浙江省杭州市高二上学期期末数学试卷(理科)

合集下载

浙江省杭州市数学高二上学期理数期末考试试卷

浙江省杭州市数学高二上学期理数期末考试试卷

浙江省杭州市数学高二上学期理数期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2018高二上·宁夏月考) 数列,,,,,,的一个通项公式为()A .B .C .D .2. (2分) (2016高一上·辽宁期中) 下列四个命题:(1)函数f(x)在x>0时是增函数,x<0时也是增函数,所以f(x)是增函数;(2)若m=loga2,n=logb2且m>n,则a<b;(3)函数f(x)=x2+2(a﹣1)x+2在区间(﹣∞,4]上是减函数,则实数a的取值范围是a≤﹣3;(4)y=log (x2+x﹣2)的减区间为(1,+∞).其中正确的个数是()A . 0B . 1C . 2D . 33. (2分)命题“若¬p,则q”是真命题,则下列命题一定是真命题的是()A . 若p,则qB . 若p,则┐qC . 若┐q,则pD . 若┐q,则┐p4. (2分) (2017高一上·武汉期中) 己知y=f(x)是定义在R上的奇函数,当x<0时,f(x)=x+2,那么不等式2f(x)﹣1<0的解集是()A .B . 或C .D . 或5. (2分)若f(x)=x2-2x-4ln x,则f′(x)>0的解集为()A . (0,+∞)B . (-1,0)∪(2,+∞)C . (2,+∞)D . (-1,0)6. (2分) (2018高二上·抚顺期末) 已知数列的等差数列,,,则数列的前项和为()A .B .C .D .7. (2分)若直线y=kx+2与双曲线的右支交于不同的两点,那么k的取值范围是()A .B .C .D .8. (2分)的三个内角A,B,C的对边分别为a,b,c,已知,向量,,若,则角A的大小为()A .B .C .D .9. (2分)是坐标原点,设,若,则点的坐标应为()A .B .C .D .10. (2分) (2018高二上·黑龙江月考) 已知是椭圆与双曲线的公共焦点,是它们的一个公共点,且,线段的垂直平分线过,若椭圆的离心率为,双曲线的离心率为,则的最小值为()A . 6B . 3C .D .11. (2分) (2016高二上·会宁期中) 在△ABC中,(a+c)(a﹣c)=b(b+c),则A=()A . 30°B . 60°C . 120°D . 150°12. (2分)已知曲线C:与抛物线的一个交点为M,F为抛物线的焦点,若,则b的值为()A .B . -C .D . -二、填空题 (共4题;共4分)13. (1分) (2018高二上·武汉期末) 命题“ ”的否定是________14. (1分)(2020·沈阳模拟) 已知椭圆方程为,则其焦距为________.15. (1分) (2016高二上·平原期中) 已知 =(2,﹣1,3), =(﹣4,2,x), =(1,﹣x,2),若( + )⊥ ,则实数x的值为________.16. (1分) (2017高三下·长宁开学考) 在三棱锥P﹣ABC中,∠APC=∠CPB=∠BPA= ,并且PA=PB=3,PC=4,又M是底面ABC内一点,则M到三棱锥三个侧面的距离的平方和的最小值是________.三、解答题 (共7题;共52分)17. (5分) (2016高二下·永川期中) 给定两个命题,命题P:函数f(x)=(a﹣1)x+3在R上是增函数;命题q:关于x的方程x2﹣x+a=0有实数根.若p∧q为假命题,p∨q为真命题,求实数a的范围.18. (10分) (2018高二上·无锡期末) 如图,已知正方形和矩形所在平面互相垂直,,.(1)求二面角的大小;(2)求点到平面的距离.19. (10分) (2017高二上·佳木斯月考) 已知抛物线,为抛物线上一点,为关于轴对称的点,为坐标原点.(1)若的面积为2,求点的坐标;(2)若过满足(1)中的点作直线交抛物线于两点,且斜率分别为,且,求证:直线过定点,并求出该定点坐标.20. (2分) (2018高二下·临汾期末) 如图,在四棱锥中,底面,,,,点为棱的中点,(1)证明:;(2)若点为棱上一点,且,求二面角的余弦值.21. (10分)(2017·合肥模拟) 在△ABC中,a,b,c分别是内角A,B,C的对边,且(a+c)2=b2+3ac.(Ⅰ)求角B的大小;(Ⅱ)若b=2,且sinB+sin(C﹣A)=2sin2A,求△ABC的面积.22. (5分)给定双曲线,过A(1,1)能否作直线m,使m与所给双曲线交于B、C两点,且A 为线段BC中点?这样的直线若存在,求出它的方程;如果不存在,说明理由.23. (10分) (2018高二下·揭阳月考) 如图,四棱锥中,底面,,,,,是的中点.(1)求证:;(2)求证:面;(3)求二面角E-AB-C的正切值.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共52分) 17-1、18-1、18-2、19-1、19-2、20-1、20-2、21-1、22-1、23-1、23-2、23-3、。

2023-2024学年浙江省杭州市高二(上)期末数学试卷【答案版】

2023-2024学年浙江省杭州市高二(上)期末数学试卷【答案版】

2023-2024学年浙江省杭州市高二(上)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求。

