18.2.2 第2课时 菱形的判定3

合集下载

人教版八下数学18.2.2菱形 课时2 菱形的判定教案+学案

人教版八下数学18.2.2菱形  课时2 菱形的判定教案+学案

人教版八年级下册数学第18章平行四边形18.2 特殊的平行四边形18.2.1 菱形课时2菱形的判定教案【教学目标】知识与技能目标1.理解并运用菱形的定义和两个判定定理进行有关的推理论证和计算.2.了解菱形的现实应用和常用判别条件.过程与方法目标1.从菱形性质定理的逆命题出发,提出猜想,发现结论,然后给出证明,进一步理解互逆命题的意义,体会菱形的性质与判定的区别与联系.2.让学生经历探索菱形判定定理的过程,理解并掌握菱形的判定方法,积累几何学习的经验,培养学生的观察能力、动手能力,发展合情推理和演绎推理能力.情感、态度与价值观目标1.让学生在探究过程中加深对菱形的理解,养成主动探索的学习习惯.2.通过菱形与矩形判定方法的类比,进一步体会类比的思想方法的作用. 【教学重点】菱形的定义和判定定理的运用.【教学难点】探究菱形的判定条件并合理利用它进行论证和计算.【教学过程设计】一、情境导入我们已经知道,有一组邻边相等的平行四边形是菱形.这是菱形的定义,我们可以根据定义来判定一个四边形是菱形.除此之外,还能找到其他的判定方法吗?菱形是一个中心对称图形,也是一个轴对称图形,具有如下的性质:1.两条对角线互相垂直平分;2.四条边都相等;3.每条对角线平分一组对角.这些性质,对我们寻找判定菱形的方法有什么启示呢?二、合作探究知识点一:菱形的判定【类型一】利用“有一组邻边相等的平行四边形是菱形”判定四边形是菱形例 1如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.求证:四边形BCFE是菱形.解析:由题意易得,EF与BC平行且相等,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形.证明:∵BE=2DE,EF=BE,∴EF=2DE.∵D、E分别是AB、AC的中点,∴BC=2DE且DE∥BC,∴EF=BC.又∵EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE是菱形.方法总结:菱形必须满足两个条件:一是平行四边形;二是一组邻边相等.【类型二】利用“对角线互相垂直的平行四边形是菱形”判定四边形是菱形例 2如图,AE∥BF,AC平分∠BAD,且交BF于点C,BD平分∠ABC,且交AE于点D,连接CD.求证:(1)AC⊥BD;(2)四边形ABCD是菱形.解析:(1)证得△BAC是等腰三角形后利用“三线合一”的性质得到AC⊥BD 即可;(2)首先证得四边形ABCD是平行四边形,然后根据“对角线互相垂直”得到平行四边形是菱形.证明:(1)∵AE∥BF,∴∠BCA=∠CAD.∵AC平分∠BAD,∴∠BAC=∠CAD,∴∠BCA=∠BAC,∴△BAC是等腰三角形.∵BD平分∠ABC,∴AC⊥BD;(2)∵△BAC是等腰三角形,∴AB=CB.∵BD平分∠ABC,∴∠CBD=∠ABD.∵AE∥BF,∴∠CBD=∠BDA,∴∠ABD=∠BDA,∴AB=AD,∴DA =CB.∵BC∥DA,∴四边形ABCD是平行四边形.∵AC⊥BD,∴四边形ABCD 是菱形.方法总结:用判定方法“对角线互相垂直的平行四边形是菱形”证明四边形是菱形的前提条件是该四边形是平行四边形;对角线互相垂直的四边形不一定是菱形.【类型三】 利用“四条边相等的四边形是菱形”判定四边形是菱形例 3 如图,已知△ABC ,按如下步骤作图:①分别以A ,C 为圆心,大于12AC 的长为半径画弧,两弧交于P ,Q 两点;②作直线PQ ,分别交AB ,AC 于点E ,D ,连接CE ;③过C 作CF ∥AB 交PQ 于点F ,连接AF .(1)求证:△AED ≌△CFD ;(2)求证:四边形AECF 是菱形.解析:(1)由作图知PQ 为线段AC 的垂直平分线,从而得到AE =CE ,AD =CD .然后根据CF ∥AB 得到∠EAC =∠FCA ,∠CFD =∠AED ,利用“AAS ”证得两三角形全等即可;(2)根据(1)中全等得到AE =CF .然后根据EF 为线段AC 的垂直平分线,得到EC =EA ,FC =F A .从而得到EC =EA =FC =F A ,利用“四边相等的四边形是菱形”判定四边形AECF 为菱形.证明:(1)由作图知PQ 为线段AC 的垂直平分线,∴AE =CE ,AD =CD .∵CF ∥AB ,∴∠EAC =∠FCA ,∠CFD =∠AED .在△AED 与△CFD 中,⎩⎨⎧∠EAC =∠FCA ,∠AED =∠CFD ,AD =CD ,∴△AED ≌△CFD (AAS);(2)∵△AED ≌△CFD ,∴AE =CF .∵EF 为线段AC 的垂直平分线,∴EC =EA ,FC =F A ,∴EC =EA =FC =F A ,∴四边形AECF 为菱形.方法总结:判定一个四边形是菱形把握以下两起点:(1)以四边形为起点进行判定;(2)以平行四边形为起点进行判定.知识点二:菱形的判定的应用【类型一】 菱形判定中的开放性问题例 4如图,平行四边形ABCD 中,AF 、CE 分别是∠BAD 和∠BCD 的平分线,根据现有的图形,请添加一个条件,使四边形AECF 为菱形,则添加的一个条件可以是__________(只需写出一个即可,图中不能再添加别的“点”和“线”).解析:∵AD ∥BC ,∴∠F AD =∠AFB .∵AF 是∠BAD 的平分线,∴∠BAF =∠F AD ,∴∠BAF =∠AFB ,∴AB =BF .同理ED =CD .∵AD =BC ,AB =CD ,∴AE =CF .又∵AE ∥CF ,∴四边形AECF 是平行四边形.∵对角线互相垂直的平行四边形是菱形,则添加的一个条件可以是AC ⊥EF .方法总结:菱形的判定方法常用的是三种:(1)定义;(2)四边相等的四边形是菱形;(3)对角线互相垂直的平行四边形是菱形.【类型二】 菱形的性质和判定的综合应用例 5 如图,在四边形ABCD 中,AB =AD ,CB =CD ,E 是CD 上一点,BE 交AC 于F ,连接DF .(1)求证:∠BAC =∠DAC ,∠AFD =∠CFE ;(2)若AB ∥CD ,试证明四边形ABCD 是菱形;(3)在(2)的条件下,试确定E 点的位置,使得∠EFD =∠BCD ,并说明理由. 解析:(1)首先利用“SSS ”证明△ABC ≌△ADC ,可得∠BAC =∠DAC .再证明△ABF ≌△ADF ,可得∠AFD =∠AFB ,进而得到∠AFD =∠CFE ;(2)首先证明∠CAD =∠ACD ,再根据“等角对等边”,可得AD =CD .再由条件AB =AD ,CB =CD ,可得AB =CB =CD =AD ,可得四边形ABCD 是菱形;(3)首先证明△BCF ≌△DCF ,可得∠CBF =∠CDF ,再根据BE ⊥CD 可得∠BEC =∠DEF =90°,进而得到∠EFD =∠BCD .(1)证明:在△ABC 和△ADC 中,⎩⎨⎧AB =AD ,BC =DC ,AC =AC ,∴△ABC ≌△ADC (SSS),∴∠BAC =∠DAC .在△ABF 和△ADF 中,⎩⎨⎧AB =AD ,∠BAF =∠DAF ,AF =AF ,∴△ABF ≌△ADF (SAS),∴∠AFD =∠AFB .∵∠AFB =∠CFE ,∴∠AFD =∠CFE ;(2)证明:∵AB ∥CD ,∴∠BAC =∠ACD .又∵∠BAC =∠DAC ,∴∠CAD =∠ACD ,∴AD =CD .∵AB =AD ,CB =CD ,∴AB =CB =CD =AD ,∴四边形ABCD 是菱形;(3)解:当EB ⊥CD 于E 时,∠EFD =∠BCD .理由如下:∵四边形ABCD 为菱形,∴BC =CD ,∠BCF =∠DCF .在△BCF 和△DCF 中,⎩⎨⎧BC =CD ,∠BCF =∠DCF ,CF =CF , ∴△BCF ≌△DCF (SAS),∴∠CBF =∠CDF .∵BE ⊥CD ,∴∠BEC =∠DEF =90°,则∠BCD +∠CBF =∠EFD +∠CDF =90°, ∴∠EFD =∠BCD .方法总结:此题主要考查了全等三角形的判定与性质,以及菱形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.三、教学小结本节课你有哪些收获?学生归纳小结菱形的判定方法:(1)菱形的定义:有一组邻边相等的平行四边形是菱形.(2)菱形的判定定理:对角线互相垂直的平行四边形是菱形.(3)菱形的判定定理:四条边相等的四边形是菱形四、学习检测1.下列说法正确的是( )A.对角线相等的平行四边形是菱形B.有一组邻边相等的平行四边形是菱形C.对角线互相垂直的四边形是菱形D.有一个角是直角的平行四边形是菱形解析:根据菱形的定义与判定定理直接辨别各选项正确与否.由菱形的定义,可知一组邻边相等的平行四边形叫做菱形,因此,选项B正确.故选B.2.已知平行四边形ABCD,下列条件:①AC⊥BD;②∠BAD=90°;③AB=BC;④AC=BD.其中能使平行四边形ABCD是菱形的有( )A.①③B.②③C.③④D.①②③解析:对角线互相垂直的平行四边形是菱形,一组邻边相等的平行四边形是菱形,因此①③都可以判定平行四边形ABCD是菱形.故选A.3.用直尺和圆规作一个菱形,如图,能得到四边形ABCD是菱形的依据是( )A.一组邻边相等的四边形是菱形B.四条边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形解析:根据菱形的判定定理(四条边相等的四边形是菱形)即可判定,由题中图的作法可知AD=AB=DC=BC,∴四边形ABCD是菱形.故选B.4.一个平行四边形的一条边长是3,两条对角线的长分别是4和2,这是一个特殊的平行四边形吗?为什么?求出它的面积解析:先根据题意画出相应的图形,如图.根据平行四边形的对角线互相平分,可求出OB及OA的长,由勾股定理的逆定理可得∠BOA为直角,进而得AC⊥BD.