土壤六价铬的测定方法

合集下载

微波消解-离子交换-电感耦合等离子体质谱法测定土壤中的六价铬

微波消解-离子交换-电感耦合等离子体质谱法测定土壤中的六价铬

铬是一种主要存在于矿物铬铁矿中的金属元素,随着社会工业生产的不断发展,铬在自然界的分布也随着人类活动而日益广泛。

在采矿、金属冶炼、电镀、制革和农药等工业生产中,往往伴随着大量铬化合物的排放,使之日益成为自然界土壤或水环境中铬的主要来源[1-2]。

铬在土壤环境中的稳定氧化态主要为三价铬Cr (III )和六价铬Cr (VI )。

其中,Cr (VI )的毒性很高,比Cr (III )高100~1000倍,而且Cr (VI )在土壤自然环境中不易降解,容易在土壤中积累,造成对土壤、地表水和地下水的污染[3-5]。

由于六价铬在土壤中的主要存在形式包括铬酸根(CrO 4-)和重铬酸根(Cr 2O 72-),具有很强的氧化潜力,且易于渗透入生物膜,在人体细胞内积蓄,对人体细胞内大分子、蛋白质和DNA 产生破坏,表现出强烈的致癌作用,给人类带来了严重的健康问题[6-8]。

因此,需要在农业生产中及时开展土壤中六价铬的监测,从而定量掌握土壤中铬污染的状况,为开展土壤铬污染防治和土壤生态修复奠定基础。

为了从土壤样品中测定总Cr (VI ),需要将可溶性、微溶性和不溶性Cr (VI )提取到溶液中[9]。

迄今为止,已经开发了许多方法来测定土壤中的六价铬,如二苯碳酰二肼分光光度法(UV )、碱溶液提取-离子色谱法(IC )、碱溶液消解-火焰原子吸收光谱法(FAAS )等[10-12]。

其中,《固体废物六价铬的测定:碱消解-火焰原子吸收分光光度法》(HJ 687—2014)和《土壤和沉积物六价铬的测定:碱溶液提取-火焰原子吸收分光光度法》(HJ 1082—2019)均规定了采用火焰原子吸收光谱法测定试样中六价铬的含量,但是上述方法测定前处理耗时长,处理效率低,且高浓度的碱性基体溶液容易在燃烧头表面形成盐积物,造成燃烧头堵塞,导致测量稳定性降低[13]。

近年来,一些专家学者尝试开发更高灵敏度和选择性的分析技术,如ICP-OES 和ICP-MS 进行土壤中的微量或痕量六价铬的测定方法,取得了一定的成效。

六价铬的检测方法

六价铬的检测方法

六价铬的检测方法1.分光光度法这是一种常见的六价铬检测方法。

该方法利用六价铬在紫外光区域(200-300 nm)的吸收特性,通过测定吸收度来确定其浓度。

实验中样品需首先经过一系列预处理步骤,如酸化、还原等,以确保六价铬的存在形式。

然后将预处理后的样品与具有特定波长的光源进行反应,测定光的吸收程度,计算出溶液中的六价铬浓度。

分光光度法具有快速、灵敏度高的优点,但需要专业仪器辅助,操作较为繁琐。

2.氢化物生成原子吸收光谱法氢化物生成原子吸收光谱法(Hydride generation atomic absorption spectroscopy,HGAAS)是一种灵敏度高且选择性好的分析方法。

该方法基于六价铬与酸性溶液中的还原剂(如氢气)反应生成具有吸收特性的氢化物化合物,然后利用原子吸收光谱仪测定氢化物化合物在特定波长处的吸收度。

该方法对检测废水、土壤和废弃物中六价铬具有较高的准确性和精密度。

3.离子色谱法离子色谱法是一种可以测定水溶液中离子浓度的方法,也可以用于六价铬的测定。

该方法通过分析样品中的六价铬离子与其中一种特定酸或配体形成的络合物的色谱分离,然后利用色谱仪进行检测。

离子色谱法具有操作简单、准确高的优点,适用于不同类型的水样、废水和废弃物中六价铬的测定。

4.氧化还原滴定法氧化还原滴定法是一种经典的测定六价铬的方法。

在该方法中,首先通过氢氧化钠溶液将六价铬还原为三价铬,接着使用硫酸作为滴定剂与还原后的三价铬发生反应,根据滴定所需的滴定剂体积来计算六价铬的浓度。

该方法操作简单、无需昂贵的仪器设备,适用于实验室和现场应用。

综上所述,六价铬的检测方法有很多种,每种方法都有其适用的场景和优缺点。

在实际应用中,应根据具体情况选择最合适的检测方法,并与其他分析技术相结合,以准确、快速地测定六价铬的浓度,保护环境和人体健康。

原子吸收测定工业用地土壤中的六价铬

原子吸收测定工业用地土壤中的六价铬

原子吸收测定工业用地土壤中的六价铬摘要:三价的铬是对人体有益的,而六价铬表现出对人体的危害性。

许多工业生产中用到铬,致使工业用地中都含有铬,本文研究了用火焰原子吸收光谱法测定工业用地中六价铬含量的方法,并取得很好效果。

关键词:原子吸收;六价铬;污染土壤1 引言三价的铬是对人体有益的,而六价铬表现出对人体的危害性。

铬对人体的危害主要表现在对皮肤、黏膜、眼睛等的刺激作用。

如果皮肤长期接触铬会产生皮炎、湿疹等,如果不慎摄入铬可能导致肺堵塞、肝功能下降等状况[1]。

目前世界多国已经将铬定为有害元素,禁止在日用品和食品中出现。

而且许多工业生产中用到铬,致使工业用地中都含有铬,人们在分析铬含量时就希望能够测出不同价态铬的含量。

然而以前的原子吸收光谱法测铬,测得的结果为铬的总量。

本文研究了用火焰原子吸收光谱法测定工业用地中六价铬含量的方法,并取得很好效果。

实验部分2.1 主要仪器和试剂2.1.1 主要仪器原子吸收分光光度计(WFX-130A型);铬空心阴灯;搅拌加热装置(具有磁力加热搅拌器,控温装置,可升温至100℃);真空抽滤装置;pH计(精度为0.1pH单位);天平(量感为0.1mg);尼龙筛(0.15mm)。