1.已知集合A ={0,1,2,3,4},B ={x |x 2﹣5x +4≥0},则A ∩B =( ) A .{1,2,3,4}B .{2,3}C .{1,4}D .{0,1,4}2.已知(2+i )z =i ,i 为虚数单位,则|z |=( ) A .15B .13C .√55D .√533.已知平面向量a →=(2,0),b →=(−1,1),且(m a →−b →)∥(a →+b →),则m =( ) A .﹣1 B .0C .1D .1±√324.已知双曲线x 2a 2−y 2b 2=1(a >0,b >0)左,右焦点分别为F 1(﹣c ,0),F 2(c ,0),若双曲线左支上存在点P 使得|PF 2|=32c −2a ,则离心率的取值范围为( )A .[6,+∞)B .(1,6]C .[2,+∞)D .[4,+∞)5.已知2cos 2θ﹣cos θ=1,θ∈(0,π),则|sin θ|=( ) A .0B .12C .√32或0 D .√326.数学家欧拉研究调和级数得到了以下的结果:当x 较大时,1+12+13+⋯+1x=lnx +γ(x ∈N *,常数γ=0.557…).利用以上公式,可以估算1101+1102+⋯+1300的值为( ) A .ln 30B .ln 3C .﹣ln 3D .﹣ln 307.已知α,β∈(0,π2),则“cos(α−β)<14”是“cosα+sinβ<14”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8.已知圆C :x 2﹣2x +y 2=0与直线l :y =mx +2m (m >0),过l 上任意一点P 向圆C 引切线,切点为A 和B ,若线段AB 长度的最小值为√2,则实数m 的值为( ) A .2√77B .√77C .√142D .√147二、多选题:本题共4小题,每小题5分,共20分。

2023-2024学年浙江省杭州二中高二(上)期末数学试卷【答案版】

2023-2024学年浙江省杭州二中高二(上)期末数学试卷【答案版】

2023-2024学年浙江省杭州二中高二(上)期末数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.抛物线x 2=4y 的准线方程为( ) A .x =1B .x =﹣1C .y =1D .y =﹣12.圆x 2+y 2﹣4x =0上的点到直线3x ﹣4y +9=0的距离的最小值为( ) A .1B .2C .4D .53.设平面α内不共线的三点A ,B ,C 以及平面外一点P ,若平面α内存在一点D 满足PD →=xPA →+(2−x)PB →+3xPC →,则x 的值为( ) A .0B .−19C .−13D .−234.已知△ABC 的三个顶点分别为A (1,0,0),B (0,2,0),C (2,0,2),则BC 边上的中线长为( ) A .1B .√2C .√3D .25.设{a n }是公差为d 的等差数列,S n 是其前n 项和,且a 1<0,S 4=S 8,则( ) A .d <0B .a 7=0C .S 12=0D .S n ≥S 76.用数学归纳法证明:f(n)=1+12+13+⋯+12n ≥n+22(n ∈N *)的过程中,从n =k 到n =k +1时,f (k +1)比f (k )共增加了( ) A .1项B .2k ﹣1项C .2k +1项D .2k 项7.若数列{a n }满足递推关系式a n+1=2a na n +2,且a 1=2,则a 2024=( ) A .11012B .22023C .11011D .220218.设双曲线Γ的中心为O ,右焦点为F ,点B 满足2FB →=OF →,若在双曲线Γ的右支上存在一点A ,使得|OA |=|OF |,且∠OAB ≥3∠OBA ,则Γ的离心率的取值范围是( ) A .[2√15−27,2√15+27]B .(1,2√15+27]C .(1,3√15+37] D .[3√15−37,3√15+37]二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知f (x ),g (x )在R 上连续且可导,且f '(x 0)≠0,下列关于导数与极限的说法中正确的是( ) A .limΔx→0f(x 0−Δx)−f(x 0)Δx =f′(x 0)B .limΔℎ→0f(t+Δℎ)−f(t−Δℎ)2Δℎ=f′(t)C .limΔx→0f(x 0+3Δx)−f(x 0)3Δx =f′(x 0)D .limΔx→0g(x 0+Δx)−g(x 0)f(x 0+Δx)−f(x 0)=g′(x 0)f′(x 0) 10.已知等差数列{a n }的前n 项和为S n ,正项等比数列{b n }的前n 项积为T n ,则( ) A .数列{Sn n}是等差数列B .数列{3a n }是等比数列C .数列{lnT n }是等差数列D .数列{T n+2T n}是等比数列 11.已知O 为抛物线C :y 2=2px (p >0)的顶点,直线l 交抛物线于M ,N 两点,过点M ,N 分别向准线x =−p2作垂线,垂足分别为P ,Q ,则下列说法正确的是( )A .若直线l 过焦点F ,则以MN 为直径的圆与y 轴相切B .若直线l 过焦点F ,则PF ⊥QFC .若M ,N 两点的纵坐标之积为﹣8p 2,则直线l 过定点(4p ,0)D .若OM ⊥ON ,则直线l 恒过点(2p ,0)12.布达佩斯的伊帕姆维泽蒂博物馆收藏的达芬奇方砖是在正六边形上画了具有视觉效果的正方体图案(如图1),把三片这样的达芬奇方砖拼成图2的组合,这个组合再转化成图3所示的几何体,若图3中每个正方体的棱长为1,则( )A .QC →=AD →+2AB →−2AA 1→B .若M 为线段CQ 上的一个动点,则BM →⋅BD →的最小值为1 C .点F 到直线CQ 的距离是√173D .异面直线CQ 与AD 1所成角的正切值为√17 三、填空题:本题共4小题,每小题5分,共20分. 13.已知f (x )=e sin x ,则f '(x )= .14.