根据“对角线互相垂直的平行四边形是菱形”可得平行四边形ABCD为菱形.根据菱形的面积等于对角线乘积的一半可求得菱形ABCD的面积.解:这是一个菱形.理由如下:如图,▱ABCD中,AC=4,BD=2,AB=3,∴OA=AC=2,OB=BD=.∵OA2+OB2=22+()2=9,而AB2=32=9,∴OA2+OB2=AB2.∴△AOB是直角三角形,∠AOB=90°.∴AC⊥BD.∴▱ABCD是菱形(对角线互相垂直的平行四边形是菱形).S菱形ABCD=AC·BD=×4×2=4.【板书设计】18.2 特殊的平行四边形 18.2.1 矩形课时1 矩形的性质1.菱形的判定有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四条边相等的四边形是菱形.2.菱形的性质和判定的综合运用3.学习检测【教学反思】在本节数学课的教学中,在运用判定时,要遵循先易后难的原则,让学生先会运用判定解决简单的证明题,再由浅入深,学会灵活运用.通过做不同形式的练习题,让学生能准确掌握菱形的判定并会灵活运用.人教版八年级下册数学第18章平行四边形18.2 特殊的平行四边形18.2.1 矩形课时1矩形的性质学案【学习目标】1.理解矩形的概念,知道矩形与平行四边形的区别与联系;2.会证明矩形的性质,会用矩形的性质解决简单的问题;3.掌握直角三角形斜边中线的性质,并会简单的运用.【学习重点】理解矩形的概念,知道矩形与平行四边形的区别与联系;掌握直角三角形斜边中线的性质,并会简单的运用.【学习难点】会会用这些菱形的判定方法进行有关的证明和计算.【自主学习】一、知识回顾1.菱形的定义是什么?性质有哪些?2.根据菱形的定义,可得菱形的第一个判定方法是什么?用数学语言如何表示?有一组邻边_____的______________是菱形.数学语言:∵四边形ABCD是平行四边形,AB=AD,∴四边形ABCD是菱形二、自主探究知识点1:对角线互相垂直的平行四边形是菱形想一想前面我们用一长一短两根细木条,在它们的中点处固定一个小钉,做成一个可以转动的十字,四周围上一根橡皮筋,做成一个平行四边形.那么转动木条,这个平行四边形什么时候变成菱形?对此你有什么猜想?猜想:对角线互相_________的平行四边形是菱形.证一证已知:如图,四边形ABCD是平行四边形,对角线AC与BD相交于点O,AC ⊥BD.求证:□ABCD是菱形.证明:∵四边形ABCD是平行四边形.∴OA____OC.又∵AC⊥BD,∴BD是线段AC的垂直平分线.∴BA______BC.∴四边形ABCD是________.要点归纳:菱形的判定定理:对角线互相_______的____________是菱形.几何语言描述:∵在□ABCD中,AC⊥BD,∴□ABCD是菱形.【典例探究】例1如图,矩形ABCD的对角线AC的垂直平分线与边AD、BC分别交于点E、F,求证:四边形AFCE是菱形.【跟踪练习】在四边形ABCD中,对角线AC,BD互相平分,若添加一个条件使得四边形ABCD 是菱形,则这个条件可以是()A.∠ABC=90°B.AC⊥BDC.AB=CDD.AB∥CD知识点2:四条边相等的四边形是菱形活动1已知线段AC,你能用尺规作图的方法作一个菱形ABCD,使AC为菱形的一条对角线吗?AC的长为半径作弧,小刚:分别以A、C为圆心,以大于12两条弧分别相交于点B , D,依次连接A、B、C、D四点.想一想根据小刚的作法你有什么猜想?你能验证小刚的作法对吗?猜想:四条边__________的四边形是菱形.证一证已知:如图,四边形ABCD中,AB=BC=CD=AD.求证:四边形ABCD是菱形.证明:∵AB=BC=CD=AD;∴AB=CD , BC=AD.∴四边形ABCD是___________.又∵AB=BC,∴四边形ABCD是__________.要点归纳:菱形的判定定理:四条边都______的四边形是菱形.几何语言描述:∵在四边形ABCD中,AB=BC=CD=AD,∴四边形 ABCD是________.【典例探究】例2如图,在△ABC中, AD是角平分线,点E,F分别在AB,AD上,且AE=AC,EF = ED. 求证:四边形CDEF是菱形.例3 如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm.将△ABC沿射线BC方向平移10cm,得到△DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD是菱形.方法总结:四边形的条件中存在多个关于边的等量关系时,运用四条边都相等来判定一个四边形是菱形比较方便.例4如图,顺次连接矩形ABCD各边中点,得到四边形EFGH,求证:四边形EFGH 是菱形.【跟踪练习】1.如图,顺次连接对角线相等的四边形ABCD各边中点,得到四边形EFGH是什么四边形?2.如图,顺次连接平行四边形ABCD各边中点,得到四边形EFGH是什么四边形?3.如上图,若四边形ABCD是菱形,顺次连接菱形ABCD各边中点,得到四边形EFGH是什么四边形?4.在学平行四边形的时候我们知道把两张等宽的纸条交叉重叠在一起得到的四边形是平行四边形,你能进一步判断重叠部分ABCD的形状吗?探究点3:菱形的性质与判定的综合运用【典例探究】例4如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.方法总结:判定一个四边形是菱形时,要结合条件灵活选择方法.如果可以证明四条边相等,可直接证出菱形;如果只能证出一组邻边相等或对角线互相垂直,可以先尝试证出这个四边形是平行四边形.【跟踪练习】如图,在平行四边形ABCD中,AC平分∠DAB,AB=2,求平行四边形ABCD的周长.三、知识梳理内容菱形的判定定义法:有一组邻边相等的平行四边形是菱形.判定定理:对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形.运用定理进行计算和证明四、学习过程中我产生的疑惑【学习检测】1.判断下列说法是否正确(1)对角线互相垂直的四边形是菱形;(2)对角线互相垂直且平分的四边形是菱形;(3)对角线互相垂直,且有一组邻边相等的四边形是菱形;(4)两条邻边相等,且一条对角线平分一组对角的四边形是菱形.2.一边长为5cm平行四边形的两条对角线的长分别为24cm和26cm,那么平行四边形的面积是_____________.3.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A.AB=BC B.AC=BCC.∠B=60°D.∠ACB=60°4.下列图形中,不一定为菱形的是()A.四条边相等的四边形B.用两个能完全重合的等边三角形拼成的四边形C.一组邻边相等的平行四边形D.有一个角为60度的平行四边形D(解析:根据菱形的判定定理作答即可.)3.如图所示,△ABC中,E,F,D分别是AB,AC,BC上的点,且DE∥AC,DF∥AB.要使AEDF是一个菱形,在不改变图形的前提下,你需添加的一个条件是.AE=AF(解析:(答案不唯一)添加AE=AF或DE=DF或AD是∠BAC的平分线或AE=ED,AF=FD等都可以.)4.木工师傅在做菱形的窗格时,总是保证四条边框一样长,你能说出其中的道理吗?解:四条边相等的四边形是菱形.5.已知菱形的周长为24,一条对角线长为8,求菱形的面积.解:由题意知菱形的边长为6,故另一条对角线长为4,故菱形的面积为×8×4=16.4.如图,矩形ABCD的对角线相交于点O,DE∥AC,CE ∥BD.求证:四边形O CED是菱形.6.如图,CE是△ABC外角∠ACD的平分线,AF∥CD交CE于点F,FG∥AC交CD 于点G.求证四边形ACGF是菱形.证明:∵AF∥CD,FG∥AC,∴四边形ACGF为平行四边形,∵CE是△ABC外角∠ACD的平分线,∴∠ACF=∠FCG,∵AF∥CG,∴∠AFC=∠FCG,∴∠ACF=∠AFC,∴AF=AC,∴▱ACGF为菱形.5. 如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE ∥AB交MN于点E,连接AE、CD.求证:四边形ADCE是菱形.8.如图所示,在△ABC中,∠BAC=90°,AD⊥BC,BE,AF分别是∠ABC,∠DAC的平分线,BE和AD交于G,试说明四边形AGFE的形状.解:四边形AGFE是菱形.理由如下:由∠BAC=90°,AD⊥BC,易得∠BAD=∠C,∵∠AGE=∠ABG+∠BAG,∠AEB=∠EBD+∠C,又∵∠ABG=∠EBC,∴∠AGE=∠AEG.∴AE=AG.由AF是∠DAC的平分线,易知AF⊥GE且AF平分GE.同理可得BE⊥AF且BE平分AF.∴AF与GE垂直且互相平分,从而可知四边形AGFE是菱形.6.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E,连接EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.9.如图(1),在△ABC和△EDC中,AC=CE=CB=DC,∠ACB=∠DCE=90°,AB与CE交于F,ED与AB,BC分别交于M,H.(1)求证CF=CH;(2)如图(2),△ABC不动,将△EDC绕点C旋转到∠BCE=45°时,试判断四边形ACDM是什么四边形,并证明你的结论.(1)证明:∵△ABC和△EDC都是等腰直角三角形,且AC=CE=CB=CD,∴∠A=∠D=45°.∵∠ACB=∠DCE=90°,∴∠ACB-∠ECB=∠DCE-∠ECH,即∠ACF=∠DCH,在△AFC 和△DHC 中, ⎪⎩⎪⎨⎧∠=∠=∠=∠,,,DCH ACF DC AC D A ∴△AFC ≌△DHC (ASA),∴CF =CH. (2)解:菱形,证明如下:∵∠BCE =45°,∴∠ACF =∠BCE =∠DCH =45°,即∠ACD =135°, 又∠A =∠D =45°,∴在四边形ACDM 中,∠AMD =360°-∠ACD ∠A -∠D =135°, ∴∠ACD =∠AMD ,∴四边形ACDM 是平行四边形.又AC =CD ,∴四边形ACDM 是菱形.。