2.1.2主要试剂六价铬标准储备液(含铬量 1000mg/L);六价铬标准使用液(含铬量 100mg/L);优级纯硝酸;碳酸钠;氢氧化钠;氯化镁;磷酸氢二甲;磷酸二氢钾;磷酸氢二甲-磷酸二氢钾缓冲溶液(pH=7);碱性提取液:称取30g碳酸钠和20g氢氧化钠溶于水中,稀释定容至1L,储存于密封聚乙烯瓶中;滤膜(0.45um);聚乙烯薄膜。

2.2 实验内容2.2.1 分离六价铬称取5g(精准至0.01g)样品置于250 ml烧杯中,加入50.0ml碱性提取液,再加入400mg氯化镁和0.5ml磷酸二氢钾-磷酸氢二钾缓冲溶液,放入搅拌子,用聚乙烯薄膜封口置于搅拌器上。

常温搅拌5分钟,开启加热装置,加入搅拌至90-95℃,保持60分钟。

土壤和沉积物 六价铬的测定 碱溶液提取-火焰原子吸收分光光度法

土壤和沉积物 六价铬的测定 碱溶液提取-火焰原子吸收分光光度法

土壤和沉积物六价铬的测定碱溶液提取-火焰原子
吸收分光光度法
土壤和沉积物中的六价铬是一个普遍存在的环境问题,这对环境和人类健康都会产生影响。

因此,需要对土壤和沉积物中的六价铬进行测定。

碱溶液提取- 火焰原子吸收分光光度法是一种常用的测定土壤和沉积物中六价铬的方法。

在这种方法中,土壤和沉积物的样品首先与碱溶液反应,从而使六价铬转化为可溶性铬。

随后,将提取的溶液放入火焰原子吸收分光光度器中进行测定。

测定中使用的是光谱法,即利用金属原子吸收的特性来定量分析六价铬的含量。

该方法具有以下优点:
1. 该方法可以快速、准确地测定土壤和沉积物中的六价铬含量。

2. 该方法能够对样品进行完全矿化,从而消除干扰。

3. 该方法不受溶剂干扰,可以适用于各种盐酸和氢氧化钠溶液中的沉积物和土壤。

4. 该方法的成本比较低,且使用简单。

然而,该方法也有以下缺点:
1. 该方法需要精确的常数和标准曲线,因此需要比较精密的仪器来进行测定。

2. 该方法不能区分六价铬和三价铬,因此需要进行区分。

3. 该方法需要对土壤和沉积物样品进行处理,因此可能会影响样品的原貌。

总的来说,碱溶液提取- 火焰原子吸收分光光度法是一种有效的测定土壤和沉积物中六价铬含量的方法。

根据不同的实验条件,可以选择相应的方法来进行实验,以确保结果的准确性和可靠性。

六价铬测定的国标方法

六价铬测定的国标方法

六价铬测定的国标方法六价铬是一种污染物,常见于电镀、染料生产、化工等工业过程中。

其排放对环境和人体健康都有潜在风险。

因此,准确测定和监控六价铬的含量十分重要。

国标方法是在这方面实施的专门标准,下面将介绍六价铬测定的国标方法。

国标方法分为以下几个方面:样品采集与预处理、六价铬离子浓度测定、分析仪器的使用和质量控制。

1.样品采集与预处理:-样品选择:通常采集沉积物、水样、土壤、废水等。

根据需要选择合适的样品类型。

-样品采集:遵循标准采集程序,采用非金属工具进行采集,避免污染和杂质的引入。

-样品保存:样品保存在干燥,密封,暗处,防止光线和其他污染物的干扰。

2.六价铬离子浓度测定:-化学方法:如草酸法、滴定法、化学还原法等。

这些方法通过化学反应将六价铬转化为三价铬,并测定三价铬的浓度。

-分光光度法:利用六价铬与其他物质形成络合物,通过吸光度的变化测定络合物的浓度,间接测定出六价铬的浓度。

-电化学方法:如电位滴定法、电化学石墨电极法等。

这些方法利用电化学反应的原理,直接测定六价铬的浓度。

3.分析仪器的使用:-分光光度计:用于化学方法和分光光度法中,测定络合物的吸光度。

-电位滴定仪:用于电位滴定法中,测定六价铬的浓度。

-电化学石墨电极仪:用于电化学石墨电极法中,测定六价铬的浓度。

4.质量控制:-校准曲线:使用不同浓度的六价铬标准溶液建立校准曲线,用于定量测定未知样品中的六价铬浓度。

-空白试验:检测背景污染物引入的测量误差,需要进行空白试验,并在后续测量中进行修正。

-定期质检:定期检查仪器的准确性和灵敏度,对已知浓度样品进行测量,检查偏差是否符合标准要求。

以上是六价铬测定的国标方法的基本流程和步骤,各项操作需根据具体标准的要求进行。

在实际应用中,还需注意操作规范,准确记录实验数据,并进行数据处理和分析,以确保结果的可靠性和准确性。

综上所述,六价铬测定的国标方法是一项关键的监测工作,它为环境保护提供了科学依据,并为控制六价铬排放提供了技术支持。

火焰原子吸收法测定土壤中六价铬

火焰原子吸收法测定土壤中六价铬

火焰原子吸收法测定土壤中六价铬为贯彻《中华人民共和国环境保护法》和《中华人民共和国土壤污染防治法》,保护生态环境,保障人体健康,规范土壤和沉积物中的污染物测定,生态环境部制定了三项土壤和沉积物测定标准,分别是:《土壤和沉积物铊的测定石墨炉原子吸收分光光度法(HJ 1080-2019)》;《土壤和沉积物钴的测定火焰原子吸收分光光度法(HJ 1081-2019)》;《土壤和沉积物六价铬的测定碱溶液提取-火焰原子吸收分光光度法(HJ 1082-2019)》。

