对数与对数运算2 精品教案
2.2.1_对数与对数运算(2)_课件(人教A版必修1)
)
12 解析:原式=log6 12-log62=log6 =log6 3. 2
答案:C
• 4.若logab·log3a=4,则b的值为________. • • • • • 答案:81 5.已知a2=m,a3=n,求2logam+logan. 解:由a2=m,a3=n, 得logam=2,logan=3, ∴2logam+logan=2×2+3=7.
(3)在使用换底公式时, 底数的取值不唯一, 应根 据实际情况选择. (4)重视以下结论的应用: ① logac· ca = 1 ; ② logab· bc· ca = 1 ; ③ log log log m loganb = logab. n
m
思考感悟 m nbm= logab(a>0 (1)loga n ∈N*)成立吗? (2)(logax)n=logaxn 正确吗? 提示:(1)成立.由换底公式可得 loganbm= mlgb m = log b. nlga n a 且 a≠1,b>0,m、n
n个
(2)不正确. ∵(logax)n=(logax· ax· logax), logaxn log „· 而 =nlogax=logax+logax+„+logax,∴一般两式不相等.
互 动 课 堂
典 例 导 悟
类型一 对数运算性质的运用 [例 1] 求下列各式的值. 1 (1)4lg2+3lg5-lg ; 5 1 1+ lg9-lg240 2 (2) ; 2 36 1- lg27+lg 3 5 3 (3)lg +lg70-lg3; 7 (4)lg22+lg5· lg20-1.
n个
自 我 检 测 1.若 a>0,a≠1,x>0,y>0,x>y,下列式子 中正确的个数是( )
对数与对数的运算市公开课获奖教案省名师优质课赛课一等奖教案
对数与对数的运算教案一、教学目标:1. 理解对数的概念及其运算规则;2. 掌握对数的运算方法;3. 能够解决涉及对数的实际问题。
二、教学重难点:1. 掌握对数的基本概念及其运算规则;2. 理解并能够正确应用对数与对数之间的运算。
三、教学内容与方法:1. 教学内容:(1) 对数的定义及性质介绍;(2) 对数的运算规则;(3) 对数的应用。
2. 教学方法:(1) 课堂讲解法:通过讲解对数的定义及性质,引导学生理解对数的概念;(2) 案例分析法:通过实际问题分析,引导学生掌握对数的运算方法;(3) 课堂练习法:通过课堂练习巩固所学知识。
四、教学步骤:1. 引入:通过提问的方式,询问学生对对数的理解程度,并激发学生对对数的兴趣。
2. 对数的定义及性质介绍:(1) 定义:介绍对数的定义,即对于任意正数a和底数为b的对数运算,定义为满足b的x次方等于a的x的值。
(2) 性质:介绍对数运算的基本性质,包括对数运算的单调性、对数运算的底数性质等。
3. 对数的运算规则:(1) 同底数相乘的运算规则;(2) 同底数相除的运算规则;(3) 底数为10的运算规则。
4. 对数的应用:(1) 对数在指数函数中的应用;(2) 对数在科学计数法中的应用;(3) 对数在解决实际问题中的应用。
5. 案例分析:通过具体实例分析,引导学生掌握对数的运算方法。
6. 课堂练习:布置一些练习题目,让学生在课堂上进行练习,并即时批改答案,帮助学生查漏补缺。
7. 拓展延伸:对于一些对数运算的特殊情况,进行延伸讨论,帮助学生更深入理解对数运算。
8. 总结回顾:对本节课所学的内容进行总结回顾,澄清学生的疑惑。
五、教学评价:通过课堂上的练习和学生的参与情况,评价学生是否掌握了对数和对数运算的概念、运算规则,并能够正确应用于解决实际问题。
六、教学拓展:1. 引导学生进一步思考,深入理解对数运算的本质及其应用领域;2. 鼓励学生自主探索,寻找更多有关对数的应用案例,并进行分享和讨论。
《对数与对数运算》教学设计(精品)
对数与对数运算(一)(一)教学目标1.知识技能:①理解对数的概念,了解对数与指数的关系;②理解和掌握对数的性质;③掌握对数式与指数式的关系.2.过程与方法:通过与指数式的比较,引出对数定义与性质.3.情感、态度、价值观(1)学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力.(2)通过对数的运算法则的学习,培养学生的严谨的思维品质.(3)在学习过程中培养学生探究的意识.(4)让学生理解平均之间的内在联系,培养分析、解决问题的能力.(二)教学重点、难点(1)重点:对数式与指数式的互化及对数的性质(2)难点:推导对数性质的(三)教学方法启发式启发学生从指数运算的需求中,提出本节的研究对象——对数,从而由指数与对数的关系认识对数,并掌握指数式与对数式的互化、而且要明确对数运算是指数运算的逆运算.引导学生在指数式与对数式的互化过程中,加深对于定义的理解,为下一节学习对数的运算性质打好基础.(四)教学过程教学环节教学内容师生互动设计意图提出问题1.提出问题(P72思考题)13 1.01xy=⨯中,哪一年的老师提出问题,学生思考回答.由实际问题引入,激发人口数要达到10亿、20亿、30亿……,该如何解决?即:1820301.01, 1.01, 1.01,131313x x x ===在个式子中,x 分别等于多少?象上面的式子,已知底数和幂的值,求指数,这就是我们这节课所要学习的对数(引出对数的概念).启发学生从指数运算的需求中,提出本节的研究对象——对数,学生的学习积极性.概念 形成合作探究:若1.01x =1318,则x 称作是以1.01为底的1318的对数.你能否据此给出一个一般性的结论?一般地,如果a x=N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.举例:如:24416,2log 16==则,读作2是以4为底,16的对数.1242=,则41log 22=,读作12是以4为底2的对数.合作探究 师:适时归纳总结,引出对数的定义并板书.让学生经历从“特殊一一般”,培养学生“合情推理”能力,有利于培养学生的创造能力.概念 深化 1. 对数式与指数式的互化 在对数的概念中,要注意:(1)底数的限制a >0,且a ≠1 (2)log x a a N N x =⇔= 指数式⇔对数式 幂底数←a →对数底数 指 数←x →对数 幂 ←N→真数掌握指数式与对数式的互化、而且要明确对数运算是指数运算的逆运算.通过本环节的教学,培养学生的用联系的关点观察问题.说明:对数式log a N 可看作一记号,表示底为a (a >0,且a ≠1),幂为N 的指数工表示方程x a N =(a >0,且a ≠1)的解. 也可以看作一种运算,即已知底为a (a >0,且a ≠1)幂为N ,求幂指数的运算. 因此,对数式log a N 又可看幂运算的逆运算. 2. 对数的性质:提问:因为a >0,a ≠1时,log x N a a N x =⇔=则 由1、a 0=1 2、a 1=a 如何转化为对数式②负数和零有没有对数? ③根据对数的定义,log a N a =? (以上三题由学生先独立思考,再个别提问解答) 由以上的问题得到① 011,a a a == (a >0,且a ≠1) ② ∵a >0,且a ≠1对任意的力,10log N 常记为lg N .恒等式:log a N a =N 3. 两类对数① 以10为底的对数称为常用对数,10log N 常记为lg N .② 以无理数e =2.71828…为底的对数称为自然对数,log e N 常记为ln N .备选例题例1 将下列指数式与对数式进行互化.(1)64)41(=x(2)51521=-(3)327log 31-= (4)664log -=x【分析】利用a x = N ⇔x = log a N ,将(1)(2)化为对数式,(3)(4)化为指数式. 【解析】(1)∵64)41(=x ,∴x =41log 64(2)∵51521=-,∴2151log 5-= (3)∵327log 31-=,∴27)31(3=-(4)∵log x 64 = –6,∴x -6 = 64.【小结】对数的定义是对数形式与指数形式互化的依据,同时,教材的“思考”说明了这一点. 在处理对数式与指数式互化问题时,依据对数的定义a b = N ⇔b = log a N 进行转换即可.例2 求下列各式中的x . (1)32log 8-=x ; (2)4327log =x ; (3)0)(log log 52=x ; 【解析】(1)由32log 8-=x得32332)2(8--==x = 2–2,即41=x .(2)由4327log =x ,得343327==x ,∴813)3(4343===x .