数学建模——灰色关联度分析(特制教育)

合集下载

用灰色模型进行数学建模-数学建模中的灰色方法

用灰色模型进行数学建模-数学建模中的灰色方法

数学建模中的灰色方法在数学建模的过程中,常常遇到一些诸如:人在数学建模的过程中,常常遇到些诸如:人口模型、全国的物资调运、运输、生产销售等问题,其中有许多信息都无法确定,要建立这样的模型很困难。

量化分析方法大都是现有的系统分析方法—量化分析方法,大都是数理统计方法但这种方法多用于少因素的、线性的情形。

对于多因素的、非线性的则难以处理。

的情形对于多因素的非线性的则难以处理针对这些不足,邓聚龙教授创立了一种就数找数的方法,即灰色系统生成法。

创立灰色系统的数的方法即灰色系统生成法创立学科体系和灰色系统“概念与公理体系”,提出理论灰建模理论并创灰生成空间、灰关联空间理论、灰建模理论并创立灰预测理论及方法体系。

一、灰色系统.定义:系统作为一个包含若干相互关联、相互制约的任意种类元素组成的具有某种特定功能的整体系任意种类元素组成的具有某种特定功能的整体。

系统内部存在有物质流、信息流、能量流。

系统(根据信息明确程度)黑色系统(信息毫无所知或知之甚少)灰色系统(既含有已知信息又有未知信息)白色系统(信息完全明确)()灰色系统公理:(一)灰色系统公理:1.信息不完全、不确定的解是非唯一的;(解的非唯一性原理)22.信息是认识的根据;(认识根据原理)3.灰色系统理论的特点是充分开发利用已占有的“最小信息”;最小信息原(最小信息原理)4.新信息对认识的作用大于老信息;(新信息优先原理)(二)灰色系统的描述:灰色系统用灰色参数、灰色方程、灰色矩阵、灰色度等综灰色系统用灰色参数灰色方程灰色矩阵灰色度等综合描述,其中灰数是灰色系统的基本单元。

1.灰色参数(灰数)灰数是那些只知道大概范围而不知其确切值的数(只知道部分数学特征而不知道具体数值的参数)(只知道部分数学特征,而不知道具体数值的参数)。

例如:“某人的身高约为170cm 、体重大致为60kg”,这里的“(约为))”“60”都是灰数这里的(约为)170(cm )、60都是灰数,分别记为、。

03灰色关联

03灰色关联

灰色关联分析法(必掌握)与灰色预测模型一样,比赛不能优先使用,灰色关联往往可以与层次分析结合使用。

层次分析用在确定权重上面【1】确定比较对象(评价对象)(就是数据,并且需要进行规范化处理,就是标准化处理,见下面例题的表格数据)和参考数列(评价标准,一般该列数列都是1,就是最优的的情况)【2】确定各个指标权重,可用层次分析确定【3】计算灰色关联系数这是一个比较复杂的公式,给出的代码可以直接运行出来,可以先不管这个公式。

【4】计算灰色加权关联度,计算公式为:其中Ri就是第i个指标对理想对象(参考数列,一般该数列都是1,就是最有情况)的加权关联度。

就可以认为是评价的结果。

【5】评价分析。

例 1 通过对某健将级女子铅球运动员的跟踪调查,获得其 1982 年至 1986 年每年最好成绩及 16 项专项素质和身体素质的时间序列资料,见下表,试对此铅球运动员的专项成绩进行因素分析。

表各项成绩数据clc,clearload x.txt %把原始数据存放在纯文本文件x.txt 中,其中把数据的"替换替换成.for i=1:15x(i,:)=x(i,:)/x(i,1); %标准化数据endfor i=16:17x(i,:)=x(i,1)./x(i,:); %标准化数据end ——————————————————————————————————上面是数据标准化处理,当然这是司老师书中的标准化处理的代码,其他更多关于数据的标准化处理,请参考28数据标准化——————————————————————————————————data=x;n=size(data,2); %求矩阵的列数,即观测时刻的个数ck=data(1,:); %提出参考数列bj=data(2:end,:); %提出比较数列m2=size(bj,1); %求比较数列的个数for j=1:m2t(j,:)=bj(j,:)-ck;endmn=min(min(abs(t'))); %求最小差mx=max(max(abs(t'))); %求最大差rho=0.5; %分辨系数设置ksi=(mn+rho*mx)./(abs(t)+rho*mx); %求关联系数r=sum(ksi')/n %求关联度[rs,rind]=sort(r,'descend') %对关联度进行排序运行结果的r为各指标和成绩的关联度,rind即为各指标和成绩的关联度大小排序的结果。