三项标准均为首次发布,将于2020年6月30日正式实施。

前言铬在自然界中分布较广,主要以铬铁矿的形式存在。

工业上主要用于制造各种优质合金,也被广泛用于电镀、皮革、印染等行业。

铬可通过受腐蚀金属或者工业废物的排放进入环境,使土壤和水体受到不同程度的污染。

另外铬还有多种化合价态,在自然界中主要以三价铬和六价铬的形式存在。

其中六价铬的毒性较大,可以通过皮肤、消化道、呼吸道等途径进入人体,长期或短期接触都可能致癌。

2018年6月,生态环境部和国家市场监督管理总局联合发布了GB36600-2018《土壤环境质量建设用地土壤污染风险管控标准(试行)》,该标准规定了土壤中六价铬的限值。

接着2019年12月31日生态环境部发布了HJ 1082-2019《土壤和沉积物六价铬的测定碱溶液提取-火焰原子吸收分光光度法》(2020年6月30日实施),该标准明确了土壤中六价铬的检测方法。

本文参照上述标准,使用北京海光仪器有限公司生产GGX-910塞曼火焰原子吸收分光光度计对土壤中六价铬进行了分析测定。

该型号仪器采用恒定磁场-横向塞曼扣背景,对土壤、沉积物、岩石等复杂基体样品的测量有着显著的优势。

1.实验部分1.1 主要仪器与试剂火焰原子吸收分光光度计:GGX-910,北京海光仪器有限公司超纯水机、铬空心阴极灯、分析天平、数显恒温磁力搅拌器、真空抽滤装置、PH计、0.45µm滤膜六价铬标准溶液:100mg/L硝酸(优级纯)、碳酸钠、氢氧化钠、磷酸氢二钾、磷酸二氢钾、六水合氯化镁碱性提取溶液:称取30g碳酸钠与20g氢氧化钠溶于水,定容至1L。

土壤中六价铬的测定方法

土壤中六价铬的测定方法

土壤中六价铬的测定方法
六价铬(Chromium(Ⅵ))是土壤环境污染的一种重要污染物,其存在于土壤中
不仅有害于土壤肥力,而且会通过植物等向人体转移,可能对健康造成危害。

因此,测定土壤中六价铬的值非常重要。

测定土壤中六价铬的方法有物质定量分析法、溶剂提取法以及酸洗分离法等。

其中,物质定量分析法是一种常用的测定方法,这种方法可以排除将六价铬与具有和它一样的物质进行分离的干扰,进而较准确地测定土壤中的六价铬含量。

物质定量分析法测定土壤中六价铬含量需要借助一些仪器设备,常见的仪器是
电感耦合等离子体质谱仪(ICP-MS)、原子吸收光谱仪(AAS)以及气体色谱法(GC),在实际操作中,可以采用大量的土壤抽样,建立标准曲线,根据标准曲线给出六价铬浓度值等方法。

除了物质定量分析法外,溶剂提取和酸洗分离也常用于测定土壤中的六价铬含量。

溶剂提取法的操作过程比较简单,也可以在实际操作中作为补充。

六价铬容易沉积在土壤黏壁中,酸洗分离法可以将六价铬与土壤黏壁分离,使六价铬之结合态彻底松解,以准确检测出土壤中的六价铬含量。

正确准确地测定土壤中六价铬的浓度,对于研究六价铬在土壤中的环境行为有
着重要意义,可以帮助我们更加全面地认识它对环境及人体健康的影响。

因此,对六价铬测定的研究仍然日益增多,以期获得更多的洞察,做出更好的相应措施,让我们的土壤环境可持续发展,从而更好地保障人们的健康。

土壤六价铬的测定作业指导书

土壤六价铬的测定作业指导书

土壤六价铬的测定作业指导书参考:US EPA 3060A:1996&US EPA 7196A:19921适用范围本指导书适用于土壤中六价铬(Cr6+)的测定。

2 测定原理利用碱性消解程序从样品中萃取六价铬Cr(Ⅵ)。

六价铬Cr(Ⅵ)在酸性条件下与1,5-二苯卡巴肼反应,形成一种红-紫罗兰色的络合物。

用紫外-可见分光光度计在540nm处测量其吸光度,从而定量检测样品中的六价铬含量。

3 仪器和设备3.1 消解容器:250mlL锥形瓶3.2 100mL量筒或其他量器3.3 容量瓶3.4 0.45μm滤膜,最好为纤维质或聚碳酸酯3.5 紫外-可见分光光度计及1cm比色皿3.6 经校准的pH计3.7 经检定的电子分析天平3.8 恒温水浴振荡器4试剂与溶液4.1 1,5-二苯卡巴肼,>98%。

