乘法公式平方差公式ppt课件

合集下载

公式法PPT课件(北师大版)

公式法PPT课件(北师大版)

2
2 92 − 4 2
4 −4 +16
3. 已知 + 2 = 3, 2 -4 2 =-15,求 − 2,,的值.
同学们,再见!
课题:公式法——平方差公式
复习引入
问题:什么叫因式分解?
把一个多项式化成几个整式的积的情势,这样的变
形叫做因式分解.
问题:我们已学过哪一种分解因式的方法?
提公因式法
复习引入
问题:整式乘法中的平方差公式是什么?
平方差公式:
(a+b)(a-b)=a2-b2
整式乘法
(a+b)(a-b) =a2-b2
a2-b2 =(a+b)(a-b)
- =( + )( − )
公式左边:1.多项式有两项;
2.这两项异号;
3.两项是平方差.
公式右边: 两个数的和与两个数的差的乘积的情势。
练习:判断下列各式能否用平方差公式因式分解?
(1)
m 81
2
(2) 1 16b 2

=2 − 92

=12 − (4)2
×
不能转化为平方差情势
3.两项是平方差.
注:公式中的字母a,b可以代表数、字母,也可以代
表一个式子;分解因式时要把式子看作一个整体.
(整体思想)
归纳总结
۞2.利用平方差公式分解因式的步骤:
(1)若多项式中有公因式,应先提取公因式;
(2)剩余因式若有两项、异号,两项是平方差,
则用平方差公式继续分解因式;
۞3.分解因式一定要分解到每个因式都不能再分
=( + 1)( − 1)
先考虑能否用提取公因式法,再考虑能否用平方差公式

《乘法公式》PPT课件教学课件初中数学1

《乘法公式》PPT课件教学课件初中数学1

分析: (a+b)2
(a−b)2
4ab
(a+b)2 =a2+2ab+b2
a2+b2
(a−b)2
=a2−2ab+b2 ab=?
巩固练习
练习 已知(a+b)2=7,(a−b)2=3,求a2+b2的值.
解: ∵ ( a + b ) 2= a 2+ 2 a b + b 2,
(a−b)2=a2−2ab+b2,
(a±b)2 = a2±2ab+b2. (a±b)2=a2±2ab+b2. (a+b)(a−b)=a2−b2. 平方差公式:(a+b)(a−b) =a2−b2. 例 运用乘法公式计算: (a+b)(a−b) =a2−b2; = x4−8x2y2+16y4; x2+y2= (x−y)2+2xy 例 运用乘法公式计算: 两数和的完全平方公式: 乘法交换律: a×b=b×a. (1) (x+y+1)(x+y−1)
例题讲解
例 求代数式的值:
(2) 已知x−y=6,xy=−8,求x2+y2的值.
分析: x−y , xy
x2+y2
(x−y)2=x2−2xy+y2
x2+y2= (x−y)2+2xy
例题讲解
例 求代数式的值: (2) 已知x−y=6,xy=−8,求x2+y2的值. 解: ∵ ( x − y ) 2= x 2− 2 x y + y 2,
= x2+6xy+9y2−x2+9y2
4.灵活运用公式:
= x2+6xy+9y2−(x2−9y2)

平方差公式课件PPT

平方差公式课件PPT

$(a+b-c)^2 = a^2 + b^2 - c^2 + 2ab - 2bc$
$(a-b+c)^2 = a^2 - b^2 + c^2 + 2(ab)c$
平方差公式的其他变种形式
$(a+b)^3 = (a+b)(a^2 - ab + b^2)$ $(a-b)^3 = (a-b)(a^2 + ab + b^2)$
平方差公式课件
目录
CONTENTS
• 平方差公式的基本概念 • 平方差公式的推导过程 • 平方差公式的证明 • 平方差公式的应用举例 • 平方差公式的变种 • 总结与回顾
01 平方差公式的基本概念
平方差公式的定义
总结词
平方差公式是数学中一个重要的恒等 式,用于表示两个数的平方差与这两 个数之间的关系。
$(a+b+c)^3 = (a+b+c)(a^2 - ab + b^2 - ac + bc - c^2)$
06 总结与回顾
本节课的重点回顾
01
02
03
04
平方差公式的形式和结 构
平方差公式的推导过程
平方差公式的应用范围 和条件
平方差公式的代数表示 和几何意义
本节课的难点解析
01
02
03
04
如何理解和记忆平方差公式的 形式和结构
目标
证明该公式成立
证明的步骤
01
02
03
步骤1
展开左侧,得到 $(a+b)(a-b) = a^2 b^2 + ab - ab$
步骤2
合并同类项,得到 $(a+b)(a-b) = a^2 b^2$