(3)由log 2 (log 5x ) = 0得log 5x = 20 = 1. ∴x = 5.【小结】(1)对数式与指数式的互化是求真数、底数的重要手段.(2)第(3)也可用对数性质求解.如(3)题由log 2(log 5x ) = 0及对数性质log a 1=0. 知log 5x = 1,又log 55 = 1. ∴x = 5.对数与对数运算(二)(一)教学目标1.知识与技能:理解对数的运算性质.2.过程与方法:通过对数的运算性质的探索及推导过程,培养学生的“合情推理能力”、“等价转化”和“演绎归纳”的数学思想方法,以及创新意识.3.情感、态态与价值观通过“合情推理”、“等价转化”和“演绎归纳”的思想运用,培养学生对立统一、相互联系,相互转化以及“特殊—一般”的辩证唯物主义观点,以及大胆探索,实事求是的科学精神.(二)教学重点、难点1.教学重点:对数运算性质及其推导过程. 2.教学难点: 对数的运算性质发现过程及其证明. (三)教学方法针对本节课公式多、思维量大的特点,采取实例归纳,诱思探究,引导发现等方法. (四)教学过程教学环节教学内容师生互动设计意图复习引入复习:对数的定义及对数恒等式log baN b a N=⇔=(a>0,且a≠1,N>0),指数的运算性质.;m n m n m n m na a a a a a+-⋅=÷=();mnm n mn n ma a a a==学生口答,教师板书.对数的概念和对数恒等式是学习本节课的基础,学习新知前的简单复习,不仅能唤起学生的记忆,而且为学习新课做好了知识上的准备.提出问题探究:在上课中,我们知道,对数式可看作指数运算的逆运算,你能从指数与对数的关系以及指数运算性质,得出相应的对数运算性质吗?如我们知道m n m na a a+⋅=,那m n+如何表示,能用对数式运算吗?如:,,m n m n m na a a M a N a+⋅===设.于是,m nMN a+=由对数的定义得到log,maM a m M=⇔=lognaN a n N=⇔=logm naMN a m n MN+=⇔+=log log log()a a aM N MN∴+=放出投影学生探究,教师启发引导.即:同底对数相加,底数不变,真数相乘提问:你能根据指数的性质按照以上的方法推出对数的其它性质吗?概念形成(让学生探究,讨论)如果a>0且a≠1,M>0,N>0,那么:(1)log log loga a aMN M N=+(2)log log loga a aMM NN=-(3)log log()na aM n M n R=∈证明:(1)令,m nM a N a==则:m n m nMa a aN-=÷=logaMm nN∴-=又由,m nM a N a==log,loga am M n N∴==即:log log loga a aMM N m nN-=-=(3)0,log,Nn nan N M M a≠==时令则log,bnab n M M a==则N bn na a∴=N b∴=让学生多角度思考,探究,教师点拨.让学生讨论、研究,教师引导.让学生明确由“归纳一猜想”得到的结论不一定正确,但是发现数学结论的有效方法,让学生体会“归纳一猜想一证明”是数学中发现结论,证明结论的完整思维方法,让学生体会回到最原始(定义)的地方是解决数学问题的有效策略.通过这一环节的教学,训练学生思维的广阔性、发散性,进一步加深学生对字母的认识和利用,体会即log log log aa a MM N N=- 当n =0时,显然成立.log log na a M n M ∴=从“变”中发现规律.通过本环节的教学,进一步体会上一环节的设计意图.概念 深化合作探究: 1. 利用对数运算性质时,各字母的取值范围有什么限制条件?2. 性质能否进行推广?(师组织,生交流探讨得出如下结论) 底数a >0,且a ≠1,真数M >0,N >0;只有所得结果中对数和所给出的数的对数都存在时,等式才能成立.(生交流讨论) 性质(1)可以推广到n 个正数的情形,即 log a (M 1M 2M 3…M n ) =log a M 1+log a M 2 +log a M 3+…+log a M n(其中a >0,且a ≠1,M 1、M 2、M 3…M n >0).应用 举例例1 用log a x ,log a y ,log a z 表示下列各式(1)log a xyz(2)23log 8a x y学生思考,口答,教师板演、点评. 例1分析:利用对数运算性质直接化简.(1)log axyzlog log a a xy z =-通过例题的解答,巩固所学的对数运算法则,提高运算能力.备选例题例1 计算下列各式的值: (1)245lg 8lg 344932lg21+-;(2)22)2(lg 20lg 5lg 8lg 325lg +⋅++. 【解析】(1)方法一:原式=2122325)57lg(2lg 34)7lg 2(lg 21⨯+--=5lg 217lg 2lg 27lg 2lg 25++-- =5lg 212lg 21+ =21)5lg 2(lg 21=+. 方法二:原式=57lg 4lg 724lg +- =475724lg⨯⨯ =21)52lg(=⨯.(2)原式=2lg5 + 2lg2 + lg5 (2lg2 + lg5) + (lg2)2 =2lg10 + (lg5 + lg2)2 = 2 + (lg10)2 = 2 + 1 = 3.【小结】易犯lg52 = (lg5)2的错误.这类问题一般有两种处理方法:一种是将式中真数的积、商、方根运用对数的运算法则将它们化为对数的和、差、积、商,然后化简求值;另一种方法是将式中的对数的和、差、积、商运用对数的运算法则将它们化为真数的积、商、幂、方根,然后化简求值. 计算对数的值时常用到lg2 + lg5 = lg10 = 1.例2:(1)已知lg2 = 0.3010,lg3 = 0.4771,求lg 45; (2)设log a x = m ,log a y = n ,用m 、n 表示][log 344yxa a ⋅;(3)已知lg x = 2lg a + 3lg b – 5lg c ,求x .【分析】由已知式与未知式底数相同,实现由已知到未知,只须将未知的真数用已知的真数的乘、除、幂表示,借助对数运算法则即可解答.【解析】(1)1190lg 45lg 222==1[lg9lg10lg 2]2=+- 1[2lg31lg 2]2=+- =-+=2lg 21213lg 0.4771+0.5 – 0.1505 = 0.8266 (2)434log []a x a y⋅ 1113412log log log a a a a x y =+-.1213141log 121log 3141m n y x a a -+=-+=(3)由已知得:532532lglg lg lg lg cb ac b a x =-+=,∴532c b a x =.【小结】①比较已知和未知式的真数,并将未知式中的真数用已知式的真数的乘、除、乘方表示是解题的关键,并且应注意对数运算法则也是可逆的;②第(3)小题利用下列结论:同底的对数相等,则真数相等. 即log a N = log a M ⇒N = M .对数与对数运算(三)(一)教学目标 1.知识与技能:(1)掌握换底公式,会用换底公式将一般的对数化为常用对数或自然对数,并能进行一些简单的化简和证明.(2)能将一些生活实际问题转化为对数问题并加以解答. 2.过程与方法:(1)结合实例引导学生探究换底公式,并通过换底公式的应用,使学生体会化归与转化的数学思想.(2)通过师生之间、学生与学生之间互相交流探讨,培养学生学会共同学习的能力. (3)通过应用对数知识解决实际问题,帮助学生确立科学思想,进一步认识数学在现实生活、生产中的重要作用.3.情感、态度与价值观(1)通过探究换底公式的概念,使学生体会知识之间的有机联系,感受数学的整体性,激发学生的学习兴趣,培养学生严谨的科学精神.(2)在教学过程中,通过学生的相互交流,培养学生灵活运用换底公式的能力,增强学生数学交流能力,同时培养学生倾听并接受别人意见的优良品质.(二)教学重点、难点1.教学重点:(1)换底公式及其应用.(2)对数的应用问题.2.教学难点:换底公式的灵活应用.(三)教学方法启发引导式通过实例研究引出换底公式,既明确学习换底公式的必要性,同时也在公式推导中应用对数的概念和对数的运算性质,在教学中可以根据学生的不同基础适当地增加具体实例,便于学生理解换底公式的本质,培养学生从具体的实例中抽象出一般公式的能力.利用换底公式“化异为同”是解决有关对数问题的基本思想方法,它在求值或恒等变形中起着重要作用,在解题过程中应注意:(1)针对具体问题,选择恰当的底数;(2)注意换底公式与对数运算性质结合使用;(3)换底公式的正用与逆用.