若平面内两定点A ,B 间的距离为3,动点P 满足|PA||PB|=2,则△P AB 面积的最大值为 .15.已知点P 是抛物线y 2=4x 上动点,F 是抛物线的焦点,点A 的坐标为(﹣1,0),则|PF||PA|的最小值为 .16.意大利著名数学家莱昂纳多•斐波那契(LeonardoFibonacci)在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,8,13,21,34,…,该数列的特点是:前两个数都是1,从第三个数起,每一个数都等于它的前面两个数的和,人们把这样的一列数称为“斐波那契数列”.同时,随着n趋于无穷大,其前一项与后一项的比值越来越逼近黄金分割√5−12≈0.618,因此又称“黄金分割数列”,记斐波那契数列为{a n}.记一个新的数列{b n},其中b n的值为a n除以4得到的余数,则∑2024i=1b i=.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知函数f(x)=x3﹣x+1,直线l:y=2x﹣2与x轴交于点A.(1)求过点A的f(x)的切线方程;(2)若点B在函数f(x)图象上,且f(x)在点B处的切线与直线l平行,求B点坐标.18.(12分)已知圆O:x2+y2=r2(r>0)与圆C:(x﹣4)2+(y﹣3)2=9有两个不同的交点D,E.(1)求r的取值范围;(2)若r=4,求线段DE的长.19.(12分)已知数列{a n}是首项为正数的等差数列,S n=n2.(1)求数列{a n}的通项公式;(2)设b n=(a n+1)⋅2a n,求数列{b n}的前n项和T n.20.(12分)如图,在四棱锥P﹣ABCD中,底面四边形ABCD为正方形,且P A=PC,PB=PD,(1)若AC与BD交于点O,证明:PO⊥平面ABCD;(2)棱PD上的点E满足PE=2DE,若PA=√3,AB=2,求直线CE与平面PBC所成角的正弦值.21.(12分)已知数列{a n}满足a1=1,且对任意正整数n都有a n+1=a n+n+1.(1)求数列{a n}的通项公式;(2)设数列{b n}的前n项和为T n,b n=n−(−1)n a n,(n∈N*),若A={n|n≤100且T n≤100,n∈N∗},求集合A中所有元素的和.22.(12分)已知焦点在x轴上的椭圆C:x2a2+y2b2=1,长轴长为4,离心率为12,左焦点为F.点M在椭圆内,且MF⊥x轴,过点M的直线与椭圆交于A、B两点(点B在点A右侧),直线AN、BN分别与椭圆相切且交于点N.(1)求椭圆的方程;(2)若直线AF与直线BF的倾斜角互补,则M点与N点纵坐标之积是否为定值,若是,求出定值;若不是,说明理由.2023-2024学年浙江省杭州二中高二(上)期末数学试卷参考答案与试题解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.抛物线x 2=4y 的准线方程为( ) A .x =1B .x =﹣1C .y =1D .y =﹣1解:因为抛物线的标准方程为:x 2=4y ,焦点在y 轴上; 所以2p =4,即p =2,所以p2=1,所以准线方程y =﹣1,故选:D .2.圆x 2+y 2﹣4x =0上的点到直线3x ﹣4y +9=0的距离的最小值为( ) A .1B .2C .4D .5解:化圆x 2+y 2﹣4x =0为(x ﹣2)2+y 2=4,得圆心坐标为(2,0),半径为2. 圆心到直线3x ﹣4y +9=0的距离d =|6+9|√3+4=3.∴圆x 2+y 2﹣4x =0上的点到直线3x ﹣4y +9=0的距离的最小值为d ﹣r =3﹣2=1. 故选:A .3.设平面α内不共线的三点A ,B ,C 以及平面外一点P ,若平面α内存在一点D 满足PD →=xPA →+(2−x)PB →+3xPC →,则x 的值为( ) A .0B .−19C .−13D .−23解:因为A ,B ,C 三点不共线,点P 是平面α外一点,D 在平面α内, 由共面向量基本定理可得:存在唯一一对实数λ,μ,使得AD →=λAB →+μAC →, 即PD →−PA →=λ(PB →−PA →)+μ(PC →−PA →),整理为PD →=(1−λ−μ)PA →+λPB →+μPC →, 与PD →=xPA →+(2−x)PB →+3xPC →相比较,可得{1−λ−μ=xλ=2−x μ=3x,解得x =−13.故选:C .4.已知△ABC 的三个顶点分别为A (1,0,0),B (0,2,0),C (2,0,2),则BC 边上的中线长为( ) A .1B .√2C .√3D .2解:设BC 的中点为D ,则D (1,1,1),故AD →=(0,1,1),则|AD →|=√2,即BC 边上的中线长为√2. 故选:B .5.设{a n}是公差为d的等差数列,S n是其前n项和,且a1<0,S4=S8,则()A.d<0B.a7=0C.S12=0D.S n≥S7解:根据题意,{a n}是公差为d的等差数列,若S4=S8,则S8﹣S4=a5+a6+a7+a8=0,变形可得:a6+a7=0,则有a1+a12=a6+a7=0,又由a1<0,则a12>0,其公差d>0,A错误;而a6+a7=0,则a6<0,a7>0,B错误;Sn的最小值为S6,D错误;S12=(a1+a12)×122=0,C正确.故选:C.6.用数学归纳法证明:f(n)=1+12+13+⋯+12n≥n+22(n∈N*)的过程中,从n=k到n=k+1时,f(k+1)比f(k)共增加了()A.1项B.2k﹣1项C.2k+1项D.2k项解:根据题意,证明f(n)=1+12+13+⋯+12n≥n+22时,f(k+1)中有2k+1项,f(k)中有2k项,则f(k+1)比f(k)增加了2k+1﹣2k=2k项.