《平方差公式说》课件

《平方差公式说》课件
围。
二次项系数不为1的平方差公式推广
当二次项系数不为1时,平方差 公式仍然成立,但形式会有所不
同。
推广后的公式可以适用于更广泛 的情况,包括二次项系数不为1
的等式和恒等式。
通过推广平方差公式,我们可以 更好地理解和应用数学中的一些
基本概念和原理。
平方差公式的其他形式和推广
除了标准的平方差公式外,还有许多 其他形式和推广的平方差公式。
03
CATALOGUE
平方差公式的证明
利用数学归纳法证明
总结词
数学归纳法是一种证明数学命题的重要方法,通过归纳递推 的方式,证明命题对所有自然数都成立。
详细描述
首先证明基础步骤,即n=1时命题成立;然后假设n=k时命 题成立,推导出n=k+1时命题也成立;最后由归纳递推得出 ,命题对所有自然数n都成立。
利用多项式乘法法则推导
总结词
通过多项式乘法法则,将平方差公式进行拆解和重组,推导出其公式形式。
详细描述
首先将平方差公式中的每一项视为一个多项式,然后利用多项式乘法法则,将 每一项与另一项相乘,得到的结果再合并同类项,最终推导出平方差公式。
利用因式分解法推导
总结词
通过对平方差公式进行因式分解,将其拆解为更简单的形式,从而推导出其公式 形式。
通过学习和掌握这些公式,我们可以 更好地理解和应用数学中的一些基本 概念和原理,从而更好地解决实际问 题。
这些公式可以用来解决一些特定的问 题,例如求解某些数学问题和证明某 些等式。
THANKS
感谢观看
平方差公式的应用范围
01
02
03
04
在代数中,平方差公式常用于 因式分解和多项式简化。
在几何中,它可以用于计算某 些图形的面积和周长。

平方差公式赛课一等奖课件

平方差公式赛课一等奖课件
平方差公式概述
* 平方差公式的定义
* 平方差公式的形式
* 平方差公式的意义
04
平方差公式的推导过程
* 利用多项式乘法推导
* 利用因式分解推导
* 推导过程中的注意事项
05
平方差公式的应用
* 代数式中的应用
* 几何图形中的应用
* 实际生活中的应用
06
平方差公式的变式与拓展
* 平方差公式的变式
Ppt
平方差公式赛课一等奖课件
单击添加副标题
汇报人:PPT
目录
01 03 05 07
单击添加目录项标题
02
平方差公式概述
04
平方差公式的应用
06
练习题与解析
08
课件封面与目录 平方差公式的推导过程 平方差公式的变式与拓展
总结与回顾
01
添加章节标题
02
课件封面与目录
* 封面设计
* 目录结构
03
感谢观看
汇报人:PPT
* 平方差公式的拓展形式
* 变式与拓展的应用场景
07
练习题与解析
* 基础练习题
* 提高练习题
* 综合练习题
* 解析与答案
08
总结与回顾
* 总结平方差公式的知识点
* 回顾推导过程与应用场景
* 强调平方差公式的重要性与实用性
09
附录与参考文献* 附录来自公式推导过程的详细步骤* 参考文献:相关数学书籍与资料

