,则sin 12cos y θθ+=,可看作图中单位圆上一点P 与点()0,1A -连线斜率的一半的改变范围,如图,将1x =2和4x =代人可得所求函数的值域为11,44⎡⎤⎢⎥⎣⎦.【例6】设函数()f x m =,若存在实数,()a b a b <,使()f x 在[],a b 上的值域为1⎤++⎥⎣⎦,则正实数m 的取值范围是_______.21m << 【解析】因为()f x m m ==+933m +>,所以3a b <<.由函数的性质知()f x 在[)3,∞+上是增函数,所以()()1,21,f a a f b ⎧=+⎪⎪⎨⎪=+⎪⎩即1,21,m a m ⎧+=+⎪⎪⎨⎪+=+⎪⎩所以1m -=-=即方程12m x -=[)3,∞+上有两个不等的实数根,a b . 设()2g x x =则()2g x '=3x -=6x x -=当()3,6x ∈时,()()0,g x g x '>单调递增;当()6,x ∞∈+时,()()0,g x g x '<单调递减.又()()33,60g g ==, 由于()2g x x =()231322x x x ⎛⎫--=-+ ⎪⎪⎝⎭,所以()lim x g x ∞∞→+=-,从而3102m -<-<, 故212m -<<. 【例7】(多选题)已知函数()231,11,1x x f x x x +⎧=⎨->⎩若n m >,且()()f n f m =,设t n m =-,则()A.t 没有最小值B.t 1C.t 没有最大值D.t 的最大值为1712【答案】BD【解析】如图,作出函数()f x 的图象.因为()()f n f m =且n m >,则1,1m n >,所以2311m n +=-,即223n m -=.由21,014,n n >⎧⎨<-⎩解得15n <,又()22213233n n m n n n --=-=---213173212n ⎛⎫=--+ ⎪⎝⎭,故当n =,min ()1n m -,当32n =时,max 17()12n m -=. 故选BD.【例8】对于函数()f x ,若在定义域内存在实数0x 满意()()00f x f x -=-,则称函数()f x 为“倒戈函数”.设()()31,0x f x m m R m =+-∈≠是定义在[]1,1-上的“倒戈函数”,则实数m 的取值范围是()A.2,03⎡⎫-⎪⎢⎣⎭B.21,33⎡⎤--⎢⎥⎣⎦C.2,03⎡⎤-⎢⎥⎣⎦D.(),0-∞【答案】A【解析】若()31xf x m =+-是定义在[]1,1-上的“倒戈函数”,则存在[]01,1x ∈-满意()()00f x f x -=-,即003131x x m m -+-=--+,得002332x x m -=--+.构造函数[]000332,1,1x x y x -=--+∈-,令013,,33x t t ⎡⎤=∈⎢⎥⎣⎦, 则1122y t t tt ⎛⎫=--+=-+ ⎪⎝⎭在1,13⎡⎤⎢⎥⎣⎦上单调递增,在(]1,3上单调递减,当1t =时取得最大值0,当13t =或3t =时取得最小值44,,033y ⎡⎤-∈-⎢⎥⎣⎦.又0m ≠,所以实数m 的取值范围是2,03⎡⎫-⎪⎢⎣⎭. 故选A.【例10】已知221x y +=,则22x y x y +--+的最大值_______.2.【解析】解法()221:1222x y y x y x y +--=+⋅-+--()1121112y xy =+⋅---,2y x-的几何意义为单位圆上的点(),x y 与定点()0,2连线的斜率,如图.设过点()0,2的切线为2y kx =+,1=,解得k =结合图象,得23y x--或23y x-,则211121212112x y xx y y +-=+⋅+⋅-+--2=, 所以22x y x y +--+2.解法2:令,x y m x y n -=+=,则22222,22x y n m n x y m +--+==-++,同上,转化为圆上的点(),m n 与点()2,2-连线的斜率,易得223232n m ---++,则22x y x y +--+2.解法3:圆221x y +=上的点(),P x y 到直线x 20y +-=的距离为1d =,又点(),P x y 在直线20x y +-=的下方,=同理,圆221x y +=上的点(),P x y 到直线x -20y +=的距离为2d =,则22x y x y +--+12d d =-如图,设12,,PQ d PS d PAQ ∠α===,则tan α12d d =.结合图形可知,当直线AP 与圆221x y +=相切时,α取最小值,30OAP ∠=,则min?4530α=-=15,从而tan tan152α=所以22x y x y +--+2.解法4:设22x y t x y +-=-+,整理得()1t x --()()1210t y t +++=,由题意,圆221x y +=与直线()()()11210t x t y t --+++=有交点,则圆心到直线的距离小于等于半径,即1,解得2323t --+所以22x y x y+--+2.:【例11】已知实数0a >,函数()23f x x x a =+--在区间[]1,1-上的最大值是2,则a =_______.【答案】54或3【解析】解法1;因为函数()23f x x x a =+--在区间[]1,1-上的最大值是2, 取0x =,可得()02f ,又0a >,得32a -,解得15a ,即有()23,11f x x x a x =-+--,故()f x 的最大值在顶点或端点处取得.由()12f -=,即12a -=,解得3a =或a =1-(舍去);由()12f =,即32a -=,解得5a =或1a =; 由122f ⎛⎫= ⎪⎝⎭,即1324a -=,解得54a =或a =214(舍去).当1a =时,()22f x x x =--,因为12f ⎛⎫= ⎪⎝⎭924>,故不符合题意,舍去;当5a =时,()22f x x x =-+,因为()1f -=42>,故不符合题意,舍去;当3a =时,()2f x x x =-,明显当1x =-时,()f x 取得最大值2,符合题意; 当54a =时,()()277,144f x x x f =--=,()111,242f f ⎛⎫-== ⎪⎝⎭,符合题意. 所以54a =或3a =.解法()2:f x 在[]1,1-上的最大值为2,等价于()232f x x x a =+--在[]1,1-上恒成立,且等号可取到, 即2232x x a -+--在[]1,1-上恒成立,且至少一处等号可取到,即2215x x a x ---在[]1,1-上恒成立,且至少一处等号可取到.在同一个坐标系里画出函数21,y x y =-=2,5x a y x -=-的图象,如图.肯定值函数的图象过25y x =-图象上的点()1,4-,或者与21y x =-的图象相切,得14a +=或210x x a -+-=.对于后者,由Δ0=得54a =,所以3a =或54a =.【例12】对于定义域为D 的函数()y f x =,假如存在区间[,]m n D ⊆, 同时满意:①()f x 在[],m n 上是单调函数,②[],m n 上()f x 的值域也是[],m n ,则称[],m n 是该函数的“美丽区间”.已知函数()()()221,0a a x y h x a R a a x +-==∈≠有“美丽区间”[],m n ,当a 改变时,求n m -的最大值_______.【解析】设[],m n 是已知函数定义域的子集. 由于0x ≠,则[](),,0m n ∞⊆-或[],m n ⊆()0,∞+. 而函数()222111a a x a y a x a a x+-+==-在[],m n 上单调递增,若[],m n 是已知函数的“美丽区间”,则()(),,h m m h n n ⎧=⎪⎨=⎪⎩ 所以,m n 是方程211a x a a x+-=即22a x -()210a a x ++=的两个同号且不等的实数根. 因为210mn a =>,所以,m n 同号, 只要()()()2222Δ4310a a a a a a =+-=+->,解得3a <-或1a >.n m -===当3a =时,n m -【例13】已知在ABC ∆中,内角,,A B C 所对的边长分别为,,a b c ,若AB 边上的高为14AB ,则当sin sin sin sin A B B A+取得最大值时,sin C =_______.【答案】5 【解析】设AB 边上的高为c h ,即14c h c =, 由面积公式得11sin 22c ch ab C =,即24sin c ab C =. 22sin sin sin sin A B a b a b B A b a ab++=+=, 由余弦定理得2222cos c a b ab C =+-,则22cos 4sin 2cos c ab C ab C ab C ab ab++=()4sin 2cos C C C ϕ=+=+, 其中1tan 2ϕ=. 当2C πϕ+=时,上式取到最大值此时2C πϕ=-,故sin sin cos 2C πϕϕ⎛⎫=-===⎪⎝⎭【例14】在平面直角坐标系xOy 中,设定点(),,A a a P 是函数1(0)y x x=>图象上的一个动点,若,P A之间的最短距离为,则满意条件的实数a 的值为______.【答案】1-【解析】1设1,(0)P x x x ⎛⎫> ⎪⎝⎭, 则2222211||()AP x a a x x x ⎛⎫=-+-=+- ⎪⎝⎭2222a ax a x -+. 令[)12,t x x∞=+∈+,则222||222AP t at a =-+-. 记()()222222g t t at a t =-+-,其图象的对称轴为t a =,最小值为28=,所以()2min?2,()22428,a g t g a a <⎧⎨==-+=⎩或()2min?2,()28,a g t g a a ⎧⎨==-=⎩解得1a =-或a =.【解析】2由题意可知,若0a <,则1a =-满意题意.若0a >,则圆22()()8x a y a -+-=与曲线1(0)y x x=>相切,联立方程组, 消去y 得22221228a x ax a a x x-++-+=, 即()221122100?*x a x a x x ⎛⎫⎛⎫+-++-= ⎪ ⎪⎝⎭⎝⎭. 由()22Δ(2)42100a a =--=,得a =, 此时方程()*的解为2x =,满意题意. 综上,1a =-或a =.【例15】已知函数()21,1,{ln ,1,x x f x x x x-<=>若关于x 的方程()()212202f x tf x t ++-=有5个不同的实数根,则实数t 的取值范围是 A.111,22e ⎛⎫- ⎪⎝⎭ B.111,22e ⎛⎫- ⎪⎝⎭ C.113,22e ⎛⎫- ⎪⎝⎭ D.113,22e ⎛⎫- ⎪⎝⎭【答案】A 【解析】设ln x y x =,则21ln x y x-='. 当()0,e x ∈时,0y '>,函数单调递增;当()e,x ∞∈+时,0y '<,函数单调递减.所以当e x =时,函数取得极大值, 1ey =极大值.方程()()212202f x tf x t ++-=可化为()()12102f x t f x ⎡⎤⎡⎤+-+=⎣⎦⎢⎥⎣⎦,解得()12f x t =-+或()12f x =-.画出函数()f x 的大致图象,如图.要使得关于x 的方程()()21222f x tf x t ++-0=有5个不同的实数根, 应满意1102e t <-+<,解得1112e 2t -<<,即实数t 的取值范围是111,2e 2⎛⎫- ⎪⎝⎭.故选A.。
高三数学一次函数与二次函数试题答案及解析
![高三数学一次函数与二次函数试题答案及解析](https://img.taocdn.com/s3/m/3fc68615a31614791711cc7931b765ce05087aae.png)
高三数学一次函数与二次函数试题答案及解析1.设函数f(x)=ax2+(b-2)x+3(a≠0),若不等式f(x)>0的解集为(-1,3).(1)求a,b的值;(2)若函数f(x)在x∈[m,1]上的最小值为1,求实数m的值.【答案】(1)a=-1,b=4 (2)1-【解析】(1)由条件得,解得:a=-1,b=4.(2)f(x)=-x2+2x+3,对称轴方程为x=1,∴f(x)在x∈[m,1]上单调递增.∴x=m时,f(x)=-m2+2m+3=1,min解得m=1±.∵m<1,∴m=1-.2.设为坐标原点,给定一个定点,而点在正半轴上移动,表示的长,则中两边长的比值的最大值为.【答案】【解析】由题意得:当时,取最大值,为.【考点】二次函数最值3.已知关于x的一元二次函数(1)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为和,求函数在区间[上是增函数的概率;(2)设点(,)是区域内的随机点,求函数上是增函数的概率.【答案】(1);(2)【解析】(1)考查古典概型,满足条件的是5个,总的基本事件个数是15个,求两者的比即可;(2)考查几何概型,求出满足条件的区域面积比上总的区域面积即可.试题解析:(1)∵函数的图象的对称轴为要使在区间上为增函数,当且仅当>0且,若=1则=-1;若=2则=-1,1;若=3则=-1,1;∴事件包含基本事件的个数是1+2+2=5,∴所求事件的概率为. 6分(2)由(1)知当且仅当且>0时,函数上为增函数,依条件可知试验的全部结果所构成的区域为,构成所求事件的区域为三角形部分.由∴所求事件的概率为. 12分【考点】(1)古典概型;(2)几何概型.4.已知a,b,c∈R,函数f(x)=ax2+bx+c.若f(0)=f(4)>f(1),则()A.a>0,4a+b=0B.a<0,4a+b=0C.a>0,2a+b=0D.a<0,2a+b=0【答案】A【解析】由f(0)=f(4)>f(1),可得函数图象开口向上,即a>0,且对称轴-=2,所以4a+b=0,故选A.5.对于任意a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于零,那么x的取值范围是() A.(1,3)B.(-∞,1)∪(3,+∞)C.(1,2)D.(3,+∞)【答案】B【解析】f(x)=x2+(a-4)x+4-2a=(x-2)a+x2-4x+4,令g(a)=(x-2)a+x2-4x+4,由题意知即解得x>3或x<1,故选B.6.二次函数f(x)的二次项系数为正,且对任意x恒有f(2+x)=f(2-x),若f(1-2x2)<f(1+2x-x2),则x的取值范围是.【答案】(-2,0)【解析】【思路点拨】由题意知二次函数的图象开口向上,且关于直线x=2对称,则距离对称轴越远,函数值越大,依此可转化为不等式问题.解:由f(2+x)=f(2-x)知x=2为对称轴,由于二次项系数为正的二次函数中距对称轴越远,函数值越大, ∴|1-2x2-2|<|1+2x-x2-2|,即|2x2+1|<|x2-2x+1|,∴2x2+1<x2-2x+1,∴-2<x<0.7.“地沟油”严重危害了人民群众的身体健康,某企业在政府部门的支持下,进行技术攻关,新上了一种从“食品残渣”中提炼出生物柴油的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可以近似的表示为:且每处理一吨“食品残渣”,可得到能利用的生物柴油价值为200元,若该项目不获利,政府将补贴.(1)当x∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损;(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?【答案】(1)不能获利,政府每月至少补贴元;2、每月处理量为400吨时,平均成本最低.【解析】(1)该项目利润等于能利用的生物柴油价值与月处理成本的差,当时,,故,故该项目不会获利,而且当时,获利最大为,故政府每月至少不要补贴元;(2)每吨的平均处理成本为,为分段函数,分别求每段的最小值,再比较各段最小值的大小,取较小的那个值,为平均成本的最小值.试题解析:(1)当时,设该项目获利为,则,所以当时,.因此,该项目不会获利.当时,取得最大值,∴政府每月至少需要补贴元才能使该项目不亏损.(2)由题意可知,食品残渣的每吨平均处理成本为:①当时,,∴当时,取得最小值240;②当时,.当且仅当,即时,取得最小值200.∵200<240,∴当每月处理量为400吨时,才能使每吨的平均处理成本最低.【考点】1、分段函数;2、二次函数的值域;3、基本不等式.8.已知点,点在曲线:上.(1)若点在第一象限内,且,求点的坐标;(2)求的最小值.【答案】(1);(2).【解析】 (1) 本小题可以通过坐标法来处理,首先根据点在第一象限内设其(),然后根据两点间距离公式,再结合点在曲线:上,联立可解得,即点的坐标为;(2) 本小题根据(1)中所得其中代入可得(),显然根据二次函数可知当时,.试题解析:设(),(1)由已知条件得 2分将代入上式,并变形得,,解得(舍去)或 4分当时,只有满足条件,所以点的坐标为 6分(2)其中 7分() 10分当时, 12分(不指出,扣1分)【考点】1.坐标法;2.二次函数求最值9.已知数列满足且是函数的两个零点,则等于()A.24B.32C.48D.64【答案】D【解析】由题意,则,两式相除,所以成等比数列,成等比数列,而,则,所以,又,所以.故选D【考点】1.二次函数根与系数的关系;2.等比数列的性质.10.已知函数若命题“”为真,则m的取值范围是___.【答案】【解析】命题“”为真,即方程有两个不相等的实数根,且至少有一个正根.因为函数为二次函数,开口向上,且.所以.即m的取值范围是.【考点】一元二次方程根的分布、命题11.设函数在区间上是增函数,则实数的最小值为 .【答案】【解析】函数的图象开口向上,对称轴为,由其在上是增函数得,所以,所以实数的最小值为.【考点】二次函数的单调性.12.已知二次函数,满足,且,若在区间上,不等式恒成立,则实数m的取值范围为 .【答案】【解析】由可知,那么,所以由,化简整理得:,所以有,,所以二次函数的解析式为:.