(四)教学过程教学环节教学内容师生互动设计意图提出问题我们学习了对数运算法则,可以看到对数的运算法则仅适用于对数的底数相同的情形,若在解题过程中,遇到对数的底数不相同时怎么办?师:从对数的定义可以知道,任何不等于1的正数都可以作为对数的底.数学史上,人们经过大量的努力,制作了常用对数、自然对数表,只要通过查表就能求出任意正产生认知冲突,激发学生的学习欲望.数的常用对数或自然对数.这样,如果能将其他底的对数转换为以10或e为底的对数,就能方便地求出任意不为1的正数为底的对数.概念形成1. 探求换底公式,明确换底公式的意义和作用.例如,求我国人口达到18亿的年份,就是计算x=log1.011318的值,利用换底公式与对数的运算性质,可得x=log1.011318=01.1lg1318lg=01.1lg13lg18lg-≈0043.01139.12553.1-=32.8837≈33(年).由此可得,如果人口年增长率控制在1%,那么从2000年初开始,大约经过33年,即到2032年底我国的人口总数可达到18亿.师:你能根据对数的定义推导出下面的换底公式吗?log a N=aNccloglog(a>0,且a≠1;c>0,且c≠1;N>0).(师生讨论并完成)当a>0,且a≠1时,若a b=N,①则log a N=b. ②在①的两边取以c(c>0,且c≠1)为底的对数,则log c a b=log c N,即b log c a=log c N.∴b=aNcaloglog. ③由②③得log a N=aNccloglog(c>0,且c≠1).一般地,log a N=aNccloglog(a>0,且a≠1;c>0,且c≠1;N>0),这个公式称为换底公式.推导换底公式应用举例(多媒体显示如下例题,生板演,师组织学生进行课堂评价)例1 计算:(1)例1分析:在利用换底公式进行化简求值时,一般情况是根据题中所给的对数式的掌握换底公式的应用.log34·log48·log8m=log416,求m的值.(2)log89·log2732.(3)(log25+log4125)·5log2log33.具体特点选择恰当的底数进行换底,如果所给的对数式中的底数和真数互不相同,我们可以选择以10为底数进行换底.(1)解:原方程等价于3lg4lg×4lg8lg×8lglg m=2,即log3m=2,∴m=9.(2)解法一:原式=8lg9lg·27lg32lg=2g313g21·3g312g51=910.解法二:原式=8log9log22·27log32log22=33log22·3log352=910.(3)解:原式=(log25+log255)·5log22log33=21log2255·log52=21log2525·log52=45log25·log52=45.小结(1)不同底的对数要尽量化为同底的对数来计算;(2)在第(3)小题的计算过程中,用到了性质logmaM n=mn logaM及换底公式log a N=aNbbloglog.利用换底公合作探究:现在我们来用已学过的对数知识解决实际问题.例2 20世纪30年代,里克特(C.F.Richter)制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大.这就是我们常说的里氏震级M,其计算公式为M=lg A-lg A0,其中,A是被测地震的最大振幅,A0是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中的距离造成的偏差).(1)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是20,此时标准地震的振幅是0.001,计算这次地震的震级(精确到0.1);(2)5级地震给人的震感已比较明显,计算7.6级地震的最大振幅是5级地震的最大振幅的多少倍(精确到1). 式可以证明:log a b=ablog1,即log a b log b a=1.例2解:(1)M=lg20-lg0.001=lg001.020=lg20000=lg2+lg104≈4.3.因此,这是一次约为里氏4.3级的地震.(2)由M=lg A-lg A0可得M=lgAA⇔AA=10M⇔A=A0·10M.当M=7.6时,地震的最大振幅为A1=A0·107.6;当M=5时,地震的最大振幅为A2=A0·105.所以,两次地震的最大振幅之比是21AA=56.71010⋅⋅AA=107.6-5=102.6≈398.答:7.6级地震的最大振幅大约是5级地震的最大振幅的398倍.合作探究:可以看到,虽然7.6级地震和5级地震仅相差2.6级,但7.6级地震的最大振幅却是5级地震最大掌握利用对数知识解决实际问题.课堂练习1.课本P 79练习第4题.2.在a b log 1,ba lg lg ,log nb a n ,log n b a n ,baab ab log 1log 1--(a >0,a ≠1,b >0,b ≠1,ab ≠1,n ∈N )中和log a b 相等的有 A.2个B.3个C.4个D.1个3.若log 34·log 48·log 8m =log 42,求m .4.(1)已知log 53=a ,log 54=b ,试用a 、b 表示log 2512;(2)已知log 1227=a ,求log 616.14的含量P =(21)5730t.由对数与指数的关系,指数式P =(21)5730t可写成对数式t =log573021P .湖南长沙马王堆汉墓女尸出土时碳14的残余量约占原始含量的76.7%,即P =0.767,那么t =log5730210.767,由计算器可得t ≈2193. 所以,马王堆古墓是近2200年前的遗址. 课堂练习答案1.(1)1;(2)1;(3)45.2. A3. 3.4. (1)2ba +. (2)aa +-3)3(4. 归纳 总结1.换底公式及其应用条件(注意字母的范围).2.解决实际问题的一般步骤:学生先自回顾反思,教师点评完善.形成知识体系.课后作业:2.2 第三课时 习案学生独立完成巩固新知备选例题例1 已知log 189 = a ,18b = 5,求log 3645. 【解析】方法一:∵log 189 = a ,18b = 5, ∴log 185 = b , 于是)218(log )59(log 36log 45log 45log 1818181836⨯⨯== =2log 15log 9log 181818++=aba b a -+=++2918log 118. 方法二:∵log 189 = a ,18b = 5, ∴lg9 = a lg18,lg5 = b lg8,∴9lg 18lg 25lg 9lg 918lg)59lg(36lg 45lg 45log 236-+=⨯===ab a a b a -+=-+218lg 18lg 218lg 18lg . 【小结】(1)利用换底公式可以把题目中不同底的对数化成同底的对数,进一步应用对数运算的性质;(2)题目中有指数式和对数式时,要注意指数与对数互化,统一成一种形式. 例2 我们都处于有声世界里,不同场合,人们对音量会有不同的要求,音量大小的单位是分贝(dB),对于一个强度为I 的声波,分贝的定义是:y = 10lgI I. 这里I 0是人耳能听到的声音的最低声波强度,I 0 = 10-12w/m 2,当I = I 0时,y = 0,即dB = 0.(1)如果I = 1w/m 2,求相应的分贝值;(2)70dB 时声音强度I 是60dB 时声音强度I′的多少倍? 【解析】(1)∵I =1w/m 2, ∴y =10lg120110lg 10I I -= 1210lg101012lg10120()dB ==⨯=(2)由70 = 10lg 0I I ,即7lg 0=I I,∴7010=I I ,又60 = 10lg0I I ',即lg 0I I '=6,∴0I I '=106. ∴67001010='='I I I II I =10,即I = 10I ′答: (1)I = 1w/m 2,相应的分贝值为120()dB ; (2)70dB 时声音强度I 是60dB 时声音强度I′的10倍。
《对数及其运算》教案2北师大
数学:《对数及其运算》教案2(北师大
必修1)
3.2.1对数及其运算(二)
教学目标:知识与技能:理解对数的运算性质,掌握对数的运算法则
过程与方法:培养运算能力
情感与态度价值观:养成严谨的数学习惯
教学重点:掌握对数的运算法则
教学过程:
1、复习:(1)、对数的概念,(2)、对数的性质,(3)、对
数恒等式
2、推导对数运算法则:3例子:1、求下列各式的值:
2、计算:计算:
3、用logax,logay,logaz表示下列各式:解(注意(3)的第二步不要丢掉小括号.)
