等式的性质 【一等奖教案】(大赛一等奖作品)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 一元一次方程 3.1 从算式到方程 3.1.2 等式的性质

学习目标

1. 会用等式的性质解简单的一元一次方程。

2. 培养学生观察、分析、概括及逻辑思维能力。 重点:运用等式的性质。

难点:用等式的性质解简单的方程。

使用要求:独立完成学案,然后小组讨论交流。 一、 自主学习

1 、等式的基本性质有哪两条? 2、(1)从3x+2=3y-2中,能不能得到x=y,为什么?

(2)从ax=aby 中,能不能得到x=by,为什么?

3、利用等式的性质解下列方程: (1)x-2=5 (2)x 3

2

-=6

(3)3x=x+6 (4)3

1

-x-5=4 二、 合作探究

1、 练习P84 利用等式的性质解下列方程并检验:

2、 某班有男生25人,比女生的2倍少15人,这个班有女生多少人?

3、 把1200克洗衣粉分别装入5个大小相同的瓶子中,除一瓶还差75克外,其余4瓶都装满了。每个瓶子可以装多少洗衣粉?

4、甲乙二人同时由A地步行去B地.甲每小时走5千米,乙每小时走3千米.当甲到达B地时,

乙距B地还有6千米.甲走了几小时?A、B两地的距离是多少?

三、能力提升

已知2x2+3x=5,求代数式-4x2-6x+6的值

【提示】灵活运用等式的性质并将2x2+3x整体变成-4x2-6x是解决问题的方法

四、小组小结

作业:习题3.1第4、10、11题

3.2 解一元一次方程(一)——合并同类项与移项

第1课时用合并同类项的方法解一元一次方程

教学目标:

1.经历运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型.

2.学会合并同类项,会解“ax+bx=c”类型的一元一次方程.

3.能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程.

教学重点:建立方程解决实际问题,会解“ax+bx=c”类型的一元一次方程.

教学难点:分析实际问题中的已知量和未知量,找出相等关系,列出方程.

教学过程:

一、设置情境,提出问题

(出示背景资料)约公元820年,中亚细亚的数学家阿尔-花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》.“对消”与“还原”是什么意思呢?通过下面几节课的学习讨论,相信同学们一定能回答这个问题.

出示课本P86问题1:

某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍.前年这个学校购买了多少台计算机?

二、探索分析,解决问题

引导学生回忆:

实际问题一元一次方程

设问1:如何列方程?分哪些步骤?

师生讨论分析:

(1)设未知数:前年这个学校购买计算机x台;

(2)找相等关系:

前年购买量+去年购买量+今年购买量=140台.

(3)列方程:x+2x+4x=140.

设问2:怎样解这个方程?如何将这个方程转化为“x=a”的形式?学生观察、思考:

根据分配律,可以把含x的项合并,即

x+2x+4x=(1+2+4)x=7x

老师板演解方程过程:略.

为帮助有困难的学生理解,可以在上述过程中标上箭头和框图.

设问3:在以上解方程的过程中“合并”起了什么作用?每一步的根据是什么?

学生讨论回答,师生共同整理:

“合并”是一种恒等变形,它使方程变得简单,更接近“x=a”的形式.

三、拓广探索,比较分析

学生思考回答:若设去年购买计算机x台,得方程

+x+2x=140.

若设今年购买计算机x台,得方程

++x=140.

课本P87例2.

问题:①每相邻两个数之间有什么关系?

②用x表示其中任意一个数,那么与x相邻的两个数怎样表示?

③根据题意列方程解答.

四、综合应用,巩固提高

1.课本P88练习第1,2题.

2.一个黑白足球的表面一共有32个皮块,其中有若干块黑色五边形和白色六边形,黑、白皮块的数目之比为3:5,问黑色皮块有多少?

(学生思考、讨论出多种解法,师生共同讲评.)

3.有一列数按一定规律排成-1,2,-4,8,-16,32,……,其中某三个相邻数的和是-960.求这三个

数.

五、课时小结

1.你今天学习的解方程有哪些步骤,每一步的依据是什么?

2.今天讨论的问题中的相等关系有何共同特点?

学生思考后回答、整理:

解方程的步骤及依据分别是:合并和系数化为1;总量=各部分量的和.

相关文档
最新文档