由已知得在区间上,不等式恒成立,即恒成立,只要即可.又,对称轴是,开口向上,所以函数在区间是单调递减的,所以函数在区间上的最小值是:,所以.【考点】1.求二次函数的解析式;2.二次函数的图像与性质;3.二次函数在闭区间上的最值;4.函数与不等式的恒成立问题13.已知函数和.其中.(1)若函数与的图像的一个公共点恰好在轴上,求的值;(2)若和是方程的两根,且满足,证明:当时,.【答案】(1);(2)证明过程详见解析.【解析】本题考查一次函数与二次函数图像的关系以及作差法比较大小证明不等式问题,考查学生分析问题解决问题的能力.第一问,先求与轴的交点,由已知得此交点同时也在图像上,所以代入到解析式中,解出的值;第二问,作差法比较与的大小,再用作差法比较与的大小.试题解析:(1)设函数图象与轴的交点坐标为,又∵点也在函数的图象上,∴.而,∴.(4分)(2)由题意可知.∵,∴,∴当时,,即.(8分)又,,且,∴,∴,综上可知,.(13分)【考点】1.作差法比较大小;2.一次函数、二次函数.14.已知函数在区间上有最大值3,最小值2,则的取值范围是( ) A.B.C.D.【答案】D【解析】,当时取最小值2,又.作出其图象如图所示:结合图形可知:的取值范围是.【考点】二次函数的最值.15.函数.若的定义域为,求实数的取值范围.【答案】.【解析】由的定义域为可知恒成立,这时要分和两种情况讨论,当时,比较简单,易得结果,当时,函数为二次函数,要使恒成立,由二次函数的图象应有,,如此便可求出的取值范围.试题解析:(1)当时,,的定义域为,符合题意;(2)当时,,的定义域不为,所以;(3)当时,的定义域为知抛物线全部在轴上方(或在上方相切),此时应有,解得;综合(1),(2),(3)有的取值范围是.【考点】二次函数、函数的定义域.16.二次函数f(x)满足f (x+1)-f (x)=2x且f (0)=1.⑴求f (x)的解析式;⑵在区间[-1,1]上,y=f (x)的图象恒在y=2x+m的图象上方,试确定实数m的范围.【答案】(1);(2).【解析】(1)根据二次函数满足条件,及,可求,,从而可求函数的解析式;(2)在区间上,的图象恒在的图象上方,等价于在上恒成立,等价于在上恒成立,求出左边函数的最小值,即可求得实数的取值范围.试题解析:(1)由,令,得;令,得.设,故解得故的解析式为.(2)因为的图像恒在的图像上方,所以在上,恒成立.即:在区间恒成立.所以令 ,故在上的最小值为,∴ .【考点】二次函数的性质.17.已知二次函数.(1)若对任意、,且,都有,求证:关于的方程有两个不相等的实数根且必有一个根属于;(2)若关于的方程在上的根为,且,设函数的图象的对称轴方程为,求证:.【答案】(1)详见解析;(2)详见解析.【解析】(1)先构造新函数,利用证明方程有两个不相等的实数根,然后利用存在定理证明方程必有一个根属于,即利用来证明;(2)将的代入方程得到的表达式,结合证明.试题解析:(1)构造函数,由于函数为二次函数,所以,对于二次函数而言,,若,则有且有,从而有,这与矛盾,故,故方程有两个不相等,由于,,所以,由零点存在定理知,方程必有一个根属于;(2)由题意知,化简得,即,则有,,由于,则,故,即.【考点】1.二次方程根的个数的判断;2.零点存在定理;3.二次函数图象的对称轴18.若函数有两个零点,其中,那么在两个函数值中 ( ) A.只有一个小于1B.至少有一个小于1C.都小于1D.可能都大于1【答案】B【解析】若则不妨设,于是即,作图如图所示,显然可以发现点满足的区域有,于是,即在两个函数值中至少有一个小于1.【考点】本小题主要考查根的分布、零点、函数的图象等知识点,考查学生的理解、分析能力19.已知函数,若,且,则的最小值是 .【答案】【解析】画出函数图象,从图象上可知,所以由可得,所以,设,,当时,,当时,,所以函数在上的最小值为.【考点】二次函数、导数的应用.20.如果函数在区间上是减函数,那么实数的取值范围是()A.B.C.D.【答案】A.【解析】由二次函数在区间上为减函数,则,即.【考点】二次函数的性质.21.函数在区间上是增函数,则的取值范围是( )A.B.C.D.【答案】A【解析】函数的增区间为 ,由已知可得⋯①,⋯②由①②得: .【考点】二次函数的单调区间,不等式运算.22.对一元二次方程的两个根的情况,判断正确的是A.一根小于1,另一根大于3B.一根小于-2,另一根大于2C.两根都小于0D.两根都大于2【答案】A【解析】,所以该方程的两个根一个小于1,一个大于3.【考点】本小题主要考查一元二次方程的根的判断.点评:解决本小题的关键是根据已知条件得出,通过解一元二次不等式即可得根的情况,要注意数形结合的应用.23.(本题满分12分)设函数f(x)=x3-ax2+3x+5(a>0).(1)已知f(x)在R上是单调函数,求a的取值范围;(2)若a=2,且当x∈[1,2]时,f(x)≤m恒成立,求实数m的取值范围.【答案】(1) 0<a≤6 ;(2) [15,+∞).【解析】(1)f′(x)=3x2-ax+3, 2分其判别式Δ=a2-36.当0<a≤6时,f′(x)≥0恒成立, 4分此时f(x)在R上为增函数. 6分(2)a=2时,f′(x)=3x2-2x+3>0恒成立,因此f(x)在(-∞,+∞)上是增函数, 8分从而f(x)在[1,2]上递增,则f(x)=f(2)=15, 10分max要使f(x)≤m在x∈[1,2]上恒成立,只需15≤m,解得m∈[15,+∞).故m的取值范围是[15,+∞). 12分【考点】利用导数研究函数的单调性。
高三数学一次函数与二次函数试题
![高三数学一次函数与二次函数试题](https://img.taocdn.com/s3/m/25c5673f8bd63186bcebbcff.png)
高三数学一次函数与二次函数试题1.定义在R上的函数,如果存在函数(k,b为常数),使得对一切实数x都成立,则称为函数的一个承托函数.现有如下命题:①对给定的函数,其承托函数可能不存在,也可能有无数个.②函数为函数的一个承托函数.③定义域和值域都是R的函数不存在承托函数.其中正确命题的序号是:( )A.①B.②C.①③D.②③【答案】A【解析】对于①,若,则,就是它的一个承托函数,且有无数个,再如就没有承托函数,∴命题①正确;对于②,∵当时,,∴,∴不是的一个承托函数,故错误;对于③如存在一个承托函数,故错误;故选A.【考点】新定义函数,一次函数、指数函数的性质.2.已知向量,,其中.函数在区间上有最大值为4,设.(1)求实数的值;(2)若不等式在上恒成立,求实数的取值范围.【答案】(1)1;(2) .【解析】(1)通过向量的数量积给出,利用数量积定义求出,发现它是二次函数,利用二次函数的单调性可求出;(2)由此,不等式在上恒成立,观察这个不等式,可以用换元法令,变形为在时恒成立,从而,因此我们只要求出的最小值即可.下面我们要看是什么函数,可以看作为关于的二次函数,因此问题易解.试题解析:(1)由题得又开口向上,对称轴为,在区间单调递增,最大值为4,所以,(2)由(1)的他,令,则以可化为,即恒成立,且,当,即时最小值为0,【考点】(1)二次函数的单调性与最值;(2)换元法与二次函数的最小值.3.已知点,点在曲线:上.(1)若点在第一象限内,且,求点的坐标;(2)求的最小值.【答案】(1);(2).【解析】 (1) 本小题可以通过坐标法来处理,首先根据点在第一象限内设其(),然后根据两点间距离公式,再结合点在曲线:上,联立可解得,即点的坐标为;(2) 本小题根据(1)中所得其中代入可得(),显然根据二次函数可知当时,.试题解析:设(),(1)由已知条件得 2分将代入上式,并变形得,,解得(舍去)或 4分当时,只有满足条件,所以点的坐标为 6分(2)其中 7分() 10分当时, 12分(不指出,扣1分)【考点】1.坐标法;2.二次函数求最值4.已知函数f(x)=a|x|+(a>0,a≠1)(1)若a>1,且关于x的方程f(x)=m有两个不同的正数解,求实数m的取值范围;(2)设函数g(x)=" f(" x),x∈[ 2,+∞),满足如下性质:若存在最大(小)值,则最大(小)值与a无关.试求a的取值范围.【答案】(1)实数的取值范围为区间;(2)实数a的取值范围是.【解析】(1)令,换元将问题转化为关于的方程有相异的且均大于1的两根,利用二次函数的性质解答即可;(2)算得,分类讨论①当,②当,再分,讨论解答.试题解析:(1)令,,因为,所以,所以关于的方程有两个不同的正数解等价于关于的方程有相异的且均大于1的两根,即关于的方程有相异的且均大于1的两根, 2分所以, 4分解得,故实数的取值范围为区间. 6分(2)①当时,a)时,,,所以,b)时,,所以 8分ⅰ)当即时,对,,所以在上递增,所以,综合a) b)有最小值为与a有关,不符合 10分ⅱ)当即时,由得,且当时,,当时,,所以在上递减,在上递增,所以,综合a) b) 有最小值为与a无关,符合要求. 12分②当时,a) 时,,,所以b) 时,,,所以,在上递减,所以,综合a) b) 有最大值为与a有关,不符合 15分综上所述,实数a的取值范围是. 16分【考点】二次函数、利用导数求函数单调区间、利用导数求函数最值、分类讨论思想.5.若函数的定义域为R,则实数m的取值范围是( )A.B.C.D.【答案】B【解析】函数的定义域是R,则有恒成立.设,当时,恒成立;当时,要使得恒成立,则有,解得.所以实数的取值范围是,选B.【考点】1.对数函数的定义域;2.二次函数的图像与性质6.已知,当时,.(1)证明:;(2)若成立,请先求出的值,并利用值的特点求出函数的表达式.【答案】(1)详见解析;(2).【解析】(1)根据题中条件并利用得到;(2)先利用题中条件得到,并结合得到的取值范围,结合(1)中的结论求出值,然后借助题中条件分析出函数是的图象关于轴对称,从而求出与的值,从而最终确定函数的解析式.试题解析:(1)时4分(2)由得到5分又时即将代入上式得又8分又时对均成立为函数为对称轴 10分又12分13分【考点】1.函数不等式;2.二次函数的对称性7.二次函数f(x)满足f (x+1)-f (x)=2x且f (0)=1.⑴求f (x)的解析式;⑵在区间[-1,1]上,y=f (x)的图象恒在y=2x+m的图象上方,试确定实数m的范围.【答案】(1);(2).【解析】(1)根据二次函数满足条件,及,可求,,从而可求函数的解析式;(2)在区间上,的图象恒在的图象上方,等价于在上恒成立,等价于在上恒成立,求出左边函数的最小值,即可求得实数的取值范围.试题解析:(1)由,令,得;令,得.设,故解得故的解析式为.(2)因为的图像恒在的图像上方,所以在上,恒成立.即:在区间恒成立.所以令 ,故在上的最小值为,∴ .【考点】二次函数的性质.8.如果函数在区间上是减函数,那么实数的取值范围是()A.B.C.D.【答案】A.【解析】由二次函数在区间上为减函数,则,即.【考点】二次函数的性质.9.已知函数的两个零点分别在区间和区间内,则实数的取值范围是()A.B.C.D.【答案】A【解析】由题意,∴,∴即实数的取值范围是,故选A【考点】本题考查了一元二次方程根的分布点评:熟练掌握常见的一元二次方程根的分布规律是解决此类问题的关键,属基础题10.已知函数y=4x-3×2x+3,当其值域为[1,7]时,则变量x的取值范围是A.[2,4]B.(-∞,0]C.(0,1]∪[2,4]D.(-∞,0]∪[1,2]【答案】D【解析】令,则,又值域为[1,7],所以或,故或.【考点】函数的值域.点评:本题主要考查了二次函数的值域的求解,解答中要注意善于利用二次函数的图象,结合图象熟悉函数的单调性是解决本题的关键.11.已知定义在上的函数满足,且的导函数则不等式的解集为()A.B.C.D.【答案】B【解析】令则原不等式为因为所以于是单调增于是当时解集为【考点】导数,不等式解法,构造函数的思想。
高二数学一次函数与二次函数试题答案及解析
![高二数学一次函数与二次函数试题答案及解析](https://img.taocdn.com/s3/m/dcf43519640e52ea551810a6f524ccbff121caed.png)
高二数学一次函数与二次函数试题答案及解析1.已知函数的图象上一点,过作平行于轴的直线,直线,求函数,和轴,及直线轴围成的面积【答案】【解析】(1)定积分的基本思想的核心是“以直代曲”,用“有限”步骤解决“无限”问题,其方法是“分割求近似,求和取极限”,定积分只与积分区间和被积函数有关,与积分变量有关;(2)利用定积分求曲线围成图形的面积的步骤:一根据题意画简图;二确定被积函数;三确定积分的上限和下限,并求出交点坐标;四是运用微积分基本定理计算定积分,求出平面图形的面积;(3)求解时,注意要把定积分与利用定积分计算的曲线围成图形的面积区别开:定积分是一个数值,可为正,为负,也可以为零,而平面图形的面积在一般意义上总为正.试题解析:解:由,得. 2分所以阴影部分的面积4分5分8分12分.【考点】利用定积分求平面图形的面积.2.已知二次函数f(x)=ax2+bx+c(a>0).(Ⅰ)(i)若b=﹣2,且f(x)在(1,+∞)上为单调递增函数,求实数a的取值范围;(ii)若b=﹣1,c=1,当x∈[0,1]时,|f(x)|的最大值为1,求实数a的取值范围;(Ⅱ)若f(0)≥1,f(1)≥1,f(x)=0的有两个小于1的不等正根,求a的最小正整数值.【答案】(Ⅰ)(i)[1,+∞);(ii)(0,1];(Ⅱ)5【解析】(Ⅰ)(i)若b=﹣2,则f(x)=ax2﹣2x+c(a>0)的图象是开口朝上且以直线x=为对称轴的抛物线.若f(x)在(1,+∞)上为单调递增函数,则≤1,解得a≥1,即实数a的取值范围为[1,+∞);(ii)若b=﹣1,c=1,则f(x)=ax2﹣x+1(a>0)的图象是开口朝上且以直线x=为对称轴的抛物线,若当x∈[0,1]时,|f(x)|的最大值为1,则或解得0<a<,或≤a≤1,所以实数a的取值范围为(0,1];(Ⅱ)若f(0)≥1,f(1)≥1,f(x)=0的有两个小于1的不等正根,则解得a>4,故a的最小正整数值为5.试题解析:(Ⅰ)(i)若b=﹣2,则f(x)=ax2﹣2x+c(a>0)的图象是开口朝上且以直线x=为对称轴的抛物线.若f(x)在(1,+∞)上为单调递增函数,则≤1,解得a≥1,即实数a的取值范围为[1,+∞)(ii)若b=﹣1,c=1,则f(x)=ax2﹣x+1(a>0)的图象是开口朝上且以直线x=为对称轴的抛物线.若当x∈[0,1]时,|f(x)|的最大值为1,则或,解得0<a<,或≤a≤1综上所述:0<a≤1即实数a的取值范围为(0,1](Ⅱ)若f(0)≥1,f(1)≥1,f(x)=0的有两个小于1的不等正根,则由b2>4ac>4a(1﹣a﹣b)得:b2+4ab+4a2=(b+2a)2>4a,即b+2a>2,即b>2﹣2a,…①由b2>4ac≥4a得:b<﹣2…②由①②得:2﹣2a<﹣2,解得a>4,故a的最小正整数值为5.【考点】1.二次函数的图象与性质;2.不等式的性质3.已知二次函数y=f(x)的顶点坐标为,且方程f(x)=0的两个实根之差的绝对值等于7,则此二次函数的解析式是________.【答案】f(x)=-4x2-12x+40.【解析】依题意设令,设两个根为x1,x2,则x1+x2=-3,x1x2=(x1-x2)2=(x1+x2)2-4x1x2=9-9-=49,∴a=-4,∴f(x)=-4x2-12x+40,故应填入:f(x)=-4x2-12x+40.【考点】二次函数的性质.4.某种商品,现在定价p元,每月卖出n件,设定价上涨x成,每月卖出数量减少y成,每月售货总金额变成现在的z倍.(1)用x和y表示z;(2)设x与y满足y=kx(0<k<1),利用k表示当每月售货总金额最大时x的值;(3)若y=x,求使每月售货总金额有所增加的x值的范围.【答案】(1);(2);(3)(0,5)。
2020-2021学年高考总复习数学(理)一次函数和二次函数(2)专项复习答案及解析
![2020-2021学年高考总复习数学(理)一次函数和二次函数(2)专项复习答案及解析](https://img.taocdn.com/s3/m/8632c30c51e79b89680226dc.png)