苏科版七年级数学下册9.乘法公式——平方差公式课件

苏科版七年级数学下册9.乘法公式——平方差公式课件
9.4 乘法公式(2) ——平方差公式
环节一 复习回顾
完全平方公式:(a b)2 a2 2ab b2 (a b)2 a2 2ab b2
计算: (x 2 y)2 解:原式 x2 2 x 2 y (2 y)2
x2 4xy 4 y2
做一做
a
a
a-b
将图中纸片只剪一刀,
再拼成一个长方形.
(x)2 (3y)2 x2 9y2
完全平方公式、平方差公式通常叫做乘法公式。
环节四 释疑、运用
1.计算: (a b c)(a b c) 解法一:原式 a2 ab ac ab b2 bc ac bc c2
a2 2ac c2 b2
解法二:原式 (a c b)(a c b)
2.填空:
(1)(x __6_)(x _6__) x2 36;
x2 62
(2)(m _5_n_)(m _5_n_) m2 25n2; m2 (5n)2
(3)(a b)(__b__a__) b2 a2;
(4)(___x_2 __1_)(1 x2 ) x4 1. (x2 )2 12 (x2 )2 12例1.Fra bibliotek平方差公式计算:
(1)(5x y)(5x y);
解:原式 5(5xx2 )2 y2y2
25x2 y2
(2)(m 2n)(2n m)
解:原式 (2n m)(2n m) (2n)2 m2 4n2 m2
环节三 例题讲授
例2. 计算: (3y x)(x 3y) 把-x、3y分别看成a、b 解:原式 (x 3y)(x 3y)
布置作业:
(1)左边是两个二项式的__积__,在这两个二项式中有一项(a)完全_相__同__,
另一项(b与-b)互为_相__反__; 右边为这两个数的_平__方__差__即右边是完全相同的项的平方减去符号相

乘法公式复习课件-PPT

乘法公式复习课件-PPT

4
巩固练习二
1、如果 x²+ax+16 是一个完全平方 式, 则a=__+_8
2、如果 25a²-30ab+m 是一个完全;(+40xy)+25y²=( 4x+5y )²
4.在整式4x2+1中加上一个单项式使 之成为完全平方式,则应添_4_x_或__-4_x_
即x2+2xy+y2=16. 又x2+y2=10, 所以xy=3. 又(x-y)2=x2+y2-2xy=10-2×3=4, 所以x-y=±2.
注意:由(x-y)2=4,求x-y,有两解,不能遗漏!
14
12
2 计算:
(1) (x 1)(x 1) (2x 1)(2x 1) (x 1)2; (2) (m 2)(m 2) 2(m 2)2 (m 3)2; (3) (x 1)2 (x 1)2 (x2 1)2.
(4) (m-n+2)(m+n-2)
(5) (x+2y-1)2
13
3. 已知x+y=4,x2+y2=10,求xy和x-y的值. 解:由x+y=4,可得(x+y)2=16,
5.在整式
x2
1 x2
中加上一个单项式使
之成为完全平方式,则应添__2_或_-_2___
6.若(2m-3n)2=(2m+3n)2+A成立,A应 为___-1_2_m__n___
13.若x2+2•m•x+36是完全平方式, 则m的值为__6_或__-6____
巩固练习三
(x+y-z)(-x+y+z) (a-b-c)(a+b-c) (a-b-2c)2 (-x+y+z)2

乘法公式ppt课件

乘法公式ppt课件

感悟新知
(2)几何图形证明法(数形结合思想)
知2-讲
图14.2-2 ①:大正方形的面积为(a+b)2=a2+b2+2ab;
图14.2-2 ②:左下角正方形的面积为(a-b)2=a2-2ab+b2.
感悟新知
知2-讲
3. 完全平方公式的几种常见变形
(1)a2+b2=(a+b)2-2ab=(a-b)2+2ab;
原式=x2-4xy+4y2;
(4)(-2xy-1)2.
原式=4x2y2+4xy+1.
感悟新知
知2-练


2
例 4 计算:(1)999 ;(2) .
解题秘方:将原数转化成符合完全平方公式的形式,再
利用完全平方公式展开计算即可.
感悟新知
(1)9992;
知2-练
解:9992=(1 000-1)2=1 0002-2×1 000×1+12
(2)(a+b)2=(a-b)2+4ab;
(3)(a-b)2=(a+b)2-4ab;
(4)(a+b)2+(a-b)2=2(a2+b2);
(5)(a+b)2-(a-b)2=4ab;
感悟新知
知2-讲