4.2 六价铬标准溶液:100mg/L,为已购买的有证标准物质。

4.3 六价铬标准使用溶液(5mg/L):取10mL六价铬标准溶液(4.2)稀释并定容至100mL 容量瓶中。

4.4 丙酮,分析纯。

4.5 硝酸(HNO3),分析纯。

储存在20℃至25℃的阴暗处。

如果浓HNO3有淡黄色则不要使用,这显示NO3-无效还原为NO2,对Cr(Ⅵ)是一种还原剂。

4.6 无水碳酸钠(Na2CO3):优级纯,在20—25℃下密封保存。

4.7 氢氧化钠(NaOH):分析纯,在20—25℃下密封保存。

4.8 无水氯化镁(MgCl2):400mg MgCl2约含100mgMg2+,在20—25℃下密封保存。

4.9 磷酸盐缓冲溶液:制备PH值为7的缓冲溶液,将87.09K2HPO4(分析纯)和68.04KH2PO4(分析纯,不含结晶水)溶解于700mL水。

移至1L的容量瓶中并稀释至刻度线。

制备的溶液含有0.5mol/L K2HPO4和0.5mol/L KH2PO4。

4.10 消解溶液:称取20.0gNaOH和30g Na2CO3用水溶解后转移至1L容量瓶定容,储存在20℃至25℃的密闭聚乙烯瓶中,且每月重新配制。

碱溶液提取-火焰原子吸收法测定土壤中六价铬

碱溶液提取-火焰原子吸收法测定土壤中六价铬

碱溶液提取-火焰原子吸收法测定土壤中六价铬摘要:火焰原子吸收法测定土壤中六价铬具有操作简单、快速、准确等优点,本文采用氢氧化钠溶液提取土壤中的六价铬,利用火焰原子吸收法测定土壤中六价铬,为土壤六价铬的检测提供了一种新方法。

在碱性条件下,加入有机溶剂沉淀,使用火焰原子吸收光谱仪测定样品溶液中的六价铬,优化实验条件,并对该方法进行了验证。

该方法快速、准确,适用于土壤中六价铬的测定,并对实际样品进行了测定。

方法的精密度、加标回收率、检出限等指标均符合分析要求,为土壤中六价铬的检测提供了一种新方法。

实验结果表明,方法在实验室分析中具有较好的适用性,同时本实验操作简单、方便快捷,适合现场快速分析。

关键词:碱溶液提取;火焰原子吸收法;测定;土壤;六价铬1、前言在土壤中,六价铬被认为是最具生物毒性的物质,是致癌物质。

因此,准确测定土壤中的六价铬含量,对研究土壤中重金属污染状况具有重要意义。

本文采用火焰原子吸收光谱法测定土壤中的六价铬含量,为土壤中六价铬的检测提供一种新方法。

2、实验内容2.1主要设备用来检测土壤中六价铬的仪器装置如表1所示。

表1土壤中六价铬检定仪器与装置2.2材料某化工有限公司,优级纯硝酸。

某化工公司生产的氯化镁,磷酸氢二钾,磷酸二氢钾,碳酸钠,氢氧化钠。

碱浸提:以水为溶剂,以水为溶剂,以水为溶剂,稀释后,定容后,置于密闭的塑料瓶内保存。

在使用之前,一定要确保它的酸碱度在11.5以上。

本试验所用的水都是超纯水。

某公司提供的六价铬标准贮存剂(1000毫克/升),生产批号:B21100078。

六价铬控制样品,有证书的标准品.产品名称:某市准标物测量技术研究所,产品号:RMH-A048;本品,批号D0012580。

2.3仪表的操作环境采用不同的气体流量,不同的吸收波长,不同的燃烧头高度,不同的气体流量,不同的吸收波长,不同的燃烧头高度,从而确定了最优的工作参数。

表2仪表操作参数一览表2.4 实验方法2.4.1样品的准备在250毫升的烧杯中精确地称量(5.0克)经过粉碎的土样,并添加50.0毫升的碱性萃取液,以及400毫克的氯化镁和0.5毫升的氢磷酸盐缓冲液。

