2020年“春笋杯”数学花园探秘初赛试卷(五年级a卷)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年“迎春杯”数学花园探秘初赛试卷(五年级A卷)一、填空题(共4小题,每小题8分,满分32分)
1.(8分)算式(19×19﹣12×12)÷(﹣)的计算结果是.
2.(8分)有一种细胞,每隔1小时死亡2个细胞,余下的每个细胞分裂成2个,如果经过8小时后细胞的个数为1284,那么,最开始的时候有个细胞.
3.(8分)如图,一道乘法竖式已经填出了2、0、1、6,那么乘积是.
4.(8分)有一个数列,第一项为12,第二项为19,从第三项起,如果它的前两项和是奇数,那么该项就等于前两项的和,如果它的前两项的和是偶数,该项就等于前两项的差(较大数减较小数).那么,这列数中第项第一次超过2016.
二、填空题(共4小题,每小题10分,满分40分)
5.(10分)四位数的所有因数中,有3个是质数,其它39个不是质数.那么,四位数有个因数.
6.(10分)图中,A、B、C、D、E是正五边形各边的中点,那么,图中共有个梯形.
7.(10分)对于自然数N,如果1﹣9这九个自然数中至少有六个数可以整除N,则称N是一个“六合数”,则在大于2000的自然数中,最小的“六合数”是.8.(10分)如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道
你们选的数了!”.你认为甲和丁选的数的乘积是.
填空题Ⅲ(每空12分,共36分)
9.(12分)正八边形的边长是16,那么阴影部分的面积是.
10.(12分)某城市早7:00到8:00是高峰时段,所有车辆的行驶速度变为原来的一半.每天早上6:50,甲乙两人从这城市的A、B两地同时出发,相向而行,在距离A地24千米的地方相遇,如果乙早出发20分钟,两人将在距离A地20千米的地方相遇;如果甲晚出发20分钟,两人恰好在AB中点相遇.那么,AB两地相距千米.11.(12分)在空格中填入数字1﹣5,使得每行和每列数字不重复,每个除法从上向下或者从左到右运算都能够整除.那么第二行的前三个数字依次组成的三位数是.
2016年“迎春杯”数学花园探秘初赛试卷(五年级A卷)
参考答案与试题解析
一、填空题(共4小题,每小题8分,满分32分)
1.(8分)算式(19×19﹣12×12)÷(﹣)的计算结果是228.
【解答】解:(19×19﹣12×12)÷(﹣)
=(19×19﹣12×12)÷
=(19×19﹣12×12)×
=12×19
=228
故答案为:228.
2.(8分)有一种细胞,每隔1小时死亡2个细胞,余下的每个细胞分裂成2个,如果经过8小时后细胞的个数为1284,那么,最开始的时候有9个细胞.
【解答】解:第8小时开始时有:1284÷2+2=644(个)
第7小时开始时有:644÷2+2=324(个)
第6小时开始时有:324÷2+2=164(个)
第5小时开始时有:164÷2+2=84(个)
第4小时开始时有:84÷2+2=44(个)
第3小时开始时有:44÷2+2=24(个)
第2小时开始时有:24÷2+2=14(个)
第1小时开始时有:14÷2+2=9(个)
答:最开始的时候有9个细胞.
故答案为:9.
3.(8分)如图,一道乘法竖式已经填出了2、0、1、6,那么乘积是6156.
【解答】解:依题意可知
乘数中的三位数乘以2结果是一个四位数,那么百位数字是大于4的数字,再根据数字0得知结果是1000多是数字那么乘数中的百位数字是5.而且乘数的三位数的十位数字乘以2没有进位.
同时这三位数乘以一个数还是结果是三位数推理出乘数中2前面的数字是1,即乘数的两位数是12.
再根据结果中的尾数是6,那么三位数的乘数的个位是3.
再根据数字1得0+1=1,那么这个三位乘数是513
故答案为:6156
4.(8分)有一个数列,第一项为12,第二项为19,从第三项起,如果它的前两项和是奇数,那么该项就等于前两项的和,如果它的前两项的和是偶数,该项就等于前两项的差(较大数减较小数).那么,这列数中第252项第一次超过2016.
【解答】解:依题意可知:
数列为12,19,31,12,43,55,12,67,89,12,101,113,12…
规律总结每三个数是一组如果把12都去掉发现是以19为首项的公差为12的等差数列.(2016﹣19)÷12=166 (5)
说明19+167×12=2023.
说明是等差数列的168项.
因为每组少计算一个数字,那么项数就是168÷2×3=252
故答案为:252
二、填空题(共4小题,每小题10分,满分40分)
5.(10分)四位数的所有因数中,有3个是质数,其它39个不是质数.那么,四位数有12个因数.
【解答】解:首先根据奇偶位数和相等一定是11的倍数.因数一共的个数是3+39=42
(个),将42分解成3个数字相乘42=2×3×7.
=a×b2×c6.黑豆网https://黑豆网是国内不错的在线观看电影的网站,涵盖电影,电视剧,综艺,动漫等在线观看资源!
如果是11×52×26=17600(不是四位数不满足条件).再看一下如果这个数字最小是
=11×32×26=6336.
=3663=11×37×32.因数的个数共2×2×3=12(个).
故答案为:12个.
6.(10分)图中,A、B、C、D、E是正五边形各边的中点,那么,图中共有35个梯形.
【解答】解:根据分析可得,
5×5+2×5
=25+10
=35(个)
答:图中共有35个梯形.
故答案为:35.
7.(10分)对于自然数N,如果1﹣9这九个自然数中至少有六个数可以整除N,则称N是一个“六合数”,则在大于2000的自然数中,最小的“六合数”是2016.
【解答】解:依题意可知:
要满足是六合数.分为是3的倍数和不是3的倍数.
如果不是3的倍数那么一定是1,2,4,8,5,7的倍数,那么他们的最小公倍数为:8×5×7=280.那么280的倍数大于2000的最小的数字是2240.
如果是3的倍数.同时满足是1,2,3,6的倍数.再满足2个数字即可.
大于2000的最小是2004(1,2,3,4,6倍数)不符合题意;
2010是(1,2,3,5,6倍数)不符合题意;
2016是(1,2,3,4,6,7,8,9倍数)满足题意.