4、
5、
课堂练习:教材第107页练习A、B
小结:本节课学习了对数的运算性质
课后作业:习题3-2A,4、6。
《对数与对数运算(2)》的教学设计
《对数与对数运算2》导学案一、温故而知新:1、指数与对数间的关系 __________,底数范围是 ___, 真数范围是 ____ 。
2、常用的对数等式: ㏒a a=___ , ㏒a 1= ___ .3、指数的运算性质:(1)__________ , (2) __________ , (3) __________ 。
二、探究对数的运算性质:1.自主完成表格,并从对数值间关系的角度,分析表中各列数据,你有哪些发现?如果0>a ,且1≠a ,0>M ,0>N ,那么:M a (log =)N __________ ,=NMa log __________ ,n a M log =__________ 。
学生任选一组验证:log a M + log a N = __ ,M a (log =)N __ ,log a M - log a N = __ , =NMalog ___ , n ·log a M = __ , n a M log =____ 。
(充分验证后填好前面的结论)2.运算性质的证明:① M a (log =)N M a log +N a log ;证明如下:NM MN n m MN a MN N n M m N a M a a a a a a a a n m a a n m n m n m log log )(log )(log log ,log ,,,+=+=======++,即,于是则令② =NMa log M a log -N a log ;证明一下?③ n a M log n =M a log )(R n ∈.证明一下?三、变式训练1.求值: (1)㏒(2)㏒31272.化简:㏒1014—2㏒1073+㏒107—㏒1018四、本节我学到了什么?(有总结才有提高噢!)__________________________ 。
对数与对数的运算第二课时(教案)
(a m ) n a mn (ab) n a n b n (a, b 0; m, n R ) 2.对数的运算性质: (1) log a MN log a M log a N M log a M log a N N (3) log a M n n log a M (2) log a 3.换底公式 log a b log c b log c a
(1) log a c log c a (2)(log 4 3 log8 3)(log3 2 log9 2)
五、归纳小结 引导学生归纳本课时的主要学习内容,交流成果,教师帮助完善. 1.对数的运算性质 2.换底公式 六、课后延续 (一)回顾本课的学习内容 (二)课本 p74A 组第 3(5) 、 (6) ,4,6 板书设计 对数的运算
5.对比指数与对数. 三、即时巩固 【内容设置与处理方式】 1.学生独立完成或合作交流解决问题
(1)用log a x, log a y, log a z表示下列各式: log a xy z log a x2 y
3
z
(2)求下列各式的值 log 2 (47 25 ) lg 5 100
(3)求下列各式的值 log5 3 log 5 1 3 log 3 5 log 3 15
2.交流成果之后,规范求解. 参考解答:
xy log a ( xy ) log a z log a x log a y log a z z x2 y log a 3 log a ( x 2 y ) log a 3 z log a x 2 log a y log a 3 z z 1 1 2 log a x log a y log a z 2 3 (1) log a
《对数与对数运算》第二课时 教学设计
《对数与对数运算》第二课时 教学设计一、概述:学科:数学年级:高一课时:1个课时内容:对数运算的法则本节课的价值及重要性:让学生体会重要的数学思想方法,如归纳的思想,类比的思想;掌握对数运算的法则.二、教学目标知识与技能:掌握对数运算的法则,并能理解这些法则的依据.过程与方法:通过对数运算性质的推导与探究过程,培养学生“合情推理”,“演绎归纳”的数学思想.情感、态度与价值观:通过数学思想的运用,培养学生“从特殊到一般”的归纳思维,以及从指数的运算法则到对数的运算法则的类比思想,大胆探索,小心求证,实事求是的科学品质.三、教学重点与难点教学重点:对数运算的性质教学难点:对数运算的性质的探究过程及方法四、教学资源多媒体,教学卡片,人教版教师参考书五、教学设计思路教材分析:教科书的思路是根据指数与对数的关系及指数运算性质,推导对数运算的性质.教学时,要注意将指数与对数的运算性质进行对照加以复习和巩固.对数的换底公式是进行对数运算的重要基础,只要求学生知道换底公式并利用它将对数转化为常用对数或自然对数来计算.学情分析:对数对于学生来讲是一个全新的知识,学生对它并不熟悉,甚至可以说是很生疏,要自主地去探究对数的运算性质是有难度的.为此需要设计好教学的流程,为学生的探究创造条件.六、教学流程回忆过去 → 探究未知 → 实战演练 → 思考交流 →课堂练习→ 课堂小结 → 作业七、板书设计0,1,0,0,1log ()log log (2)log log log (3)log log ()a a a aa a n a a a a M N MN M NM M N NM n M n R >≠>>=+=-=∈如果则()八、教学过程一、回忆过去问:对数是怎样定义的?答:如果x a N =(a>0,a ≠1 ),那么x 叫做以a 为底N 的对数。
记作log a x N =.(PPT 投影)师强调:1.对数是一个数(log a N R ∈)2.指数式与对数式如何相互转化(PPT 投影)问:对数的几个结论?答:log 10,log 1a a a ==(PPT 投影)二、探究未知1)动手实践:填出下表各组的值,并从数据中分析等量关系,猜想对数的运算性质(PPT 投影)(PPT 投影)提示:可以让学生自己再找几组类似的数据,关系式中分别从指数值,对数值两个角度思考2)活动:活动1:请同学们类比上面两组数据分组讨论,根据指数的运算法则猜想对数的运算法则,a a =n n m m a a a-= (说明:教师在活动中巡视小组合作情况,对有需要的小组提供帮助. )活动结束选取小组作为代表用实物投影仪展示学生的成果,并请学生作出说明,教师做适当2log 8补充.最后幻灯片播放法则1的证明.(PPT 投影)活动结束得出对数运算法则(对其中的真数,底数的范围进行说明,师生合作探讨)3)实战演练例1:计算12525361log (93);(2)lg100;(3);(4)log Ine -⨯()PPT 投影)例2:log ,log ,log .a a a x y z 用表示下列各式132232(1)log ;(2)log ;(3)log (4)log a a a a x x yz xy z yz -(PPT 投影)4)思考交流(PPT 投影)判断下列各式是否成立,如果不成立,举一个反例(1)lg()lg lg lg (2)lg lg (3)lg()lg lg lg (4)lg lg lg MN M NM M N N M N M NMM N N==+=-= 5)课堂练习:课本第68页练习题1,2,3(PPT 投影) 补充练习:(1)7lg142lglg 7lg183-+-(PPT 投影) (2(说明:对数运算时一般原则是把真数转化成质因子的乘积) 课后思考题:证明:log log (0,1;0,1;0)log c a c b b a a c c b a =>≠>≠>且且(PPT 投影) 6)课堂小结:(1)对数的运算法则(2)运算的小技巧(真数转化成质因子的乘积)(3)数学方法:观察——归纳——总结——证明从特殊到一般(归纳思想)先猜后证(类比思想)即合情推理,演绎归纳(PPT 投影)7)作业:练习本 对数与对数运算2(PPT 投影)。
2.2.1对数与对数运算(二) 教案新部编本
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校2.2.1对数与对数运算(二) 教案学习目标:对数的运算性质.熟练运用对数的运算性质进行化简求值;学习重点:证明对数的运算性质.学习难点:对数运算性质的证明方法与对数定义的联系.学习过程一、 复习1.对数的定义 b N a =log 其中 ),1()1,0(+∞∈Y a 与 ,0(+∞∈N 2.指数式与对数式的互化)10( log ≠>=⇔=a a b N N a a b 且3.重要公式:⑴负数与零没有对数; ⑵01log =a ,log =a a ⑶对数恒等式N a N a =log4.指数运算法则 )()(),()(),(R n b a ab R n m a a R n m a a a n n n mn n m n m n m ∈⋅=∈=∈=⋅+二、新授内容1.积、商、幂的对数运算法则:如果 a > 0,a ≠ 1,M > 0, N > 0 有:)()()(3R)M(n nlog M log 2N log M log N M log 1N log M log (MN)log a n a a a a a a a ∈=-=+= 证明⑴:设a log M =p , a log N =q . 由对数的定义可以得:M =p a ,N =q a .∴MN = p a q a =q p a + ∴a log MN =a log q p a + ∴a log MN =p +q , 即证得a log MN =a log M + a log N .证明⑵:设a log M =p ,a log N =q . 由对数的定义可以得M =p a ,N =qa . ∴q p q p a a a N M -== ∴q p N M a -=log ∴q p N M a -=log 即证得N M NM a a a log log log -=.证明⑶:设a log M =P 由对数定义可以得M =p a ,∴n M =npa ∴a log n M =np , 即证得a log n M =n a log M .说明:上述证明是运用转化的思想,先通过假设,将对数式化成指数式,并利用幂的运算性质进行恒等变形;然后再根据对数定义将指数式化成对数式.①简易语言表达:“积的对数 = 对数的和”……②有时逆向运用公式:如110log 2log 5log 101010==+.③真数的取值范围必须是),0(+∞:)5(log )3(log )5)(3(log 222-+-=-- 是否成立? 不成立)10(log 2)10(log 10210-=-是否成立? 不成立 ④对公式容易错误记忆,要特别注意:N M MN a a a log log )(log ⋅≠,N M N M a a a log log )(log ±≠±.2.讲授范例:例1. 用x a log ,y a log ,z a log 表示下列各式:(1)()z x y log a ===332log )3((2)log z y x zy x a a(4)z y x a3log =例2. 