最新高三数学复习精选练习(理数,含解析)一次函数和二次函数(2)1、设函数1(1)|-1|)=1(=1)x x f x x ⎧≠⎪⎨⎪⎩(,若关于x 的方程2[()]+()+c=0f x bf x 有三个不同的实数根123,,x x x ,则222123++x x x 等于 ( )A .13B .5C .223c +2cD .222b +2b【答案】B2、已知二次函数()f x 满足:(0)3f =;(1)()2.f x f x x +=+ (1)求函数()f x 的解析式;(2)求函数()y f x =在[1,4]-上的最值. 【答案】(1)2()3f x x x =-+ (2)min 111()()24f x f ==;max ()(4)15f x f == 思路点拨:(1)求函数解析式的主要方法有待定系数法,换元法及赋值消元法等;对于本题已知函数的类型,就可用待定系数法;已知复合函数的解析式,可用换元法,此时要注意自变量的取值范围;求分段函数的解析式时,一定要明确自变量的所属范围,以便于选择与之对应的对应关系;(2)求函数的最值没有固定的模式,常用的方法主要有配方法,数形结合及函数的单调性试题解析:(1)设函数2()(0)f x ax bx c a =++≠,由(0)3f =得3c =, 又(1)()2f x f x x +=+,所以有22(1)(1)2a x b x c ax bx c x ++++=+++,整理得:(22)0a x a b -++=,此式对x R ∈恒成立,所以220,0a a b -=+=,解得1,1a b ==-,所以函数2()3f x x x =-+; (2)2111()()24f x x =-+在1[1,]2-上单减,在1[,4]2上单增,所以min 111()()24f x f ==,又(1)5f -=,(4)15f =,所以max ()(4)15f x f ==3、已知函数()322,()2,03a f x x ax cx g x ax ax c a =++=++≠,则它们的图象可能是()【答案】B4、若函数2(),f x x x ax =+∈R ,常数a ∈R ,则( )A .存在,a 使()f x 是奇函数B .存在,a 使()f x 是偶函数C .,a f x ∀∈R ()在(0,)+∞上是增函数D .,a f x ∀∈R ()在(,0)-∞上是减函数 【答案】B5、如果函数2(1)2y x a x =+-+在区间(∞,4]上是减函数,那么实数a 的取值范围是( )A . a ≥5B .a ≤3C .a ≥9D .a ≤7 【答案】C6、某工厂去年产值是a,计划今后五年内每年比上一年产值增长10%,从今年起到第五年这个工厂的总产值是 ( )A. 1.14aB. 1.1(1.15-1)aC. 10(1.15-1)aD. 11(1.15-1)a 【答案】D7、对一切实数x ,所有的二次函数()c bx ax x f ++=2(a <b )的值均为非负实数.则cb a ab ++-的最大值是( )A .31B .21 C .3D .2【答案】A8、已知实数,x y 分别满足:3(3)2014(3)1x x -+-=,3(23)2014(23)1y y -+-=-,则2244x y x ++的最小值是( ) A .0 B .26 C .28D .30【答案】C9、已知函数22()1(,)f x x ax b b a R b R =-++-+∈∈,对任意实数x 都有(1)=(1+)f x f x -成立,若当[]1,1x ∈-时,()0f x >恒成立,则b 的取值范围是( ) A .10b -<< B .2b > C .1b <-或2b > D .不能确定【答案】C 10、设函数f(x)=1x,g(x)=ax 2+bx(a,b ∈R,a ≠0),若y=f(x)的图象与y=g(x)的图象有且仅有两个不同的公共点A(x 1,y 1),B(x 2,y 2),则下列判断正确的是( ) A .当a<0时,x 1+x 2<0,y 1+y 2<0 B .当a<0时,x 1+x 2>0,y 1+y 2>0 C .当a>0时,x 1+x 2>0,y 1+y 2<0 D .当a>0时,x 1+x 2<0,y 1+y 2>0 【答案】D11、已知函数22(1)()714(1)x axx f x a x a x ⎧-+≤⎪=⎨-+>⎪⎩,若1212,x x R x x ∃∈≠,且,使得12()()f x f x =,则实数a 的取值范围是( )A .(,2)(3,5)-∞⋃B .[](]2,3,-5⋃-∞C .[]2,3D .[)5,+∞【答案】A12、如果抛物线2y a x b x c =++经过点(-1,0)和(3,0),那么它的对称轴是直线 A.x = 0 B.x = 1C.x = 2D.x = 3【答案】B【解析】抛物线2y a x b x c =++经过点(-1,0)和(3,0),则对称轴是x=1312-+=. 13、若函数2()2f x x a x =+-在(0,)+∞上单调递增,则实数a 的取值范围是.【答案】[4,0]-14、已知函数2()(,),f x x bx c b c R =++∈对任意的x R ∈,恒有'()f x ≤()f x .若对满足题设条件的任意b ,c ,不等式22()()()f c f b M c b -≤-恒成立,则M 的最小值为.【答案】23.【解析】易知b x x f +='2)(.由题设有,对任意的x ∈R ,2x+b ≤x 2+bx+c ,即x 2+(b-2)x+c-b ≥0恒成立,所以(b-2)2-4(c-b )≤0,从而142+≥b c .于是1≥c ,且b b c =⨯≥1222,即c ≥|b|当b c >时,有c b cb bc b bc b c b c b f c f M ++=--+-=--≥2)()(2222222, 令c b t =则-1<t <1,1121122+-=++=++t t t c b c b , 而函数11,112)(<<-+-=t t t g 的值域)23,(-∞;因此,当c >|b|时M 的取值集合为),23[+∞.当c=|b|时,由0)(4)2(2≤---b c b 知,b=±2,c=2.此时,0,,8)()(or b f c f -=-而c 2-b 2=0,从而)(23)()(22b c b f c f -≤-恒成立. 综上所述,M 的最小值为23.15、设函数()f x 的定义域为D ,若存在非零实数使得对于任意()x M M D ∈⊆,有x l D +∈,且()()f x l f x +≥,则称()f x 为M 上的高调函数.如果定义域为[)1,-+∞的函数()2f x x =为[)1,-+∞上的m 高调函数,那么实数m 的取值范围是_________.【答案】[)2,+∞.【解析】由题意,22)(x m x ≥+在[-1,+∞)上恒成立,∴2kx+m 2≥0在[-1,+∞)上恒成立20202≥∴⎩⎨⎧≥+->∴m m m m 故答案为:2≥m .16、二次函数2y ax bx c =++的图象如图所示,)2,(n Q 是图象上的一点,且BQ AQ ⊥,则a 的值为.【答案】21-. 【解析】首先设出02=++c bx ax 的两根分别为21,x x ,然后由韦达定理得,a b x x -=+21,ac x x =21,再根据BQ AQ ⊥得到:222AB BQ AQ =+,即221222)(4)(4)(1x x n x n x -=+-++-,化简得:04)(21212=+++-x x x x n n ,即042=+++acn a b n ,所以a c bn an 42-=++.最后由点)2,(n 是图像上的一点,所以,22=++c bn an ,所以24=-a ,即21-=a .故答案为21-=a .17、设二次函数c bx ax x f ++=2)(的图象过点(0,1)和(1,4),且对于任意的实数x ,不等式x x f 4)(≥恒成立. (Ⅰ)求函数()f x 的表达式;(Ⅱ)设()1g x kx =+,若2()log [()()]F x g x f x =-在区间[1,2]上是增函数,求实数k 的取值范围.【答案】(Ⅰ);(Ⅱ). 试题分析:第一问根据函数图像过点可以确定,根据函数图像过点可以确定,从而得到,此时可以求得,利用恒成立,可以确定恒成立,从而得到,解得,进而求得函数解析式,第二问利用题的条件,确定出函数的解析式,根据函数在区间上单调增的条件,得出621222≥⇒⎪⎩⎪⎨⎧>-+-≥-kkk,从而求得结果.试题解析:(Ⅰ),,,即恒成立,得,(Ⅱ)))2((log))()((log)(222xkxxfxgxF-+-=-=由在区间上是增函数得在上为增函数且恒正故621222≥⇒⎪⎩⎪⎨⎧>-+-≥-kkk考点:求二次函数的解析式,复合函数的单调性法则.18、已知:,(1)当时,恒有,求的取值范围;(2)当时,恰有成立,求的值.(3)当时,恒有,求的取值范围;【答案】(1);(2).试题分析:考虑f(x)是否为二次函数,首先要进行分类讨论,若f(x)为二次函数则由图像分布的位置可知,f(x)开口向下且与x轴无交点.(2)构造一个新函数g(x)=f(x)-mx+7,这样问题转化为二次函数问题.(3)对于二次函数在区间上的恒成立问题只需要考虑将f(x)的最大值小于零.试题解析:(1)当a=2时,f(x)=-4<0满足;当a≠2时,解得-2<x<2综上,a的取值范围为(2)∵f (x )<mx-7,∴f (x )-mx+7<0,即(a-2)x2+(2a-4-m )x+3<0, 令g (x )=(a-2)x 2+(2a-4-m )x+3<0,∵x ∈(1,3)时,恰有f (x )<mx-7成立所以1,3为方程g (x )=0的根,由韦达定理知:1+3=;1×3=解得a=3m=6(3)由(1)得a=2,成立,当a ≠2,对称轴x=-1解得:综上,a 的取值范围为考点:1、二次函数;2、一元二次方程.19、某商店购进一批单价为20元的日用品,如果以单价30元销售,那么可卖出400件,如果每提高单价1元,那么销售量Q (件)会减少20,设每件商品售价为x (元); (1)请将销售量Q (件)表示成关于每件商品售价x (元)的函数; (2)请问当售价x (元)为多少,才能使这批商品的总利润y (元)最大? 【答案】(1)()10002Q x x =-,()30,50x ∈(2)故当35x =时总利润最大 试题分析:(1)销售量在原销售量400的基础上,减去价格上引起的减少量即可得到与售价的函数关系式(2)总利润=每件日用品的利润×可卖出的件数,利用公式法可得二次函数的最值,减去原价即为提高的售价试题解析:(1)()()400203010002Q x x x =--=-x ∈(30,50)(2)2(20)(100020)20(701000)y x x x x =--=--+(3050x <<)二次函数对称轴为35x =由二次函数性质可知当35x =时总利润最大 考点:二次函数的实际应用20、已知f (x )=﹣3x 2+m (6﹣m )x+6(Ⅰ)若关于x 的不等式f (x )>n 的解集为(﹣1,3),求实数m ,n 的值; (Ⅱ)解关于m 的不等式f (1)<0. 【答案】试题分析:(Ⅰ)根据二次函数和不等式的关系,得到方程组,解出即可;(2)由已知f (1)=﹣m 2+6m+3,得不等式﹣m 2+6m+3<0,解出即可. 试题解析:解:(Ⅰ)∵f (x )>n , ∴3x 2﹣m (6﹣m )x+n ﹣6<0,∴﹣1,3是方程3x 2﹣m (6﹣m )x+n ﹣6=0的两根,,∴;(Ⅱ)由已知f (1)=﹣m 2+6m+3, ∴﹣m 2+6m+3<0, ∴m 2﹣6m ﹣3>0, ∴,∴不等式f (1)<0的解集为:.考点:二次函数的性质.点评:本题考查了二次函数的性质,考查了不等式和二次函数的关系,是一道基础题.21、已知二次函数2()f x ax bx =+(,a b 为常数且0a ≠)满足(1)(1),f x f x -=+且方程()f x x =有等根. (1)求()f x 的解析式;(2)设()12()(1)g x f x x =->的反函数为1(),g x -若12(2)(32)x xg m ->-对[1,2]x ∈恒成立,求实数m 的取值范围. 【答案】(1)()212f x x x =-+;(2)53m -<< 试题分析:(1)先由()()11f x f x -=+得函数对称轴,再由方程()f x x =有等根,得方程()f x x =的判别式等于零,最后解方程即可;(2)由(1)得出()g x 的解析式,再将x 用y 表示,最后交换x y 、,即可求出反函数的解析式,从而得()1232x xm +>-对[]12x ∈,恒成立,2x t =,转化成关于的一次函数恒成立问题,根据函数在[]24,上的单调性建立不等式,从而求出所求.试题解析:解:(1)∵()()11f x f x -=+, ∴函数的对称轴为1x =,即12ba-= ∵方程()f x x =有等根,∴()210b ∆=-=∴112b a ==-, ∴()212f x x x =-+. (2)由(1)得()221g x x x =-+, 当1x >时,())2110110y x x g x x -=-⇒=+⇒=>>(),∵()()12232x x g m ->-对[]12x ∈,恒成立, 即()1232x x m +>-对[]12x ∈,恒成立, 令2x t =,则()1130m t m ++->,对[]24t ∈,恒成立, ∴()()2113041130m m m m ++->⎧⎪⎨++->⎪⎩53m ⇒-<<. 考点:1.待定系数法求函数解析式;2.二次函数的性质;3.反函数.22、已知函数2()(2)f x x a x b =+++,2)1(-=-f ,对于R x ∈,x x f 2)(≥恒成立.(Ⅰ)求函数)(x f 的解析式; (Ⅱ)设函数4)()(-=xx f x g . ①证明:函数)(x g 在区间在),1[+∞上是增函数;②是否存在正实数n m <,当n x m ≤≤时函数)(x g 的值域为]2,2[++n m .若存在,求出n m ,的值,若不存在,则说明理由.【答案】(Ⅰ)()241f x x x =++;(Ⅱ)①详见解析;②详见解析。
高三数学一次函数与二次函数试题答案及解析
![高三数学一次函数与二次函数试题答案及解析](https://img.taocdn.com/s3/m/66a0ea0953ea551810a6f524ccbff121dd36c597.png)
高三数学一次函数与二次函数试题答案及解析1.已知中心在原点,焦点在轴上的椭圆的离心率为,椭圆上异于长轴顶点的任意点与左右两焦点、构成的三角形中面积的最大值为.(1)求椭圆的标准方程;(2)已知点,连接与椭圆的另一交点记为,若与椭圆相切时、不重合,连接与椭圆的另一交点记为,求的取值范围.【答案】(1);(2).【解析】(1)先利用已知条件列举出有关、、的方程组,结合三者之间满足的勾股关系求出、、的值,从而确定椭圆的方程;(2)设直线与的方程分别为以及,将两条直线方程与椭圆方程联立,结合韦达定理得到点与点之间的关系(关于轴对称),从而得到两点坐标之间的关系,最后将利用点的坐标进行表示,注意到坐标的取值范围,然后利用二次函数求出的取值范围.(1)由题可知:,,解得:,,,故椭圆的方程为:;(2)不妨设、、,由题意可知直线的斜率是存在的,故设直线的斜率为,直线的斜率为的方程为:代入椭圆方程,得,,将,代入解得:,的方程为:代入椭圆方程,得,,将,,代入解得:,,又、不重合,,,.【考点】1.椭圆的方程;2.直线与椭圆的位置关系;3.二次函数;4.向量的数量积2.设函数f(x)=ax2+(b-2)x+3(a≠0),若不等式f(x)>0的解集为(-1,3).(1)求a,b的值;(2)若函数f(x)在x∈[m,1]上的最小值为1,求实数m的值.【答案】(1)a=-1,b=4 (2)1-【解析】(1)由条件得,解得:a=-1,b=4.(2)f(x)=-x2+2x+3,对称轴方程为x=1,∴f(x)在x∈[m,1]上单调递增.∴x=m时,f(x)=-m2+2m+3=1,min解得m=1±.∵m<1,∴m=1-.3.已知函数在区间()上的最大值为4,最小值为3,则实数m的取值范围是( )A.B.C.D.【答案】A【解析】作出函数的图象如下图所示,从图可以看出当时,函数在区间()上的最大值为4,最小值为3.故选A.【考点】二次函数.4.设二次函数满足条件:①;②函数的图像与直线相切.(1)求函数的解析式;(2)若不等式在时恒成立,求实数的取值范围.【答案】(1);(2).【解析】由的图象的对称轴方程是,于是有,依题意,方程组有且只有一解,利用即可求得与,从而得函数的解析式;(2)利用指数函数的单调性质,知在时恒成立,构造函数,由即可求得答案.试题解析:(1)由①可知,二次函数图像对称轴方程是,;又因为函数的图像与直线相切,所以方程组有且只有一解,即方程有两个相等的实根,,所以,函数的解析式是.(2),等价于,即不等式在时恒成立,问题等价于一次函数在时恒成立,即,解得:或,故所求实数的取值范围是.【考点】1、函数恒成立问题;2、二次函数的性质.5.椭圆c:(a>b>0)的离心率为,过其右焦点F与长轴垂直的弦长为1,(1)求椭圆C的方程;(2)设椭圆C的左右顶点分别为A,B,点P是直线x=1上的动点,直线PA与椭圆的另一个交点为M,直线PB与椭圆的另一个交点为N,求证:直线MN经过一定点.【答案】(1);(2)证明详见解析【解析】(1)由已知可得,=1,解出a,b即可.(2)设P(1,t),则直线,联立直线PA方程和椭圆方程可得,同理得到,由椭圆的对称性可知这样的定点在轴,不妨设这个定点为Q,由,求得m的存在即可.试题解析:(1)依题意过焦点F与长轴垂直的直线x=c与椭圆联立解答弦长为=1, 2分所以椭圆的方程. 4分(2)设P(1,t),直线,联立得:即,可知所以,则 6分同理得到 8分由椭圆的对称性可知这样的定点在轴,不妨设这个定点为Q, 10分又,,,,. 12分【考点】1.椭圆方程的性质;2.点共线的证法.6.设二次函数f(x)=ax2+bx+c,如果f(x1)=f(x2)(x1≠x2),则f(x1+x2)等于()A.-B.-C.c D.【答案】C【解析】∵f(x1)=f(x2),∴f(x)的对称轴为x=-=,得f(x1+x2)=f-=a×+b×+c=c,故选C.7.函数的图象和函数的图象的交点个数是。
高二数学一次函数与二次函数试题答案及解析
![高二数学一次函数与二次函数试题答案及解析](https://img.taocdn.com/s3/m/1c0e89d577a20029bd64783e0912a21614797fc7.png)
高二数学一次函数与二次函数试题答案及解析1.在下列图象中,二次函数与指数函数的图象只可能是()【答案】A【解析】根据指数函数可知同号且不相等则二次函数的对称轴<0可排除B与D;选项C,,,∴,则指数函数单调递增,故C 不正确故选:A 【考点】二次函数与指数函数函数的图像及性质.2.若二次函数满足则的取值范围为_____【答案】【解析】∵f(x)=ax2+2x-a,∴f(0)=-a, f(2)=3a+4,f(3)=8a+6,f(4)=15a-8,∵f (0)<f(4)<f(3)<f(2)∴-a<15a-8<8a+6<3a+4,解不等式可得,,故答案为:【考点】二次函数的性质.3.不等式的解集为( )A.B.C.D.【答案】D【解析】因为不等式,所以可得.又因为.所以.故选D.本小题关键是对参数的处理.由于对应的两个方程的根为或的大小判断.【考点】1.二次不等式的解法.2.处理参数的能力.4.若则与的大小关系是( )A.B.C.D.随的值的变化而变化【答案】C【解析】构造函数,所以正确答案选C.【考点】二次函数5.函数在区间上至少有一个零点,则实数的取值范围是.【答案】【解析】当时,;当时,对称轴,函数在区间上至少有一个零点,只须,即;当时,对称轴,函数在区间上至少有一个零点,则只须.综上,.【考点】1.二次函数的图像;2.函数的零点6.设,若,,.(1)若,求的取值范围;(2)判断方程在内实根的个数.【答案】(1)(-2,-1)(2)2【解析】证明:(1),,由,得,代入得:,即,且,即.(2),又,.则f(x)在区间,内各有一个,故在内有2个实根.【考点】函数与方程点评:主要是考查了函数与方程根问题,二次函数图象与性质的运用,属于基础题。