故选:D.7.若数列{a n}满足递推关系式a n+1=2a na n+2,且a1=2,则a2024=()A.11012B.22023C.11011D.22021解:∵a n+1=2a na n+2,∴1a n+1=a n+22a n,即1a n+1=12+1a n,∴1a n+1−1a n=12,又∵a1=2,∴1a1=12,∴数列{1a n}是首项为12,公差为12的等差数列,∴1a n=12+12(n−1)=12n,∴a n=2 n ,∴a2024=22024=11012.故选:A .8.设双曲线Γ的中心为O ,右焦点为F ,点B 满足2FB →=OF →,若在双曲线Γ的右支上存在一点A ,使得|OA |=|OF |,且∠OAB ≥3∠OBA ,则Γ的离心率的取值范围是( ) A .[2√15−27,2√15+27]B .(1,2√15+27]C .(1,3√15+37] D .[3√15−37,3√15+37]解:不妨设A 在第一象限,A 是以O 为圆心,OF 为半径的圆O 与Γ的交点. 设Γ的左焦点为X ,则∠XOA =∠OAB +∠OBA ≥4∠OBA ,∠AFO =12∠XOA ≥2∠OBA ,即∠F AB ≥∠FBA ,F A ≤FB ,在圆O 上取一点C ,使FC =FB ,则FC ≥F A , 由双曲线的定义知CX ﹣CF ≤2a (a 是实半轴长), 即(2a +CF )2≥CX 2=4c 2﹣CF 2(c 是半焦距),代入CF =FB =c 2,得(2a +c 2)2≥4c 2−c 24,解得e ∈(1,2+2√157].故选:B .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知f (x ),g (x )在R 上连续且可导,且f '(x 0)≠0,下列关于导数与极限的说法中正确的是( ) A .lim Δx→0f(x 0−Δx)−f(x 0)Δx =f′(x 0)B .limΔℎ→0f(t+Δℎ)−f(t−Δℎ)2Δℎ=f′(t)C .limΔx→0f(x 0+3Δx)−f(x 0)3Δx =f′(x 0)D .limΔx→0g(x 0+Δx)−g(x 0)f(x 0+Δx)−f(x 0)=g′(x 0)f′(x 0) 解:A :lim △x→0f(x 0−△x)−f(x 0)△x =−lim △x→0f(x 0−△x)−f(x 0)−△x =−f ′(x 0),故A 错误;B :lim△ℎ→0f(t+△ℎ)−f(t−△ℎ)2△ℎ=lim △ℎ→0f(t+△ℎ)−f(t−△ℎ)(t+△ℎ)−(t−△ℎ)=lim △ℎ→0f(t+2△ℎ)−f(t)2△ℎ=f ′(t ),故B 正确;C :根据极限与导数的定义可判断C 正确;D:lim△x→0g(x0+△x)−g(x0)f(x0+△x)−f(x0)=lim△x→0g(x0+△x)−g(x0)△xf(x0+△x)−f(x0)△x=△x→0limg(x0+△x)−g(x0)△x△x→0limf(x0+△x)−f(x0)△x=g′(x0)f′(x0),故D正确.故选:BCD.10.已知等差数列{a n}的前n项和为S n,正项等比数列{b n}的前n项积为T n,则()A.数列{S nn}是等差数列B.数列{3a n}是等比数列C.数列{lnT n}是等差数列D.数列{T n+2T n}是等比数列解:根据题意,设{a n}的公差为d,{b n}的公比为q,则S n=d2n2+(a1−d2)n⇒S nn=d2n+(a1−d2),依次分析选项:对于A,S nn−S n−1n−1=d2(n≥2)是常数,故A正确;对于B,易知3a n3a n−1=3a n−a n−1=3d(n≥2)是常数,故B正确;对于C,由lnT n﹣lnT n﹣1=lnb n(n≥2)不是常数,故C错误;对于D,T n+2T n÷T n+1T n−1=b n+2b n=q2(n≥2)是常数,故D正确.故选:ABD.11.已知O为抛物线C:y2=2px(p>0)的顶点,直线l交抛物线于M,N两点,过点M,N分别向准线x=−p2作垂线,垂足分别为P,Q,则下列说法正确的是()A.若直线l过焦点F,则以MN为直径的圆与y轴相切B.若直线l过焦点F,则PF⊥QFC.若M,N两点的纵坐标之积为﹣8p2,则直线l过定点(4p,0)D.若OM⊥ON,则直线l恒过点(2p,0)解:设M(x1,y1),N(x2,y2),当直线l过焦点F(p2,0)时,设其方程为x=ty+p2,联立{x=ty+p2y2=2px,得y2﹣2pty﹣p2=0,所以y1+y2=2pt,y1y2=﹣p2,所以x1+x2=t(y1+y2)+p=2pt2+p,对于选项A,线段MN中点坐标为(x1+x22,y1+y22),即(pt2+12p,pt),其到y轴的距离为pt2+12p,弦长|MN|=x1+x2+p=2pt2+2p,因此以MN为直径的圆的半径为|MN|2=pt2+p≠pt2+12p,所以以MN 为直径的圆与y 轴不相切,即选项A 错误; 对于选项B ,由题意知,P (−p 2,y 1),Q (−p2,y 2),所以PF →⋅QF →=(p ,﹣y 1)•(p ,﹣y 2)=p 2+y 1y 2=p 2﹣p 2=0,即PF ⊥QF ,故选项B 正确; 当直线l 不过焦点F (p2,0)时,设其方程为x =ty +m (m ≠0),联立{x =ty +m y 2=2px,得y 2﹣2pty ﹣2pm =0,所以y 1y 2=﹣2pm ,所以x 1x 2=y 122p ⋅y 222p =4p 2m 24p2=m 2, 对于选项C ,若M ,N 两点的纵坐标之积为﹣8p 2,则y 1y 2=﹣2pm =﹣8p 2,所以m =4p , 所以直线l 的方程为x =ty +4p ,过定点(4p ,0),即选项C 正确;对于选项D ,若OM ⊥ON ,则OM →⋅ON →=x 1x 2+y 1y 2=m 2﹣2pm =m (m ﹣2p )=0, 因为m ≠0,所以m =2p ,所以直线l 的方程为x =ty +2p ,过定点(2p ,0),即选项D 正确. 