计算(1)25log 5(1)解:5log 25= 5log 25=2 (按照范例,求解(2)、(3)(4)题)(2)1log 5.0=(3))24(log 572⨯=(4)5100lg =例3.计算:(1);50lg 2lg )5(lg 2⋅+(1)解: 50lg 2lg )5(lg 2⋅+=)15(lg 2lg )5(lg 2+⋅+=2lg 5lg 2lg )5(lg 2+⋅+ =2lg )2lg 5(lg 5lg ++=2lg 5lg +=1; (按照范例,求解(2)、(3)题)(2);25log 20lg 100+ (3) .18lg 7lg 37lg 214lg -+-评述:此例题体现对数运算性质的综合运用,应注意掌握变形技巧,如(3)题各部分变形要化到最简形式,同时注意分子、分母的联系.(2)题要避免错用对数运算性质.例4.20世纪30年代,里克特制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大.这就是我们常说的里氏震级M ,其计算公式为M =lg A -lg A 0.其中,A 是被测地震的最大振幅,A 0是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中的距离造成的偏差).(1)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是20,此时标准地震的振幅是0.001,计算这次地震的震级(精确到0.1);(2)5级地震给人的震感已比较明显,计算7.6级地震的最大振幅是5级地震的最大振幅的多少倍(精确到1). 解:(1)M =lg20-lg0.001= lg 001.020=lg20000= lg2+ lg104≈4.3 因此,这是一次约为里氏4.3级的地震.(2)由M =lg A -lg A 0可得M =lg 0A A <=> 0A A =10M <=> A= A 0 · 10M 当M=7.6时,地震的最大振幅为A 1= A 0·107.6 ;当M=5时,地震的最大振幅为A 2= A 0 · 105,所以,两次地震的最大振幅之比是 21A A = 507.6010A 10••A =5-7.610= 2.610≈ 398 答:7.6级地震的最大振幅大约是5级地震的最大振幅的398倍。
【精品】对数与对数运算辅导教案
1、理解对数的概念,了解对数与指数的关系;2、理解和掌握对数的性质;3、理解对数的运算性质4、掌握换底公式,会用换底公式将一般的对数化为常用对数或自然对数,并能进行一些简单的化简和证明重点:对数运算性质及其推导过程.难点:对数的运算性质发现过程及其证明教学过程知识点梳理1.对数的概念一般地,如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数.举例:如:,读作2是以4为底,16的对数.,则,读作是以4为底2的对数.思考:①为什么在对数定义中规定a>0,a≠1?①根据对数定义求log a1和log a a(a>0,a≠1)的值.①负数与零有没有对数?①Naa log=N与logaa b=b(a>0,a≠1)是否成立?24416,2log16==则1242=41log22=125.对数的运算性质如果a >0,且a ≠1,M >0,N >0.那么:(1)log a (M ·N )=log a M +log a N .(2)log a M N=log a M -log a N . (3)log a M n =n log a M ,(n ∈R ).思考:对数式可看作指数运算的逆运算,尝试从指数与对数的关系以及指数运算性质,得出上述相应的对数运算性质(1).于是 由对数的定义得到log a M +log a N .=log a (M ·N )即:同底对数相加,底数不变,真数相乘(2)令 则: 又由即:,,m n m n m n a a a M a N a +⋅===设,m n MN a +=log ,m a M a m M =⇔=log n a N a n N=⇔=log m n a MN a m n MN+=⇔+=,m nM a N a ==m n m n M a a a N-=÷=log aMm n N ∴-=,m nM a N a ==log ,log a a m M n N∴==log log log a a a M M N m n N-=-=(3) 即当=0时,显然成立.6.换底公式log a b =log c b log c a(a >0,且a ≠1;c >0,且c ≠1;b >0). 温馨提示 常用结论(1)log an b n =log a b ;(2)log am b n =n mlog a b ; (3)log a b ·log b a =1;(4)log a b ·log b c ·log c d =log a d .思考:尝试根据对数的定义推导出换底公式?log a N =(a >0,且a ≠1;c >0,且c ≠1;N >0).当a >0,且a ≠1时,若a b =N , ①则log a N =b . ②在①的两边取以c (c >0,且c ≠1)为底的对数,则log c a b =log c N ,即b log c a =log c N .0,log ,N n n a n N M M a≠==时令则log ,bn a b n M M a ==则Nb n na a ∴=N b∴=log log log a a a M M N N=-n log log n a a M n M ∴=aN c c log log∴b =. ③由②③得log a N =(c >0,且c ≠1).一般地,log a N =(a >0,且a ≠1;c >0,且c ≠1;N >0),这个公式称为换底公式要点四 对数运算性质的应用例4 计算下列各式的值:(1)12lg 3249-43lg 8+lg 245; (2)lg 25+23lg 8+lg 5×lg 20+(lg 2)2.规律方法 1.对于同底的对数的化简,常用方法是(1)“收”,将同底的两对数的和(差)收成积(商)的对数.(2)“拆”,将积(商)的对数拆成对数的和(差).2.对数式的化简,求值一般是正用或逆用公式.要养成正用、逆用、变形应用公式的习惯,lg 2+lg 5=1在计算对数值时会经常用到,同时注意各部分变形要化到最简形式.跟踪演练4 计算下列各式的值:(1) (lg 5)2+2lg 2-(lg 2)2;(2) lg 3+25lg 9+35lg 27-lg 3lg 81-lg 27.aN c a log log aN c c log log aN c c log log规律方法解决对数应用题的一般步骤跟踪演练6里氏震级M的计算公式为:M=lg A-lg A0,其中A是测震仪记录的地震曲线的最大振幅,A0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的震级为________级;9级地震的最大振幅是5级地震最大振幅的________倍.课堂巩固1.2x=3化为对数式是()A.x=log32 B.x=log23C.2=log3x D.2=log x32.若log3x=3,则x等于()A.1 B.3C.9 D.273.有下列说法:①零和负数没有对数;②任何一个指数式都可以化成对数式;③以10为底的对数叫做常用对数;④以e为底的对数叫做自然对数.。
2.2.1对数与对数的运算第2课时[精选文档]
即证得 logaMn nlogaM(n R) (3)
对公式容易错误记忆:
loga (MN ) loga M loga N,
log a (M N ) log a M log a N
例3 用 log a x, log a y, log a z 表示下列各式:
xy
(1)loga
; z
x2 y (2) loga 3 z
M
loga N logaM logaN
(2)
logaMn nlogaM(n R) (3)
log a
N
log c log c
N a
(4)
loga b logb a 1
(5)
log am
Nn
n m loga N
(6)
(3 5 15
1) 3
log5 1
log3 31
0 1
重要公式1:
换底公式
log a
N
log c N log c a
(其中a, c (0,1) (1,), N
0)
证明:设 log a N p 则:N a p ,
logc N logc a p,
logc N p logc a,
p logc N logc a
log a
N
log c N log c a
log a
b
log b log b
b a
log a
b
1 log b
a
还可以变形为: log a b logb a 1
重要公式3:
log am
Nn
n m
log a
N
公式中条件: a, c (0,1) (1,), N 0
2.2.1对数与对数运算 优秀教案
2.2.1对数与对数运算(2)
【课题】:对数运算性质
【教学目标】:
1.掌握对数的运算性质,并能理解推导这些法则的依据和过程;
2.准确地运用对数运算性质进行运算,求值、化简,并掌握化简求值的技能;3.运用对数运算性质解决有关问题;
4.培养学生分析、综合解决问题的能力.
5. 培养学生数学应用的意识和科学分析问题的精神和态度.
【教学重点】:对数运算的性质与应用
【教学难点】:对数的运算性质的推导
【课前准备】:课件
例1 计算
(1)5log 25, (2)4.0log 1, (3)2log (7
4×5
2), (4)lg 5100 例2 用x a log ,y a log ,z a log 表示下列各式:
3
2log )2(;
(1)log z
y
x z
xy
a
a
例3 计算:(讲练结合)
(1)lg14-2lg
3
7
+lg7-lg18 (2)9
lg 243
lg (3)2.1lg 10lg 38lg +27lg
(1)解法一:lg14-2lg
3
7
+lg7-lg18 =lg(2×7)-2(lg7-lg3)+lg7-lg(2
3×2) =lg2+lg7-2lg7+2lg3+lg7-2lg3-lg2=0
解法二: lg14-2lg
37+lg7-lg18=lg14-lg 2
)3
7(+lg7-lg18
=lg
01lg 18)3
7
(7
142==⨯⨯
2
5=3lg 23lg 5=3lg 3lg =9lg 243lg )2(25。
§2.2.1-2对数与对数运算 (二)
20
§2.2.1-2对数与对数运算 (二)
课堂练习 <<教材>> P.68 书面作业 <<教材>> P.74 习题2.2 A组3.4.5 练习1.2.3
2013-1-15
重庆市万州高级中学 曾国荣 wzzxzgr@
21
n
2013-1-15
重庆市万州高级中学 曾国荣 wzzxzgr@
12
§2.2.1-2对数与对数运算 (二)
思考2:下列7个式子中,其中正确的有___________.