2
2
2
(6)ab= [(a+b) -(a +b )]=


[(a+b)2-(a-b)2];
(7)(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;
公式进行计算.
感悟新知
知2-练
(1)(x+7y)2;
解:(x+7y)2=x2+2·x·(7y)+(7y)2
括号不能漏掉.
=x2+14xy+49y2;
(2)(-4a+5b)2;
(-4a+5b)2 =(5b-4a)2

11.2 乘法公式(第1课时 平方差公式)(课件)-七年级数学上册(沪教版2024)

11.2 乘法公式(第1课时 平方差公式)(课件)-七年级数学上册(沪教版2024)
图①,阴影部分的面积是 a2- b2
;比较图①,图②阴影部分的面积,可以
得到乘法公式 ( a + b )( a - b )= a2- b⁠2
课堂小结
5 −3 − 2 3 − 2
6 − 2 + 2 + 2 − 2 +
=(-2x-3 )(-2x+3)
=x²-(2y)²+(2x)²-y²
=(-2x)²-3²
= x²-4y ²+4x²-y²
=4x²-9
=5x²-5 y²
分层练习-基础
1. 下列各式能用平方差公式计算的是( B
= 42 − 92 .
课本例题
例2
计算:
(1) − + 1 − − 1 ;
解(1)( − + 1 − − 1
= − 2 − 12
= 2 − 1.
2 2 − 3 −2 − 3
2 2 − 3 −2 − 3
= −3 + 2 −3 − 2
=
( − 3)
2
− ( 2)
1. 计算:
(1) 2 + 5 2 − 5 ;
解: 1 2 + 5 2 − 5
= 2 ²- 5²
=4²-25
1 2 1
+
2
3
3
3
1 2 1
+
2
3
1
2
1 4
1

4
9
1 2 1

;
2
3
1 2 1

2
3
1
3
= ( 2 )²−( )²
=
2 1 − 2 1 + 2

2.平方差公式PPT课件

2.平方差公式PPT课件

(4)(5a+b)(5a-b)= 25a2-b2 (5)(n+3m)(n-3m)= n2-9m2
(6)(x+2y)(x-2y)= x2-4y2
计算下列各题
视察 & 发现
(1)(a+5)(a-5)= a2-25 视察以上算式及其运
算结果,你发现了什
(2)(m+3) (m-3)= m2-9 么规律?
(3)(3x+7)(3x-7)= 9x2-49
平方差公式
平方差公式的几何背景:
第一回忆我们曾经用 几何的意义即图形面积来解释整式乘法
运算法则,如:a(b+c)=ab+ac;
平方差公式
平方差公式的几何背景:
请同学们思考如何用几何图形的 面积来解释(a +b)(a-b)呢? 1、当a>b>0时,我们可能看成是以长为(a+b) , 宽为(a-b)的长方形的面积。
平方差公式
回顾 & 思考☞
多项式乘法 法则是:
用一个多项式的每一项 乘另一个多项式的每一项 再把所得的积相加。
(m+a)(n+b)= mn+mb+an+ab
如果m=n,且都用 x 表示,那么上式就成为:
(x+a)(x+b) = x2+(a+b)x+ab
这是上一节学习的 一种特殊多项式的乘法——
两个相同字母的 二项式的ห้องสมุดไป่ตู้积 .
如果 (x+a)(x+b)中的a、b再有某种特殊关系, 又将得到什么特殊结果呢? 这就是从本课起要学习的内容.
计算下列各题
视察 & 发现

平方差公式(课件)八年级数学上册(人教版)

平方差公式(课件)八年级数学上册(人教版)
2
(1)
=
(x+1)
(x -1) x -1 ;
(2)
= m2 - 4 ;
(m+ 2)
(m- 2)
2
(3)
=
4
x
-1.
(2 x+1)
(2 x -1)
相乘的两个多项式的各项与它们的积中的各项有什么关系?
(a+b)
(a-b)=a 2 -b 2
你能证明(a+b)(a-b)=a 2 -b 2 吗?
1、利用多项式的乘法法则验证:
(1)上述操作能验证的等式是________.
B
A. 2 − 2 + 2 = ( − )2
B. 2 − 2 = ( + )( − )
C. 2 − = ( − )
(2)应用你从(1)中选出的等式,完成下列各题:
①已知x 2 − 4y 2 = 18, − 2 = 3,求 + 2.
2
3
4
1
20212
× 1−
1
20222