18-2-2 第2课时 菱形的判定(课件)-2022-2023学年人教版数学八年级下册

18-2-2 第2课时 菱形的判定(课件)-2022-2023学年人教版数学八年级下册

证明: ∵ ∠1= ∠2,
又∵AE=AC,AD=AD, ∴ △ACD≌ △AED (SAS).
A
21 F
E
同理△ACF≌△AEF(SAS) . ∴CD=ED, CF=EF.
CD
B
又∵EF=ED,∴CD=ED=CF=EF,
∴四边形ABCD是菱形.
合作探究
例4 如图,在△ABC中,∠B=90°,AB=6cm, BC=8cm.将△ABC沿射线BC方向平移10cm,得到 △DEF,A,B,C的对应点分别是D,E,F,连接 AD.求证:四边形ACFD是菱形. 证明:由平移变换的性质得CF=AD=10cm,DF=AC. ∵∠B=90°,AB=6cm,BC=8cm,
下列条件能够判定四边形ACED为菱形的是( B ) A.AB=BC B.AC=BC
C.∠B=60° D.∠ACB=60°
解析:∵将△ABC沿BC方向平移得到△DCE,
∴AC∥DE,AC=DE,
∴四边形ABED为平行四边形. 当AC=BC时, 平行四边形ACED是菱形. 故选B.
合作探究
练一练 如图,在平行四边形ABCD中,AC平分∠DAB, AB=2,求平行四边形ABCD的周长.
证明:∵DE∥AC,CE∥BD, A
D
∴四边形OCED是平行四边形.
O
EOD,
∴四边形OCED是菱形.
合作探究
例2 如图,矩形ABCD的对角线AC的垂直平分线与边AD、 BC分别交于点E、F,求证:四边形AFCE是菱形.
证明: ∵四边形ABCD是矩形,
∴AE∥FC,∴∠1=∠2.
第十八章 平行四边形
18.2.2 菱 形
第2课时 菱形的判定
新课导入
问题 菱形的定义是什么?性质有哪些? 有一组邻边相等的平行四边形叫做菱形