(1)(log a x) n log a x;
n
(3)(6)(7) n n (2)(log a x) log a x
loga (MN ) loga M loga N
M log a log a M log a N N
loga M n loga M
n
2013-1-15 重庆市万州高级中学 曾国荣 wzzxzgr@ 6
§2.2.1-2对数与对数运算 (二)
loga (MN ) loga M loga N
p
M pq pq log a log a a N loga M loga N
M log a log a M log a N N
2013-1-15 重庆市万州高级中学 曾国荣 wzzxzgr@ 8
§2.2.1-2对数与对数运算 (二)
loga M n loga M
§2.2.1-2对数与对数运算 (二)
重庆市万州高级中学 曾国荣 wzzxzgr@
§2.2.1-2对数与对数运算 (二)
教学目标:
1.掌握对数的运算性质,并能理解推导这些法则的 依据和过程; 2.能较熟练地运用法则解决问题.
对数与对数的运算详细教案
课题2.2.1 对数与对数的运算 教学内容:对数与对数的运算 教学目标:1.知识目标:理解对数的概念,掌握指数式与对数式的互化以及认识特殊对数的意义和表示方式;2.能力目标:培养学生分析问题、解决问题的能力与思维灵活性的能力;3.情感目标:在知识的探索和发现过程中让学生认识事物之间的相互联系与相互转换;感受探索新知的乐趣和成功的喜悦.教学重点:对数的概念,对数与指数的关系. 教学难点:对数概念的理解. 课型:新授课. 教学方法:1 教法:讲解法,合作法.2 学法:类比学习法,合作学习法.3 教学用具:彩色粉笔;多媒体.教学过程:1.创设情境,引入新知(1)庄子:一尺之棰,日取其半,万世不竭.①取5次,还有多长? ②取多少次,还有0.125尺?(2)截止1999年底,我国人口约13亿,如果今后能将人口年平均增长率控制在1%,那么多少年后我国人口数可达18亿? 可抽象出:51,2a ⎛⎫= ⎪⎝⎭10.125?2xx ⎛⎫=⇒= ⎪⎝⎭()1311%18y⨯+=即181.01?13y y =⇒=师:上一节我们已经知道指数运算就是我们以前学的乘方运算,同样也知道乘方运算的逆运算开方运算.对512a⎛⎫=⎪⎝⎭,大家认为是什么运算呢?a的值为多少呢?对于1180.125 1.01213xy⎛⎫==⎪⎝⎭和,这两个式子有什么共同的地方没有?是什么?(已知底数和幂值,求指数).是我们熟悉的运算吗?和我们所熟知的指数也能算和开方运算有联系吗?其中的x y和的值怎么表示呢?带着这些问题进入我们今天的课堂:对数.2.探究新知⑴对数定义如果x a N=(a>0且a≠1),那么数x叫做以a为底N的对数,记作x =loga N(01a a>≠且)其中a叫对数的底数,N叫做真数.师:从上述定义要知道对数的记法为:logaN;读作:以a为底N的对数.师:得出logaN表示a的多少次幂为N.师:在上节我们学的指数函数中,我们知道a>0且a≠1才有意义,所以在考虑对数的时候我们也规定a>0且a≠1.师:知道了对数的定义,我们就根据定义来把刚刚的第三和四小题中的,x y表示出来了:因为10.1252x⎛⎫=⎪⎝⎭,所以12log0.125x=;因为181.0113y=,所以1.0118log13y=.师:我们根据对数定义,可以看出指数和对数存在密不可分的关系,那么究竟有怎样的关系呢?我们一起来看看.⑵指数式和对数式的关系师: 讨论两者之间的关系前要明确a的取值范围是a>0且a≠1,也要知道两个式子中相同字母代表的是同一个数,只是数的位置发生了变化,到底是怎样的变化呢?下面我们就一起来学习:师: 这便是指数式和对数式的关系,在此我还要强调一下,x a N =和x =log a N 其实表示的一种关系,它们是一种关系的不同表达式,x a N =是指数形式,x =log a N 是对数形式,本质上它们是一回事。
对数与对数运算--优质获奖精品课件 (2)
(2)换底公式的意义与作用 在化简求值过程中,出现不同底数的对数不能运用运算法则,可 先统一化成以同一个正实数为底的对数,再根据运算法则进行化简与 求值. 在使用换底公式时,应根据实际情况选择底数,一般将对数化为 常用对数或自然对数,然后化简求值. 特别地:logab·logba=1(a>0,a≠1,b>0,b≠1). 想一想:计算 log89×log2732= .(抢答)
【答案】 9
10
1.已知 a>0,且 a≠1,则 A.0 B.
1 2
1 loga2+loga 等于( 2
). D.2
C.1
【解析】loga2+loga2=loga(2×2)=loga1=0. 【答案】A
1
1
2.若 a>0,且 a≠1,M>0,N>0,且 M>N,给出下列式子: ①logaM·logaN=loga(M+N); ②logaM·logaN=loga(M·N);
������ lo g ������ M ③loga ������ = lo g N ; ������
④logaM-logaN=loga(M-N). 其中不正确的有( ). A.1 个 B.2 个
C.3 个
D.4 个
【解析】本题考查对数运算性质的掌握情况,与运算性质对照,4 个选项都是错误的. 【答案】D
2 2 右边=������ =lo g k =2logk6=logk36, 6 2 1 2 ∴������ +������ =������ .