灰色关联分析

灰色关联分析

灰色关联分析灰色关联分析(Grey Relational Analysis, GRA)什么是灰色关联分析灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度[1]。

灰色系统理论是由著名学者邓聚龙教授首创的一种系统科学理论(Grey Theory),其中的灰色关联分析是根据各因素变化曲线几何形状的相似程度,来判断因素之间关联程度的方法。

此方法通过对动态过程发展态势的量化分析,完成对系统内时间序列有关统计数据几何关系的比较,求出参考数列与各比较数列之间的灰色关联度。

与参考数列关联度越大的比较数列,其发展方向和速率与参考数列越接近,与参考数列的关系越紧密。

灰色关联分析方法要求样本容量可以少到4个,对数据无规律同样适用,不会出现量化结果与定性分析结果不符的情况。

其基本思想是将评价指标原始观测数进行无量纲化处理,计算关联系数、关联度以及根据关联度的大小对待评指标进行排序。

灰色关联度的应用涉及社会科学和自然科学的各个领域,尤其在社会经济领域,如国民经济各部门投资收益、区域经济优势分析、产业结构调整等方面,都取得较好的应用效果。

[2]关联度有绝对关联度和相对关联度之分,绝对关联度采用初始点零化法进行初值化处理,当分析的因素差异较大时,由于变量间的量纲不一致,往往影响分析,难以得出合理的结果。

而相对关联度用相对量进行分析,计算结果仅与序列相对于初始点的变化速率有关,与各观测数据大小无关,这在一定程度上弥补了绝对关联度的缺陷。

[2]灰色关联分析的步骤[2]灰色关联分析的具体计算步骤如下:第一步:确定分析数列。

确定反映系统行为特征的参考数列和影响系统行为的比较数列。

反映系统行为特征的数据序列,称为参考数列。

影响系统行为的因素组成的数据序列,称比较数列。

设参考数列(又称母序列)为Y={Y(k) | k = 1,2,Λ,n};比较数列(又称子序列)X i={X i(k)| k = 1,2,Λ,n},i = 1,2,Λ,m。

灰色关联度方法介绍

灰色关联度方法介绍

灰色关联度方法介绍一、灰色关联度方法的概念灰色关联度方法是一种常用的分析方法,它是将各个因素之间的关系转化为数学模型进行计算,从而得出它们之间的相关程度。

灰色关联度方法主要应用于多因素分析和决策评价等领域。

二、灰色关联度方法的原理灰色关联度方法是基于灰色系统理论的,它通过对数据进行处理,将数据转化为一组序列,然后通过对这些序列进行比较,得出各个因素之间的相关程度。

具体来说,它主要包括以下步骤:1. 数据预处理:将原始数据进行标准化处理,使得各个因素之间具有可比性。

2. 灰色关联度计算:通过对标准化后的数据进行加权平均值计算,并与参考序列进行比较,得出各个因素与参考序列之间的相关程度。

3. 灰色预测模型建立:根据各个因素与参考序列之间的相关程度建立预测模型,并对未来趋势进行预测。

三、灰色关联度方法的应用1. 多因素分析:在复杂多变的环境下,往往需要考虑多种因素的影响,灰色关联度方法可以通过对各个因素之间的关系进行分析,得出它们之间的相关程度,从而帮助决策者进行有效的决策。

2. 决策评价:在决策过程中,需要对各种方案进行评价,灰色关联度方法可以通过对各种方案之间的比较,得出它们之间的相关程度,从而帮助决策者选择最优方案。

3. 经济预测:在经济预测中,需要考虑多种因素的影响,灰色关联度方法可以通过对各个因素之间的关系进行分析,得出它们之间的相关程度,并建立预测模型进行未来趋势预测。