18.2.2菱形的性质教案

18.2.2菱形的性质教案
三、教学难点与重点
1.教学重点
(1)菱形的定义:四边相等的四边形,以及邻边相等的平行四边形;
举例:强调只有四边形的边长相等时,才能称为菱形。
(2)菱形的性质:
a.对角线互相垂直;
b.对角线互相平分;
c.对角线将菱形分成的四个三角形面积相等;
d现。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了菱形的定义、性质和判定方法,以及它在实际生活中的应用。通过实践活动和小组讨论,我们加深了对菱形知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
一、教学内容
《菱形的性质》是初中数学中的重要内容,主要涉及菱形的定义、性质、判定方法及其应用。本节课我们将围绕以下内容展开:
1.菱形的定义:菱形是指四边相等的四边形,也称为钻石形。
2.菱形的性质:
a.菱形的四条边都相等;
b.菱形的对角线互相垂直;
c.菱形的对角线互相平分;
d.菱形的对角线长度相等;
e.菱形的面积等于对角线乘积的一半;
2.通过菱形性质的学习,提高学生的逻辑思维能力和推理能力;
3.学会运用菱形知识解决实际问题,培养学生的数学应用意识和解决实际问题的能力;
4.在探索菱形性质的过程中,培养学生合作交流、自主探究的学习习惯,提高学生的团队协作能力;
5.引导学生发现生活中的菱形,提高学生对几何图形美的鉴赏能力,培养学生的审美素养。

【最新】人教版八年级数学下册第十八章《18.2.2菱形的判定》公开课课件.ppt

【最新】人教版八年级数学下册第十八章《18.2.2菱形的判定》公开课课件.ppt
平行四边形的所 有性质 四条边相等 对角线互相垂直,且每条
对角线平分一组对角
轴对称图形
菱形的判定 9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2021/1/112021/1/11Monday, January 11, 2021 10、人的志向通常和他们的能力成正比例。2021/1/112021/1/112021/1/111/11/2021 6:24:34 PM 11、夫学须志也,才须学也,非学无以广才,非志无以成学。2021/1/112021/1/112021/1/11Jan-2111-Jan-21 12、越是无能的人,越喜欢挑剔别人的错儿。2021/1/112021/1/112021/1/11Monday, January 11, 2021 13、志不立,天下无可成之事。2021/1/112021/1/112021/1/112021/1/111/11/2021
菱形的判定
1.如图在△ABC中,AD平分∠BAC交BC于D点,
过D作DE∥AC交AB于E点,
过D作DF∥AB交AC于F点.
求证:(1)四边形AEDF是平行四边形
(2)∠2﹦∠3 (3)四边形AEDF是菱形
A
12
E
F

3
B
D
C
菱形的判定
选做题
2.如图,顺次连接矩形ABCD各边中点, 得到四边形EFGH,求证:四边形EFGH 是菱形。
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.

18.2.2《菱形的判定》教案

18.2.2《菱形的判定》教案
a.理解并掌握菱形的定义:一组邻边相等的平行四边形是菱形;
b.掌握菱形的性质:对角线互相垂直平分,且每一条对角线平分一组对角;
c.熟练运用三种菱形的判定方法:
-一组邻边相等的平行四边形是菱形;
-对角线互相垂直平分且相等的四边形是菱形;
-四边相等的四边形是菱形。
教学过程中,教师应通过实例演示、练习题强化等方法,使学生深刻理解这些核心内容。
c.四边相等的四边形是菱形。
本节课将围绕这些内容展开教学,使学生掌握菱形的判定方法,并能运用所学知识解决实际问题。
二、核心素养目标
本节课的核心素养目标包括:
1.培养学生的几何直观与空间观念,通过观察和分析菱形的性质,提高学生对几何图形的认识和理解;
2.培养学生的逻辑推理能力,使学生掌握菱形判定的逻辑推理过程,并能运用判定方法解决相关问题;
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“菱形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
b.对于判定方法的区分,教师要引导学生通过比较、分析,了解不同判定方法的使用场景。例如,判定方法1适用于已知平行四边形的一组邻边相等的情况;判定方法2适用于已知四边形的对角线互相垂直平分且相等的情况;判定方法3适用于已知四边形四边相等的情况。
c.在解决实际问题时,学生需要学会根据题目给出的条件,选择合适的判定方法。教师可以设置一些综合性较强的练习题,让学生在实际操作中学会灵活运用不同判定方法,提高解决问题的能力。