a b c
1 3 2
1 34
3
4
(法二)对 3 =4 =6 ,两边同时取常用对数得: a b c lg 3 =lg 4 =lg 6 ,∴alg 3=blg 4=clg 6,
对数与对数运算 教学设计 说课稿 教案
对数与对数运算(二)(一)教学目标1.知识与技能:理解对数的运算性质.2.过程与方法:通过对数的运算性质的探索及推导过程,培养学生的“合情推理能力”、“等价转化”和“演绎归纳”的数学思想方法,以及创新意识.3.情感、态态与价值观通过“合情推理”、“等价转化”和“演绎归纳”的思想运用,培养学生对立统一、相互联系,相互转化以及“特殊—一般”的辩证唯物主义观点,以及大胆探索,实事求是的科学精神.(二)教学重点、难点1.教学重点:对数运算性质及其推导过程.2.教学难点:对数的运算性质发现过程及其证明.(三)教学方法针对本节课公式多、思维量大的特点,采取实例归纳,诱思探究,引导发现等方法.(四)教学过程例1 计算下列各式的值: (1)245lg 8lg 344932lg21+-; (2)22)2(lg 20lg 5lg 8lg 325lg +⋅++. 【解析】(1)方法一:原式=2122325)57lg(2lg 34)7lg 2(lg 21⨯+--=5lg 217lg 2lg 27lg 2lg 25++--=5lg 212lg 21+=21)5lg 2(lg 21=+.方法二:原式=57lg 4lg 724lg+-=475724lg⨯⨯=21)52lg(=⨯. (2)原式=2lg5 + 2lg2 + lg5 (2lg2 + lg5) + (lg2)2 =2lg10 + (lg5 + lg2)2 = 2 + (lg10)2 = 2 + 1 = 3.【小结】易犯lg52 = (lg5)2的错误.这类问题一般有两种处理方法:一种是将式中真数的积、商、方根运用对数的运算法则将它们化为对数的和、差、积、商,然后化简求值;另一种方法是将式中的对数的和、差、积、商运用对数的运算法则将它们化为真数的积、商、幂、方根,然后化简求值. 计算对数的值时常用到lg2 + lg5 = lg10 = 1. 例2:(1)已知lg2 = 0.3010,lg3 = 0.4771,求lg 45; (2)设log a x = m ,log a y = n ,用m 、n 表示][log 344yxa a ⋅;(3)已知lg x = 2lg a + 3lg b – 5lg c ,求x .【分析】由已知式与未知式底数相同,实现由已知到未知,只须将未知的真数用已知的真数的乘、除、幂表示,借助对数运算法则即可解答.【解析】(1)1190lg 45lg 222== 1[lg 9lg10lg 2]2=+- 1[2lg 31lg 2]2=+- =-+=2lg 21213lg 0.4771+0.5 – 0.1505 = 0.8266(2)log a 1113412log log log a a a a x y =+-.1213141log 121log 3141m n y x a a -+=-+=(3)由已知得:532532lglglglglgc bacbax=-+=,∴532 c bax=.【小结】①比较已知和未知式的真数,并将未知式中的真数用已知式的真数的乘、除、乘方表示是解题的关键,并且应注意对数运算法则也是可逆的;②第(3)小题利用下列结论:同底的对数相等,则真数相等. 即log a N = log a M⇒N = M.。
优秀教案20-对数与对数运算(2)
2.2.1对数与对数运算(2)教材分析本节内容是数学1第二章 基本初等函数 2.2.1对数与对数运算 的第二课时.对数与对数运算是学生学习了指数运算后学习的又一重要运算,要求理解对数的运算性质,能灵活运用对数运算性质进行对数运算.本节课是在学习了“对数的概念”后进行的,是上节内容的延续与深入,也是为研究学习后续知识对数函数与性质的作必备的知识和思想上的准备,起到了承上启下的重要作用.课时分配本节内容用1课时的时间完成,主要讲解对数运算性质的推导、证明及应用运算性质进行简单的对数运算、解决简单的数学问题.教学目标重 点: 探究、发现对数的运算性质及运算性质的简单应用. 难 点:对数运算性质的发现与证明以及正确使用对数的运算性质. 知识点:对数的运算性质.能力点:能利用对数运算性质解决简单的数学问题,通过自主探究发现对数的运算性质及证明,提高学生合情推理、等价转化和类比归纳等数学思维能力.教育点:经历由特殊到一般、由已知到未知、由具体到抽象的研究数学问题的过程,培养学生的观察力与团队合作精神,体会探究的乐趣,激发学生的学习热情.自主探究点:探究发现对数的运算性;并利用类比的方法证明对数的运算性质(2)和(3). 考试点:利用对数的运算性质进行对数运算.易错易混点:运用对数运算性质时,学生容易忽略对数式中的底数、真数的取值范围;容易自创公式、误用公式,如:log ()log log a a a M N M N ±=±,log ()log log a a a M N M N ⋅=⋅等.拓展点:课外探究怎样进行不同底数的对数间的运算?为换底公式的讲解做铺垫.教具准备 多媒体课件、投影仪 课堂模式 学案导学 一、引入新课(一)知识回顾:(教师出示多媒体课件并提出问题) 1.对数是怎样定义的?2.对数与指数有怎样的相互转化关系?3.指数有哪些运算性质?【师生活动】教师提出问题,学生思考并回答问题,教师根据学生回答进行板书.【设计意图】“温故知新”学习新知识前的简单知识回顾,能唤起学生的记忆,引发学生的学习兴趣.通过知识回顾为学习新内容作好知识上的准备,更为学生自主探究铺平道路.二、探究新知 (一)归纳运算性质1.猜想问题:类比指数的运算性质,你能猜想对数的一些运算性质吗?[设计意图]培养学生自主发现问题、提出问题的能力,并为下一步探究发现对数运算性质指明方向. 2.探究、发现计算下列各式的值:(出示多媒体课件) (1)2log 64,2log 4,2log 16; (2)3243log 27,3log 9,3log 27; (3)23log 9,32log 9⋅. 师:请计算上述各组的对数值. 生:学生解答,得出答案:(1)2log (416)6⨯=,2log 42=,2log 164=; (2)3243log 227=,3log 2435=,3log 273=; (3)23log 94=,32log 94⋅=.师:引导学生分组讨论,你能发现各组对数值之间有哪些等价关系吗? 生:分组讨论,同学间交流各自的意见,得出各组对数值之间的等价关系.222log (416)log 4log 16⨯=+; 333243log log 243log 2727=-;23log 932log 9=⋅. 师:将上述等式关系进行板书,并继续提问:你能发现一般形式的结论吗?例如:2log ()=?M N ⋅,3log =?MN,3log =?n M . 生:学生经过思考给出答案.222log ()=log +log M N M N ⋅,333log =log log MM N N-,33log log n M n M =.师:要注意M 和N 的取值范围(0)M N >,.对任意的底数a (01a a >≠,且)有没有更一般的结论呢? 生:思考得出各自的成果,然后进行分组讨论,并最终分析得出小组成果. 师:将小组得出的成果进行投影展示.经过师生对话将小组成果进行完善,分析得出对数可能的运算性质:如果01a a >≠,且,00M N >>,,那么 (1)log ()log log a a a M N M N ⋅=+; (2)log log log aa a MM N N=-; (3)log log ()na a M n M n R =∈【设计意图】通过具体对数计算进行引入,为学生的自主探究创设情景,引发学生探究知识的兴趣,培养学生归纳、概括、提出数学问题的能力和由特殊到一般的科学思维方法.避免直接将公式抛给学生. 【设计说明】通过问题探究发现公式,培养学生分析、归纳、猜想的数学思维能力;通过生生、师生间的探讨、合作,培养学生的观察力与团队合作精神.(二)公式证明在上节课中,我们知道,指数式与对数式可以互化,即对数式可看作指数运算的逆运算,那么我们能不能把未知的对数问题转化为已知的指数问题呢?【设计意图】沟通本节内容与前面章节内容的联系,启发引导学生利用指数幂的运算性质及指数与对数的关系进行证明.分析:运用转化思想,通过假设,将对数式化成指数式,并利用指数幂的运算性质进行等价变形,进而证明对数运算性质.证明:设log log a a M m N n ==, ,由对数定义得:m na M a N ==,.+m n m n M N a a a ∴⋅=⋅=,log ()log log a a a M N m n M N ∴⋅=+=+.【设计意图】让学生明确由“归纳一猜想”是发现数学结论的有效方法;回归对数定义,让学生体会对数定义在证明过程所发挥的关键作用,回到最原始(定义)的地方是解决数学问题的有效策略. 师:你能按照以上的方法证明对数运算的其它性质吗? 生:学生板演展示自己的证明过程.请同学们观察证明过程,若有问题引导学生一起指正、完善. 通过师生对话,最终给出完整的证明过程.【设计意图】通过自己推导证明另两条运算性质,使学生进一步理解对数与指数间的关系;培养学生的逻辑推理能力和自主发现问题、解决问题的能力,进而激发学生自主学习的热情.三、理解新知1.师:对数的运算性质中,各字母的取值范围有何限制条件? 生:01a a >≠,且,00M N >>,. 师:判断下列两式的正误:(1)222log (10)2log (10)-=-; (2)lg[(2)(5)]lg(2)lg(5)-⋅-=-⋅-. 生:(1),(2)都不对,因为负数没有对数.师:很好,只有所给对数和所得结果中的对数都存在时,等式才能成立. 【设计意图】通过即行练习,进行辩错巩固,深化对运算性质适用范围的理解. 2.师:分析对数运算性质的结构特点,能用语言叙述运算性质吗? 