四、灰色关联度方法的优缺点1. 优点:(1)能够充分考虑多个因素之间的相互作用和影响。

(2)具有较高的精确性和可靠性。

(3)能够处理样本数据量较小、数据质量较差等问题。

2. 缺点:(1)需要对数据进行标准化处理,增加了计算复杂度。

(2)依赖于参考序列的选择和权重设置,在实际应用中可能存在一定误差。

(3)不适用于非线性系统和高维数据分析。

五、灰色关联度方法的发展趋势随着计算机技术的不断发展和数据处理能力的提高,灰色关联度方法在多因素分析、决策评价和经济预测等领域得到了广泛应用。

数模选修灰色预测与灰色关联度分析详解

数模选修灰色预测与灰色关联度分析详解
3
三种不确定性系统研究方法的比较分析
(灰色系统理论、概率统计、模糊数学)
项目 研究对象 基础集合 方法依据 途径手段 数据要求 侧重点
目标 特色
灰色系统 贫信息不确定
灰色朦胧集 信息覆盖 灰序列算子 任意分布
内涵 现实规律 小样本
概率统计 随机不确定
康托集 映射
频率统计 典型分布
内涵 历史统计规律
r 0 1 r 0 5 r 0 3 r 0 6 r 0 2 r 0 4
28
存在的问题及解决方法
29
《灰色预测与决策模型研究》 党耀国 刘思峰等著 科学出版社
本书中提及了一些其它的灰色关联度,如绝对关联度,相对关联度等 等,并且针对各自的适 用范围进行了讨论。 所以如果是在数学建模的过程中,我们可以根据实际的需要,确定我们的关联度的计算公式。
=0.5
1(1)1 0 0 0..5 5 7 70.778,1(2)0 0 0 0..5 5 7 71.000 1(3)= 0.778, 1(4)= 0.636, 1(5)= 0.467, 1(6)= 0.333 1(7)= 1.000,
26
同理得出其它各值,见下表
编号
i(1) i(2 ) i(3) i(4 ) i(5) i(6 ) i(7 )
33
令 x(0)为 原 始 序 列 ,x(0)[x(0)(1),x(0)(2), ,x(0)(n)],
记 生 成 数 为 x(1),x(1)[x(1)(1),x(1)(2), ,x(1)(n)],如 果
x(1)与 x(0)之 间 满 足 如 下 关 系 :
k
x (1 )(k ) x (0 )(i);k 1 ,2 , ,n i 1
例:x (0) =(3.2,3.3,3.4,3.6,3.8) 求 x(1)(k) 解:

灰色关联分析法原理及解题步骤

灰色关联分析法原理及解题步骤

灰色关联分析法原理及解题步骤---------------研究两个因素或两个系统的关联度(即两因素变化大小,方向与速度的相对性)关联程度——曲线间几何形状的差别程度灰色关联分析是通过灰色关联度来分析和确定系统因素间的影响程度或因素对系统主行为的贡献测度的一种方法。

灰色关联分析的基本思想是根据序列曲线几何形状的相似程度来判断其联系是否紧密1> 曲线越接近,相应序列之间的关联度就越大,反之就越小 2> 灰色关联度越大,两因素变化态势越一致分析法优点它对样本量的多少和样本有无规律都同样适用,而且计算量小,十分方便,更不会出现量化结果与定性分析结果不符的情况。

灰色系统关联分析的具体计算步骤如下 1》参考数列和比较数列的确定参考数列——反映系统行为特征的数据序列比较数列——影响系统行为的因素组成的数据序列2》无量纲化处理参考数列和比较数列(1) 初值化——矩阵中的每个数均除以第一个数得到的新矩阵(2) 均值化——矩阵中的每个数均除以用矩阵所有元素的平均值得到的新矩阵(3) 区间相对值化3》求参考数列与比较数列的灰色关联系数ξ(Xi) 参考数列X0比较数列X1、X2、X3……………比较数列相对于参考数列在曲线各点的关联系数ξ(i)称为关联系数,其中ρ称为分辨系数,ρ?(0,1),常取0.5.实数第二级最小差,记为Δmin。

两级最大差,记为Δmax。

为各比较数列Xi曲线上的每一个点与参考数列X0曲线上的每一个点的绝对差值。

记为Δoi(k)。

所以关联系数ξ(Xi)也可简化如下列公式:4》求关联度ri关联系数——比较数列与参考数列在各个时刻(即曲线中的各点)的关联程度值,所以它的数不止一个,而信息过于分散不便于进行整体性比较。

因此有必要将各个时刻(即曲线中的各点)的关联系数集中为一个值,即求其平均值,作为比较数列与参考数列间关联程度的数量表示,关联度ri公式如下:5》排关联序因素间的关联程度,主要是用关联度的大小次序描述,而不仅是关联度的大小。

数学建模之灰色关联度(二)

数学建模之灰色关联度(二)
❖ 步骤3.求两级最大和最小差值。设E中最大值为Emax, 最小值为Emin,其余类推;这样一共就有六个数,分 别是Emax;Emin;Fmax;Fmin;Gmax和Gmin。 从这六个数中,再选出一个最大值和一个最小值,假 设为M和N——而这就是上述公式当中双重最值的部 分
❖ 步骤4.带入公式,得到三组关联系数(单行)矩阵。
min 0, max 4.437
(3)计算关联度
❖取
1 2 3 4 5 0.2 ,比较因素和
参考因素的关联度为
r01
1 5
5
k 1
01(k )
0.942
r04
1 5
5
04 (k)
k 1
0.826
r02
1 5
5
02 (k)
k 1
0.954
r05
1 5
5
05 (k)
k 1
0.608
, 5,其他各因素作为比较因素序
,8, k 1, ,,5 对各因素初值化处理,得
yi (k),i 1, ,8, k 1, ,5
标准化数据表
因素
大气污染 值
NO TSP
SO2
工业总产 值 基建投资
机动车数 量 煤炭用量
沙尘天数
1999 1
x
1 1 1 1
1
1
1 1
2000 0.883
0.816 0.890 0.708 1.131
1.872 0.869
0.999 1.300
2001 0.869
1.105 0.884 0.625 1.315
2.613 1.005
1.044 1.300
2002 0.817
0.947 0.811 0.625 1.587