六价铬的测定方法标准 -回复

六价铬的测定方法标准 -回复

六价铬的测定方法标准-回复六价铬(Cr(VI))是一种具有高度毒性和致癌性的金属离子,对人体和环境都具有严重的危害。

因此,准确测定六价铬的浓度对于环境保护和人类健康至关重要。

在这篇文章中,我们将详细介绍一种常用的测定六价铬浓度的方法,即离子色谱法。

离子色谱法是一种基于溶液中离子间相互作用的分析方法,常用于测定水体和土壤中的金属离子。

以下是测定六价铬浓度的标准步骤:步骤一:试样的制备首先,需要采集样品,如水样或土壤样品。

采集时需要遵循一定的采样原则,保证样品的代表性。

然后将样品进行预处理,通常包括过滤、稀释等步骤。

这一步旨在去除杂质,使样品适合进行后续的分析。

步骤二:标准曲线的绘制为了准确测定样品中的六价铬浓度,我们首先需要绘制一条标准曲线。

可选择适量的六价铬标准溶液,分别稀释为一系列浓度不同的标准溶液。

然后使用离子色谱仪分别对这些标准溶液进行测定,并记录测定结果。

将所得的测定结果作为纵坐标,标准溶液浓度作为横坐标,绘制标准曲线。

步骤三:样品的测定使用相同的实验条件和分析方法,将样品注入离子色谱仪进行测定。

离子色谱仪会根据样品中离子浓度的不同,通过离子交换柱将样品中的离子分离出来,并通过在线检测器测定其浓度。

根据标准曲线,可以计算出样品中六价铬的浓度。

步骤四:质控与数据处理为了保证测定结果的准确性,需要进行质控工作。

质控一般包括空白对照、溶液稀释校验、仪器精度校验等。

通过质控工作,可以验证分析方法的准确性和稳定性。

同时,在进行数据处理时,还需采用统计学方法对数据进行分析,以获得可靠的结果。

综上所述,离子色谱法是一种常用的测定六价铬浓度的方法。

通过制备样品、绘制标准曲线、样品测定和质控与数据处理,可以获得准确可靠的测定结果。

然而,需要注意的是,离子色谱法的操作要求较高,需要仪器设备和专业技术支持。

因此,在实际操作中,应选择适合自身条件的分析方法,并合理进行质控工作,以确保测定结果的准确性和可比性。

同时,为了保护环境和人类健康,应加强对六价铬的监测与管理工作,减少其对环境的污染。

六价铬的测定方法

六价铬的测定方法

六价铬的测定方法一、试剂理化性质≤1.1、试剂名称:六价铬;1.2、英文名称:Chromium;1.3、CAS号:13765-19-8;1.4、分子式:Cr6+;二、实验原理由于六价铬的实验原理比较复杂,我们采用了清洁化学等技术进行实验,以生成Cr6+以及其它价铬盐,例如Cr3+,Cr2 O3等。

清洁化学方法分为二个步骤:首先是敏化,即清洗原样品,使Cr6+释放出来;其次是识别,即做出溶剂消除栽培,为便于后续测定步骤作准备。

三、实验方法3.1、准备样品采样时选择土壤或生物样品,收集到足够数量的样品后,均匀混合后,在实验室中进行一定量的研磨,然后用筛子筛细,使之变成粉末状,放在容器中,备用。

3.2、敏化将粉末样品放入无水甲醇(CH3OH)中,在水浴恒温器的控温条件下,加热至90℃,2h后放入冷却剂,过夜后用毛细管蒸馏,除去CH3OH;此时即可得到Cr6+溶液样品。

3.3、识别用酸性溶液(HCl或H2SO4)将Cr6+溶液样品中的Cr3+及其它价铬盐析出,用萃取剂(乙醇系溶剂)萃取Cr6+,便于后续的测定。

3.4、测定六价铬的测定方法多种多样,总的来说,可以基本上分为以下几类:(1)电感耦合等离子体原子发射光谱法;(2)紫外-可见吸收光谱法;(5)高效液相色谱法;(6)原子吸收光谱法。

以上是六价铬测定的几种常见方法,还有一种叫波谱技术,也会用到,这几种方法各有优劣,也就是看实验需求的情况而定的。

四、安全注意事项1.在进行六价铬的测定实验前,请确保操作室的洁净程度,以使得试剂及产物不会污染样品。

2.在实验室中使用萃取剂(乙醇系溶剂)请注意安全,在使用毛细管时要当心,以免出现意外状况。

3.在进行敏化步骤时,加热时应当控制好温度,以免造成烧伤或者其它事故发生。

4.结束实验后,余下试剂及样品应当存放至显微镜温柜中,注意防止潮湿及高温环境,以便确保洁净实验结果的准确性。

土壤六价铬HJ1082与仪器实操

土壤六价铬HJ1082与仪器实操

土壤六价铬测定前处理实操步骤清洗锥形瓶若干注:玻璃仪器使用前要泡酸处理一、试剂配制:1.碱液:用1L的塑料瓶,称取碳酸钠30g和氢氧化钠20g,加水定容至刻度线,摇匀溶解。

(溶解不了用超声仪,碳酸钠和氢氧化钠在103)2.六价铬标准使用液:取10m浓度为1000mg/L六价铬标准溶液入100mL塑料瓶中,用去离子水定容至刻度线,摇匀。

(203冰箱)3.缓冲溶液:称取磷酸氢二钾8.71g和磷酸二钾氢6.80g入100mL塑料瓶,加水定容至刻度线,摇匀溶解。

(磷酸氢二钾和磷酸二氢钾在103)4. 1+1硝酸:在塑料瓶中加水适量,再加入等体积硝酸,摇匀溶解。

(114水池下方柜子)二、试样制备(前处理):准确称取土样5.0g(使用万分之一天平,精确0.01)置于清洗过的锥形瓶中,再称取氯化镁400mg,加入50mL 碱液,0.5mL缓冲溶液,放入搅拌子,置于搅拌装置,再放上小漏斗。

常温搅拌5min后,加热搅拌至90-95℃,保持60min。

取下锥形瓶,冷却至室温后用滤膜抽滤。

将滤液倒进100mL塑料瓶中,用1+1硝酸和碱液调ph至7.00-8.00之间,定容至刻度线,摇匀,放入0-4℃冰箱,待测。

注:调PH时一般会有沉淀产生,此时可以再次抽滤再定容。

标准曲线则把加入土样换成分别加入0、0.10、0.20、0.50、1.00、2.00mL的标液,其余步骤一样。

(标准曲线最好一起加热搅拌,误差比较小,0可以单独出来)出现的一些问题:1.在对数值小的监控样时,土的浸提效率会影响结果。

此时可以减半取样量,看看效果。

2.调PH时一般会出现沉淀,此时可以再次抽滤然后定容。

当时间不够也可以直接定容,影响不大。

3.配制的碱液一般是一周一配,缓冲液是一月一配。

仪器开关1.打开电脑2.找环(图 2.1)放气---拧紧(图 2.2)——打开开关气瓶开关(逆开顺关)和仪器开关图 23.等仪器完全开启后,再打开软件——出现弹框点击OK气瓶开关5.添加方法:点击添加方法(5.1)——选择所要元素,确定(5.2)6.参数设置:点击编辑方法(6.1)——类型/模式(6.1)——测量(6.2)——光学参数(6.3)——标样(6.4)——校正,确定(6.5)7.编辑顺序参数:点击编辑顺序参数(7.1)——点击保持火焰燃(7.1)8.输入样品名称:点击标签,输入样品名称(默认总行数为50,超过50可以点击A进行添加)9.优化(看下方“参考使用PDF”的优化仪器部分),以及后续步骤看“参考使用PDF”(注意:优化信号前先打开抽压机(9.1))10.仪器关机顺序:进样管拿出水面——关火——关气瓶——点火(燃烧残余乙炔)——关闭元素灯——关抽压机——关仪器开关——关软件——关电脑参考使用PDF优化仪器1、在<分析>界面下,点击<优化>按钮。