(2)解:①∵x2-4y2=18,x-2y=3,
∴x+2y=(x2-4y2)÷(x-2y)=18÷3=6;
1
1
1
②原式=(1 − ) × (1 + ) × (1 − )
2
2
3
1
3
2
4
2021
2023
= × × × × ⋯×
×
2
2
3
3
2022
2022
1 2023
人教版
八年级上册数学
第十四章
14.2.1平方差公式
复习引入

七下数学课件: 乘法公式(第2课时 平方差公式)(课件)

七下数学课件: 乘法公式(第2课时 平方差公式)(课件)

解:=y2-22-(y2+4y-5)
=y2-4-y2-4y+5
=- 4y + 1
【名师点拨】不符合平方差公式运算条件的,则需按照乘法法则进行运算。
运用平方差公式进行计算
利用平方差公式计算:
1)(a+3b)(a-3b)
2)(3+a)(-3+a)
3)(-2x2-3y)(-2x2+3y)
4)20182 - 2015×2021
1)对因式中各项的系数、符号要仔细观察、比较,不能误用公式.如:
(a+3b)(3a-b),不能运用平方差公式。
2)公式中的字母a、b可以是一个数、一个单项式、一个多项式。所以,
当这个字母表示一个负数、分式、多项式时,应加括号避免出现只把
字母平方,而系数忘了平方的错误。
运用平方差公式进行计算
平方差公式运用
=5050.故答案为D.
平方差公式与几何面积-提高
4张长为a,宽为b(a>b)的长方形纸片,按如图的方式拼成一个边长为(a+b)的正方形,图
中空白部分的面积为S1,阴影部分的面积为S2,若S1=S2,则a,b满足的关系式是(
A.a=1.5b
B.a=2b
C.a=2.5b
D.a=3b
1
【详解】解:由题意可得:S2=4×2b(a+b)=2b(a+b);
1)(x+1)(x-1)
相加和为0
2 − + −1 = 2 -1

=
2)(m+2)(m-2)
2+2 −2 −4 =2 -4

=
相加和为0
3)(2x+1)(2x-1) =
4)(a+b)(a-b) =

《平方差公式》PPT优质课件

《平方差公式》PPT优质课件
= 9x2–16–6x2–5x+6 = 3x2–5x–10.
探究新知
素养考点 3 利用平方差公式进行化简求值
例3 先化简,再求值:(2x–y)(y+2x)–(2y+x)(2y–x), 其中x=1,y=2.
解:原式=4x2–y2–(4y2–x2) =4x2–y2–4y2+x2 =5x2–5y2.
当x=1,y=2时, 原式=5×12–5×22=–15.
探究新知
素养考点 5 利用平方差公式解决实际问题
例5 王大伯家把一块边长为a米的正方形土地租给了邻居 李大妈.今年王大伯对李大妈说:“我把这块地一边减少 4米,另外一边增加4米,继续租给你,你看如何?”李大 妈一听,就答应了.你认为李大妈吃亏了吗?为什么?
解:李大妈吃亏了. 理由:原正方形的面积为a2, 改变边长后面积为(a+4)(a–4)=a2–16, ∵a2>a2–16, ∴李大妈吃亏了.
巩固练习
如果两个连续奇数分别是2n–1,2n+1(其中n为正 整数),证明两个连续奇数的平方差是8的倍数.
证明:(2n+1)2–(2n–1)2 =[(2n+1)+(2n–1)][(2n+1)–(2n–1)] =(2n+1+2n–1)(2n+1–2n+1) =4n×2 =8n 因为8n是8的倍数,所以结论成立.
探究新知 知识点 平方差公式
多项式与多项式是如何相乘的?
(a+b)(m+n) =am +an +bm +bn
(x + 3)( x+5) =x2 +5x +3x +15 =x2 +8x +15.
探究新知
面积差变了吗?
a米
a米 5米