灰色关联分析法原理及解题步骤

灰色关联分析法原理及解题步骤

灰色关联分析法原理及解题步骤——-—-————--—-—-研究两个因素或两个系统的关联度(即两因素变化大小,方向与速度的相对性)关联程度-—曲线间几何形状的差别程度灰色关联分析是通过灰色关联度来分析和确定系统因素间的影响程度或因素对系统主行为的贡献测度的一种方法。

灰色关联分析的基本思想是根据序列曲线几何形状的相似程度来判断其联系是否紧密1>曲线越接近,相应序列之间的关联度就越大,反之就越小2>灰色关联度越大,两因素变化态势越一致分析法优点它对样本量的多少和样本有无规律都同样适用,而且计算量小,十分方便,更不会出现量化结果与定性分析结果不符的情况。

灰色系统关联分析的具体计算步骤如下1》参考数列和比较数列的确定参考数列——反映系统行为特征的数据序列比较数列--影响系统行为的因素组成的数据序列2》无量纲化处理参考数列和比较数列(1)初值化——矩阵中的每个数均除以第一个数得到的新矩阵(2)均值化——矩阵中的每个数均除以用矩阵所有元素的平均值得到的新矩阵(3)区间相对值化3》求参考数列与比较数列的灰色关联系数ξ(Xi)参考数列X0比较数列X1、X2、X3……………比较数列相对于参考数列在曲线各点的关联系数ξ(i)称为关联系数,其中ρ称为分辨系数,ρ∈(0,1),常取0。

5。

实数第二级最小差,记为Δmin. 两级最大差,记为Δmax. 为各比较数列Xi曲线上的每一个点与参考数列X0曲线上的每一个点的绝对差值。

记为Δoi(k).所以关联系数ξ(Xi)也可简化如下列公式:4》求关联度ri关联系数——比较数列与参考数列在各个时刻(即曲线中的各点)的关联程度值,所以它的数不止一个,而信息过于分散不便于进行整体性比较.因此有必要将各个时刻(即曲线中的各点)的关联系数集中为一个值,即求其平均值,作为比较数列与参考数列间关联程度的数量表示,关联度ri公式如下:5》排关联序因素间的关联程度,主要是用关联度的大小次序描述,而不仅是关联度的大小.将m个子序列对同一母序列的关联度按大小顺序排列起来,便组成了关联序,记为{x},它反映了对于母序列来说各子序列的“优劣"关系。

数学模型第九章灰色系统方法建模--9.1灰色关联度与优势分析

数学模型第九章灰色系统方法建模--9.1灰色关联度与优势分析

式(1)定义的关联系数是描述比较数列与参考数 列在某时刻关联程度的一种指标,由于各个时刻都有一
个关联系数,因此信息显得过于分散,不便于比较,为
此我们给出
ri

1 n
n k 1
i (k)
为比较数列 2019/11/22 X i 对参考数列数学X建0 模的关联度。
(2)
由式(2)容易看出,关联度是把各个时刻的关


sign

j n

,则
X
i

X
j
为负关联。
2019/11/22
数学建模
三、优势分析
当参考数列不止一个,被比较的因素也不止一个
时,则需要进行优势分析。
假设有 m 个参考因素,记为Y1,Y2 ,,Ym ,再设有 n 个
比较数列,记为 X1, X 2 ,, X n 。显然,每个参考数列对 n 个
所示。
rrrrrrr r
1
2
3
4
5
6
7
8
0.588 0.633 0.854 0.776 0.855 0.502 0.659 0.582
rrrrrrrr
9
10
11
12
13
14
15
16
0.683 0.695 0.895 0.705 0.933 0.847 0.745 0.726
2019/11/22
数学建模
(k)
max max
i
k
X 0 (k)
max max 数学建模i k
X 0 (k) X
X i (k)
i
(k
)
(1)
为比较数列 X i 对参考数列 X 0 在 k 时刻的关联系数,其 中 [0,) 为分辨系数。一般来讲,分辨系数 [0,1],