7.已知二次函数,及函数。
关于的不等式的解集为,其中为正常数。
(1)求的值;(2)R如何取值时,函数存在极值点,并求出极值点;(3)若,且,求证:。
【答案】(1)(2),(3)可用数学归纳法证明【解析】(1)解:∵关于的不等式的解集为,即不等式的解集为,∴.∴.∴.∴.(2)解法1:由(1)得.∴的定义域为.∴.方程(*)的判别式.当时,对恒成立,方程(*)的两个实根为则时,;时,.∴函数在上单调递减,在上单调递增.∴对任意实数k,函数都有极小值点.解法2:由(1)得.∴的定义域为.∴.若函数存在极值点等价于函数有两个不等的零点,且至少有一个零点在上.令,得, (*)则,(**)方程(*)的两个实根为, .设,①若,则,得,此时,取任意实数, (**)成立.则时,;时,.∴函数在上单调递减,在上单调递增.∴函数有极小值点.②若,则得(不合舍去)综上所述, 当时,取任何实数, 函数有极小值点;(其中, )(3)证法1:∵,∴.∴.令,则.∵,∴.∴,即.证法2:下面用数学归纳法证明不等式.①当时,左边,右边,不等式成立;10分②假设当N时,不等式成立,即,则.也就是说,当时,不等式也成立.由①②可得,对都成立.【考点】不等式导数点评:本题考查了导数与极值之间的关系,导数几何意义的应用,以及利用数学归纳法证明不等式.8.若且,则的最小值是______【答案】【解析】解:因为且,则,从而利用二次函数得到最小值为9.二次函数的图像过原点,且它的导函数的图像是经过第一、二、三象限的一条直线,则函数的图像的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】解:设,由题意有,因,故顶点在第三象限。
高三数学一次函数与二次函数试题
![高三数学一次函数与二次函数试题](https://img.taocdn.com/s3/m/df531101770bf78a64295474.png)
高三数学一次函数与二次函数试题1.函数f(x)=ax2+ax-1在R上恒满足f(x)<0,则a的取值范围是()A.a≤0B.a<-4C.-4<a<0D.-4<a≤0【答案】D【解析】当a=0时,f(x)=-1在R上恒有f(x)<0;当a≠0时,∵f(x)在R上恒有f(x)<0,∴,∴-4<a<0.综上可知:-4<a≤0.2.函数f(x)=-对任意实数有成立,若当时恒成立,则的取值范围是_________.【答案】【解析】这题涉及到函数的一个性质:函数满足,则其图象关于直线对称,因此本题函数图象关于直线对称,而它又是二次函数,因此可得,从而在区间上单调递增,那么由题设条件得,解得或.【考点】函数图象的对称性,二次函数的单调性.3.已知函数,h(x)=2alnx,.(1)当a∈R时,讨论函数的单调性;(2)是否存在实数a,对任意的,且,都有恒成立,若存在,求出a的取值范围;若不存在,说明理由.【答案】(1)详见解析;(2)不存在.【解析】(1)讨论函数的单调性,在定义域内研究其导函数的符号即可.先求导函数,因为定义域为,故只需讨论分子符号,可结合二次函数的图象判断,此时①需讨论交点的大小,②注意根与定义域比较,所以需和-2和0比较大小;(2)由对称性,不妨设,去分母得,构造函数,则其在定义域内单调递减,故在恒成立,而,分子二次函数开口向上,不可能永远小于0,故不存在.试题解析:(1),∴, 的定义域为.①当时,在上是减函数,在在上是增函数;②当时,在上是增函数;在是是减函数;在上是增函数;③当时,在上是增函数;④当时,在上是增函数;在上是减函数;在上是增函数.(2)假设存在实数,对任意的,且,都有恒成立,不妨设,要使,即.令,只要在为减函数.又,由题意在上恒成立,得不存在.【考点】1、导数在单调性上的应用;2、二次函数的图象;3、函数思想的应用.4.已知二次函数的值域为,则的最小值为 .【答案】3【解析】由题意得:.【考点】二次函数及重要不等式.5.已知一元二次不等式的解集为{,则的解集为 .【答案】{|<-1,或>1}【解析】由不等式的解集为{.所以的解集为.所以要符合或.解得x<-1或x>1.及不等式的解集为{| <-1,或>1}.故填{|<-1,或>1}.本小题以二次函数为背景考查了含指数函数的不等式.【考点】1.二次函数的解法.2.指数函数的解法.6.已知实数a,b,c满足a+b+c=9,ab+bc+ca=24,则b的取值范围是.【答案】[1,5]【解析】依题意,,代入得;整理得在实数范围内有解,即,解得 .【考点】1.构造一元二次方程;2.一元二次方程根的分布.7.已知函数在区间上有最大值3,最小值2,则的取值范围是( ) A.B.C.D.【答案】D【解析】,当时取最小值2,又.作出其图象如图所示:结合图形可知:的取值范围是.【考点】二次函数的最值.8.(本小题12分)已知函数()在区间上有最大值和最小值.设,(1)求、的值;(2)若不等式在上有解,求实数的取值范围.【答案】(1),(2)【解析】(1)先求出函数g(x)的对称轴x=1,则,解之即可.(2)首先求出的解析式,则,再由二次函数的性质求出即可解得k的取值范围.试题解析:(1),因为,对称轴为,所以在区间上是先减后增,故,解得.(2)由(1)可得,所以在上有解,可化为在上有解。
高三数学一轮复习《一次函数与二次函数》专项练习题(含答案)
![高三数学一轮复习《一次函数与二次函数》专项练习题(含答案)](https://img.taocdn.com/s3/m/1f191a22e97101f69e3143323968011ca300f7d3.png)
高三数学一轮复习《一次函数与二次函数》专项练习题(含答案)一、单选题1.函数2()2(1)3f x x m x =-+-+在区间(],4-∞上单调递增,则m 的取值范围是( ) A .[)3,-+∞ B .[)3,+∞ C .(],5-∞D .(],3-∞-2.已知函数()223x x x f =-+在区间[],1t t +上是单调函数,则t 的取值范围是( )A .[)1,+∞B .[]0,1C .(],0-∞D .(][),01,-∞+∞3.若函数21121x f x xx -⎛⎫=-+ ⎪⎝⎭,则函数()()4g x f x x =-的最小值为( )A .1-B .2-C .3-D .4-4.已知正三角形ABC 的边长为4,点P 在边BC 上,则AP BP ⋅的最小值为( ) A .2B .1C .2-D .1-5.已知关于x 的方程2lg lg 0x a x b ++=的两个实数根分别是1x 、2x ,若12100x x ⋅=,则b 的取值范围为( ) A .[]2,100B .[]0,2C .[]1,100D .(],1-∞6.已知函数()21,=,2x cf x x x x c x ⎧-<⎪⎨⎪-≤≤⎩ ,若()f x 值域为1,24⎡⎤-⎢⎥⎣⎦,则实数c 的范围是( )A .11,2⎡⎤--⎢⎥⎣⎦ B .1,2⎛⎫-∞- ⎪⎝⎭ C .11,22⎡⎤-⎢⎥⎣⎦ D .[)1,-+∞7.已知随机变量X 的分布列如下:则(31)D X -的最大值为( )A .23B .3C .6D .58.设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是( )A .2⎫⎪⎢⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .2⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦9.已知圆221:20C x y kx y +-+=与圆222:20C x y ky ++-=的公共弦所在直线恒过点(),P a b ,且点P 在直线20mx ny --=上,则mn 的取值范围是( )A .(],1-∞B .1,14⎛⎤ ⎥⎝⎦C .1,4⎡⎫+∞⎪⎢⎣⎭D .1,4⎛⎤-∞ ⎥⎝⎦10.下列说法不正确...的是( ) A .若函数()f x 满足()11,f '=则函数()f x 在1x =处切线斜率为1B .函数()248f x x kx =--在区间[]5,20上存在增区间,则160k <C .函数()32132x a f x x x =-++在区间122⎡⎤⎢⎥⎣⎦,上有极值点,则522a ≤≤ D .若任意0a b t <<<,都有ln ln b a a b <,则有实数t 的最大值为e11.已知()()2ln ,045,1x x f x x x x ⎧-<⎪=⎨-+≥⎪⎩,若方程()()f x m m =∈R 有四个不同的实数根1x ,2x ,3x ,4x ,则1234x x x x ⋅⋅⋅的取值范围是( )A .(3,4)B .(2,4)C .[0,4)D .[3,4)12.已知函数21log 2,1()(1)4,1a x x f x x a x ⎧+-≤=⎨-+>⎩(a >0,且a ≠1)在区间(﹣∞,+∞)上为单调函数,若函数y =|f (x )|﹣x ﹣2有两个不同的零点,则实数a 的取值范围是( ) A .13,44⎡⎤⎢⎥⎣⎦B .1[,1)4C .1313,4416⎡⎤⎧⎫⎨⎬⎢⎥⎣⎦⎩⎭D .1113,4216⎡⎤⎧⎫⋃⎨⎬⎢⎥⎣⎦⎩⎭二、填空题13.已知函数f (x )=21,12,1x x x ax x +<⎧⎨-≥⎩在R 上单调递增,则实数a 的取值范围为________.14.已知集合233|1,,224A y y x x x ⎧⎫⎡⎤==-+∈⎨⎬⎢⎥⎣⎦⎩⎭,{}2|1B x x m =+≥.若“x A ∈”是“x B ∈”的充分条件,则实数m 的取值范围为________.15.若函数()()211,1,26,1a x x f x x ax x ⎧-+≤=⎨-+>⎩的值域为R ,则实数a 的取值范围是______.16.如图,在棱长为4的正方体1111ABCD A B C D -中,E 为BC 的中点,点P 在线段1D E 上,点Р到直线1CC 的距离的最小值为_______.三、解答题17.已知函数()2()2x x af x a R =+∈,2()2g x x x m =-++. (1)若函数()f x 为奇函数,求实数a 的值; (2)在(1)的条件下,设函数221()()22x x F x f x --=+-,若1[1,2]x ∀∈,2[1,2]x ∃∈,使得12()()g x F x =,求实数m 的取值范围.18.已知函数()cos22cos 2f x x a x a =--的最小值为f (a ),且()12f a =, (1)求a 的值;(2)求函数f (x )的最大值.19.在平面直角坐标系中,已知两圆221:(1)25C x y -+=和222:(1)1C x y ++=,动圆在1C 内部且和圆1C 相内切且和圆2C 相外切,动圆圆心的轨迹为E .(1)求E 的标准方程;(2)点P 为E 上一动点,点O 为坐标原点,曲线E 的右焦点为F ,求22||||PO PF +的最小值.20.某市地铁项目正在如火如荼地进行中,全部通车后将给市民带来很大的便利.已知地铁7号线通车后,列车的发车时间间隔(t 单位:分钟)满足220t ≤≤,经市场调研测算,地铁的载客量与发车的时间间隔t 相关,当1020t ≤≤时,地铁为满载状态,载客量为500人;当210t ≤<时,载客量会减少,减少的人数与2(10)t -成正比,且发车时间间隔为2分钟时的载客量为372人,记地铁的载客量为()s t .(1)求()s t 的表达式,并求发车时间间隔为5分钟时列车的载客量; (2)若该线路每分钟的净收益为8()265660s t Q t-=-(元).问:当列车发车时间间隔为多少时,该线路每分钟的净收益最大?21.已知函数21()log 4(1)22x xf x k k k ⎡⎤=⋅--++⎢⎥⎣⎦.(1)当2k =时,求函数()f x 在[0,)+∞的值域;(2)已知01k <<,若存在两个不同的正数a ,b ,当函数()f x 的定义域为[],a b 时,()f x 的值域为[1,1]a b ++,求实数k 的取值范围.22.已知函数()221(0,1)g x ax ax b a b =-++≠<,在区间[]23,上有最大值4,最小值1,设()()g x f x x=. (1)求a b ,的值;(2)不等式()220x xf k -⋅≥在[]11x ∈-,上恒成立,求实数k 的取值范围; (3)方程()2213021xxf k ⎛⎫⎪-+-= ⎪-⎝⎭有三个不同的实数解,求实数k 的取值范围23.如图,在六面体PABCD 中,PAB 是等边三角形,二面角P AB D --的平面角为30°,22224PC AB AD BD AC BC ======.(1)证明:AB PD ⊥;(2)若点E 为线段BD 上一动点,求直线CE 与平面PAB 所成角的正切的最大值。
2023年新高考数学一轮复习2-3 二次函数与一元二次方程、不等式(真题测试)解析版
![2023年新高考数学一轮复习2-3 二次函数与一元二次方程、不等式(真题测试)解析版](https://img.taocdn.com/s3/m/18444f1acd1755270722192e453610661ed95a8b.png)
专题2.3 二次函数与一元二次方程、不等式(真题测试)一、单选题1.(2021·河北·沧县中学高一阶段练习)函数()()()[]224,,21,2,2,1x x x f x x x ∞∞⎧--+∈--⋃+⎪=⎨-+∈-⎪⎩的值域为( )A .(],4∞-B .(],2-∞C .[)1,+∞D .(),4-∞【答案】A 【解析】 【分析】利用分段函数的性质求解. 【详解】解:()()()[]224,,21,2,2,1x x x f x x x ∞∞⎧--+∈--⋃+⎪=⎨-+∈-⎪⎩, 当[]2,1x ∈-,()[]21,4f x x =-+∈,当()()1,,2x ∈+∞⋃-∞-,()()2154f x x =-++<,所以()(,4]∈-∞f x , 故选:A2.(2008·江西·高考真题(文))已知函数2()2(4)4f x x m x m =+-+-,()g x mx =,若对于任一实数x ,()f x 与()g x 的值至少有一个为正数,则实数m 的取值范围是 A .[4,4]- B .(4,4)-C .(,4)-∞D .(,4)-∞-【答案】C 【解析】 【详解】当2160m ∆=-<时,显然成立当4,(0)(0)0m f g ===时,显然不成立; 当24,()2(2),()4m f x x g x x =-=+=-显然成立;当4m <-时12120,0x x x x +,则()0f x =两根为负,结论成立故4m <,故选C.3.(2014·北京·高考真题(文))加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”,在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p=at 2+bt+c (a ,b ,c 是常数),如图记录了三次实验的数据,根据上述函数模型和实验数据,可以得到最佳加工时间为A .3.50分钟B .3.75分钟C .4.00分钟D .4.25分钟【答案】B 【解析】 【详解】由图形可知,三点(3,0.7),(4,0.8),(5,0.5)都在函数2p at bt c =++的图象上,所以930.7{1640.82550.5a b c a b c a b c ++=++=++=,解得0.2, 1.5,2a b c =-==-,所以20.2 1.52p t t =-+-=215130.2()416t --+,因为0t >,所以当153.754t ==时,p 取最大值, 故此时的t=3.75分钟为最佳加工时间,故选B.4.(2022·河南·焦作市第一中学高二期中(文))设p :二次函数()()210f x ax ax a =++≠的图象恒在x 轴的上方,q :关于x 的方程22210x ax a -+-=的两根都大于-1,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】 由p 可得20Δ40a a a >⎧⎨=-<⎩,由q 可得1111a a ->-⎧⎨+>-⎩,进而判断两集合关系,即可得到答案. 【详解】由p ,则2Δ40a a a >⎧⎨=-<⎩,解得04a <<;由q ,方程22210x ax a -+-=的两根为11x a =-,21x a =+,则1111a a ->-⎧⎨+>-⎩,解得0a >,因为{}04a a << {}0a a > ,所以p 是q 的充分不必要条件, 故选:A5.(2022·陕西·长安一中高一期中)设奇函数()f x 在[1,1]-上是增函数,(1)1f -=-.若函数()221f x t at ≤-+对所有的[1,1]x ∈-都成立,则当[1,1]a ∈-时,t 的取值范围是( ) A .22t -≤≤B .1122t -≤≤C .2t ≤-,或0=t ,或2t ≥D .12t ≤-,或0=t ,或12t ≥【答案】C 【解析】 【分析】求出函数()f x 在[1,1]-上的最大值,再根据给定条件建立不等关系,借助一次型函数求解作答. 【详解】因奇函数()f x 在[1,1]-上是增函数,(1)1f -=-,则max ()(1)(1)1f x f f ==--=, 依题意,[1,1]a ∈-,22211()20t at g a ta t -+≥⇔=-+≥恒成立,则有22(1)20(1)20g t t g t t ⎧-=+≥⎨=-≥⎩,解得2t ≤-或0=t 或2t ≥, 所以t 的取值范围是2t ≤-或0=t 或2t ≥. 故选:C6.(2016·浙江·高考真题(文))已知函数f(x)=x 2+bx ,则“b <0”是“f(f(x))的最小值与f(x)的最小值相等”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A 【解析】【详解】试题分析:由题意知222()()24b b f x x bx x =+=+-,最小值为24b -.