平方差公式课件(市一等奖)

平方差公式课件(市一等奖)

平方差公式的特点
形式特点:形如a^2 - b^2 = (a+b)(a-b) 结构特点:左边是两个相同的二项式相减,右边是两个相同的二项式相加 符号特点:当a、b同号时,结果为正;当a、b异号时,结果为负 代数式特点:左边是两个相同的代数式相减,右边是两个相同的代数式相加
平方差公式的应用
第四章
练习与巩固
第六章
基础练习题
计算(a+b)^2的值
计算(a^2-b^2)^2的值
计算(a-b)^2的值 计算(a^2+b^2)^2的值
提升练习题
计算(a+b)(a-b)的值 计算(2x+y)(2x-y)的值 计算(3a+2b)(3a-2b)的值 计算(-5m+6n)(-5m-6n)的值
综合练习题
文字,以便观者准确地理解您传达的思想
归纳法证明法:通过归纳法,从特殊到一般,逐步推导出平方差公式的结论。 以上是几种常见
04
的平方差公式的证明方法,可以根据不同的需求和实际情况选择合适的方法进行证明。
以上是几种常见的平方差公式的证明方法,可以根据不同的需求和实际情况选
择合适的方法进行证明。
证明过程演示
平方差公式的应用范围
代数式变形:利用 平方差公式对代数 式进行变形和化简
计算:利用平方差 公式计算一些数学 表达式的结果
证明:利用平方差 公式证明一些数学 命题
应用题:利用平方 差公式解决一些实 际问题
平方差公式的应用实例
计算平方差公式 中的a和b的值
计算平方差公式 中的c的值
计算平方差公式 中的d的值
计算平方差公式 中的e的值
平方差公式的应用技巧
识别平方差公式形式:首先需要识别题目中的平方差公式形式,以便正确应用。

八年级数学第十四章14.2.1乘法公式(平方差公式)_ppt课件

八年级数学第十四章14.2.1乘法公式(平方差公式)_ppt课件

问题一
竞赛: 谁能最先算出9998×10002
Hale Waihona Puke 利用平方差公式计算:(1)(a+3b)(a - 3b) =(a)2-(3b)2 =a2-9b2 ; (2)(3+2a)(-3+2a)
(3)51×49 =(50+1)(50-1) =502-12 =(-2x2 )2-y2 =2500-1 =4x4-y2. =2499 (5)(3x+4)(3x-4)-(2x+3)(3x-2) =(9x2-16) -(6x2+5x -6) =3x2-5x- 10
(
×)
n2 -m2
(2)(m–n )(-m -n)=-m2 -n2 ( × ) (3)(x+ y) (-x -y)=x2 -y2 ( ×) (5)(3b+2a)(2a-3b)=4a2 -9b2
-x2-2xy -y2
√ ) (4)(a-b+c)(a-b-c)= (a-b )² -c² (
(
√)
例3 计算:
(1) 102×98;
(2) (y+2) (y-2) – (y-1) (y+5) .
解: (1) 102×98 =(100+2)(100-2) = 1002-22 =10000 – 4 =9996. (2)(y+2)(y-2)- (y-1)(y+5) = y2-22-(y2+4y-5) = y2-4-y2-4y+5 = - 4y + 1.
=(2a+3)(2a-3) =(2a)2-32 =4 a2-9; (4)(-2x2-y)(-2x2+y)

相 信 自 己 我 能 行
拓展提升

14.2.1《平方差公式》ppt课件(共28张PPT)