《灰色关联分析》课件

《灰色关联分析》课件
发展趋势
未来,灰色关联分析将更加注重多变量关联度分析和不确定性因素的考虑。
参考文献
1 1. 黄小刚. 灰色关联分析及其应用[M]. 科学出版社, 1996. 2 2. 程志刚, 倪洪涛. 灰色关联分析原理与应用[M]. 中国水利水电出版社, 2010.
灰色关联分析的应用实例
市场营销
灰色关联分析可用于评估不同市场策略的关联度和 效果,帮助制定更具针对性的营销计划。
投资决策
灰色关联分析可用于评估不同投资方案的回报率和 风险关联度,帮助投资者做出明智的决策。
结论与展望
灰色关联分析的重要性
灰色关联分析能够揭示变量之间的关联关系,指导决策者制定合理的决策和策略。
《灰色关联分析》PPT课 件
在这个课程中,我们将深入介绍灰色关联分析的原理、应用和计算方法,并 探讨其在市场营销和投资决策等领域的实际应用。
灰色关联分析简介
定义
灰色关联分析是一种基于灰色系统理论的数据分析方法,用于研究变量之间的关联性。
应用场景
灰色关联分析广泛应用于市场营销、投资决策、工程管理等领域,帮助分析师做出权衡和决 策。
灰色关联度计算方法
1
基本思想
灰色关联度计算基于变量间的相关程度,通过比较变量序列之间的关联程度来评 估其相似度。
2
灰色关联度计算公式
灰色关联度计算公式包括特征标准化和关联系数计算两个步骤,可用于定量分析 变量之间的关联度。
3
数值解释
灰色关联度值越大,表示变量之间的关联程度越高,相应的影响更为显著。
数据预处理
1 数据归一化
通过数据归一化处理,将不同量纲的数据转化为相同的量纲,以便计算和比较。
2 构建关联系数矩阵
构建关联系数矩阵是灰色关联分析的关键步骤,用于计算变量之间的关联度。

灰色关联分析应用实例(求灰色关联度)学习资料

灰色关联分析应用实例(求灰色关联度)学习资料

灰色关联分析应用实例(求灰色关联度)灰色关联分析应用实例设序列12(30.5,34.7,35.9,38.2,41)(22.1,25.4,27.1,28.3,31.5)==X X求其绝对关联度、相对关联度和综合关联度(0.5ρ=)(数据取自教材77页第二题)由题目可知,原序列为等时距序列,且皆为1时等时距。

第一步:求始点零像化,得000000000000000000111111((1),(2),(3),(4),(5))(0,4.2,1.2,2.3,2.8)((1),(2),(3),(4),(5))(0,3.3,1.7,1.2,3.2)====X x x x x x X x x x x x第二步:求0110,,-s s s s4000240011124000010101021()(5)9.121()(5)7.821(()())((5)(5) 1.32====+==+=-=-+-=∑∑∑k k k s x k x s x k x s s x k x k x x计算灰色绝对关联度0101011010.93231ε++==+++-s s s s s s因此可以看出两个序列是高度相关的类似的再求相对关联度 第一步:将序列初值化'0'0'0'0'0'00000000'0'0'0'0'0111111((1),(2),(3),(4),(5))(1,1.138,1.035,1.064,1.073)((1),(2),(3),(4),(5))(1,1.149,1.067,1.044,1.113)====X x x x x x X x x x x x再将其始点零像化'0'0'0'0'0'00000000'0'0'0'0'0111111((1),(2),(3),(4),(5))(0,0.138,0.104,0.029,0.009)((1),(2),(3),(4),(5))(0,0.149,0.082,0.023,0.069)==-==--X x x x x x X x x x x x第二步:求0110',',''-s s s s400002400111240'00010101021'()'(5)0.068721''()'(5)0.078721''('()())('(5)'(5)0.0099952===+==+=-=-+-=∑∑∑k k k x k x s x k x s s x k x k x x第三步:求相对关联度0101011010.99141ε++==+++-s s s s s s两个序列的相对关联度也是高度相关的。

灰色关联度分析讲解

灰色关联度分析讲解

第五章灰色关联度分析目录壹、何谓灰色关联度分析-------------------- 5-2贰、灰色联度分析实例详说与练习--------------- 5-8第五章灰色关联度分析壹、何谓灰色关联度分析一.关联度分析灰色系统分析方法针对不同问题性质有几种不同做法,灰色关联度分析(Grey Relational Analysis) 是其中的一种。