令2=+t x bx ,则2222(())()(),244b b b f f x f t t bt t t ==+=+-≥-,当0b <时,(())f f x 的最小值为24b-,所以“0b <”能推出“(())f f x 的最小值与()f x 的最小值相等”;当0b =时,4(())=f f x x 的最小值为0,()f x 的最小值也为0,所以“(())f f x 的最小值与()f x 的最小值相等”不能推出“0b <”.故选A .7.(2022·广东佛山·二模)设,,R a b c ∈且0a ≠,函数2(),()(2)()g x ax bx c f x x g x =++=+,若()()0f x f x +-=,则下列判断正确的是( ) A .()g x 的最大值为-a B .()g x 的最小值为-a C .()()22g x g x +=- D .()()2g x g x +=-【答案】D 【解析】 【分析】根据给定条件,用a 表示b ,c ,再结合二次函数的性质求解作答. 【详解】依题意,232()(2)()(2)(2)2f x x ax bx c ax a b x b c x c =+++=+++++,因()()0f x f x +-=,则()f x 是奇函数,于是得2020a b c +=⎧⎨=⎩,即2,0b a c =-=, 因此,22()2(1)g x ax ax a x a =--=-,而0a ≠,当0a >时,()g x 的最小值为-a ,当0a <时,()g x 的最大值为-a ,A ,B 都不正确;2(2)(1)g x a x a +=+-,2(2)(1)g x a x a -=-+-,22()(1)(1)g x a x a a x a -=---=+-,即()()22g x g x +≠-,()()2g x g x +=-,因此,C 不正确,D 正确. 故选:D8.(2022·浙江金华第一中学高一阶段练习)当11x -时,21ax bx c ++恒成立,则( )A .当2a =时,||||1b c +=B .当2a =时,||||2b c +=C .当1b =时,||0a c +=D .当1b =时,||||0a c +=【答案】AC 【解析】 【分析】先举出反例,排除BD 选项,对于A 选项,根据绝对值三角不等式,得到11b -≤≤,31c -≤≤-,再根据14b f ⎛⎫-≤ ⎪⎝⎭得到288c b ≥-,综合得到88c =-,288b -=-,求出1c =-,0b =,从而判断出A 正确;D 选项,利用类似方法得到0a c +=,验证后得到结论. 【详解】当2a =时,221x bx c ++在11x -上恒成立,可取0,1b c ==-,验证可知符合题意,此时2b c +≠,B 错误;当1b =时,21ax x c ++在11x -上恒成立,可取11,44a c ==-,验证可知符合题意,故D 错误;对于A 选项,令()22f x x bx c =++,必有()()11,11f f ≤-≤,即21,21b c b c ++≤-+≤,则222222b c b c b c b c b ≥+++-+≥++-+-=, 解得:11b -≤≤,则()f x 的对称轴1,144b x ⎡⎤=-∈-⎢⎥⎣⎦,同理:2222222b c b c b c b c c ≥+++-+≥+++-+=+, 所以21c +≤,解得:31c -≤≤-,于是()1f x ≤要满足()()28114811212111b c b f f b c b c f ⎧⎧⎛⎫--≤≤⎪ ⎪⎪⎝⎭⎪⎪⎪⎪-≤⇒-+≤⎨⎨⎪⎪++≤≤⎪⎪⎪⎪⎩⎩①②③,由①知:288c b ≥-,因为11b -≤≤,故2888c b ≥-≥-④, 因为31c -≤≤-所以88c ≤-⑤,综合④⑤,可知:88c =-, 解得:1c =-,此时288b -=-,解得:0b =,所以()221f x x =-,经验证满足题意,且||||1b c +=,A 正确;对于C 选项,令()2g x ax x c =++,由()111g a c =++≤,()111g a c -=-+≤可得:2002a c a c -≤+≤⎧⎨≤+≤⎩,故0a c +=, 则()2g x ax x a =+-,所以211ax x a -≤+-≤恒成立,即211x ax a x --≤-≤-,易知:1122a -≤≤即可,故C 正确 故选:AC 【点睛】对于含有绝对值不等式的二次不等式问题,要充分考虑函数图象,以及对称轴和端点值的取值范围,结合绝对值三角不等式进行求解. 二、多选题9.(2021·江西·丰城九中高二阶段练习)如图,二次函数()20y ax bx c a =++≠的图像与x 轴交于A B ,两点,与y 轴交于C 点,且对称轴为1x =,点B 坐标为()10-,,则下面结论中正确的是( ) A .20a b += B .420a b c -+<C .240b ac ->D .当0y <时,1x -<或4x >【答案】ABC 【解析】 【分析】根据二次函数的图象和二次函数的性质,可以判断各个小题的结论是否成立,即可求出答案.【详解】因为二次函数()20y ax bx c a =++≠的图象的对称轴为1x =,所以12bx a=-=得20a b +=,故A 正确; 当2x =-时,420y a b c =-+<,故B 正确;该函数图象与x 轴有两个交点,则240b ac ->,故C 正确;因为二次函数()20y ax bx c a =++≠的图象的对称轴为1x =,点B 坐标为()10-,,所以点A 的坐标为()3,0,所以当0y <时,1x -<或x 3>,故D 错误. 故选:ABC.10.(2022·全国·模拟预测)已知二次函数()()241230f x mx mx m m =-+-<,若对任意12x x ≠,则( )A .当124x x +=时,()()12f x f x =恒成立B .当124x x +>时,()()12f x f x <恒成立C .0x ∃使得()00f x ≥成立D .对任意1x ,2x ,均有()()831,2i f x m i ≤-=恒成立 【答案】AD 【解析】 【分析】二次函数开口向下,对称轴为2x =,结合二次函数的性质对选项逐一判断即可. 【详解】依题意,二次函数()()241230f x mx mx m m =-+-<的对称轴为422-=-=mx m. 因为0m <,所以其函数图象为开口向下的抛物线,对于A 选项,当124x x +=时,1x ,2x 关于直线2x =对称, 所以()()12f x f x =恒成立,所以A 选项正确;对于B 选项,当124x x +>,若12x x >,则不等式可化为1222x x ->-, 所以()()12f x f x <;若12x x <,则不等式可化为2122x x ->-,所以()()21f x f x <,所以B 选项错误; 对于C 选项,因为0m <,所以()()224412332120m m m m m ∆=---=-+<,所以二次函数()()241230f x mx mx m m =-+-<的图象开口向下,且二次函数与x 轴无交点,所以不存在0x 使得()00f x ≥成立,所以C 选项错误;对于D 选项,()()max 24812383f x f m m m m ==-+-=-,所以对任意1x ,2x ,均有()()831,2i f x m i ≤-=恒成立,所以D 选项正确, 故选:AD.11.(2022·河北·石家庄二中模拟预测)命题“23,208x R kx kx ∀∈+-<”为真命题的一个充分不必要条件是( )A .()30-,B .(]30-,C .()31--,D .()3∞-+,【答案】AC 【解析】 【分析】先求命题“23,208x R kx kx ∀∈+-<”为真命题的等价条件,再结合充分不必要的定义逐项判断即可.【详解】因为23,208x R kx kx ∀∈+-<为真命题,所以0k =或230k k k <⎧⎨+<⎩30k ⇔-<≤, 所以()30-,是命题“23,208x R kx kx ∀∈+-<”为真命题充分不必要条件,A 对, 所以(]30-,是命题“23,208x R kx kx ∀∈+-<”为真命题充要条件,B 错, 所以()31--,是命题“23,208x R kx kx ∀∈+-<”为真命题充分不必要条件,C 对, 所以()3∞-+,是命题“23,208x R kx kx ∀∈+-<”为真命题必要不充分条件,D 错, 故选:AC12.(2021·江苏·高一单元测试)已知函数()1y f x =-的图象关于直线1x =对称,且对于()()y f x x R =∈,当12,(,0)x x ∞∈-时,()()12210f x f x x x -<-恒成立,若()()2221f ax f x <+对任意的x ∈R 恒成立,则实数a 的范围可以是下面选项中的( )A .()B .(),1-∞C .(0D .)+∞【答案】AC 【解析】 【分析】根据题意求得函数()f x 为偶函数,且在()0-∞,上为减函数,在()0+∞,上为增函数,把不等式转化为2221ax x <+,得到不等式4224(44)10x a x +-+>恒成立,设20t x =≥,令()224(44)1g t t a t =+-+,结合二次函数的性质,即可求解. 【详解】因为函数()1y f x =-的图象关于1x =对称, 可得函数()f x 关于y 轴对称,即()f x 为偶函数,又当12,(,0)x x ∞∈-时,()()12210f x f x x x -<-恒成立,所以()f x 在()0-∞,上为减函数,则()f x 在()0+∞,上为增函数, 又因为()()2221f ax f x <+,所以2221ax x <+,即22424441a x x x <++恒成立,即4224(44)10x a x +-+>恒成立,设20t x =≥,令()224(44)1g t t a t =+-+,即()0g t >在区间[0,)+∞上恒成立,当2102a t -=≤时,即11a -≤≤时,()g t 在[0,)+∞为单调递增函数,则满足()min (0)10g t g ==>,符合题意;当当2102a t -=>时,即1a <-或1a >时,要使得()0g t >在区间[0,)+∞上恒成立,则满足22(44)160a ∆=--<,解得a <0a ≠,即1a <<-或1a <<综上可得,实数a 的取值范围是(, 结合选项,选项A 、C 符合题意. 故选:AC.三、填空题13.(2012·江苏·高考真题)已知函数的值域为[0)+∞,,若关于x 的不等式()f x c <的解集为(6)m m +,,则实数c 的值为__________. 【答案】9. 【解析】 【详解】∵f(x)=x 2+ax +b 的值域为[0,+∞),∴Δ=0,∴b -24a =0,∴f(x)=x 2+ax +14a 2=12x a ⎛⎫+ ⎪⎝⎭2.又∵f(x)<c 的解集为(m ,m +6),∴m ,m +6是方程x 2+ax +24a-c =0的两根.由一元二次方程根与系数的关系得()226{64m a a m m c +=-+=-解得c =9.14.(2022·天津·耀华中学二模)已知不等式28(8)0x x a a -+-<的解集中恰有五个整数,则实数a 的取值范围为___________. 【答案】[)(]1,26,7⋃ 【解析】 【分析】根据一元二次不等式的解法,结合已知分类讨论进行求解即可. 【详解】28(8)0()[(8)]0x x a a x a x a -+-<⇒---<,当4a =时,原不等式化为2(4)0x -<,显然x ∈∅,不符合题意; 当4a >时,不等式的解集为8a x a -<<,其中解集中必有元素4,若五个整数是0,1,2,3,4时,可得18045a a -≤-<⎧⎨<≤⎩,此时解集为空集,若五个整数是1,2,3,4,5时,08156a a ≤-<⎧⎨<≤⎩,此时解集为空集,若五个整数是2,3,4,5,6时,18267a a ≤-<⎧⎨<≤⎩67a ⇒<≤,若五个整数是3,4,5,6,7时,28378a a ≤-<⎧⎨<≤⎩,此时解集为空集,若五个整数是4,5,6,7,8时,38489a a ≤-<⎧⎨<≤⎩,此时解集为空集;当4a <时,不等式的解集为8a x a <<-,其中解集中必有元素4,若五个整数是0,1,2,3,4时,可得10485a a -≤<⎧⎨<-≤⎩,此时解集为空集,若五个整数是1,2,3,4,5时,01586a a ≤<⎧⎨<-≤⎩,此时解集为空集, 若五个整数是2,3,4,5,6时,1212687a a a ≤<⎧⇒≤<⎨<-≤⎩, 若五个整数是3,4,5,6,7时,23788a a ≤<⎧⎨<-≤⎩,此时解集为空集, 五个整数是4,5,6,7,8时,38489a a ≤-<⎧⎨<≤⎩,此时解集为空集, 故答案为:[1,2)(6,7].15.(2015·湖北·高考真题(文))a 为实数,函数2()||f x x ax =-在区间[0,1]上的最大值记为()h a . 当=a _________时,()h a 的值最小.【答案】2.【解析】【详解】因为函数2()||f x x ax =-,所以分以下几种情况对其进行讨论:①当0a ≤时,函数22()f x x ax x ax =-=-在区间[0,1]上单调递增,所以max ()()1f x g a a ==-;②当02a <<时,此时22()()2224a a a a f a =-⨯=,(1)1f a =-,而22(2)(1)2044a a a +--=-<,所以max ()()1f x g a a ==-; ③当22a ≤<时,22()f x x ax x ax =-=-+在区间(0,)2a 上递增,在(,1)2a 上递减.当2a x =时,()f x 取得最大值2()24a a f =; ④当2a ≥时,22()f x x ax x ax =-=-+在区间[0,1]上递增,当1x =时,()f x 取得最大值(1)1f a =-,则()21,2{,2241,2a a a h a a a a -<=≤<-≥在(,2)-∞上递减,2,)+∞上递增,即当2a =时,()g a 的值最小.故答案为:2.16.(2022·全国·高三专题练习(文))已知()283f x ax x =++,对于给定的负数a ,有一个最大的正数()M a ,使得()0,x M a ∈⎡⎤⎣⎦时,都有()5f x ≤,则()M a 的最大值为___________.【解析】【分析】二次函数配方得到()f x 的含有参数的最大值,研究二次函数最值与5的大小关系,分类讨论,求出()M a 的最大值.【详解】()22416833f x ax x a x a a ⎛⎫=++=++- ⎪⎝⎭,当1635a ->,即80a -<<时,要使()5f x ≤在()0,x M a ∈⎡⎤⎣⎦上恒成立,要使()M a 取得最大值,则()M a 只能是2835ax x ++=的较小的根,即()M a =当1635a-≤,即8a ≤-时,要使()M a 取得最大值,则()M a 只能是2835ax x ++=-的较大的根,即()M a =当80a -<<时,()12M a ==<,当8a ≤-时,()M a =()M a .四、解答题17.(2022·山西运城·高二阶段练习)已知函数2()2(0)f x ax ax b a =-+>的定义域为R ,且在区间[0,3]上有最大值5,最小值1.(1)求实数a ,b 的值;(2)若函数()()22g x f x mx m =-+-,求()0>g x 的解集.【答案】(1)1,2a b ==(2)答案见解析【解析】【分析】(1)由二次函数的性质可知函数在[0,1]上单调递减,在[1,3]上单调递增,则()()11,35,f f ⎧=⎪⎨=⎪⎩从而可求出a ,b 的值,(2)由(1)得2()(2)2(2)()g x x m x m x x m =-++=--,然后分2m =,2m >和2m <三种情况解不等式(1)∵22()2(1)(0)f x ax ax b a x b a a =-+=-+->,在[0,1]上单调递减,在[1,3]上单调递增,∴()()11,35,f f ⎧=⎪⎨=⎪⎩即21,965,a a b a a b -+=⎧⎨-+=⎩解得1,2.a b =⎧⎨=⎩ (2)由(1)知2()(2)2(2)()g x x m x m x x m =-++=--,①2m =时,()0>g x 的解集为{}2x x ≠;②2m >时,()0>g x ,则x m >或2m <,故2m >时,()0>g x 的解集为{x x m >或2}x <;③2m <时,()0>g x ,则2x >或x m <,故2m <时,()0>g x 的解集为{2x x >或}x m <.综上,当2m =时,解集为{}2x x ≠;当2m >时,解集为{x x m >或2}x <;当2m <时,解集为{2x x >或}x m <. 18.(2015·浙江·高考真题(理))已知函数2()(,)f x x ax b a b R =++∈,记(,)M a b 是()f x 在区间[1,1]-上的最大值.(1)证明:当2a ≥时,(,)2M a b ≥;(2)当a ,b 满足(,)2M a b ≤,求a b +的最大值.【答案】(1)详见解析;(2)3.【解析】【详解】(1)分析题意可知()f x 在[1,1]-上单调,从而可知{}(,)max (1),(1)M a b f f =-,分类讨论a 的取值范围即可求解.;(2)分析题意可知,0{,0a b ab a b a b ab +≥+=-<,再由(,)2M a b ≤可得1(1)2a b f ++=≤,1(1)2a b f -+=-≤,即可得证.试题解析:(1)由22()()24a a f x xb =++-,得对称轴为直线2a x =-,由2a ≥,得 12a -≥,故()f x 在[1,1]-上单调,∴{}(,)max (1),(1)M a b f f =-,当2a ≥时,由 (1)(1)24f f a --=≥,得{}max (1),(1)2f f -≥,即(,)2M a b ≥,当2a ≤-时,由(1)(1)24f f a --=-≥,得{}max (1),(1)2f f --≥,即(,)2M a b ≥,综上,当2a ≥时,(,)2M a b ≥;(2)由(,)2M a b ≤得1(1)2a b f ++=≤,1(1)2a b f -+=-≤,故3a b +≤,3a b -≤,由,0{,0a b ab a b a b ab +≥+=-<,得3a b +≤,当2a =,1b =-时,3a b +=,且221x x +-在[1,1]-上的最大值为2,即(2,1)2M -=,∴a b +的最大值为3.19.