故选:BCD .12.布达佩斯的伊帕姆维泽蒂博物馆收藏的达芬奇方砖是在正六边形上画了具有视觉效果的正方体图案(如图1),把三片这样的达芬奇方砖拼成图2的组合,这个组合再转化成图3所示的几何体,若图3中每个正方体的棱长为1,则( )A .QC →=AD →+2AB →−2AA 1→B .若M 为线段CQ 上的一个动点,则BM →⋅BD →的最小值为1 C .点F 到直线CQ 的距离是√173D .异面直线CQ 与AD 1所成角的正切值为√17解:因为CQ →=CB →+BQ →=−AD →+2BA 1→=−AD →+2(AA 1→−AB →)=﹣2AB →−AD →+2AA 1→, 所以QC →=−CQ →=−(﹣2AB →−AD →+2AA 1→)=AD →+2AB →−2AA 1→,故A 正确;如图以A 1为坐标原点,建立空间直角坐标系,则B (0,1,﹣1),D 1(﹣1,0,0),D (﹣1,0,﹣1),Q (0,﹣1,1),C (﹣1,1,﹣1),A (0,0,﹣1),P (1,﹣1,0),F (1,0,0),BD →=(−1,−1,0),CQ →=(1,−2,2),AD 1→=(−1,0,1),CP →=(2,−2,1),CF →=(2,﹣1,1),对于B :因为M 为线段CQ 上的一个动点,设CM →=λCQ →,λ∈[0,1], 则BM →=BC →+CM →=(﹣1,0,0)+λ(1,﹣2,2)=(λ﹣1,﹣2λ,2λ), 所以BM →•BD →=−(λ﹣1)+2λ=λ+1,所以当=1时,(BM →⋅BD →)max =2,故B 正确; 对于C :|CF →|=√22+(−1)2+12=√6,CF →⋅CQ →|CQ →|=222=2, 所以点F 到直线CQ 的距离d =√|CF →|2−(CF →⋅CQ→|CQ →|)2=√2,故C 错误;对于D :因为cos <CQ →,AD 1→>=CQ →⋅AD 1→|CQ →|⋅|AD 1→|=13√2=√26, 所以sin <CQ →,AD 1→>=√1−(√26)2=√346,所以tan〈CQ →,AD 1→〉=√17,即异面直线CQ 与 AD 1所成角的正切值为√17,故D 正确. 故选:ABD .三、填空题:本题共4小题,每小题5分,共20分. 13.已知f (x )=e sin x ,则f '(x )= e sin x •cos x . 解:根据题意,可得f '(x )=e sin x •(sin x )′=e sin x •cos x . 故答案为:e sin x •cos x .14.若平面内两定点A ,B 间的距离为3,动点P 满足|PA||PB|=2,则△P AB 面积的最大值为 3 .解:平面内两定点A,B间的距离为3,设A(−32,0),B(32,0),P(x,y),由|PA||PB|=2,得√(x+3)2+y2√(x−2)2+y2=2,所以(x−52)2+y2=4,所以要使△P AB的面积最大,只需点P到AB的距离最大,如图所示:由图可知当点P到AB的距离h=r=2 时,△P AB面积的最大值,故S△P AB的最大值为12×3×2=3.故答案为:3.15.已知点P是抛物线y2=4x上动点,F是抛物线的焦点,点A的坐标为(﹣1,0),则|PF||PA|的最小值为√22.解:由抛物线的方程y2=4x可得焦点F(1,0),A(﹣1,0)在准线上,过抛物线上的点P作PD垂直于准线交于D点,由抛物线的性质可得|PF|=|PD|,在△P AD中,|PD||PA|=cos∠DP A=cos∠P AF,所以|PD||PA|最小时,则cos∠P AF最小,则∠P AF最大,而∠P AF最大时即过点A的直线与抛物线相切,设P(x,y)在第一象限,y>0,由y2=4x可得y=2√x,y'=√x,所以在P处的切线的斜率为√x =y−0x+1=2√xx+1,整理可得:2x=x+1,解得x=1,代入抛物线的方程可得y=2,即P(1,2),所以|PF||PA|的最小值为|PD||PA|=√[1−(−1)]2+22=√22.故答案为:√2 2.16.意大利著名数学家莱昂纳多•斐波那契(LeonardoFibonacci)在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,8,13,21,34,…,该数列的特点是:前两个数都是1,从第三个数起,每一个数都等于它的前面两个数的和,人们把这样的一列数称为“斐波那契数列”.同时,随着n趋于无穷大,其前一项与后一项的比值越来越逼近黄金分割√5−12≈0.618,因此又称“黄金分割数列”,记斐波那契数列为{a n}.记一个新的数列{b n},其中b n的值为a n除以4得到的余数,则∑2024i=1b i=2698.解:由题意,斐波那契数列:1,1,2,3,5,8,13,21,…每项被4除所得的余数构成数列{b n},可得数列{b n}的各项分别为1,1,2,3,1,0,1,1,2,3,1,0,…,即数列{b n}中各项除以4所得余数组成以6为周期的周期数列,所以数列{b n}在一个周期内的和为1+1+2+3+1+0=8,因为2024=337×6+2,所以∑2024i=1b i=337×8+b1+b2=2698.故答案为:2698.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知函数f(x)=x3﹣x+1,直线l:y=2x﹣2与x轴交于点A.