基本上灰色关联度分析是依据各因素数列曲线形状的接近程度做发展态势的分析。

灰色系统理论提出了对各子系统进行灰色关联度分析的概念,意图透过一定的方法,去寻求系统中各子系统(或因素)之间的数值关系。

简言之,灰色关联度分析的意义是指在系统发展过程中,如果两个因素变化的态势是一致的,即同步变化程度较高,则可以认为两者关联较大;反之,则两者关联度较小。

因此,灰色关联度分析对于一个系统发展变化态势提供了量化的度量,非常适合动态(Dynamic)的历程分析。

灰色关联度可分成「局部性灰色关联度」与「整体性灰色关联度」两类。

主要的差别在于「局部性灰色关联度」有一参考序列,而「整体性灰色关联度」是任一序列均可为参考序列。

二.直观分析依据因素数列绘制曲线图,由曲线图直接观察因素列间的接近程度及数值关系,表一某老师给学生的评分表数据数据为例,绘制曲线图如图一所示,由曲线图大约可直接观察出该老师给分总成绩主要与考试成绩关联度较高。

表一某一老师给学生的评分表单位:分/%由曲线图直观分析,是可大略分析因素数列关联度,可看出考试成绩与总成绩曲线形状较接近,故较具关联度,但若能以量化分析予以左证,将使分析结果更具有说服力。

三.量化分析量化分析四步曲:1.标准化(无量纲化):以参照数列(取最大数的数列)为基准点,将各数据标准化成介于0至1之间的数据最佳。

2.应公式需要值,产生对应差数列表,内容包括:与参考数列值差(绝对值)、最大差、最小差、Z (Zeta)为分辨系数,0VZV1,可设Z = 0.5(采取数字最终务必使关联系数计算:E i (k)小于1为原则,至于分辨系数之设定值对关联度并没影响,请参考p14例)3.关联系数E i (k)计算:应用公式i(k)mi n maxAoi(k)+』max 计算比较数列X上各点k与参考数列X参照点的关联系数,最后求各系数的平均值即是X与X o的关联度r i。

灰色关联分析法原理及解题步骤

灰色关联分析法原理及解题步骤

灰色关联分析法原理及解题步骤---------------研究两个因素或两个系统的关联度(即两因素变化大小,方向与速度的相对性)关联程度——曲线间几何形状的差别程度灰色关联分析是通过灰色关联度来分析和确定系统因素间的影响程度或因素对系统主行为的贡献测度的一种方法。

灰色关联分析的基本思想是根据序列曲线几何形状的相似程度来判断其联系是否紧密1> 曲线越接近,相应序列之间的关联度就越大,反之就越小 2> 灰色关联度越大,两因素变化态势越一致分析法优点它对样本量的多少和样本有无规律都同样适用,而且计算量小,十分方便,更不会出现量化结果与定性分析结果不符的情况。

灰色系统关联分析的具体计算步骤如下 1》参考数列和比较数列的确定参考数列——反映系统行为特征的数据序列比较数列——影响系统行为的因素组成的数据序列2》无量纲化处理参考数列和比较数列(1) 初值化——矩阵中的每个数均除以第一个数得到的新矩阵(2) 均值化——矩阵中的每个数均除以用矩阵所有元素的平均值得到的新矩阵(3) 区间相对值化3》求参考数列与比较数列的灰色关联系数ξ(Xi) 参考数列X0比较数列X1、X2、X3……………比较数列相对于参考数列在曲线各点的关联系数ξ(i)称为关联系数,其中ρ称为分辨系数,ρ?(0,1),常取0.5.实数第二级最小差,记为Δmin。

两级最大差,记为Δmax。

为各比较数列Xi曲线上的每一个点与参考数列X0曲线上的每一个点的绝对差值。

记为Δoi(k)。

所以关联系数ξ(Xi)也可简化如下列公式:4》求关联度ri关联系数——比较数列与参考数列在各个时刻(即曲线中的各点)的关联程度值,所以它的数不止一个,而信息过于分散不便于进行整体性比较。

因此有必要将各个时刻(即曲线中的各点)的关联系数集中为一个值,即求其平均值,作为比较数列与参考数列间关联程度的数量表示,关联度ri公式如下:5》排关联序因素间的关联程度,主要是用关联度的大小次序描述,而不仅是关联度的大小。

灰色关联度模型

灰色关联度模型

灰色关联度分析的原理灰色系统关联度数学模型是系统分析的一个重要方法,它是两个系统或系统内的各因素随时间变化时,其变化方向和速度的关联程度,在系统发展过程中,哪些因素是主要影响因子,可以用关联度的排序来分析,关联度大的表明该因素是影响系统发展主要影响因子,关联度小的说明系统发展不受或少受此因素的影响。