新人教版八年级数学下册教案—18.2.2 第2课时 菱形的判定

新人教版八年级数学下册教案—18.2.2 第2课时 菱形的判定

第2课时菱形的判定1.掌握菱形的判定方法;(重点)2.探究菱形的判定条件并合理利用它进行论证和计算.(难点)一、情境导入我们已经知道,有一组邻边相等的平行四边形是菱形.这是菱形的定义,我们可以根据定义来判定一个四边形是菱形.除此之外,还能找到其他的判定方法吗?菱形是一个中心对称图形,也是一个轴对称图形,具有如下的性质:1.两条对角线互相垂直平分;2.四条边都相等;3.每条对角线平分一组对角.这些性质,对我们寻找判定菱形的方法有什么启示呢?二、合作探究探究点一:菱形的判定【类型一】利用“有一组邻边相等的平行四边形是菱形”判定四边形是菱形如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.求证:四边形BCFE是菱形.解析:由题意易得,EF 与BC平行且相等,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE 是菱形.证明:∵BE=2DE,EF =BE,∴EF=2DE.∵D、E 分别是AB、AC的中点,∴BC =2DE且DE∥BC,∴EF=BC.又∵EF∥BC,∴四边形BCFE是平行四边形.又∵EF=BE,∴四边形BCFE 是菱形.方法总结:菱形必须满足两个条件:一是平行四边形;二是一组邻边相等.【类型二】利用“对角线互相垂直的平行四边形是菱形”判定四边形是菱形如图,AE∥BF,AC 平分∠BAD,且交BF于点C,BD平分∠ABC,且交AE于点D,连接CD.求证:(1)AC⊥BD;(2)四边形ABCD是菱形.解析:(1)证得△BAC是等腰三角形后利用“三线合一”的性质得到AC⊥BD即可;(2)首先证得四边形ABCD是平行四边形,然后根据“对角线互相垂直”得到平行四边形是菱形.证明:(1)∵AE∥BF,∴∠BCA=∠CAD.∵AC平分∠BAD,∴∠BAC=∠CAD,∴∠BCA=∠BAC,∴△BAC是等腰三角形.∵BD平分∠ABC,∴AC⊥BD;(2)∵△BAC是等腰三角形,∴AB=CB.∵BD平分∠ABC,∴∠CBD=∠ABD.∵AE∥BF,∴∠CBD =∠BDA,∴∠ABD=∠BDA,∴AB=AD,∴DA =CB.∵BC∥DA,∴四边形ABCD是平行四边形.∵AC⊥BD,∴四边形ABCD是菱形.方法总结:用判定方法“对角线互相垂直的平行四边形是菱形”证明四边形是菱形的前提条件是该四边形是平行四边形;对角线互相垂直的四边形不一定是菱形.【类型三】利用“四条边相等的四边形是菱形”判定四边形是菱形如图,已知△ABC,按如下步骤作图:①分别以A,C为圆心,大于12AC的长为半径画弧,两弧交于P,Q两点;②作直线PQ,分别交AB,AC于点E,D,连接CE;③过C作CF∥AB交PQ 于点F,连接AF.(1)求证:△AED≌△CFD;(2)求证:四边形AECF 是菱形.解析:(1)由作图知PQ 为线段AC的垂直平分线,从而得到AE=CE,AD=CD.然后根据CF∥AB得到∠EAC =∠FCA ,∠CFD =∠AED ,利用“AAS ”证得两三角形全等即可;(2)根据(1)中全等得到AE =CF .然后根据EF 为线段AC 的垂直平分线,得到EC =EA ,FC =F A .从而得到EC =EA =FC =F A ,利用“四边相等的四边形是菱形”判定四边形AECF 为菱形.证明:(1)由作图知PQ 为线段AC 的垂直平分线,∴AE =CE ,AD =CD .∵CF ∥AB ,∴∠EAC =∠FCA ,∠CFD =∠AED .在△AED与△CFD中,⎩⎪⎨⎪⎧∠EAC =∠FCA ,∠AED =∠CFD ,AD =CD ,∴△AED ≌△CFD (AAS);(2)∵△AED ≌△CFD ,∴AE =CF .∵EF 为线段AC的垂直平分线,∴EC =EA ,FC =F A ,∴EC =EA =FC =F A ,∴四边形AECF 为菱形.方法总结:判定一个四边形是菱形把握以下两起点:(1)以四边形为起点进行判定;(2)以平行四边形为起点进行判定.探究点二:菱形的判定的应用【类型一】 菱形判定中的开放性问题如图,平行四边形ABCD 中,AF 、CE 分别是∠BAD 和∠BCD 的平分线,根据现有的图形,请添加一个条件,使四边形AECF 为菱形,则添加的一个条件可以是__________(只需写出一个即可,图中不能再添加别的“点”和“线”).解析:∵AD∥BC,∴∠F AD=∠AFB.∵AF是∠BAD的平分线,∴∠BAF =∠F AD,∴∠BAF=∠AFB,∴AB=BF.同理ED =CD.∵AD=BC,AB=CD,∴AE=CF.又∵AE∥CF,∴四边形AECF是平行四边形.∵对角线互相垂直的平行四边形是菱形,则添加的一个条件可以是AC⊥EF.方法总结:菱形的判定方法常用的是三种:(1)定义;(2)四边相等的四边形是菱形;(3)对角线互相垂直的平行四边形是菱形.【类型二】菱形的性质和判定的综合应用如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)求证:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,使得∠EFD =∠BCD,并说明理由.解析:(1)首先利用“SSS”证明△ABC≌△ADC,可得∠BAC=∠DAC.再证明△ABF≌△ADF,可得∠AFD =∠AFB,进而得到∠AFD =∠CFE;(2)首先证明∠CAD=∠ACD,再根据“等角对等边”,可得AD=CD .再由条件AB =AD ,CB =CD ,可得AB =CB =CD =AD ,可得四边形ABCD 是菱形;(3)首先证明△BCF ≌△DCF ,可得∠CBF =∠CDF ,再根据BE ⊥CD 可得∠BEC =∠DEF =90°,进而得到∠EFD =∠BCD .(1)证明:在△ABC 和△ADC 中,⎩⎪⎨⎪⎧AB =AD ,BC =DC ,AC =AC ,∴△ABC ≌△ADC (SSS),∴∠BAC =∠DAC .在△ABF和△ADF中,⎩⎪⎨⎪⎧AB =AD ,∠BAF =∠DAF ,AF =AF ,∴△ABF ≌△ADF (SAS),∴∠AFD =∠AFB .∵∠AFB =∠CFE ,∴∠AFD =∠CFE ;(2)证明:∵AB ∥CD ,∴∠BAC =∠ACD .又∵∠BAC=∠DAC,∴∠CAD =∠ACD ,∴AD =CD .∵AB =AD ,CB =CD ,∴AB =CB =CD =AD ,∴四边形ABCD 是菱形;(3)解:当EB ⊥CD 于E 时,∠EFD =∠BCD .理由如下:∵四边形ABCD 为菱形,∴BC =CD ,∠BCF =∠DCF .在△BCF 和△DCF 中,⎩⎪⎨⎪⎧BC =CD ,∠BCF =∠DCF ,CF =CF ,∴△BCF ≌△DCF (SAS ),∴∠CBF=∠CDF .∵BE ⊥CD ,∴∠BEC =∠DEF =90°,则∠BCD +∠CBF =∠EFD +∠CDF =90°,∴∠EFD =∠BCD .方法总结:此题主要考查了全等三角形的判定与性质,以及菱形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.三、板书设计 1.菱形的判定 有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四条边相等的四边形是菱形.2.菱形的性质和判定的综合运用在运用判定时,要遵循先易后难的原则,让学生先会运用判定解决简单的证明题,再由浅入深,学会灵活运用.通过做不同形式的练习题,让学生能准确掌握菱形的判定并会灵活运用.。

《18.2.2 菱形的定义、性质和判定》课件

《18.2.2 菱形的定义、性质和判定》课件

D
C
你能否证明四边形AEDF是
菱形?
菱形性质的应用
已知:如图,四边形ABCD是边长为13cm的菱形,其 中对角线BD长10cm.
求:(1).对角线AC的长度; (2).菱形的面积
解:(1)∵四边形ABCD是菱形,
∴∠AED=900, DE 1 BD 1 10 5cm.
A
2
2
AE AD2 DE 2 132 52 12cm.
在△ABD中,
又∵BO=DO ∴AC⊥BD,AC平分∠BAD B
O C
同理: AC平分∠BCD; BD平分∠ABC和∠ADC
D
边 菱形的两组对边平行且相等 A
O
C
菱形的四条边相等
B 数学语言
菱形的两组对角分别相等 ∵四边形ABCD是菱形