(1)求过点A的f(x)的切线方程;(2)若点B在函数f(x)图象上,且f(x)在点B处的切线与直线l平行,求B点坐标.解:(1)设切点为(x0,f(x0)),切线斜率k=f′(x0)=3x02−1,∴切线方程为y−(x03−x0+1)=(3x02−1)(x−x0),∵所求切线过点A(1,0),∴−x03+x0−1=3x02−1−3x03+x0,解得:x0=0或x0=3 2.当x0=0时切线方程为y=﹣x+1;当x0=32时切线方程为y=234x−234.(2)由f′(x)=3x2﹣1=2,解得x=±1,∴B(1,1)或B(﹣1,1).18.(12分)已知圆O:x2+y2=r2(r>0)与圆C:(x﹣4)2+(y﹣3)2=9有两个不同的交点D,E.(1)求r的取值范围;(2)若r=4,求线段DE的长.解:(1)由于圆O:x2+y2=r2(r>0)与圆C:(x﹣4)2+(y﹣3)2=9有两个不同的交点,故|r﹣3|<5<r+3,整理得:2<r<8,即r∈(2,8).(2)∵OD=r=4,所以:x2+y2=16,根据圆与圆的位置,CD=3,OC=5,所以△OCD为直角三角形,利用面积相等,所以DE=2⋅3⋅45=245.19.(12分)已知数列{a n}是首项为正数的等差数列,S n=n2.(1)求数列{a n}的通项公式;(2)设b n=(a n+1)⋅2a n,求数列{b n}的前n项和T n.解:(1)根据题意,n≥2时,a n=s n−s n−1=n2−(n−1)2=2n−1,n=1时,a1=S1=1=2×1﹣1,故a n=2n﹣1;(2)由(1)的结论,可知b n=2n⋅22n−1=n⋅22n=n⋅4n,故T n=b1+b2+⋯+b n=1⋅41+2⋅42+⋯+n⋅4n,可得4T n=1⋅42+2⋅43+⋅⋯⋅(n−1)⋅4n+n⋅4n+1,两式相减,得3T n=n⋅4n+1−(41+42+⋯+4n)=n⋅4n+1−1−4n1−4⋅4=n⋅4n+1−43⋅(4n−1)=(n−1 3)4n+1+43所以T n=(n3−19)⋅4n+1+49.20.(12分)如图,在四棱锥P﹣ABCD中,底面四边形ABCD为正方形,且P A=PC,PB=PD,(1)若AC与BD交于点O,证明:PO⊥平面ABCD;(2)棱PD上的点E满足PE=2DE,若PA=√3,AB=2,求直线CE与平面PBC所成角的正弦值.(1)证明:由题意知,点O既是AC的中点,也是BD的中点,因为P A=PC,PB=PD,所以PO⊥AC∵PB=PD,PO⊥BD⇒PO⊥AC又AC ∩BD =O ,AC 、BD ⊂平面ABCD , 所以PO ⊥平面ABCD .(2)解:以O 为坐标原点,OD ,OC ,OP 所在直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系,则B (−√2,0,0),C (0,√2,0),P (0,0,1),E (2√23,0,13), 所以PB →=(−√2,0,−1),BC →=(√2,√2,0),CE →=(2√23,−√2,13), 设平面PBC 的法向量为n →=(x ,y ,z ),则{n →⋅PB →=0n →⋅BC →=0,即{−√2x −z =0√2x +√2y =0, 取x =1,则y =﹣1,z =−√2,所以n →=(1,−1,−√2), 设直线CE 与平面PBC 所成角为θ,则sin θ=|cos <CE →,n →>|=|CE →⋅n →||CE →|⋅|n →|=|2√23+√2−√23|√89+2+19×2=2√69, 故直线CE 与平面PBC 所成角的正弦值为2√69. 21.(12分)已知数列{a n }满足a 1=1,且对任意正整数n 都有a n +1=a n +n +1. (1)求数列{a n }的通项公式;(2)设数列{b n }的前n 项和为T n ,b n =n −(−1)n a n ,(n ∈N *),若A ={n|n ≤100且T n ≤100,n ∈N ∗},求集合A 中所有元素的和.解:(1)由a 1=1,且对任意正整数n 都有a n +1=a n +n +1,即a n +1﹣a n =n +1, 可得a n =a 1+(a 2﹣a 1)+(a 3﹣a 2)+...+(a n ﹣a n ﹣1)=1+2+3+...+n =12n (n +1);(2)b n =n −(−1)n ⋅n(n+1)2,显然,当n 为偶函数,n −n(n+1)2<0, T 2k =(1+2+⋯+2k)+12⋅[1⋅2−2⋅3+3⋅4−4⋅5+⋯+(2k −1)⋅2k −2k ⋅(2k +1)]=k ⋅(2k +1)+12⋅[−2⋅2−2⋅4−⋯−2⋅2k]=2k 2+k ﹣(2+4+⋯+2k )=2k 2+k ﹣k (k +1)=k 2,由k 2≤100, ∴k ≤10.则T 2,T 4,…,T 20满意题意;T 2k+1=k 2+(2k +1)+(2k +1)⋅(k +1)=3k 2+5k +2≤100,可得k ≤4, ∴T 1,T 3,T 5,T 7,T 9满足.∴A 中所有元素和为(1+3+5+7+9)+(2+4+⋯+20)=25+110=135. 22.(12分)已知焦点在x 轴上的椭圆C :x 2a 2+y 2b 2=1,长轴长为4,离心率为12,左焦点为F .点M 在椭圆内,且MF ⊥x 轴,过点M 的直线与椭圆交于A 、B 两点(点B 在点A 右侧),直线AN 、BN 分别与椭圆相切且交于点N . (1)求椭圆的方程;(2)若直线AF 与直线BF 的倾斜角互补,则M 点与N 点纵坐标之积是否为定值,若是,求出定值;若不是,说明理由.解:(1)椭圆C 的长轴长为4,则2a =4,所以a =2, 又离心率为12,所以c =1,所以b =√3,所以椭圆的方程为x 24+y 23=1.