土壤中六价铬的测定方法

土壤中六价铬的测定方法

土壤中六价铬的测定方法六价铬是一种常见的有毒污染物,其在土壤中的含量是衡量土壤质量的重要指标之一、准确测定土壤中六价铬的含量对于环境监测和土壤污染治理具有重要意义,下面将介绍几种常用的土壤中六价铬测定方法。

1.酸提法酸提法是一种常用的土壤样品前处理方法。

首先,将土壤样品经过干燥和研磨处理,以获得均匀且适宜的样品。

然后,将样品与浓盐酸混合,用加热的方法进行提取,使土壤中的六价铬转化为可溶性的铬离子。

最后,将提取得到的溶液进行适当稀释后,使用原子吸收光谱仪或离子色谱仪测定六价铬的含量。

2.手性淋洗法手性淋洗法是一种新型的土壤中六价铬测定方法。

该方法通过使用手性络合剂来选择性地溶出土壤中的六价铬。

首先,将手性络合剂与土壤样品进行搅拌混合,然后用适当的溶剂进行淋洗,使六价铬与手性络合剂生成络合物。

最后,使用分光光度计或离子色谱仪等设备测定络合物的浓度,从而推断六价铬的含量。

3.吸附法吸附法是一种简便而有效的土壤中六价铬测定方法。

该方法利用活性炭等吸附剂对土壤样品进行处理,吸附土壤中的六价铬。

首先,将土壤样品与吸附剂充分混合,使六价铬与吸附剂形成络合物。

然后,用适当的溶剂提取吸附剂中的络合物,并使用原子吸收光谱仪或离子色谱仪等设备测定络合物的浓度,从而推断六价铬的含量。

4.生物传感器法生物传感器法是一种基于生物体的对六价铬的敏感性来测定土壤中六价铬含量的方法。

该方法利用工程菌株或其他生物体中的特异性酶对六价铬进行检测。

首先,将土壤样品与生物体接触一段时间,生物体中的酶会与六价铬发生反应。

然后,通过测量反应后生成的物质的浓度或光学性质的变化,来推测土壤中六价铬的含量。

上述方法各有优缺点,选择合适的测定方法需要考虑准确性、灵敏度、简易性和经济性等方面的因素。

在实际应用中,可以综合使用多种方法,以提高测定结果的可靠性和准确性。

此外,在进行土壤中六价铬的测定时,还需要注意样品的收集与保存、实验条件的控制等方面的问题,以确保测定结果的准确性和可靠性。

六价铬的测定方法标准

六价铬的测定方法标准

六价铬的测定方法标准主要包括以下几种:
1. 流动注射-二苯碳酰二肼光度法:适用于地表水、地下水和生活污水中六价铬的测定。

当检测光程为10 mm时,检出限为0.0005 mg/L,测定下限为0.0015 mg/L。

2. 碱溶液提取-火焰原子吸收分光光度法:适用于土壤和沉积物中六价铬的测定。

当土壤和沉积物取样量为5.0 g,定容体积为100 ml时,本标准测定的六价铬的方法检出限为0.5 mg/kg,测定下限为2.0 mg/kg。

3. 示波极谱滴定法:适用于废水和废水处理过程中六价铬的测定。

当检测光程为10 mm时,检出限为0.0005 mg/L,测定下限为0.0015 mg/L。

4. 原子吸收分光光度法:适用于废水和废水处理过程中六价铬的测定。

当检测光程为10 mm 时,检出限为0.0005 mg/L,测定下限为0.0015 mg/L。

5. 动力学光度法:适用于废水和废水处理过程中六价铬的测定。

当检测光程为10 mm时,检出限为0.0005 mg/L,测定下限为0.0015 mg/L。

6. 流动注射光度法:适用于废水和废水处理过程中六价铬的测定。

当检测光程为10 mm时,检出限为0.0005 mg/L,测定下限为0.0015 mg/L。

污染土壤中六价铬提取与检测

污染土壤中六价铬提取与检测

污染土壤中六价铬提取与检测在碱性提取环境中,利用Na2CO3/NaOH溶液消解土壤,建立了土壤六价铬分光光度计测试方法。

结果表明:方法相关系数大于0.999,方法检出限0.092mg/kg,方法重复性较好,测量相对标准偏差4.3%,加标回收率在90.7%~95.1%之间。

方法具有较高的精密度和准确度,适用于土壤六价铬的测定。

标签:六价铬;分光光度法;土壤自然界中铬的存在形式包括三种,铬金属以及铬离子,其中铬离子通常有两种存在形式,三价和六价铬离子。

一般情况下,三价铬离子可以被土壤吸收,然而六价铬离子难以被土壤吸收固定,因此容易流失并流入地下水,污染地下水资源,铬离子毒性较大,尤其对于六价铬离子毒性最大,研究发现六价铬离子有潜在的致癌性,而且容易在人体内富集,尤其随着现代工业特别是冶金行业铬离子污染异常严峻。