菱形的邻角互补
∴∴∴∴∠OA∴A∠ADBD∠D=A=AOBD∥BC+CA=∠B;=CO∠CC=ABD∠B==CCOBDB=ADAC180°
∵ AB=BC=CD=DA ∴四边形ABCD是菱形
活动三 归纳总结
菱形常用的判定方法:
1.有一组邻边相等的平行四边形是菱形. 2.对角线互相垂直的平行四边形是菱形. 3.有四条边相等的四边形是菱形.
活动四 学以致用
老师说下列三个图形都是菱形,你相信吗?
5
34
43
5
有一组邻边相等的平行四边形叫做菱形
A D
O
C B
变式题(1):菱形两条对角线长为6和8,菱形 的边长为 5 ,面积为 4 。
(2):菱形ABCD的面积为96,对角线 AC长为16 ,此菱形的边长为 10 。
(3):菱形对角线的平方和等于一边平方

18.2.2第2课时菱形的判定

18.2.2第2课时菱形的判定

单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。

让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。

这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。

观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。

随机观察也是不可少的,是相当有趣的,如蜻蜓、蚯蚓、毛毛虫等,孩子一边观察,一边提问,兴趣很浓。

我提供的观察对象,注意形象逼真,色彩鲜明,大小适中,引导幼儿多角度多层面地进行观察,保证每个幼儿看得到,看得清。

看得清才能说得正确。

在观察过程中指导。

我注意帮助幼儿学习正确的观察方法,即按顺序观察和抓住事物的不同特征重点观察,观察与说话相结合,在观察中积累词汇,理解词汇,如一次我抓住时机,引导幼儿观察雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么样子的,有的孩子说:乌云像大海的波浪。

有的孩子说“乌云跑得飞快。

”我加以肯定说“这是乌云滚滚。

”当幼儿看到闪电时,我告诉他“这叫电光闪闪。

”接着幼儿听到雷声惊叫起来,我抓住时机说:“这就是雷声隆隆。

”一会儿下起了大雨,我问:“雨下得怎样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观察,让幼儿掌握“倾盆大雨”这个词。

雨后,我又带幼儿观察晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。

”这样抓住特征见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。

我还在观察的基础上,引导幼儿联想,让他们与以往学的词语、生活经验联系起来,在发展想象力中发展语言。

如啄木鸟的嘴是长长的,尖尖的,硬硬的,像医生用的手术刀―样,给大树开刀治病。

通过联想,幼儿能够生动形象地描述观察对象。

18.2.2 菱形(第2课时)

18.2.2 菱形(第2课时)

语文
小魔方站作品 盗版必究
谢谢您下载使用!
更多精彩内容,微信扫描二维码获取
扫描二维码获取更多资源
附赠 中高考状元学习方法


高考状元是一个特殊的群体,在许多 人的眼中,他们就如浩瀚宇宙里璀璨夺目 的星星那样遥不可及。但实际上他们和我 们每一个同学都一样平凡而普通,但他们 有是不平凡不普通的,他们的不平凡之处 就是在学习方面有一些独到的个性,又有 着一些共性,而这些对在校的同学尤其是 将参加高考的同学都有一定的借鉴意义。
18.2特殊的平行四边形
18.2.2菱形
(第2课时)
你知道如何判别菱形吗?
提示……
D
菱形
平行四边形
四边形

A B
O
C

菱形
(1)一组邻边相等的平行四边形是菱形. (2)四条边都相等的四边形是菱形.
(3)对角线互相垂直的平行四边形是菱形.
菱形的判定
定理:四条边都相等的四边形是菱形 已知:如图,在四边形ABCD中, D AB=BC=CD=DA.. A C 求证:四边形ABCD是菱形. 分析:利用菱形定义和两组对边分别相 B 等的四边形是平行四边形,可使问题得证. 证明: ∵AB=BC=CD=DA, ∴AB=CD,BC=DA. ∴四边形ABCD是平行四边形.. ∵AB=AD, ∴四边形ABCD是菱形.
班主任: 我觉得何旋今天取得这样的成绩, 我觉得,很重要的是,何旋是土生土长的北京 二中的学生,二中的教育理念是综合培养学生 的素质和能力。我觉得何旋,她取得今天这么 好的成绩,一个来源于她的扎实的学习上的基 础,还有一个非常重要的,我觉得特别想提的, 何旋是一个特别充满自信,充满阳光的这样一 个女孩子。在我印象当中,何旋是一个最爱笑 的,而且她的笑特别感染人的。所以我觉得她 很阳光,而且充满自信,这是她突出的这样一 个特点。所以我觉得,这是她今天取得好成绩 当中,心理素质非常好,是非常重要的。

人教版八年级数学下册第十八章 平行四边形18.2.2菱形 课件(2课时共64张)

人教版八年级数学下册第十八章 平行四边形18.2.2菱形  课件(2课时共64张)
A∴S△AOFra bibliotek=1 2
OA·OB=
1 2
×5×12=30,
∴S菱形ABCD=4S△AOB=4×30=120.
B
O
D
∵ AB AO2 BO2 52 122 13,
C
又∵菱形两组对边的距离相等,
∴S菱形ABCD=AB·h=13h,∴13h=120,得h= 11230.
课堂检测
能力提升题
求证:∠AFD=∠CBE. 证明:∵四边形ABCD是菱形, ∴CB=CD, CA平分∠BCD. ∴∠BCE=∠DCE.
B
F
C
EA
又 CE=CE,∴△BCE≌△DCE(SAS).
D
∴∠CBE=∠CDE.
∵在菱形ABCD中,AB∥CD,
∴∠AFD=∠EDC.∴∠AFD=∠CBE.
课堂小结


形 的


O
C


菱形的两组对角分别相等 角

菱形的邻角互补

B
怎样判断一 个四边形是 菱形?
菱形的两条对角线互相平分
对角线 菱形的两条对角线互相垂直平分,
并且每一条对角线平分一组对角。
素养目标
2. 经历菱形判定定理的探究过程,渗透类比 思想,体会研究图形判定的一般思路. 1. 掌握菱形的三种判定方法,能根据不同的已 知条件,选择适当的判定定理进行推理和计算 .
B
O
D
C
= AC(BO+DO)
= AC·BD. 菱形的面积 = 底×高 = 对角线乘积的一半
探究新知 素养考点 1 利用菱形的面积公式解答问题
例3 如图,菱形花坛ABCD的边长为20m,∠ABC=60°, 沿着菱形的对角线修建了两条小路AC和BD,求两条小路的 长和花坛的面积(结果分别精确到0.01m和0.1m2).