14.2.1《平方差公式》ppt课件(共28张PPT)
14.2.1《平方差公式》ppt课件(共28张PPT)
5.化简:(x-y)(x+y)(x2+y2)(x4+y4)(x8+y8)(x16+y16).
【解析】原式=(x2y2 )( x2+y2)(x4+y4)(x8+y8)(x16+y16) =(x4-y4)(x4+y4)(x8+y8)(x16+y16) =(x8-y8)(x8+y8)(x16+y16) =(x16-y16)(x16+y16) = x32-y32.
个边长为b的小正方形,如图1,拼成
如图2的长方形,你能根据图中的面
图1
积说明平方差公式吗?
(a+b)(a-b)=a2-b2
图2
【例题】
【例1】运用平方差公式计算:
只有符合(a+b) (a- b)的
形式才能用平方差公式
(1) (3x+2 )( 3x-2 ) .(2) (b+2a)(2a-b).
【解析】 (1) (3x+2)(3x-2) (2)(b+2a)(2a-b)
=(3x)2-22
=(2a+b)(2a-b)
=9x2-4.
=(2a)2-b2
=4a2-b2.
【例2】计算
(1) 102×98. (2)(y+2)(y-2)-(y -1)(y+5).
【解析】
(1) 102×98
(2)原式
=(100+2)(100-2)
=(y2-22)-(y2+5y-y-5)
=1002-22
= y2-22-y2-5y+y+5
=10 000-4