因此一种快速准确提取和检测六价铬离子对于最大限度降低铬离子污染尤为有意义[1-3]。

1.测试材料和方法1.1 仪器和药品仪器:紫外可见分光光度计Alpha1900,上海谱元仪器有限公司;FA1004N 电子分析天平,上海精密仪器仪表有限公司;78HW-1/85-2数显恒温磁力搅拌器,常州市金坛友联仪器研究所;913pH计,瑞士万通中国有限公司;杭州双固定量滤纸,石家庄金菱科教实验设备有限公司。

试剂:1OOmg/L六价铬标液来源于国家环境保护总局标准样品研究所,稀释成不同浓度标液;显色剂:称取O.1g二苯碳酰二肼加入25ml乙腈溶剂中,加水配制成lOOml的溶液,密封保存。

消解液:将(20.0±0.05)gNaOH与(30.0±0.05)gNa2C03溶于去离子水中,定容于1L 的容量瓶中,于(20-25)℃密封保存。

磷酸缓冲溶液(0.25mol/L磷酸氢二钾/0.25mol/L磷酸二氢钾,pH=7):将43.52g磷酸氢二钾和34.06g磷酸二氢钾加入300ml的去离子水中,并加入9700ml的水定容。

六价铬的测定方法

六价铬的测定方法

六价铬的测定方法测定六价铬的方法六价铬常见于工业外排废水和土壤中,是一种有害污染物。

为了保护环境和人类健康,我们需要测定六价铬的含量。

本文将介绍两种测定六价铬的方法。

方法一:硫酸钠还原法该方法利用硫酸钠还原六价铬为三价铬,然后利用二苯基卡宾作为指示剂,采用氨水-硫脲法测定三价铬的含量。

实验步骤:1.取适量待测样品,加入适量浓硝酸,加热至样品完全溶解,转移至250 mL 锥形瓶中。

2.加入2 g 硫酸钠和1 g 二苯基卡宾,试管盖好。

3.放入100 mL 密闭容器中,在水浴中恒温还原4 h。

4.取出,冷却,加入25 mL 准确氨水和25 mL 准确浓盐酸,振摇混合。

5.用氨水调整pH 值到6-9,加入3 g硫脲,振摇混合,使硫脲充分溶解。

6.立即定容至250 mL 振摇混合,放置10 min。

7.用紫外分光光度计测定样品透过率,按照指定曲线计算出三价铬的含量。

方法二:碘化钾-汞化钾法该方法利用碘化钾和汞化钾氧化六价铬成为四氧化三铬,然后用光度法测定四氧化三铬的含量。

实验步骤:1.取适量待测样品,转移至250 mL 锥形瓶中。

2.加入碘化钾-汞化钾试剂,试管盖好。

3.振摇混合,静置10 min。

4.用光度计测定样品透过率,按照指定曲线计算出六价铬的含量。

注意事项:1.硫酸钠还原法中,硫酸钠的用量应当控制得当,不宜过量,否则可能影响测定结果。

2.碘化钾-汞化钾法中,碘化钾和汞化钾应当按照一定比例混合,过量反应可能影响测定结果。

另外,汞化钾是有毒物质,操作时需注意安全。

结语:以上两种测定六价铬的方法各有优缺点,实验者应当根据实际需要进行选择。

在操作过程中,应当注意安全,避免给环境和人体带来损害。

土壤六价铬的提取方法探讨

土壤六价铬的提取方法探讨

土壤六价铬的提取方法探讨摘要:随着我国工业的快速发展,环境问题日益突出严重,尤其六价铬污染物的排放。

六价铬可溶于水,在水体中可稳定存在,在厌氧条件下可还原成三价铬,三价铬和六价铬对人体健康都有害,有致癌作用,但六价铬的毒性更强,大约比三价铬高 100 倍,更易被人体吸收,并在体内蓄积。

六价铬污染是威胁人类发展的重大环境问题,我国已把六价铬规定为实施总量控制的指标之一。

对土壤和沉积物中的六价铬进行监测具有十分重要而深远的环境和社会意义。

关键词:土壤;六价铬;监测。

生态环保部于2020年6月颁布了《土壤和沉积物六价铬的测定碱溶液提取-火焰原子吸收分光光度法》(HJ1082-2019)标准,为开展土壤六价铬的测定提供了有利检测依据,本文采用碱性提取溶液(30g的NaCO3,20g的NaOH)、氯化镁(MgCl2)、磷酸氢二钾-磷酸二氢钾缓冲溶液提取土壤中的六价铬,分别研究采用磁力搅拌器提取法和水浴恒温振荡提取法,碱溶液提取土壤六价铬,火焰原子吸收分光光度法测定结果的差异,结果发现,水浴恒温振荡提取法,振荡器内部环境密闭,水浴控温稳定,振荡提取速率易把控,显著提高土壤样品的前处理效率,最终提高六价铬的检测效率。

1、土壤中六价铬测定的试剂和方法1.1、实验仪器原子吸收光谱仪、磁力搅拌器、水浴恒温振荡器、ph计、离心机、真空抽滤装置、分析天平。

1.2、实验试剂硝酸:ρ(HNO3)=1.42g/ml,优级纯;氯化镁:(MgCl2);磷酸氢二钾-磷酸二氢钾缓冲溶液:pH=7;碱性提取溶液:(30g的NaCO3,20g的NaOH),使用前pH不小于11.5;重铬酸钾:基准试剂(本次采用购买的100mg/L的六价铬标准试剂)。

1.3、试样样品制备(一)磁力搅拌器提取法准确称取5.0 g(精确至 0.01 g)样品置于250 ml 烧杯中,加入50.0 ml碱性提取溶液,再加入400 mg 氯化镁和0.5 ml 磷酸氢二钾-磷酸二氢钾缓冲溶液。