生:通过合作交流,分组讨论,得出结论. 师生共同总结运算口诀:(1)两个正数乘积的对数等于这两个正数对数的和; (2)两个正数商的对数等于这两个正数对数的差; (3)一个正数的n 次方的对数等于这个正数的对数的n 倍.即:积的对数=对数的和;商的对数=对数的差;n 次方的对数=对数的n 倍.【设计意图】通过师生共同总结加强对公式正确形式的理解,正确认识公式、记忆公式,学会学习. 3.性质(1)可以推广到n 个正数的情形:111230,,,,01n a a M M M M >≠> ,且,123123log ()log log log log +++a n a a a a n M M M M M M M M ⋅⋅=+ .4.对数运算性质既可正用,也要注意逆用.【设计意图】为准确地运用新知——利用对数运算性质进行化简、求值、证明作必要的铺垫.四、运用新知例1(见教材例3) 用log a x , log a y ,log a z 表示下列各式:(1)log a xy z ; (2)log a分析:正向利用对数运算性质直接化简.学生自主完成例1,并请学生到前面板演解题过程.教师引导学生共同批改学生答案,探讨解题中出现的问题和解题的关键点,并校对自己的答案.解:(1)log axyzlog ()log log log log a a a a a x y zx y z =⋅-=+-;(2)log a22log (log log log log 112log log log .23a a a aa a a a x x x y z =-=+=+-[设计意图]培养学生反思、总结的习惯. 例2(见教材例4) 求下列各式的值:(1)752log (42)⨯; (2) (3)2(2)log (8)--. 解:(1)752log (42)⨯7522=log 4log 2+227log 45log 2=+72519=⨯+=;(2)15lg100=21lg105= 25=. (3)2(2)log (8)-- 2221log log 224-===- 点评:本题运算的实质是把积、商、幂的对数运算分别转化为对数的加、减运算.第(1)小题是性质(1)和性质(3)的综合运用,注意先做积的对数,后做幂的对数;第(3)小题若拆成22log (2)log (8)---就要犯错了,要当心真数大于零(回扣理解新知部分).[设计意图]巩固所学的运算性质,提高计算能力;通过简单的对数计算,使学生进一步熟悉对数运算性质的结构特点,学会正确选择公式,而不是死记公式.练习:教材68P :1、2[设计意图] 通过练习规范学生的解题步骤,加强熟练应用公式的能力. 例3计算1324lg 2493- 分析:解本题的关键是充分运用对数的运算性质,把式子中的项拆开,在重新组合;运算时,一般先化简合并同类项. 解:(1)1324lg 2493-1411(lg32lg 49)lg8lg 2452322=--⨯+ 52321411(lg 2lg 7)lg 2lg(57)2322=--⨯+⨯ 51lg 2lg 72lg 2lg5lg 722=--++ 11lg 2lg522=+1lg(25)12=⨯= 思考:本题还有其它解法吗?学生:有!给出解法.(如有困难,提示学生逆向运用对数运算性质,引导学生将原式变形)方法二:1324lg 2493-213232lg()lg8lg(749=-+23lg lg8lg(77=-+17lg 42===.[方法总结]这类问题一般有两种处理方法:一种是将式中真数的积、商、方根运用对数的运算法则将它们化为对数的和、差、积、商,然后化简求值;另一种方法是将式中的对数的和、差、积、商运用对数的运算法则将它们化为真数的积、商、幂、方根,然后化简求值.[设计意图]“通过一题多解”发散思维,掌握对数运算的变形技巧,体会运算性质的正用和逆用.(回扣理解新知部分)五、课堂小结教师提问:本节课我们学习了哪些知识,涉及到哪些数学思想方法? 学生作答:1.知识:对数运算性质:如果01a a >≠,且,00M N >>,,那么(1)log ()log log a a a M N M N ⋅=+; (2)log log log aa a MM N N=-; (3)log log ()na a M n M n R =∈2.思想:合情推理、等价转化、类比归纳和由特殊到一般的思想. 教师总结: 1.对数的运算性质2.对数运算的易错点(请同学们一定不要自创公式,要灵活运用公式)在发现对数运算性质的过程中运用了观察,归纳,猜想,类比等数学方法,体现了由特殊到一般的数学思想。
2.2.1-对数与对数运算优秀公开课教案
求下列各式的值:
(1) ;(2) ;
思考:你发现了什么?
对数恒等式:
探究活动4
求下列各式的值:
(1) ;(2) ;(3)
思考:你发现了什么?
对数恒等式:
本练习让学生独立阅读课本例1和
例2后思考完成,从而熟悉对数式与指数式的相互转化。
探究活动由学生独立完成,通过思考,然后小组讨论自己得出结论,培养学生类比、分类、归纳的能力。
教学过程
设计意图
2.2.1 对数与对数运算
1定义 例题 导入
板
书
设 2运算 例题 练习
计
解:1(1) ; (2)
2.(1) ; (2)
3.(1)6; (2)3
四.能力提升
(四)对数的性质
探究活动1
求下列各式的值:
(1) ;(2) ;(3)
思考:你发现了什么?
“1”的对数等于“0”,即 ,类比
探究活动2
求下列各式的值:
(1) ;(2) ;(3) ;
思考:你发现了什么?
底数的对数等于“1”,即
3.情感、态度与价值观
(1)通过本节的学习体验数学的严谨性,培养细心观察、认真分析分析、严谨认真的良好思维习惯和不断探求新知识的精神;
(2)感知从具体到抽象、从特殊到一般、从感性到理性认知过程;
(3)体验数学的科学功能、符号功能和工具功能,培养直觉观察、探索发现、科学论证的良好的数学思维品质.
教学重难点
教学过程
设计意图
师:由于对数是由指数反推过来的,所以由前面的知识得到 且 .
(三)两个重要对数
(1)常用对数:以10为底的对数 ,简记为 ;
(2)自然对数:以e为底的对数 ,简记为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.1对数与对数运算(二)
(一)教学目标
1.知识与技能:理解对数的运算性质.
2.过程与方法:通过对数的运算性质的探索及推导过程,培养学生的“合情推理能力”、“等价转化”和“演绎归纳”的数学思想方法,以及创新意识.
3.情感、态态与价值观
通过“合情推理”、“等价转化”和“演绎归纳”的思想运用,培养学生对立统一、相互联系,相互转化以及“特殊—一般”的辩证唯物主义观点,以及大胆探索,实事求是的科学精神.
(二)教学重点、难点
1.教学重点:对数运算性质及其推导过程.
2.教学难点:对数的运算性质发现过程及其证明.
(三)教学方法
针对本节课公式多、思维量大的特点,采取实例归纳,诱思探究,引导发现等方法.(四)教学过程
复习:对数的定义及对数恒等式
教师启发引导.
如:
.
由对数的定义得到
方法推出对数的其它性质吗?
(让学生探究,讨论)
么:师点拨.
证明:
合作探究:
如下结论)
值范围有什么限制条件?
.
(生交流讨论)
例1 计算下列各式的值:
(1)245lg 8lg 34
4932lg 21+-;
(2)22)2(lg 20lg 5lg 8lg 3
2
5lg +⋅++.
【解析】(1)方法一:
原式=21
223
25)57lg(2lg 3
4
)7lg 2(lg 21⨯+--
=5lg 2
17lg 2lg 27lg 2lg 25++-- =5lg 2
1
2lg 2
1+
=2
1)5lg 2(lg 21=+. 方法二:原式=57lg 4lg 72
4lg
+- =4
75
724lg
⨯⨯
=2
1)52lg(=
⨯. (2)原式=2lg5 + 2lg2 + lg5 (2lg2 + lg5) + (lg2)2 =2lg10 + (lg5 + lg2)2 = 2 + (lg10)2 = 2 + 1 = 3.
【小结】易犯lg52 = (lg5)2的错误.
这类问题一般有两种处理方法:一种是将式中真数的积、商、方根运用对数的运算法则将它们化为对数的和、差、积、商,然后化简求值;
另一种方法是将式中的对数的和、差、积、商运用对数的运算法则将它们化为真数的积、商、幂、方根,然后化简求值. 计算对数的值时常用到lg2 + lg5 = lg10 = 1.
例2:(1)已知lg2 = 0.3010,lg3 = 0.4771,求lg 45; (2)设log a x = m ,log a y = n ,用m 、n 表示][log 34
4y
x
a a ⋅;
(3)已知lg x = 2lg a + 3lg b – 5lg c ,求x .
【分析】由已知式与未知式底数相同,实现由已知到未知,只须将未知的真数用已知的真数的乘、除、幂表示,借助对数运算法则即可解答.
【解析】(1)1190
45lg 45lg 222
=
= 1
[lg9lg10lg 2]2=+- 1
[2lg31lg 2]2
=+- =-+
=2lg 2
1
213lg 0.4771+0.5 – 0.1505 = 0.8266 (2)43
4log []a x a y
1113
4
12
log log log a a a a x y =+-
.12
13141log 121log 3141m n y x a a -+=-+=
(3)由已知得:
5
325
3
2
lg
lg lg lg lg c b a c b a x =-+=,
∴5
32c b a x =
.
【小结】①比较已知和未知式的真数,并将未知式中的真数用已知式的真数的乘、除、乘方表示是解题的关键,并且应注意对数运算法则也是可逆的;②第(3)小题利用下列结论:同底的对数相等,则真数相等. 即log a N = log a M ⇒N = M .。