(人教版八上) 数学 课件 平方差公式

(人教版八上) 数学 课件 平方差公式
(1) 左边两个二项式是: 两项的和与这两项差的乘积
结构特征 (2)
(3) 公式中的a和b 可以代表数或式
小试牛刀、巩固应用
你能在下列式子中找出与公式“a”“b”对应的项吗?
(1)(3x 2)(3x 2);
(2)(2a b)(2a b). (42aa2)2bb22
(3x 2)(3x 2) (3x)2 22 9x2 4
(a b)(a b)a2b2
小试牛刀、巩固应用
你能在下列式子中找出与公式“a”“b”对应的项吗?
(3)(2x y)(2x y) (2x)2 ( y)2
4x2 y2
(a b)(a b)a2b2
注意:当“项”是数与字母的乘积
时,要用括号把这个数整个括起来,再平 方,最后的结果又要去掉括号。
(3) (2a–b+1)(2a–b-1). 解:原式=〔(2a-b)+1〕〔(2a-b整)-体1思〕想很重要.
=(2a-b)2-12 =(2a-b)(2a-b)-1 =4a2-4ab+b2-1
人教版(人教版八上) 数学 课件 平方差公式
人教版(人教版八上) 数学 课件 平方差公式
(4) (x-3)(x+3)(x²+9)
= [(4a)2 −1 ]
= 1−16a2
巩固应用,探索公式
我们再看看( b+2a)( 2a-b )这一式子还能用这 公式计算吗?
巩固应用,探索公式
我们再看看( b+2a)( 2a-b )这一式子还能用这 公式计算吗?
( b+2a)( 2a-b )
将式子变为(b-2a)(2a-b),还可以用这个公
( × ) 4-9a2
(4)(4x+3b)(4x-3b)=16x2-9 (×) 16x2-9b2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x2 4y2
(2) (x-2y)(Байду номын сангаас+2y)
a2 b2 ax2 (2y)2
x2 4y2
例2、用平方差公式计算下列各题 b
(1) (-m+n)(-m-n) 解:原式 (m)2 n2
(-m+n)(-m-n)
m2 n2
a
(2) (-2x-5y)(5y-2x)
解:原式 (2x 5y)(2x 5y)
再举几个数试试.如果是一个数和一个字母,或两个都是 字母呢?它们的情况又如何?
2. 计算下列各题:
(1) (x+2)(x-2)
解:原式 x2 2x 2x 22
x2 4
(2) (1+3a)(1-3a)
解:原式 1 3a 3a (3a)2
1 9a2
(x + 2)(x – 2) = x²- 4 (1 + 3a)(1 – 3a) = 1 – 9a²
(3) (x+5y)(x-5y)
(4) (y+3z)(y-3z)
解:原式 x2 5xy 5xy (5y)2 解:原式 y2 3yz 3yz (3z)2
x2 25 y2
y2 9z2
(x + 5y)(x – 5y) = x²- 25y² (y + 3z)(y – 3z) = y²- 9z²
(1) 公式左边两个二项式必须是 相同两数的和与差相乘; 且左边两括号内有一项相同、
另一项符号相反[互为相反数(式)];
(2) 公式右边是这两个数的平方差; 即右边是左边括号内的相同项的平方 减去互为相反数项的平方.
(3) 公式中的 a和b 可以代表数、字 母、单项式以及多项式.
练习
下列式子可用平方差公式计算吗? 为什么?
分析:应将 2a 2当作一个整体,用括号括起来再平方
(2a2 b2)(2a2 b2) (2a2 )2 (b2 )2 4a4 b4
3) (5a 2b)(5a 2b) (5a)2 (2b)2 25a2 4b2 错
分析:应先观察是哪两个数的和与这两个数的差
运用平方差公式时,要紧扣公式的特征, 找出相等的“项”和符号相反的“项”,然后应用公
(5a 2b)(5a 2b) (2b)2 (5a)2 4b2 25a2
练习
1.(1)(3m+2n)(3m-2n)
(2) (b+2a)(2a-b) (3)(-4a-1)(4a-1) (4) (3x+4)(3x-4)-(2x+3)(2x-3)
(1)102×98
解:原式=(100 2)(100 2)
解:原式 52 (6x)2
分析:要利用平方差公式解题,
必须找到是哪两个数的和与这两
个数的差的积结果为这两个数的
平方差.
b
25 36x2 (2) (x 2y)(x 2y)
(1) (5+6x)(5-6x)
a
a2 b2 52 (6x)2
25 36x2
b
解:原式 x2 (2 y)2
今天我们学习了什么?
1、平方差公式是特殊的多项式乘法,要 理解并掌握公式的结构特征.
1) 左边是两个数的和与这两个数的差的积. 2) 右边是这两个数的平方差.
用式子表示为: (a + b)(a – b) = a²- b²
注:这里的两数可以是两个单项式也可以是两 个多项式等等.
应用平方差公式 时要注意一些什么?
我们经历了由发现——猜测——证明的过程,最后得出 一个公式性的结论,我们将这个公式叫做平方差公式.
即: (a+b)(a-b) a2 b2
两数和与这两数差的积,等于它们的平方差.
注:这里的两数可以是两个单项式也可以是两 个多项式等等.
初识平方差公式
特征 结构
• (a+b)(a−b)=a2−b2
(1) (a+b)(a−b) ; (2) (a−b)(b−a) ; (3) (a+2b)(2b+a); (4) (2a−b)(2a+b) ; (5) (2x+y)(y−2x).
(不能) (第一个数不完全一样 ) (不能) (不能) (能) (不能)
公式的应用
例1、用平方差公式计算下列各题
(1) (5 6x)(5 6x)
(2x)2 (5y)2
4x2 25 y 2
前面两个例题可以直接套用平方差公式,可是不 要“得意忘形”,现在让我们来看看下面一个例题.
例3、下列计算对不对?如果不对,怎样改正?
1) (x 6)(x 6) x2 6 错
分析:最后结果应是两项的平方差
(x 6)(x 6) x2 62 x2 36 2) (2a2 b2)(2a2 b2) 2a4 b4 错
1002 22 1000 4
9996
(2) (y+2)(y-2)-(y-1)(y+5)
解:原式 y2 22 (y2 4y 5)
y2 4 y2 4y 5 4y 1
a2 - b2 =(a+b)(a-b)
逆向思维训练: 1、 25-a²= (5+a)( 5-a ) 2、n2-m2 = (n+m)( n-m) 3、 4x2-9y2 = (2x+3y) (2x-3y)
3、观察以上等式的左边与右边,你发现了什么规 律?能不能大胆猜测得出一个一般性的结论?
规律:1)左边是两个数的和乘以这两个数的差; 2)右边是这两个数的平方的差.
平方差公式
对于大家提出的猜想,我们一起来进行证明.
证明:(a+b)(a-b) a2 ab ab b2(多项式乘法法则) a2 b2 (合并同类项)
14.2.1
探索引入
1. 如图,边长为20厘米的大正方形中有一个边长为8厘米的小正
方形,请表示出图中阴影部分面积:
20
20
12 12
12 8
8 图(1)
图(2)
图(1)的面积为: 20 20 88 202 82 336
图(2)的面积为: (20 8)(20 8) 336 即: (20 8)(20 8) 202 82
相关文档
最新文档