(2014·辽宁·高考真题(文))设函数()211f x x x =-+-,2()1681g x x x =-+,记()1f x ≤的解集为M ,()4g x ≤的解集为N.(1)求M ;(2)当x M N ∈⋂时,证明:221()[()]4x f x x f x +≤. 【答案】(1)4|03M x x ⎧⎫=≤≤⎨⎬⎩⎭;(2)详见解析. 【解析】【详解】试题分析:(1)由所给的不等式可得当1x ≥时,由()331f x x =-≤,或 当1x <时,由()11f x x =-≤,分别求得它们的解集,再取并集,即得所求.(2)由4g x ≤() ,求得N ,可得3{|0}4M N x x ⋂=≤≤.当x ∈M∩N 时,f (x )=1-x ,不等式的左边化为211()42x --,显然它小于或等于14,要证的不等式得证. (1)33,[1,)(){1,(,1)x x f x x x -∈+∞=-∈-∞ 当1x ≥时,由()331f x x =-≤得43x ≤,故413x ≤≤; 当1x <时,由()11f x x =-≤得0x ≥,故01x ≤<;所以()1f x ≤的解集为4{|0}3M x x =≤≤.(2)由2()16814g x x x =-+≤得2116()4,4x -≤解得1344x -≤≤,因此13{|}44N x x =-≤≤,故3{|0}4M N x x ⋂=≤≤. 当x M N ∈⋂时,()1f x x =-,于是22()[()]()[()]x f x x f x xf x x f x +=+2111()(1)()424xf x x x x ==-=--≤. 20.(2021·河北·沧县中学高一阶段练习)已知二次函数()()223R f x x kx k =-+∈.(1)若()f x 在区间[)1,+∞上单调递增,求实数k 的取值范围;(2)若()2f x ≥在()0,x ∈+∞上恒成立,求实数k 的取值范围.【答案】(1)1k ≤(2)1k ≤【解析】【分析】(1)利用二次函数的单调性求解;(2)将()2f x ≥在()0,x ∈+∞上恒成立,转化为12k x x≤+在()0,x ∈+∞恒成立求解. (1)解:因为()f x 在()1,x ∈+∞单调递增,所以()212k --≤, 解得1k ≤;(2)因为()2f x ≥在()0,x ∈+∞上恒成立,所以2210x kx -+≥在()0,x ∈+∞恒成立, 即12k x x≤+在()0,x ∈+∞恒成立.令()1g x x x =+,则()12g x x x =+≥=, 当且仅当1x =时等号成立.所以1k ≤.21.(2021·江苏·无锡市市北高级中学高一期中)某运输公司今年初用49万元购进一台大型运输车用于运输.若该公司预计从第1年到第n 年(*)n ∈N 花在该台运输车上的维护费用总计为2(5)n n +万元,该车每年运输收入为25万元.(1)该车运输几年开始盈利?(即总收入减去成本及所有费用之差为正值)(2)若该车运输若干年后,处理方案有两种:①当年平均盈利达到最大值时,以17万元的价格卖出;②当盈利总额达到最大值时,以8万元的价格卖出.哪一种方案较为合算?请说明理由.【答案】(1)3年(2)方案①较为合算【解析】【分析】(1)由22549(5)0n n n --+≥,能求出该车运输3年开始盈利.(2)方案①中,22549(5)4920()6n n n n n n--+=-+≤.从而求出方案①最后的利润为59(万);方案②中,2222549(5)2049(10)51y n n n n n n =--+=-+-=--+,10n =时,利润最大,从而求出方案②的利润为59(万),比较时间长短,进而得到方案①较为合算.(1)由题意可得22549(5)0n n n --+≥,即220490n n -+≤,解得1010n ≤≤3n ∴≥,∴该车运输3年开始盈利.;(2)该车运输若干年后,处理方案有两种:①当年平均盈利达到最大值时,以17万元的价格卖出,22549(5)4920()6n n n n n n--+=-+≤, 当且仅当7n =时,取等号,∴方案①最后的利润为:25749(4935)1759⨯--++=(万);②当盈利总额达到最大值时,以8万元的价格卖出,2222549(5)2049(10)51y n n n n n n =--+=-+-=--+,10n ∴=时,利润最大,∴方案②的利润为51859+=(万),两个方案的利润都是59万,按照时间成本来看,第一个方案更好,因为用时更短, ∴方案①较为合算.22.(2009·江苏·高考真题)设a 为实数,函数2()2()f x x x a x a =+--.(1)若(0)1f ≥,求a 的取值范围;(2)求()f x 的最小值;(3)设函数()(),(,)h x f x x a =∈+∞,直接写出(不需给出演算步骤)不等式()1h x ≥的解集.【答案】(1) (2)22min 2,0(){2,03a a f x a a -≥=<(3) 当26(,)22a ∈时,解集为(,)a +∞;当62(,)22a ∈--时,解集为223232(,][,)33a a a a a --+-⋃+∞; 当[a ∈时,解集为)+∞. 【解析】【详解】(3)。
高考数学一次函数与二次函数单选题专题复习题(含答案)
![高考数学一次函数与二次函数单选题专题复习题(含答案)](https://img.taocdn.com/s3/m/8580efad9f3143323968011ca300a6c30d22f11c.png)
高考数学一次函数与二次函数单选题专题复习题1.函数()()()f x x a x b =--(其中a b >)的图象如图所示,则函数()2x g x a b =+-的图像是()A. B.C. D.2.某超市商品的日利润y (单位:元)与该商品的当日售价x (单位:元)之间的关系为21221025x y x =-+-,那么该商品的日利润最大时,当日售价为()A.120元 B.150元 C.180元D.210元3.若0ab >,2240a ab b c -+-=,当cab取最小值时,2a b c +-的最大值为()A.76B.1312C.1918D.25244.若全集U =R ,集合{}21A y y x ==+,{}12B x x =-≤≤,则()A B =U ð()A.(),1-∞-B.()1,+∞C.()(),12,-∞-+∞ D.()(),12,-∞+∞ 5.如果函数()f x 的导函数为()f x ',且满足2()(0)f x f x x '=⋅-,那么()f x 的最大值一定为()A.14-B.0C.14D.16.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,对称轴为12x =-.有下列4个结论:①<0abc ;②b a c <+;③34b c <-;④当12x >-时,y 随x 的增大而增大.其中,正确的结论有()A.1个B.2个C.3个D.4个7.二次函数()()22f x ax x c x =++∈R 的值域为[)1,+∞,则14a c+的最小值为()A.-3B.3C.-4D.48.如果不等式20ax x c -+>的解集为{21}x x -<<∣,那么函数2y ax x c =++的图象大致为()A. B.C. D.9.已知函数()222,0,2,0,x x x f x x x x ⎧+≥=⎨-+<⎩,如果满足()()22f a f a ->,那么实数a 的取值范围是()A.()(),12,-∞-+∞B.()1,2-C.()2,1- D.()(),21,-∞-+∞10.设函数()()()2ln f x a x x b =-+,若()0f x ≤,则22a b +的最小值为()A.15B.5C.12D.211.如图所示,关于二次函数2y ax bx c =++的图象有四个不同说法:①0ac <;②方程20ax bx c ++=的根是11x =-,23x =;③0a b c ++>;④当1x >时,y 随x 的增大而增大。
2023届高考数学二轮复习提升练之函数与导数——(3)一次函数与二次函数新高考
![2023届高考数学二轮复习提升练之函数与导数——(3)一次函数与二次函数新高考](https://img.taocdn.com/s3/m/2967f6db900ef12d2af90242a8956bec0875a55a.png)
2023届高考数学二轮复习提升练之函数与导数——(3)一次函数与二次函数【配套新教材】1.已知集合2{()()120,}f x f x ax x a x =-++<∈R ∣为空集,则实数a 的取值范围是( )A.⎫+∞⎪⎪⎣⎭ B.⎫+∞⎪⎪⎣⎭ C.⎫+∞⎪⎪⎣⎭ D.⎛-∞ ⎝⎭2.已知函数2()f x x k =-.若存在实数m ,n ,使得函数()f x 在区间上的值域为,则实数k 的取值范围为( )A.(1,0]-B.(1,)-+∞C.(2,0]-D.(2,)-+∞3.在区间[1,4]上,函数2()(,)f x x bx c b c =++∈R 与()g x 0x =处取得相同的最小值,那么()f x 在区间[1,4]上的最大值是( ) A.12B.11C.10D.94.设函数22(),0,()23,0,x a x f x x x a x ⎧-≤=⎨-++>⎩若(0)f 是函数()f x 的最小值,则实数a 的取值范围是( ) A.[1,2]-B.(1,2)-C.[0,2)D.[]0,25.李华经营了甲、乙两家电动车销售连锁店,其月利润(单位:元)分别为212590016000,3002000L x x L x =-+-=-(其中x 为销售辆数),若某月两连锁店共销售了110辆自行车,李华决定将本月利润支助某山区小学,则他的最大支助金额为( ) A.11000元B.22000元C.33000元D.40000元6.已知函数2()5f x x bx =++,对任意实数x ,都满足(1)(3)f x f x +=-,则(1),(2),(4)f f f 的大小关系为( )A.(2)(1)(4)f f f <<B.(2)(4)(1)f f f <<C.(1)(4)(2)f f f <<D.(1)(2)(4)f f f << 7.若函数234y x x =--的定义域为[]0,m ,值域为25,44⎡⎤--⎢⎥⎣⎦,则m 的取值范围是( ) A.[]0,4B.3,42⎡⎤⎢⎥⎣⎦C.3,32⎡⎤⎢⎥⎣⎦D.3,2⎡⎫+∞⎪⎢⎣⎭8.(多选)若函数244y x x =--的定义域为[]0,m ,值域为[]8,4--,则实数m 的值可能为( ) A.2B.3C.4D.59.(多选)已知函数222y x x =-+的值域是[]1,2,则其定义域可能是( )A.[]0,1B.[]1,2C.1,24⎡⎤⎢⎥⎣⎦D.[1,1]-10.(多选)已知函数2()22f x x x =-+,关于()f x 的最值有如下结论,其中正确的是( ) A.()f x 在区间[1,0]-上的最小值为1B.()f x 在区间[1,2]-上既有最小值,又有最大值C.()f x 在区间[]2,3上的最小值为2,最大值为5D.()f x 在区间[0,](1)a a >上的最大值为()f a11.已知函数2()23f x x ax =++,若()y f x =在区间[]4,6-上是单调函数,则实数a 的取值范围为________.12.若函数2()(24)1f x ax a x =--+在区间(1,5)上单调,则实数a 的取值范围是________. 13.若函数2()21f x x x =-+在区间[,2]a a +上的最大值为4,则a 的值为_______.14.函数221(),[2,),()3,1x x f x x g x x ax x M x -+=∈+∞=++∈-. (1)判断函数()f x 的单调性;(2)若[2,2]M =-,求使()g x a ≥恒成立时a 的取值范围;(3)若123,[2,),[2,),a M x x M >-=+∞∀∈+∞∃∈,使得()()12f x g x =,求实数a 的取值范围. 15.已知函数2()25f x x ax =-+.(1)若()f x 的定义域和值域均是[]1,a ,求实数a 的值; (2)若1a ≤,求函数|()|y f x =在[]0,1上的最大值.答案以及解析1.答案:B解析:因为集合2{()()120,}f x f x ax x a x =-++<∈R ∣为空集,所以2|1|20ax x a -++≥恒成立,所以a设()g x max ()g x ≥. 令1t x =+,则2||()()23t g x t t t ϕ==-+.令1t x =+,则2||()()23t g x t t t ϕ==-+.①当0t =时,()()0g x t ϕ==,所以0a ≥; ②当0t >时,21()()3232t g x t t t t tϕ===≤-++-,所以a ≥③当0t <时,21()()3232t g x t t t t tϕ==-=-+--+,所以a ≥综上可得a ≥2.答案:A解析:因为2()f x x k =-,所以2()f x x k =-在[0,)+∞上单调递增.要使得函数()f x在区间上的值域为,所以f f ⎧=⎪⎨=⎪⎩即m k n k ⎧-=⎪⎨-=⎪⎩220x x k --=的两个不相等的非负实数根,所以2(2)41()0,0,k k ⎧∆=--⨯⨯->⎪=-≥解得10k -<≤, 即(1,0]k ∈-. 3.答案:B解析:因为299()1x x g x x x x++==++, 由基本不等式,得当3x =时,()g x 取得最小值7, 所以()f x 在3x =处取得最小值7,所以226,16,()616(3)7b c f x x x x =-==-+=-+,所以在区间[]1,4上,当1x =时,()f x 取得最大值11. 4.答案:D解析:由题意,不妨设22()()(0),()23(0)g x x a x h x x x a x =-≤=-++>. ①当0a <时,由二次函数的性质可知,2()()g x x a =-在[],0a 上单调递增, 故对于[,0],()()(0)(0)x a f x g x g f ∀∈=≤=,这与(0)f 是函数()f x 的最小值矛盾; ②当0a =时,222(),()23(1)2g x x h x x x x ==-+=-+,由二次函数的性质可知,2()g x x =在(,0]-∞上单调递减,故对于(,0],()()(0)(0)0x f x g x g f ∀∈-∞=≥==,当0x >时,22()()23(1)2f x h x x x x ==-+=-+在1x =时取得最小值2,从而当0a =时,满足(0)f 是函数()f x 的最小值;③当0a >时,由二次函数的性质可知,2()()g x x a =-在(,0]-∞上单调递减,故对于2(,0],()()(0)(0)x f x g x g f a ∀∈-∞=≥==,当0x >时,22()()23(1)2f x h x x x a x a ==-++=-++在1x =时取得最小值2a +,若使(0)f 是函数()f x 的最小值,只需22a a ≤+且0a >, 解得02a <≤.综上所述,实数a 的取值范围是[]0,2. 5.答案:C解析:设甲连锁店销售x 辆,则乙连锁店销售(110)x -辆,故利润2590016000300(110)2000L x x x =-+-+--225600150005(60)33000x x x =-++=--+,所以当60x =时,L 有最大值33000,故最大支助金额为33000元.6.答案:A解析:因为函数()f x 满足(1)(3)f x f x +=-,所以函数()f x 图象的对称轴为直线2x =,所以22b-=,所以4b =-,所以2()45f x x x =-+.因为函数()f x 的图象开口向上,所以越靠近对称轴,函数值越小,所以(2)(1)(4)f f f <<. 7.答案:C解析:画出函数234y x x =--的图象,如图所示.223253424y x x x ⎛⎫=--=--≥ ⎪⎝⎭0x =时,4y =-,当3x =时,4y =-.结合图象可知,m 的取值范围是3,32⎡⎤⎢⎥⎣⎦.8.答案:ABC解析:函数244y x x =--的图象如图,(0)(4)4f f ==-,(2)8f =-.因为函数244y x x =--的定义域为[0,]m ,值域为[8,4]--,所以实数m 的取值范围是[2,4],故选ABC.9.答案:ABC解析:因为函数222y x x =-+的值域是[]1,2, 由2y =可得0x =或2x =,由1y =可得1x =,所以其定义域中一定含有元素1,至少含有0,2中的一个, 且不能含有小于0,或大于2的元素.故选ABC. 10.答案:BC解析:函数22()22(1)1f x x x x =-+=-+的图象开口向上,对称轴为直线1x =.在选项A 中,因为()f x 在区间[1,0]-上单调递减,所以()f x 在区间[1,0]-上的最小值为(0)2f =,A 错误.在选项B 中,因为()f x 在区间[1,1]-上单调递减,在[]1,2上单调递增,所以()f x 在区间[1,2]-上的最小值为(1)1f =.又因为(1)5,(2)2,(1)(2)f f f f -==->,所以()f x 在区间[1,2]-上的最大值为(1)5f -=,B 正确.在选项C 中,因为()f x 在区间[]2,3上单调递增,所以()f x 在区间[]2,3上的最小值为(2)2f =,最大值为(3)5f =,C 正确.在选项D 中,当12a <≤时,()f x 在区间[]0,a 上的最大值为2,当2a >时,由图象知()f x 在区间[]0,a 上的最大值为()f a ,D 错误. 11.