人教版数学八年级下册18.2.2第2课时《 菱形的判定》教案

人教版数学八年级下册18.2.2第2课时《 菱形的判定》教案

人教版数学八年级下册18.2.2第2课时《菱形的判定》教案一. 教材分析《菱形的判定》是人教版数学八年级下册第18.2.2节的内容,本节课的主要内容是让学生掌握菱形的判定方法,并能够运用判定方法解决相关问题。

在教材中,已经给出了菱形的定义和性质,本节课是在此基础上进行判定方法的学习。

通过本节课的学习,学生能够进一步理解菱形的性质,提高解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了菱形的定义和性质,能够识别和理解菱形的特点。

但是,对于如何判定一个四边形是菱形,可能还存在一定的困难。

因此,在教学过程中,需要引导学生通过观察、思考、讨论等方式,发现和总结菱形的判定方法。

三. 教学目标1.了解菱形的判定方法,能够运用判定方法判断一个四边形是否为菱形。

2.提高学生的观察能力、思考能力和解决问题的能力。

3.培养学生的合作意识和团队精神。

四. 教学重难点1.教学重点:菱形的判定方法。

2.教学难点:如何引导学生发现和总结菱形的判定方法。

五. 教学方法1.启发式教学:通过提问、引导等方式,激发学生的思考,引导学生发现和总结菱形的判定方法。

2.小组合作:学生进行小组讨论,培养学生的合作意识和团队精神。

3.实例分析:通过分析具体的实例,让学生更好地理解菱形的判定方法。

六. 教学准备1.准备相关的实例和图片,用于分析和讲解菱形的判定方法。

2.准备练习题,用于巩固所学内容。

七. 教学过程1.导入(5分钟)通过提问方式复习菱形的定义和性质,引导学生思考:如何判断一个四边形是菱形呢?2.呈现(10分钟)展示相关的实例和图片,让学生观察和分析,引导学生发现菱形的判定方法。

3.操练(10分钟)让学生分组讨论,每组选取一个实例,分析并判断其是否为菱形。

讨论结束后,各组汇报成果。

4.巩固(10分钟)讲解实例分析中的关键步骤,让学生再次回顾和巩固菱形的判定方法。

5.拓展(10分钟)出示一些有关菱形的判断题,让学生独立完成,提高解决问题的能力。

菱形菱形的判定课件人教版数学八年级下册

菱形菱形的判定课件人教版数学八年级下册

所以CE=AE=AC.
又因为AF=CE,所以AF=AE=AC.
7.(丹东)如图,在▱ABCD中,O是AD的中点,连接CO并延长,交BA的延长线于 点E,连接AC,DE.
(1)求证:四边形ACDE是平行四边形. (2)若AB=AC,判断四边形ACDE的形状,并说明理由.
8.(滨州)如图,矩形ABCD的对角线AC,BD相交于点O,BE∥AC, AE∥BD.
第4题图
5.如图,过▱ABCD的对角线交点O作互相垂直的两条直线EG,FH,
与AD,AB,BC,CD分别相交于点E,F,G,H.求证:四边形EFGH是
菱形.
证明:因为四边形ABCD是平行四边形,
所以AD∥BC,OB=OD.
所以∠ODE=∠OBG,∠OED=∠OGB.
所以△EOD≌△GOB.
所以OE=OG.
第十八章 平行四边形
18.2 特殊的平行四边形
菱形——菱形的判定
自主导学
菱形的判定方法: 方法1(定义法):有一组___邻__边___相等的平行四边形是菱形. 方法2:对角线__互__相__垂__直____的平行四边形是菱形. 方法3:四条边___相__等___的四边形是菱形.
探究学习
对角线互相垂直的平行四边形是菱形 【例1】如图,▱ABCD的对角线AC的垂直平分线与 边AD,BC分别相交于点E,F.求证:四边形AFCE是菱 形.
(1)求证:AE=DF.
(2)四边形AEFD能成为菱形吗?若能,求出相应的t值;若不能,请说 明理由.
解:能. 因为∠B=∠DFC=90°, 所以DF∥AB. 又DF=AE, 所以四边形AEFD是平行四边形. 当AD=AE时,四边形AEFD是菱形,即60-4t=2t,解得t=10. 所以当t=10时,四边形AEFD是菱形.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

18.2.2 菱形第2课时菱形的判定一、选择题(共10小题)1、在平面直角坐标系中,已知点A(0,2),B(﹣2,0),C(0,﹣2),D(2,0),则以这四个点为顶点的四边形ABCD是()A、矩形B、菱形C、正方形D、梯形2、用两个全等的等边三角形,可以拼成下列哪种图形()A、矩形B、菱形C、正方形D、等腰梯形3、如图,下列条件之一能使平行四边形ABCD是菱形的为()①AC⊥BD;②∠BAD=90°;③AB=BC;④AC=BD.A、①③B、②③C、③④D、①②③4、红丝带是关注艾滋病防治问题的国际性标志,人们将红丝带剪成小段,并用别针将折叠好的红丝带别在胸前,如图所示.红丝带重叠部分形成的图形是()A、正方形B、等腰梯形C、菱形D、矩形5、(在同一平面内,用两个边长为a的等边三角形纸片(纸片不能裁剪)可以拼成的四边形是()A、矩形B、菱形C、正方形D、梯形6、用两个边长为a的等边三角形纸片拼成的四边形是()A、等腰梯形B、正方形C、矩形D、菱形7、汶川地震后,吉林电视台法制频道在端午节组织发起“绿丝带行动”,号召市民为四川受灾的人们祈福.人们将绿丝带剪成小段,并用别针将折叠好的绿丝带别在胸前,如图所示,绿丝带重叠部分形成的图形是()A、正方形B、等腰梯形C、菱形D、矩形8、能判定一个四边形是菱形的条件是()A、对角线相等且互相垂直B、对角线相等且互相平分C、对角线互相垂直D、对角线互相垂直平分9、四边形的四边长顺次为a、b、c、d,且a2+b2+c2+d2=ab+bc+cd+ad,则此四边形一定是()A、平行四边形B、矩形C、菱形D、正方形二、填空题(共8小题)11、(如图,四边形ABCD的对角线互相平分,要使它变为菱形,需要添加的条件是_________(只填一个你认为正确的即可).12、如图,如果要使平行四边形ABCD成为一个菱形,需要添加一个条件,那么你添加的条件是_________.13、(如图,平行四边形ABCD中,AF、CE分别是∠BAD和∠BCD的角平分线,根据现有的图形,请添加一个条件,使四边形AECF为菱形,则添加的一个条件可以是_________.(只需写出一个即可,图中不能再添加别的“点”和“线”)14、在四边形ABCD中,对角线AC、BD交于点O,从(1)AB=CD;(2)AB∥CD;(3)OA=OC;(4)OB=OD;(5)AC⊥BD;(6)AC平分∠BAD这六个条件中,选取三个推出四边形ABCD是菱形.如(1)(2)(5)=>ABCD是菱形,再写出符合要求的两个:_________ =>ABCD是菱形;_________=>ABCD是菱形.15、若四边形ABCD是平行四边形,请补充条件_________(写一个即可),使四边形ABCD是菱形.16、在四边形ABCD中,给出四个条件:①AB=CD,②AD∥BC,③AC⊥BD,④AC平分∠BAD,由其中三个条件推出四边形ABCD是菱形,你认为这三个条件是_________.(写四个条件的不给分,只填序号)17、要说明一个四边形是菱形,可以先说明这个四边形是_________形,再说明_________(只需填写一种方法)18、如图,四边形ABCD是平行四边形,AC、BD相交于点O,不添加任何字母和辅助线,要使四边形ABCD是菱形,则还需添加一个条件是_________(只需填写一个条件即可).三、解答题(共11小题)19、(如图,在△ABC中,AB=AC,D是BC的中点,连接AD,在AD的延长线上取一点E,连接BE,CE.(1)求证:△ABE≌△ACE;(2)当AE与AD满足什么数量关系时,四边形ABEC是菱形?并说明理由.20、如图,在▱ABCD中,E,F分别为边AB,CD的中点,连接DE、BF、BD.(1)求证:△ADE≌△CBF.(2)若AD⊥BD,则四边形BFDE是什么特殊四边形?请证明你的结论.21、如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.(1)求证:AE=DF;(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.22、已知:如图,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E为AB中点,求证:四边形BCDE是菱形.23、如图,在△ABC和△DCB中,AB=DC,AC=DB,AC与DB交于点M.(1)求证:△ABC≌△DCB;(2)过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N,试判断线段BN与CN 的数量关系,并证明你的结论.24、如图,△ABC中,AC的垂直平分线MN交AB于点D,交AC于点O,CE∥AB交MN于E,连接AE、CD.(1)求证:AD=CE;(2)填空:四边形ADCE的形状是_________.25、如图△ABC与△CDE都是等边三角形,点E、F分别在AC、BC上,且EF∥AB (1)求证:四边形EFCD是菱形;(2)设CD=4,求D、F两点间的距离.26、如图,在梯形纸片ABCD中,AD∥BC,AD>CD,将纸片沿过点D的直线折叠,使点C落在AD上的点C处,折痕DE交BC于点E,连接C′E.求证:四边形CDC′E是菱形.27、已知:如图,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别相交于点E、F.求证:四边形AFCE是菱形.28、如图,等边△ABC的边长为2,E是边BC上的动点,EF∥AC交边AB于点F,在边AC上取一点P,使PE=EB,连接FP.(1)请直接写出图中与线段EF相等的两条线段;(不再另外添加辅助线)(2)探究:当点E在什么位置时,四边形EFPC是平行四边形?并判断四边形EFPC是什么特殊的平行四边形,请说明理由;(3)在(2)的条件下,以点E为圆心,r为半径作圆,根据⊙E与平行四边形EFPC四条边交点的总个数,求相应的r的取值范围.29、如图,已知△ABC的面积为3,且AB=AC,现将△ABC沿CA方向平移CA长度得到△EFA.(1)求△ABC所扫过的图形的面积;(2)试判断AF与BE的位置关系,并说明理由;(3)若∠BEC=15°,求AC的长.答案与评分标准一、选择题(共10小题)1、在平面直角坐标系中,已知点A(0,2),B(﹣2,0),C(0,﹣2),D(2,0),则以这四个点为顶点的四边形ABCD是()A、矩形B、菱形C、正方形D、梯形考点:坐标与图形性质;菱形的判定。