通过关联度分析,便于分析主导因素和潜在因素,分清优势与劣势。

为分析评价系统发展提供了相关的信息。

也就是说,灰色关联度法主要通过估量各评价对象和评价指标之间的距离,利用样本数据的内在关系去评价样本,从而较好排除数据的“灰色”关系;而且评价标准并不固定,不同的年份和样本会产生不同的标准。

但是标准值的选取结果始终是样本在被选时段的最优值。

因此,该评价模型是有广泛实用性和可操作性。

在确定了指标体系之后,就需要建立灰色关联评价模型。

在模型中,最为重要的概念是关联度。

关联度是因素之间关联性大小的量度,它定量地描述了因素之间相对变化的情况,即变化的大小、方向与速度等相关性[67]。

从定量的角度描述了事物或因素之间相对变化的情况,即变化的大小、方向与速度的相对性[68]。

具体步骤[69]如下:a.确定分析序列在对所研究问题定性分析的基础上,确定一个因变量因素和多个自变量因素。

设因变量数据构成参考序列{x i’(k)},各自变量数据构成比较序列{x j’(k)},表示如下:{x i’(k)}={x i’(1),x i’(2),......x i’(m)};{x j’(k)}={x j’(1),x j’(2),......x j’(n) }。

式中:i=1,2,......m;j=1,2,......n。

b.对变量序列进行无量纲化一般情况下,原始变量序列具有不同的量纲或数量级,为了保证分析结果的可靠性,需要对变量序列进行无量纲化,而后各因素形成序列{x i(k)},其中用初值化法进行无量纲化,用比较序列的指标值除以相应的参考序列的值。

灰色关联分析计算实例演示PPT课件

灰色关联分析计算实例演示PPT课件



xn xn
1 2


x1m x2 m xn m
其中m为指标的个数,X.i xi1 , xi2 , , xim T , i 1, 2 , , n
首页
上一页
下一页
末页
结束
• 2.确定参考数据列 参考数据列应该是一个理想的比较标
结束
灰色关联分析计算的实例演示
首页
上一页
下一页
末页
1.灰色关联分析计算步骤 结 束
• 1.根据评价目的确定评价指标体系,收 集评价数据。
首页
上一页
下一页
末页
设n个数据序列形成如下矩阵:
结束
X 1,
X
2
,
X
n



x11 x12

x2 1
x2 2
其中为指标的个数2确定参考数据列参考数据列应该是一个理想的比较标准可以以各指标的最优值构成参考数据列也可根据评价目的选择其它参照值记作常用的无量纲化方法有均值化法见123式初值化法见1244逐个计算每个被评价对象指标序列比较序列与参考序列对应元素的绝对差值minminmaxmax6计算关联系数由125式分别计算每个比较序列与参考序列对应元素的关联系数minminmaxmaxmaxmax为分辨系数在01内取值若越小关联系数间差异越大区分能力越强
首页
上一页
下一页
末页
结束
• 5.求最值:
nm
min i 1
min k 1
x0 (k)

xi
(k)
=
0
n
m
max i 1
max k 1
x0
(k
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

古柏文书
5
确定参考数列
对一个抽象系统或现象进行分析,首先要选准反映系统 行为特征的数据序列(参考序列)。我们称之为找系统行 为的映射量,用映射量来间接地表征系统行为。比如:
国民平均受教育的年限
教育的发达程度
刑事案件的发案率
社会治安面貌和社会秩序
古柏文书
6
原始数据的处理
由于各因素各有不同的计量单位,因而原始数据存在量纲和数量级上的 差异,不同的量纲和数量级不便于比较,或者比较时难以得出正确结论。 因此,在计算关联度之前,通常要对原始数据进行无量纲化处理。
标 X0 X1 X2 X3 X4 X5 X6 X7 X8 X9 X 10 X 11 X 12 X 13 X 14 X 15 X 16
1982 13.60 11.50 13.76 12.21 2.48 85 55 65 12.80 15.30 12.71 14.78 7.64 120 80 4"20 13"1 0
15
我们对表中的 16 个数列进行初始化处理。注意, 对于前 14 个数列,随着时间的增加,数值的增加意 味着运动水平的进步,而对后两个数列来讲,随着时
间的增加,数值(秒数)的减少意味着运动水平的进
步。因此,在对数列 X 15=(4"20,4"25,4"10,4"06, 3"99)及数列 X 16=(13"10,13"42,12"85,12"72, 12"56)进行初始化处理时,采用以下公式
设 X i (xi (1), xi (2),, xn (n)) 为因素 X i 的行为序列
初值化
一般地,初值化方法适用于较稳定的社会经济现象的无量纲化,因 为这样的数列多数呈稳定增长趋势,通过初值化处理,可使增长趋 势更加明显。
古柏文书
7
均值化
一般说来,均值化方法比较适合于没有明显升降趋势现象的数据处理。 区间化
Xi
1,
X i (1) , X i (2)
X i (1) , X i (3)
X i (1) , X i (4)
Xi Xi
(1) (5)
i 15,16
古柏文书
16
依照问题的要求,我们自然选取铅球运动员专项
成绩作为参考数列,将上表中的各个数列的初始化数
列代入(1)、(2),易计算出各数列的关联度,如下表
所示。