(2)由(1)知,x 24+y 23=1,由点M 在椭圆内,且MF ⊥x 轴,设M (﹣1,y μ),则直线AB 的方程为y ﹣y μ=k (x +1),联立直线和椭圆的方程,可得{y =kx +k +y μ3x 2+4y 2=12,则3x 2+4(kx +k +y μ)2=12,所以(4k 2+3)x 2+8(k +y μ)⋅kx +4⋅(k +y μ)2−12=0, 所以{x 1+x 2=−8(k+y μ)k4k 2+3x 1x 2=4(k+y μ)2−124k 2+3,所以k AF =k BF ⇔y 1x 1+1=−y 2x 2+1, 所以(x 2+1)•y 1+(x 1+1)•y 2=0,所以(x 2+1)(kx 1+k +y μ)+(x 1+1)•(kx 2+k +y μ)=0, 所以2(2x 1x 2+(2k +y μ)(x 1+x 2)+2(k +y μ)=0,2k 2+3ky μ+y μ2⇔2k[4(k 2+y μ)2−12]−8k(2+k μ)(2k +y μ)+2⋅(k +y μ)⋅(4k 2+3)=0 ⇔8k 2+16k 2y μ+8ky μ2−24k −16k 3−24k 2y μ−8ky μ2+8k 2+6k +8k 2y μ+6y μ=0,所以6y μ=18k ,所以y μ=3k ,A (x 1,y 1),B (x 2,y 2), 则直线AN 的方程为x⋅x 14+y⋅y 13=1,所以x =4x 1⋅(1−y⋅y 13), 直线BN 的方程为x⋅x 24+y⋅y 23=1,所以x =4x 2⋅(1−y⋅y 23),所以1−y⋅y 13x 1=1−y⋅y 23x 2,所以x2(3﹣y•y1)=x1•(3﹣y•y2),3(x2﹣x1)=(x2y1﹣x1y2)•y N,所以y N=3(x2−x1)x2y1−x1y2.因为x2y1﹣x1y2=x2(kx1+k+yμ)﹣x1(kx2+k+yμ)=(k+yμ)(x2﹣x1),所以y N=3k2+yμ=34k,所以yμ⋅y N=94为定值.。

浙江省杭州校区2023-2024学年高二上学期期末数学试题含答案

浙江省杭州校区2023-2024学年高二上学期期末数学试题含答案

杭州2023学年第一学期期末考试高二数学试卷(答案在最后)命题人:一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中只有一项是符合题目要求的.)1.已知复数z 满足4,4i z z z z +=-=-,则||z =()A.2B.4C. D.【答案】C 【解析】【分析】由条件求得z ,即可计算复数模.【详解】∵4z z +=,4i z z -=-,∴244i z =-,22i z =-,∴z ==故选:C.2.已知集合{}{ln(1)},e x M xy x N y y ==-==∣∣,则M N ⋂=()A.(0,1)B.(,1)-∞ C.(1,)+∞ D.∅【答案】A 【解析】【分析】求函数ln(1)y x =-的定义域得出集合M ,求函数e x y =的值域得出集合N ,再求出M N ⋂即可.【详解】{ln(1)}{10}{1}M xy x x x x x ==-=->=<∣∣∣,{}{}e 0xN y y yy ===>∣∣,所以{01}(0,1)M N xx ⋂=<<=∣.故选:A.3.小港、小海两人同时相约两次到同一水果店购买葡萄,小港每次购买50元葡萄,小海每次购买3千克葡萄,若这两次葡萄的单价不同,则()A.小港两次购买葡萄的平均价格比小海低B.小海两次购买葡萄的平均价格比小港低C.小港与小海两次购买葡萄的平均价格一样D.丙次购买葡萄的平均价格无法比较【答案】A【分析】根据题意计算出两人两次购买葡萄的平均价格,作差比较大小即可.【详解】设两次葡萄的单价分别为a 元/千克和b 元/千克,且a b ¹,则小海两次均购买3千克葡萄,平均价格为()362a b a b++=元/千克,小港两次均购买50元葡萄,平均价格为10025050aba b a b =++元.因为()()()()22420222a b ab a b a b ab a b a b a b +--+-==>+++,所以小港两次购买葡萄的平均价格比小海低.故选:A .4.已知直线3y kx =-与曲线ln y x =相切,则实数k 的值为()A.eB.1eC.2e D.21e 【答案】C 【解析】【分析】首先设切点为()00,ln x x ,利用导数的几何意义得到01k x =,从而得到直线方程为03xy x =-,再将切点代入直线求解即可.【详解】设切点为()00,ln x x ,1y x'=,则01k x =,所以直线方程为03xy x =-.又因为()00,ln x x 在直线03xy x =-上,所以0ln 132x =-=-,解得20x e -=.所以221k e e-==.故选:C5.已知向量(2,4),(1,)a b t =-= ,若a 与b 共线,则向量a b +在向量(0,1)j =- 上的投影向量为()A.jB.j-C.2jD.2j-【答案】D【分析】根据a 与b 共线,可得240t --=,求得2t =-,再利用向量a b +在向量()0,1j =- 上的投影向量为()a b jjjj+⋅⋅ ,计算即可得解.【详解】由向量()2,4a =-,()1,b t = ,若a 与b共线,则240t --=,所以2t =-,则(1,2)a b +=-,所以向量a b +在向量()0,1j =- 上的投影向量为:()(1,2)(0,1)21a b jj j j jj+⋅-⋅-⋅=⋅=-,故选:D.6.已知数列{}n a 为等比数列,公比为q ,前n 项和为n S ,则“20S >”是“数列{}2n S 是单调递增数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】C 【解析】【分析】根据等比数列的定义和数列单调的定义求解即可.