分析:画出草图,求得各边的长,再根据特殊四边形的判定方法判断.解答:解:在平面直角坐标系中画出图后,可发现这个四边形的对角线互相平分,先判断为平行四边形,对角线还垂直,那么这样的平行四边形应是菱形.故选B.点评:动手画出各点后可很快得到四边形对角线的特点.2、用两个全等的等边三角形,可以拼成下列哪种图形()A、矩形B、菱形C、正方形D、等腰梯形考点:等边三角形的性质;菱形的判定。

专题:操作型。

分析:由题可知,得到的四边形的四条边也相等,得到的图形是菱形.解答:解:由于两个等边三角形的边长都相等,则得到的四边形的四条边也相等,即是菱形.故选B.点评:本题利用了菱形的概念:四边相等的四边形是菱形.3、(如图,下列条件之一能使平行四边形ABCD是菱形的为()①AC⊥BD;②∠BAD=90°;③AB=BC;④AC=BD.A、①③B、②③C、③④D、①②③考点:菱形的判定;平行四边形的性质。

专题:计算题。

分析:菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.解答:解:根据菱形的判定:对角线互相垂直的平行四边形是菱形,有一组邻边相等的平行四边形是菱形可知:①,③正确.故选A.点评:本题考查菱形的判定,即对角线互相垂直的平行四边形是菱形,有一组邻边相等的平行四边形是菱形.4、红丝带是关注艾滋病防治问题的国际性标志,人们将红丝带剪成小段,并用别针将折叠好的红丝带别在胸前,如图所示.红丝带重叠部分形成的图形是()A、正方形B、等腰梯形C、菱形D、矩形考点:菱形的判定。

专题:应用题。

分析:首先可判断重叠部分为平行四边形,且两条彩带宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形.解答:解:过点A作AE⊥BC于E,AF⊥CD于F,因为两条彩带宽度相同,所以AB∥CD,AD∥BC,AE=AF.∴四边形ABCD是平行四边形.∵S▱ABCD=BC•AE=CD•AF.又AE=AF.∴BC=CD,∴四边形ABCD是菱形.故选C.点评:本题利用了平行四边形的判定和平行四边形的面积公式、一组邻边相等的平行四边形是菱形.5、在同一平面内,用两个边长为a的等边三角形纸片(纸片不能裁剪)可以拼成的四边形是()A、矩形B、菱形C、正方形D、梯形考点:菱形的判定;等边三角形的性质。

专题:操作型。

分析:用两个边长为a的等边三角形拼成的四边形,它的四条边长都为a,根据菱形的定义四边相等的四边形是菱形.解答:解:根据题意得,拼成的四边形四边相等,则是菱形.故选B.点评:此题主要考查了等边三角形的性质,菱形的定义.6、用两个边长为a的等边三角形纸片拼成的四边形是()A、等腰梯形B、正方形C、矩形D、菱形考点:菱形的判定;等边三角形的性质。

分析:由于两个等边三角形的边长都相等,则得到的四边形的四条边也相等,即是菱形.解答:解:由题意可得:得到的四边形的四条边相等,即是菱形.故选D.点评:本题利用了菱形的概念:四边相等的四边形是菱形.7、汶川地震后,吉林电视台法制频道在端午节组织发起“绿丝带行动”,号召市民为四川受灾的人们祈福.人们将绿丝带剪成小段,并用别针将折叠好的绿丝带别在胸前,如图所示,绿丝带重叠部分形成的图形是()A、正方形B、等腰梯形C、菱形D、矩形考点:菱形的判定。

专题:应用题。

分析:首先可判断重叠部分为平行四边形,且两条丝带宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形.解答:解:过点A作AE⊥BC于E,AF⊥CD于F,因为两条彩带宽度相同,所以AB∥CD,AD∥BC,AE=AF.∴四边形ABCD是平行四边形.∵S▱ABCD=BC•AE=CD•AF.又AE=AF.∴BC=CD,∴四边形ABCD是菱形.故选C.点评:本题利用了平行四边形的判定和平行四边形的面积公式、一组邻边相等的平行四边形是菱形.8、能判定一个四边形是菱形的条件是()A、对角线相等且互相垂直B、对角线相等且互相平分C、对角线互相垂直D、对角线互相垂直平分考点:菱形的判定。

分析:根据菱形的判定方法:对角线互相垂直平分来判断即可.解答:解:菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.只有D能判定为是菱形,故选D.点评:本题考查菱形对角线互相垂直平分的判定.9、四边形的四边长顺次为a、b、c、d,且a2+b2+c2+d2=ab+bc+cd+ad,则此四边形一定是()A、平行四边形B、矩形C、菱形D、正方形考点:菱形的判定;非负数的性质:偶次方。

相关文档
最新文档