答案:(,6][4,)∞∞--+解析:函数()223f x x ax =++,开口方向向上,对称轴为x a =-,∴函数在(],a ∞--上单调递减,在[),a ∞-+上单调递增, 又()y f x =在区间[]4,6-上是单调函数,4a ∴-≤-或6a -≥ 即4a ≥或6a ≤-实数a 的取值范围为(,6][4,)∞∞--+.12.答案:1,2⎡⎫-+∞⎪⎢⎣⎭解析:①当0a =时,()41f x x =+,所以()f x 在(1,5)上单调递增,满足题意;②当0a ≠时,函数()f x图象的对称轴为直线(24)2a x a --=-()f x 在(1,5)上单调,则2a a -≥1≤,解得1,0(0,)2a ⎡⎫∈-+∞⎪⎢⎣⎭.综上所述,1,2a ⎡⎫∈-+∞⎪⎢⎣⎭.13.答案:1或1- 1≥,即0a ≥时,(2)4f a +=,即2(2)2(2)14a a +-++=,所以2(1)4a +=,所以a =1<,即0a <时,()4f a =,即2214a a -+=,所以2(1)4a -=,所以1a =-.综上可知,a 的值为1或1-. 14、(1)答案:见解析解析:解:221(1)(1)1()(1)11x x x x f x x x x -+-+-+===---111x x ++=+-当,[2)x ∈+∞时,任取12[2,),x x ∈+∞,且12x x <,则()()1212121111f x f x x x x x -=+----()()21121211x x x x x x -=-+=-⋅-()()()12121111x x x x ⎡⎤--⎢⎥-⋅-⎢⎥⎣⎦.因为12x x <,所以120x x -<.又因为12[2,),x x ∈+∞, 所以12,1111x x -≥->,所以()()12111x x -⋅->,()()()()1212,1101101111x x x x <<->-⋅--⋅-,所以()()120f x f x -<,所以()f x 在,[2)x ∈+∞上单调递增. (2)答案:,[72]a ∈-解析:()g x a ≥恒成立,即min ()g xa ≥.又因为函数()g x 的图象开口向上,对称轴为直线x =若22a-≤-,即min 4()(2)72,a g x g a a ≥=-=-≥,73a ≤.与4a ≥矛盾;若222a -<-<,即2min44()324,a a a g x g a ⎛⎫-<<=-=-≥ ⎪⎝⎭,所以42a -<≤;若22a -≥,即min 4()(2)72,a g x g a a ≤-==+≥,所以74a -≤≤-.综上,,[72]a ∈-.(3)答案:(32],a ∈--解析:依题意,()f x 的值域包含于()g x 的值域, 当,[2)x ∈+∞时,()f x 单调递增, 所以,()(2)([),3)3f x f f x =∈+∞≥. 当[,32,)a M >-=+∞时,()g x 单调递增, 所以,()(2)72()[72),g x g a g x a =+∈++∞≥.所以723a +≤,即2a ≤-.又3a >-,所以(32],a ∈--. 15、(1)答案:2解析:解:函数222()25()5f x x ax x a a =-+=-+-,且1a >,所以()f x 在[1,]a 上是减函数. 又定义域和值域均是[1,]a ,所以(1)()1,,f a f a =⎧⎨=⎩即22125251,,a a a a -+=⎧⎨-+=⎩解得2a =.(2)答案:见解析解析:①当0a ≤时,函数|()|y f x =在[0,1]上单调递增,故max (1)62y f a ==-. ②当01a <≤时,()f x 图象开口向上,对称轴在(0,1]内,250a ->,故maxmax{(0)(1)}max{5,,62}y f f a ==-162,0,215, 1.2a a a ⎧-<<⎪⎪=⎨⎪≤≤⎪⎩综上所述,max 162,,215, 1.2a a y a ⎧-<⎪⎪=⎨⎪≤≤⎪⎩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2023高考数学二轮复习专项训练《一次函数与二次函数》一 、单选题(本大题共12小题,共60分) 1.(5分)关于x 的不等式1x +4x a⩾4在区间[1,2]上恒成立,则实数a 的取值范围为( )A. (0,43] B. (1,43] C. [1,43] D. [167,43] 2.(5分)若函数f(x)=x 2+2x +m ,x ∈R 的最小值为0,则实数m 的值是()A. 9B. 5C. 3D. 13.(5分)函数y=x2-2x ,x ∈[0,3]的值域为( )A. [0,3]B. [1,3]C. [-1,0]D. [-1,3]4.(5分)函数y =x 2−8x +2的增区间是()A. (−∞,−4]B. [−4,+∞)C. (−∞,4]D. [4,+∞)5.(5分)二次函数y =x 2−2x −3在x ∈[−1,2]上的最小值为( )A. 0B. −3C. −4D. −56.(5分)某工厂生产的A 种产品进入某商场销售,商场为吸引厂家第一年免收管理费,因此第一年A 种产品定价为每件70元,年销售量为11.8万件,从第二年开始,商场对A 种产品征收销售额的x%的管理费(即销售100元要征收x 元),于是该产品定价每件比第一年增加了70.x%1−x%元,预计年销售量减少x 万件,要使第二年商场在A 种产品经营中收取的管理费不少于万元,则x 的最大值是( )A. 2B. 6.5C. 8.8D. 107.(5分)函数y =−x 2+2x −3在闭区间[0,3]上的最大值、最小值分别为()A. 0,−2B. −2,−6C. −2,−3D. −3,−68.(5分) 函数f(x)=|x 2−3x +2|的单调递增区间是( )A. [1,32]和[2,+∞)B. [32,+∞)C. (−∞,1]和[32,2]D. (−∞,32]和[2,+∞)9.(5分)下列命题正确的是( )A. 命题“∃x ∈R ,使得2x <x 2”的否定是“∃x ∈R ,使得2x ⩾x 2”B. 若a >b ,c <0,则ca >cbC. 若函数f(x)=x 2−kx −8(k ∈R)在[1,4]上具有单调性,则k ⩽2D. “x >3”是“x 2−5x +6>0”的充分不必要条件10.(5分)已知函数y=b+a x2+2x(a,b是常数,且0<a<1)在区间[−32,0]上有最大值3,最小值52,则ab的值是()A. 1B. 2C. 3D. 411.(5分)已知f(x)=x2+2(a−2)x+5在区间[4,+∞)上是增函数,则实数a的范围是()A. (−∞,−2]B. [−2,+∞)C. [−6,+∞)D. (−∞,−6]12.(5分)函数f(x)=ln x+12x2−ax(x>0)在区间[12,3]上有且仅有一个极值点,则实数a的取值范围是()A. (52,3] B. [52,103)C. (52,103] D. [2,103]二、填空题(本大题共6小题,共30分)13.(5分)设b>0,二次函数y=ax2+bx+a2−1的图象为下列图象之一:则a的值为______.14.(5分)已知f(x)=m(x−2m)(x+m+3),g(x)=2x−2,若对任意x∈R有f(x)<0或g(x)<0,则m的取值范围是____.15.(5分)函数y=x2+2ax+1在区间[2,+∞)上是增函数,那么实数a的取值范围是______ .16.(5分)函数f(x)=log2(4−x2)的值域为__________________.17.(5分)若不等式−1<ax2+bx+c<1的解集为(−1,3),则实数a的取值范围为_______.18.(5分)f(x)=x2−ax+3a−1在(3,+∞)上是增函数,实数a的范围是 ______ .三、解答题(本大题共6小题,共72分)19.(12分)求函数f(x)=x2+2ax+3在[-5,5]上的最大值和最小值.20.(12分)已知关于x的一元二次方程(m2−1)x2+(2m−1)x+1=0(m∈R)的两个实根是x1、x2.(1)求1x1+1x2的取值范围;(2)是否存在m,使得|x1−x2|=11−m2若存在,求m的值;若不存在,说明理由.21.(12分)已知函数f(x)=x2+bx+c,且f(1)=0.(1)若函数f(x)是偶函数,求f(x)的解析式;(2)在(1)的条件下,求函数f(x)在区间[t,t+1]上的最小值.22.(12分)已知函数f(x)=x2+2ax+2,x∈[-5,5].(1)当a=-1时,求函数f(x)的最大值和最小值.(2)当a∈R时,求函数f(x)在区间[-5,5]上的最值.23.(12分)某军工企业生产一种精密电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)={400x−12x2,0⩽x⩽400 80000,x>400,其中x是仪器的月产量.(总收益=总成本+利润.)(1)将利润表示为月产量的函数;(2)当月产量为何值时,公司所获利润最大?最大利润是多少元?24.(12分)平阳木偶戏又称傀偏戏、木头戏,是浙江省温州市的传统民间艺术之一.平阳木偶戏是以提线木偶为主,活跃于集镇乡村、广场庙会,演绎着古今生活百态.其表演形式独特,活泼多样,具有浓厚的地方色彩和很高的观赏性与研究价值.现有一位木偶制作传人想要把一块长为4dm(dm是分米符号),宽为3dm的矩形木料沿一条直线MN切割成两部分来制作不同的木偶部位.若割痕MN(线段)将木料分为面积比为1:λ的两部分(含点A的部分面积不大于含点C的部分面积,M,N可以和矩形顶点重合),有如下三种切割方式如图:①M点在线段AB上,N点在线段AD上;②M点在线段AB上,N点在线段DC上;③M点在线段AD上;N点在线段BC上.设AM=xdm,割痕MN(线段)的长度为ydm,(1)当λ=1时,请从以上三种方式中任意选择一种,写出割痕MN的取值范围(无需求解过程,若写出多种以第一个答案为准);(2)当λ=2时,判断以上三种方式中哪一种割痕MN的最大值较小,并说明理由.四、多选题(本大题共6小题,共30分)25.(5分)已知函数f(x)={ln(x+1),x⩾0x2−2ax+1,x<0,其中实数a∈R,则下列关于x的方程f2(x)−(1+a)⋅f(x)+a=0的实数根的情况,说法正确的有()A. a取任意实数时,方程最多有5个根B. 当−1−√52<a<1+√52时,方程有2个根C. 当a=−1−√52时,方程有3个根D. 当a⩽−4时,方程有4个根26.(5分)若二次函数f(x)=ax2+bx+c满足f(2+x)=f(2-x),则下列结论错误的是()A. b=cB. 2a+b=0C. 4a=-bD. a+b=027.(5分)已知函数f(x)=e2x-2e x-3,则()A. f(ln3)=0B. 函数f(x)的图象与x轴有两个交点C. 函数f(x)的最小值为-4D. 函数f(x)的单调增区间是[0,+∞)28.(5分)设a,b均为正数,且2a+b=1,则下列结论正确的是()A. ab有最大值18B. √2a+√b有最小值√2C. a2+b2有最小值15D. a−12a−1−4bb有最大值1229.(5分)已知函数f(x)=x,g(x)=√x,则下列说法正确的是()A. 函数y=1f(x)+g(x)在(0,+∞)上单调递增B. 函数y=1f(x)−g(x)在(0,+∞)上单调递减C. 函数y=f(x)+g(x)的最小值为0D. 函数y=f(x)−g(x)的最小值为−1430.(5分)已知f(x)是定义域为R的奇函数,x>0时,f(x)=x(1−x),若关于x的方程f[f(x)]=a有5个不相等的实数根,则实数a的可能取值是()A. 132B. 116C. 18D. 14答案和解析1.【答案】A;【解析】由1x +4xa⩾4,分离变量a得1a⩾−14(1x−2)2+1,由x∈[1,2]求得1x∈[12,1],则−14(1x−2)2+1∈[716,3 4 ].∴1a ⩾34,由此求得实数a的取值范围.该题考查了函数恒成立问题,考查了数学转化思想方法,属于中档题.解:由1x +4xa⩾4,得4xa⩾4−1x=4x−1x,即1a⩾4x−14x2=−14(1x)2+1x=−14(1x−2)2+1,∵x∈[1,2],∴1x ∈[12,1],则−14(1x−2)2+1∈[716,34].∴1a ⩾34,则0<a⩽43.∴实数a的取值范围为(0,43].故选:A.2.【答案】D;【解析】解:由题知y=(x+1)2+m−1,易知当x=−1时,f(x)min=m−1=0,故m=1即为所求.故选:D.将二次函数配方,易求得最小值,据此求解.此题主要考查利用配方法求二次函数的最值.3.【答案】D;【解析】解:∵函数y=x2-2x=(x-1)2-1,x∈[0,3],∴当x=1时,函数y取得最小值为-1,当x=3时,函数取得最大值为 3,故函数的值域为[-1,3],故选D.4.【答案】D;【解析】解:函数y=x2−8x+2=(x−4)2−14,对称轴为x=4,则函数的增区间为[4,+∞).故选:D.求出二次函数的对称轴,结合二次函数的图象和性质,即可得到所求增区间.此题主要考查二次函数的单调区间的求法,注意结合二次函数的对称轴,属于基础题.5.【答案】C;【解析】此题主要考查了二次函数在闭区间上的最值,属于基础题.解:∵y=x2−2x−3=(x−1)2−4,x∈[−1,2],∴x=1时,函数取得最小值为−4.故选C.6.【答案】D;【解析】由已知有,第二年的年销售收入为(%2070%20+%2070x%%20%20)(11.8%20−%20x)万元,商场对该商品征收1%20−%20x%%20的管理费记为y,y%20=%20(%2070%20+%2070x%%20%20)(11.8%20−%20x)x%%20(x%20%3E%200)1%20−%20x%%20,则y⩾14,所以(%2070%20+%2070x%%20%20)(11.8%20−%20x)x%%20%20⩾%2014,1%20−%20x%%20化简得x2−12x+20⩽0,所以2⩽x⩽10,故x得最大值为10,选D.7.【答案】B;【解析】此题主要考查二次函数的最值的求法,属于简单题.解:函数y=−x2+2x−3的开口向下,对称轴为x=1,结合图象可得当x=3是y有最小值−6,当x=1时,y有最大值−2,所以本题选B.8.【答案】A; 【解析】此题主要考查函数的单调性和函数的单调区间,考查函数图象的应用,考查数形结合思想,属于基础题.由题函数f(x)=|x 2−3x +2|={x 2−3x +2,x ⩽1或x ⩾2−(x 2−3x +2),1<x <2,利用数形结合即可得到答案.解:由题可知函数f(x)=|x 2−3x +2|, 等价于f(x)={x 2−3x +2,x ⩽1或x ⩾2−(x 2−3x +2),1<x <2,画图可得如下图所示:∴函数的单调递增区间是[1,32]和[2,+∞) ,故选A.9.【答案】D;【解析】解:对于A ,命题“∃x ∈R ,使得2x <x 2”的否定是“∀x ∈R ,使得2x ⩾x 2”,故A 错误;对于B ,由条件知,比如a =2,b =−3,c =−1,则ca=−12<cb=13,故B 错误;对于C ,若函数f(x)=x 2−kx −8(k ∈R)在[1,4]上具有单调性,则k 2⩽1或k2⩾4,故k ⩽2或k ⩾8,故C 错误;对于D ,x 2−5x +6>0的解集为{ x |x <2或x >3},故“x >3”是“x 2−5x +6>0”的充分不必要条件,正确. 故选:D.A 由命题的否命题,既要对条件否定,也要对结论否定,注意否定形式,可判断;B 由条件,注意举反例,即可判断;C 由二次函数的图象,即可判断;D 先求出不等式x 2−5x +6>0的解集,再由充分必要条件的定义,即可判断. 此题主要考查函数的单调性,充分必要条件的判断、命题的否定、不等式的性质,属于基础题.10.【答案】A;【解析】复合指数函数,当0<a<1时,整体指数为减函数,指数部分为二次函数,根据复合函数同增异减原则,对该区间内进行分块讨论,从而得到最值点−1,0本题着重考察求复合函数最值问题,通常利用图象法法讨论函数单调性的最值问题.解:A.令u=x2+2x=(x+1)2−1,当0<a<1时,整体指数为减函数,则借助二次函数图象,再由复合函数同增异减原则,在已知区间内,x=0取得最大值,x=−1取得最小值时.即{b+a−1=3b+a0=52,解得{a=23b=32,有ab=1.故选:A.11.【答案】B;【解析】解:∵函数f(x)=x2+2(a−2)x+5的图象是开口方向朝上,以x=2−a为对称轴的抛物线若函数f(x)=x2+2(a−2)x+5在区间[4,+∞)上是增函数,则2−a⩽4,解得a⩾−2.故答案为:B.由函数f(x)=x2+2(a−2)x+5的解析式,根据二次函数的性质,判断出其图象是开口方向朝上,以x=2−a为对称轴的抛物线,此时在对称轴右侧的区间为函数的递增区间,由此可构造一个关于a的不等式,解不等式即可得到实数a的取值范围.该题考查的知识点是函数单调性的性质,及二次函数的性质,其中根据已知中函数的解析式,分析出函数的图象形状,进而分析函数的性质,是解答此类问题最常用的办法.12.【答案】C;【解析】此题主要考查导数与二次方程根的分布,考查学生分析能力及运算能力,属于中档题. 对f(x)求导,问题转化为f′(x)=0在区间[12,3]上有且只有一解,根据二次方程根的分布建立不等式即解.解:f ′(x )=1x +x −a =x 2−ax +1x,x >0,令g(x)=x 2−ax +1,函数f (x )=ln x +12x 2−ax (x >0)在区间[12,3]上有且仅有一个极值点, 所以g (12).g (3)⩽0,即(14−12a +1)(9−3a +1)⩽0,且Δ≠0; 解得52⩽a ⩽103.当a =52时,令g(x)=x 2−52x +1=0,解得x 1=12,x 2=2,此时f (x )在(0,12]上单调递增,在[12,2]上单调递减,在(2,+∞)上单调递增,故f (x )在x =2处取得极小值,在x =12处取得极大值.不符合题意; 当a =103时,令g(x)=x 2−103x +1=0,解得x 1=13,x 2=3,此时f (x )在(0,13]上单调递增,在[13,3]上单调递减,在(3,+∞)上单调递增, 故f (x )在x =3处取得极小值,在x =13处取得极大值. 