EPA 3060A 中文版 土壤六价铬的测定

EPA 3060A 中文版 土壤六价铬的测定

土壤六价铬的测定碱性消解分光光度法EPA3060A 1.适用范围本作业指导书适用于土壤、淤泥、沉积物和类似的固体废物中可溶性、吸附态和沉淀形态的铬化合物中六价铬的碱性消解提取。

2.方法原理本方法用于测定碱性消解液提取到的样品中的六价铬,消解液于二苯碳酰二肼反应生成紫红色化合物,于波长540nm处分光光度测定。

3.干扰和消除样品在碱性介质中,经氯化镁和磷酸氢二钾-磷酸二氢钾缓冲溶液抑制,三价铬的存在对六价铬的测定无干扰。

4.试剂和材料:分析纯试剂GB/T6682三级去离子水4.15mol/L HNO3:取343ml浓HNO3(分析纯),用水稀释至1000ml。

20~25℃避光保存,有效期为2个月。

4.2消解液:分别称取40±0.10gNaOH和60±0.10gNa2CO3(无水)溶解后转移至2L容量瓶定容,有效期为1个月。

4.3氯化镁(MgCl2-6H2O):分析纯。

4.4磷酸盐缓冲溶液:分别称取87.09gKH2PO4和68.04gK2HPO4,溶解后转移至1L容量瓶,用水稀释至刻度。

该溶液有效期为2个月。

4.5Cr6+标准储备溶液:1000mg/L准确称取于110℃干燥至恒重的重铬酸钾2.829±0.001g用水溶解后,转移至1L容量瓶中。

20~25℃有效期为6个月。

4.6Cr6+工作溶液:5mg/L移取5.00ml Cr6+标准储备溶液于1L容量瓶中,用水稀释至刻度。

有效期为一周。

4.75%H2SO4:取50ml浓硫酸,用水稀释后,定容至1L。

有效期为2个月。

4.8丙酮4.9二苯碳酰二肼溶液:称取1g二苯碳酰二肼,溶于200ml丙酮,存放与冰箱中,有效期为2个月。

5.仪器和设备5.1250ml锥形瓶5.2100ml量筒5.350ml、100ml、1000ml容量瓶5.4恒温振荡水槽5.5pH计5.6分析天平5.7紫外可见分光光度计5.8移液管5.9250ml烧杯5.10滤膜(0.45um),材质为纤维或聚碳酸酯5.11真空过滤装置6.样品的收集、保存和处置6.1样品应使用仪器采集,并储存于塑料或玻璃容器中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

土壤六价铬的测定方法
土壤六价铬的测定方法主要包括化学计量法、光谱分析法和电化学分析法。

下面将分别介绍这三种方法的原理和操作步骤。

一、化学计量法:
化学计量法是利用化学反应使六价铬与试剂发生定量反应,然后根据反应产物的性质来测定六价铬的含量。

该方法操作简单,准确度高。

原理:
将土壤样品与试剂反应,六价铬与试剂发生反应生成带颜色的化合物,通过光度计或比色计测定反应产物的吸光度或色度来计算六价铬的含量。

操作步骤:
1. 准备土壤样品:将土壤样品颗粒较大的杂质去除,然后使土壤样品均匀细致地进行粉碎,取样。

2. 提取六价铬:将土壤样品与一定比例的提取剂混合,经过搅拌、振荡等手段使六价铬与提取剂充分接触,然后离心分离出提取液。

3. 反应:将提取液与反应试剂混合,使六价铬与试剂发生反应,形成带颜色的化合物。

4. 测定吸光度或色度:将反应产物的吸光度或色度测定出来,可以使用光度计或比色计进行测量。

5. 计算六价铬的含量:根据反应产物的吸光度或色度值,通过标准曲线进行插值计算六价铬的含量。

二、光谱分析法:
光谱分析法是利用光的吸收、散射、发射等现象来测定物质的含量和性质。

常用的光谱分析方法包括原子吸收光谱法(AAS)、原子荧光光谱法(AFS)等。

原理:
利用土壤中六价铬的特征吸收波长或荧光波长,通过物质对特定波长光线的吸收或发射来测定六价铬的含量。

操作步骤:
1. 准备土壤样品:与化学计量法相同,将土壤样品进行处理,使之符合实验要求。

2. 前处理:将土壤样品进行溶解、稀释等处理,得到适宜浓度的土壤提取液。

3. 仪器调试:调整贬值室的焦点和灵敏度,保证仪器的正常工作状态。

4. 吸收或发射测量:将土壤提取液放入光谱仪的吸收室或发射室,测量吸收光谱或发射光谱。

5. 计算六价铬的含量:根据土壤提取液的吸收峰值或发射峰值,通过标准曲线进行插值计算六价铬的含量。

三、电化学分析法:
电化学分析法是利用电化学技术来测定溶液中物质的含量和性质。

土壤六价铬可以通过阳极溶出、阴极溶出和电解析等方法进行测定。

原理:
六价铬在特定条件下,与电极发生反应产生电流或电势的变化,通过测量电流或电势变化来测定六价铬的含量。

操作步骤:
1. 准备土壤样品:与前两种方法相同,将土壤样品进行处理,使之符合实验要求。

2. 提取六价铬:通过一定的提取方法,将土壤样品中的六价铬提取到溶液中。

3. 电化学测定:将提取液放入电化学仪器的电解池中,设置合适的工作电位和扫描速率,测定六价铬的电流和电位变化。

4. 计算六价铬的含量:根据电位和电流的测定值,通过标准曲线进行插值计算六价铬的含量。

需要注意的是,以上三种方法在使用时需要注意操作规范和安全措施,确保测定结果的准确性和可靠性。

此外,不同方法的适用范围和操作条件会有所差异,需要根据具体实验要求选择合适的方法进行测定。

相关文档
最新文档