rrrrrrr r
1
2
3
4
5
6
7
8
0.588 0.633 0.854 0.776 0.855 0.502 0.659 0.582
rrrrrrrr
9
10
11
12
13
14
古柏文书
3
基本思想:
根据序列曲线几何形状的相似程度来判断其联 系是否紧密,曲线越接近,相应序列之间的关 联度就越大,反之就越小。
100
90 80 70
90 80
887505
60
60
50
周阿舍 劉阿華 蕭阿薔
總成績 考試成績 出席率
圖一 某老師給學生的評分表曲線圖
古柏文书
4
灰色关联度的计算
➢ 确定参考数列 ➢ 处理原始数据 ➢ 计算关联系数 ➢ 关联度的计算与比较
灰色关联度分析
古柏文书
1
➢何为灰色关联度分析? ➢如何计算? ➢有何应用?
古柏文书
2
灰色关联度分析
灰色系统
是指部分信息已知而部分信息未知的系统,灰色系 统理论所要考察和研究的是对信息不完备的系统,通过 已知信息来研究和预测未知领域从而达到了解整个系统 的目的。
关联度
关联度是事物之间、因素之间关联性大小的量度。它 定量地描述了事物或因素之间相互变化的情况,即变 化的大小、方向与速度等的相对性。如果事物或因素 变化的态势基本一致,则可以认为它们之间的关联度 较大,反之,关联度较小。
古柏文书
12
灰色关联度分析的运用
➢因 素 分 析
➢优 势 分 析
➢综 合 评 价
古柏文书
13
二、铅球运动员专项成绩的因素分析 通过对某健将级女子铅球运动员的跟踪调查,获
得其 1982~1986 年每年最好成绩及 16 项专项素质和 身体素质的时间序列资料,见下表。
古柏文书
14
指 铅球专项成绩 4 公斤前抛 4 公斤后抛 4 公斤原地 立定跳远 高翻 抓举 卧推 3 公斤前抛 3 公斤后抛 3 公斤原地 3 公斤滑步 立定三级跳远 全蹲 挺举 30 米起跑 100 米
一般地,三种方法不宜混合、重叠作用,在进行系统因素分析时, 可根据实际情况选用其中一个。
古柏文书
8
若系统 因素 X i 与系统主行为 X
可以将其逆化或倒数化后进行计算。
0
呈负相关关系,我们
逆化
倒数化
古柏文书
9
关联系数的计算
设经过数据处理后的参考数列为:
比较数列为:
从几何角度看,关联程度实质上是参考数列与比较数列曲线形状的相似程度。凡 比较数列与参考数列的曲线形状接近,则两者间的关联度较大;反之,如果曲线 形状相差较大,则两者间的关联度较小。因此,可用曲线间的差值大小作为关联 度的衡量标准。 则:
两极最大差与最小差:
古柏文书
10
关联系数:
式中 为分辩系数,用来削弱Δ(max)过大而使关联系数失真的影响。 人为引入这个系数是为了提高关联系数之间的差异显著性。
古柏文书
11
关联度的计算与比较
由于每个比较数列与参考数列的关联程度是通过n 个关联系数来反映的, 关联信息分散,不便于从整体上进行比较。因此,有必要对关联信息作集 中处理。而求平均值便是一种信息集中的方式。即用比较数列与参考数列 各个时期的关联系数之平均值来定量反映这两个数列的关联程度,其计算 公式为:
1983 14.01 13.00 16.36 12.70 2.49 85 65 70 15.30 18.40 14.50 15.54 7.56 125 85 4"25 13"42
1984 14.54 15.15 16.90 13.96 2.56 90 75 75 16.24 18.75 14.66 16.03 7.76 130 90 4"1 0 1 2" 85
古柏文书
1985 15.64 15.30 16.56 14.04 2.64 100 80 85 16.40 17.95 15.88 16.87 7.54 140 90 4"0 6 1 2"7 2
1986 15.69 15.02 17.30 13.46 2.59 105 80 90 17.05 19.30 15.70 17.82 7.70 140 95 3"99 12"56
相关文档
最新文档