此时f (x )在区间[12,3]上有且仅有一个极值点,符合题意; 故选C.13.【答案】-1;【解析】解:若a >0,即图象开口向上,∵b >0,∴对称轴x =−b 2a<0,故排除第2和4两图,若a <0,即图象开口向下,∵b >0∴对称轴x =−b2a >0,故函数图象为第3个图, 由图知函数过点(0,0),∴a 2−1=0, ∴a =−1 故答案为−1先根据二次函数的开口方向和对称轴的位置,选择函数的正确图象,再根据图象性质计算a 值即可该题考查了二次函数的图象和性质,排除法解图象选择题14.【答案】(−4,0); 【解析】此题主要考查了全称命题与特称命题的成立,指数函数与二次函数性质的应用是解答本题的关键.解:∵g(x)=2x −2,当x ⩾1时,g(x)⩾0, 又∵∀x ∈R ,f(x)<0或g(x)<0,∴此时f(x)=m(x −2m )(x +m +3)<0在x ⩾1时恒成立,则由二次函数的性质可知开口只能向下,且二次函数与x轴交点都在(1,0)的左面,则{m<0−m−3<12m<1,∴−4<m<0故答案为(−4,0).15.【答案】[-2,+∞);【解析】解:函数y=x2+2ax+1的对称轴为:x=−a,函数y=x2+2ax+1在区间[2,+∞)上是增函数,可得−a⩽2,解得a⩾−2,即a∈[−2,+∞).故答案为:[−2,+∞).求出二次函数的对称轴,结合函数的单调性,写出不等式求解即可.该题考查二次函数的简单性质的应用,是基础题.16.【答案】(−∞,2];【解析】此题主要考查了复合函数,先求出定义域,再根据复合函数的值域,属基础题. 解:由4−x2>0,得−2<x<2,即函数f(x)的定义域为(−2,2),且0<4−x2⩽4,所以,f(x)⩽log24=2,即函数f(x)的值域为(−∞,2].故答案为(−∞,2].17.【答案】(−12,12);【解析】此题主要考查一元二次不等式得解法,考查二次函数的性质,是中档题. 分a=0,a>0和a<0三类讨论,结合二次函数的性质求解即可.解:当a=0时,b≠0,不等式的解集(−1,3),适当选取b,c可以满足题意.当a>0时,不等式−1<ax2+bx+c<1对应的二次函数的对称轴为x=1,开口向上,所以x=−1时,a−b+c=1,x=3时,9a+3b+c=1,最小值为x=1时,a+b+c>−1,联立解这个不等式组得:a<12,所以0<a<12;当a<0时,不等式−1<ax2+bx+c<1对应的二次函数的对称轴为x=1,开口向下,所以x=−1时,a−b+c=−1,x=3时,9a+3b+c=−1,最大值为x=1时,a+b+c<1,联立解这个不等式组得:a>−12,所以−12<a<0;综上所述得−12<a<12.所以实数a的取值范围为(−12,12).故答案为(−12,12).18.【答案】(-∞,6]; 【解析】解:由题意得:对称轴x=−−a2=a2,∴a2⩽3,∴a⩽6;故答案为:(−∞,6].由已知得,函数图象开口向上,由题意读出对称轴x=a2⩽3,解出即可.本题考察了二次函数的对称轴,单调性,是一道基础题.19.【答案】解:∵函数f(x)=x2+2ax+3=(x+a)2+3-a2的对称轴为x=-a,①当-a<-5,即a>5时,函数y在[-5,5]上是增函数,故当x=-5时,函数y取得最小值为28-10a;当x=5时,函数y取得最大值为28+10a.②当-5≤-a<0,即0<a≤5时,x=-a时,函数y取得最小值为3-a2;当x=5时,函数y取得最大值为28+10a.③当0≤-a≤5,即-5≤a≤0时,x=-a时,函数y取得最小值为3-a2;当x=-5时,函数y取得最大值为28-10a.④当-a>5,即a<-5时,函数y在[-5,5]上是减函数,故当x=-5时,函数y 取得最大值为28-10a ; 当x=5时,函数y 取得最小值为28+10a .;【解析】由于二次函数的对称轴为x=-a ,分①当-a <-5、②当-5≤-a <0、③当0≤-a≤5、④当-a >5四种情况,分别利用二次函数的性质求得函数的最值.20.【答案】解:(1)由题意知,Δ=(2m−1)2−4(m 2−1) =4m 2−4m+1−4m 2+4 =5−4m ⩾0, ∴m ⩽54, ∵m 2−1≠0, ∴m≠±1,∴m 的取值范围是(−∞,−1)∪(−1,1)∪(1,54],由题意x 1+x 2=1−2m m 2−1,x 1x 2=1m 2−1 ∴1x 1+1x 2=x 1+x 2x 1x 2=1−2m ,又m ∈(−∞,−1)∪(−1,1)∪(1,54], ∴2m ∈(−∞,−2)∪(−2,2)∪(2,52],∴1−2m ∈[−32,−1)∪(−1,3)∪(3,+∞),所以1x 1+1x 2的取值范围是[-32,−1)∪(-1,3)∪(3,+∞).(2)(x 1−x 2)2=(x 2+x 2)2−4x 1x 2 =(1−2m )2(m 2−1)2−4m 2−1=5−4m (m 2−1)2,∴|x 1−x 2|=√5−4m |m 2−1|, 若|x 1−x 2|=−1m 2−1, 则m 2−1<0, 即m ∈(−1,1), ∴5−4m=1,即m=1∉(−1,1), 故不存在.; 【解析】(1)由一元二次方程有两个根,则Δ>0,求出m 的范围,再利用韦达定理求解即可, (2)由(1)中结论,对所求式子进行变形,再求解.此题主要考查一元二次方程及韦达定理求参数的范围,属于中档题.21.【答案】解:(1)由f (1)=0,得:1+b+c=0, 由f (x )是偶函数,得:b=0 ∴c=-1,因此f (x )=x 2-1,(2)当t+1<0,即t <-1时,函数f (x )在区间[t ,t+1]上为减函数, 当x=t+1时,取最小值t 2+2t ,当t≤0≤t+1,即-1≤t≤0时,函数f (x )在区间[t ,0]上为减函数,在[0,t+1]上是增函数 当x=0时,取最小值-1,当t >0时,函数f (x )在区间[t ,t+1]上为增函数, 当x=t 时,取最小值t 2-1; 【解析】(1)利用函数的奇偶性,求出b ,利用f(1)=0求出c , (2)分类讨论区间[t,t +1]与对称轴的关系,可得答案.该题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.22.【答案】解:(1)当a=-1时,f (x )=x 2-2x+2=(x-1)2+1,对称轴x=1, 在[-5,5]上,最大值为f (-5)=37,最小值为f (1)=1; (2)函数f (x )的对称轴是:x=-a , ①当-a≤-5,即a≥5时,f (x )在[-5,5]递增,f (x )最小值=f (-5)=-10a+27,f (x )最大值=f (5)=10a+27; ②当-5<-a≤0,即0≤a <5时,f (x )在[-5,-a )递减,在(-a ,5]递增,f (x )最小值=f (-a )=-a 2+2,f (x )最大值=f (5)=10a+27; ③当0<-a≤5,即-5≤a <0时,f (x )在[-5,-a )递减,在(-a ,5]递增,f (x )最小值=f (-a )=-a 2+2,f (x )最大值=f (-5)=-10a+27; ④-a≥5,即a≤-5时,f (x )在[-5,5]递减,f (x )最小值=f (5)=10a+27,f (x )最大值=f (-5)=-10a+27.;【解析】(1)直接将a=-1代入函数解析式,求出最大最小值,(2)先求出函数的对称轴,通过讨论对称轴的位置,得到函数的单调性,从而求出函数的最值.23.【答案】解:(1)设月产量为x 台,则总成本为20000+100x , 从而利润f(x)={−12x 2+300x −20000,0⩽x ⩽40060000−100x ,x >400.(2)当0⩽x ⩽400时,f(x)=−12(x −300)2+25000, 所以当x =300时,有最大值25000;当x >400时,f(x)=60000−100x 是减函数,所以f(x)<60000−100×400<25000. 所以当x =300时,有最大值25000,即当月产量为300台时,公司所获利润最大,最大利润是25000元.;【解析】该题考查了一次函数与二次函数的单调性、函数的应用,考查了推理能力与计算能力,属于中档题.(1)设月产量为x 台,则总成本为20000+100x ,即可得出利润f(x).(2)当0⩽x ⩽400时,f(x)=−12(x −300)2+25000,利用二次函数的单调性即可最大值.当x >400时,f(x)=60000−100x 是减函数,利用一次函数的单调性即可得出最大值.24.【答案】解:(1)选①y =5, 选②y ∈[3,5], 选③y ∈[4,5], (2)选①令AN =z ,则S =12xz =4,z =8x,y =√x 2+z 2=√x 2+64x 2,∵{0<x ⩽40<z ⩽3z =8x∴83⩽x ⩽4,∴x ∈[83,2√2]时,y =f(x)为减函数,∴x ∈[2√2,4]时,y =f(x)为增函数, 当x =83时,y =√1453,当x =4时,y =2√5,∴y max =2√5;选②令DN =z ,则S =12(x +z)×3=4,z =83−x ,y =√(x −z)2+9=√(2x −83)2+9,∵{0<x ⩽40⩽z ⩽4,∴0⩽x ⩽83,z =83−x∴x ∈[0,43]时,y =f(x)为减函数,∴x ∈[43,83]时,y =f(x)为增函数, 当∴x =0或x =83时,y max =√1453; 选③令BN =z ,则S =12(x +z)×4=4,z =2−x ,y =√(x −z)2+16=2√(x −1)2+4,∵{0⩽x⩽30⩽z⩽3,∴0⩽x⩽2z=2−x∴x∈[0,1]时,y=f(x)为减函数,∴x∈[1,2]时,y=f(x)为增函数,当∴x=0或x=2时,y max=2√5,综上所述,方式②割痕MN的最大值较小,值为√1453.;【解析】此题主要考查了函数最值的综合应用,属于中档题.25.【答案】CD;【解析】此题主要考查分段函数,二次函数及对数函数的性质,函数图象的应用,函数与方程的综合应用,属难题.求解方程f2(x)−(1+a)⋅f(x)+a=0,可得f(x)=1或f(x)=a,即可得原方程的实数根的个数,即为f(x)=1和f(x)=a的根的个数之和.分别对0⩽a⩽1,a>1,−1−√52<a<0,a=−1−√52和a<−1−√52时讨论画图即可判定.解:对于方程f2(x)−(1+a)⋅f(x)+a=0,解得f(x)=1或f(x)=a.所以原方程的实数根的个数,即为f(x)=1和f(x)=a的根的个数之和.对于函数f(x)={ln(x+1),x⩾0x2−2ax+1,x<0,若a⩾0,当x∈[0,+∞)时,f(x)单调递增,且f(x)⩾0,当x∈(−∞,0)时,f(x)单调递减,且f(x)>1.如图:,由f(x)=1可得x=e−1,方程有1个根;又由f(x)=a可得,当0⩽a⩽1时,方程有1个根;当a>1时,方程有2个根.所以当0⩽a⩽1时,原方程共有2个根;当a>1时,原方程共有3个根.若a<0,当x∈[0,+∞)时,f(x)单调递增,且f(x)⩾0,当x∈(−∞,0)时,f(x)在(−∞,a)单调递减,在(a,0)单调递增,且f(x)⩾1−a2.又由{1−a2=aa<0,可得a=−1−√52.所以当−1−√52<a<0时,1−a2>a,如图:,由f (x)=1可得,方程有2个根;又由f(x)=a可得,方程无解.所以此时原方程有2个根;当a=−1−√52时,1−a2=a,如图:,由f(x)=1可得,方程有2个根;又由f(x)=a可得,方程有1个根.所以此时原方程有3个根;当a<−1−√52时,1−a2<a,如图:,由f(x)=1可得,方程有2个根;又由f(x)=a可得,方程有2个根.所以此时原方程有4个根;综上所述,当0⩽a⩽1或−1−√52<a<0时,原方程有2个根;当a>1或a=−1−√52时,原方程有3个根;当a<−1−√52时,原方程有4个根.对于A,对于a∈R,方程最多有4个根,故A错误;对于B,当1<a<1+√52时,方程有3个根,故B错误;对于C,当a=−1−√52时,方程有3个根,故C正确;对于D,当a<−1−√52时,方程有4个根,所以a⩽−4时,方程有4个根成立,故D正确. 故选:CD.26.【答案】ABD;【解析】【解析】此题主要考查二次函数性质,属于基础题.由f(2+x)=f(2−x)可知对称轴x=2,即−b2a=2,即可得到答案.解:由f(2+x)=f(2−x)可知对称轴x =2,即−b 2a=2,得4a =−b ,只有C 正确.故选A 、B 、D.27.【答案】ACD; 【解析】此题主要考查了函数定义域与值域,二次函数的最值,复合函数的单调性以及函数零点与方程根的关系,属于基础题.A 选项,将x =ln 3代入f(x)求解即可;B 选项,令f(x)=0,根据方程根的个数判断f(x)的图象与x 轴有几个交点;C 选项,求二次函数f(x)=(e x -1)2-4的最值即可;D 选项,利用复合函数的单调性判断即可.解:A 选项,f(ln 3)=e 2ln 3-2e ln 3-3=9-6-3=0,正确;B 选项,令f(x)=0,得(e x -3)(e x +1)=0,得e x =3或e x =-1(舍),所以x =ln 3, 即函数f(x)的图象与x 轴只有1个交点,错误;C 选项,f(x)=(e x -1)2-4,当e x =1,即x =0时,f(x)min =-4,正确;D 选项,因为函数y =e x 在[0,+∞)上单调递增且值域为[1,+∞),函数y =x 2-2x -3在[1,+∞)上单调递增,所以函数f(x)在[0,+∞)上单调递增,正确. 故选ACD .28.【答案】ACD; 【解析】此题主要考查基本不等式的应用和函数的最值,注意检验等号成立的条件,式子的变形是解答该题的关键,属于中档题.利用基本不等式分别判断选项A ,B ,D 的对错,对于C ,由b =1−2a ,且0<a <12,转化为关于a 的二次函数,由函数的性质可得最值,可判断对错.解:∵正实数a ,b 满足2a +b =1,由基本不等式可得2a +b =1⩾2√2ab , ∴ab ⩽18,当2a =b =12时等号成立,故ab 有最大值18,故A 正确; 由于(√2a +√b)2=2a +b +2√2ab =1+2√2ab ⩽2 , ∴√2a +√b ⩽√2,当且仅当2a =b =12时等号成立, 故√2a +√b 有最大值为√2,故B 错误;由a ,b 均为正数,且2a +b =1,则b =1−2a ,且0<a <12,则a 2+b 2=a 2+(1−2a )2=5a 2−4a +1,当a =25∈(0,12)时,a 2+b 2有最小值15,故C 正确; b2a+2a b⩾2√b 2a =2,当且仅当2a =b =12时等号成立,a−12a −1−4b b=−a−b 2a −2a −3b b=52−b 2a−2a b⩽52−2=12,当且仅当b2a =2ab 时等号成立, 所以a−12a−1−4b b有最大值12,故D 正确,故选ACD .29.【答案】BCD; 【解析】此题主要考查函数的单调性、最值,属中档题.对于A ,求x =12和x =1时的函数值,即可判断不为单调递增,对于BC ,根据常见函数的单调性即可判断组合函数单调性、最值,对于D ,利用配方法求最值即可得解. 解:对于A:函数y =1f(x)+g(x)=1x+√x ,当x =12时,y =2+√22,当x =1时, y =2,所以函数y =1f(x)+g(x)在(0,+∞)上不单调递增,A 错误. 对于B:函数y =1f(x)−g(x)=1x −√x ,因为函数y =1x 和函数y =−√x 在(0,+∞)上单调递减, 所以y =1f(x)−g(x)在(0,+∞)上单调递减,B 正确.对于C:因为函数y =f(x)+g(x)=x +√x 在[0,+∞)上单调递增, 且当x =0时,y =0,所以y =f(x)+g(x)的最小值为0,C 正确. 对于D:函数y =f(x)−g(x)=x −√x =(√x −12)2−14,当√x =12时,函数y =f(x)−g(x)取得最小值,且最小值为−14,D 正确. 故选BCD.30.【答案】ABC; 【解析】根据函数的奇偶性,由已知区间的解析式,画出函数图象,令f(x)=t ,分别讨论a >14,a =14,316⩽a <14,0⩽a <316,四种情况,得出0⩽a <316满足题意,再根据对称性,得a <0时,−316<a <0满足题意,最后结合选项,即可得出结果.此题主要考查数形结合解决函数的零点个数,考查转化思想以及计算能力,是中档题.解:因为f(x)是定义域为R 的奇函数,x >0时,f(x)=x(1−x)=−(x −12)2+14⩽14,且f(12)=14,画出函数f(x)的图象如下:令f(x)=t ,f(14)=316,当a >14时,由图象可得y =a 与y =f(t)有一个交点,且t <−1, 由图象可得f(x)=t 只有一个根,不满足题意,当a =14时,由图象可得y =a 与y =f(t)有两个不同交点,交点的横坐标分别记作t 1,t 2,则t 1<−1,t 2=12, 则f(x)=t 1与f(x)=t 2共有两个根,不满足题意,当316⩽a <14时,由图象可得y =a 与y =f(t)有三个不同的交点, 记作t 1,t 2,t 3,不妨令t 1<t 2<t 3, 由图象可得,t 1<−1<14⩽t 2<12<t 3<1,则f(x)=t 1与f(x)=t 3各有一个根,而f(x)=t 2有一个或两个根,共三个或四个根,不满足题意,当0⩽a <316时,由图象可得y =a 与y =f(t)有三个不同的交点, 记作t 1,t 2,t 3,不妨令t 1<t 2<t 3,由图象可得,t 1⩽−1<0⩽t 2<14<12<t 3⩽1,则f(x)=t 1与f(x)=t 3以及f(x)=t 2共有5个根,满足题意,根据函数图象的对称性,当a <0时,为使关于x 的方程f[f(x)]=a 有5个不相等的实数根,只需要−316<a <0,综上,满足条件的a 的取值范围是(−316,316). 故选:ABC .。