【详解】因为数列{}n a 为等比数列,公比为q ,前n 项和为n S ,若20S >,即2210()S a a =>+,则222222+21120()nn n n n S a a a a S q ++=+=+>-,即数列{}2n S 是单调递增数列;若数列{}2n S 是单调递增数列,则222222+21120()nn n n n S a a a a S q ++=+=+>-,所以2210()S a a =>+;所以“20S >”是“数列{}2n S 是单调递增数列”的充要条件.故选:C.7.在三棱锥-P ABC 中,2PA PB PC AC AB =====,且AC AB ⊥,则三棱锥-P ABC 外接球的表面积为()A.8πB.9πC.16πD.24π【答案】B【分析】根据题意,由条件确定球心的位置,即可得到球的半径,再由球的表面积公式,即可得到结果.【详解】由题意可得,点P 在底面上的射影M 是CB 的中点,是三角形ABC 的外心,令球心为O ,因为2AC AB ==,且AC AB ⊥,所以MB MC MA ===,又因为PA PB PC ===2PM ==,在直角三角形OBM 中,222OB OM BM =+,即()2222R R =+-,解得32R =,则三棱锥外接球的表面积为294π4π9π4R =⨯=.故选:B8.设点(0,2)A ,抛物线22(0)y px p =>上的点P 到y 轴的距离为d .若||PA d +的最小值为1,则p =()A.6B.4C.3D.2【答案】C 【解析】【分析】结合抛物线的定义得到关于p 的方程,解出即可.【详解】抛物线22(0)y px p =>,则焦点(,0)2p F ,准线2p x =-,PA d +最小时,即2p PA d ++最小,根据抛物线的定义,||2pd PF +=,所以只需求||||PA PF +的最小值即可,当P 为线段AF 与抛物线交点时,||||PA PF +最小,且最小值为12p AF ==+,解得3p =.故选:C.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对得5分,有选错的得0分,部分选对的得2分.)9.下列表述正确的是()A.如果0,a b c d >>>,那么ac bd >B.如果0a b >>a b>C.如果0,0c a b d >>>>,那么11ac bd < D.如果a b ≥,那么2a bb a +≤≤【答案】BCD 【解析】【分析】根据不等式的基本性质判断ABC ,利用作差法判断D 即可.【详解】A :由,0c d b >>,得bc bd >,若0a b >>,0c >,得ac bc >,则ac bc bd >>,即ac bd >;若0a b >>,0c <,得ac bc <,则ac bd >不成立,故A 错误;B :若0a b >>a b >B 正确;C :由0a b >>,0c d >>,得0ac bd >>,则0abcd >,所以ac bdabcd abcd >,即11acbd<,故C 正确;D :若a b ≥,则0,02222a b b a a b a bb a +-+--=≤-=≥,所以,22a b a bb a ++≤≥,即2a bb a +≤≤,故D 正确.故选:BCD10.已知双曲线C 的两个焦点分别为()()1222,0,2,0F F -,且满足条件p ,可以解得双曲线C 的方程为224x y -=,则条件p 可以是()A.实轴长为4B.双曲线C 为等轴双曲线C.离心率为22D.渐近线方程为y x=±【答案】ABD【解析】【分析】根据双曲线实轴、离心率、渐近线方程等性质逐项分析即可.【详解】设该双曲线标准方程为22221x y a b-=,则c =对于A 选项,若实轴长为4,则2a =,2224b c a ∴=-=,符合题意;对于B 选项,若该双曲线为等轴双曲线,则a b =,又c =2228a b c +==,可解得224a b ==,符合题意;对于C 选项,由双曲线的离心率大于1知,不合题意;对于D 选项,若渐近线方程为y x =±,则a b =,结合2228a b c +==,可解得224a b ==,符合题意,故选:ABD.11.如图,在棱长为4的正方体1111ABCD A B C D -中,E ,F ,G 分别为棱,,AD AB BC 的中点,点P 为线段1D F 上的动点(包含端点),则()A.存在点P ,使得1//C G 平面BEPB.对任意点P ,平面1FCC ⊥平面BEPC.两条异面直线1D C 和1BC 所成的角为45︒D.点1B 到直线1D F 的距离为4【答案】ABD 【解析】【分析】A 选项当P 与1D 重合时,用线面平行可得出11//C G D E ,进而可得;B 选项证明BE ⊥平面1FCC 即可得出;选项C 由正方体的性质和画图直接得出;选项D 由余弦定理确定1145B D F ∠=︒,之后求距离即可.【详解】A :当P 与1D 重合时,由题可知,11111111//,,//,,//,EG DC EG DC D C DC D C DC EG D C EG D C ==∴=,四边形11EGC D 为平行四边形,故11//C G D E ,又1C G ⊄平面BEP ,1D E ⊂平面BEP ,则1//C G 平面BEP ,故A 正确;B :连接CF ,1CC ⊥ 平面ABCD ,BE ⊂平面ABCD ,1CC BE ∴⊥,又,,,AE BF AB BC A CBF BAF CBF ==∠=∠∴ ≌,故90,AEB BFC EBA BFC CF BE ∠=∠⇒∠+∠=︒∴⊥,又11,,CF CC C CF CC =⊂ 平面1FCC ,BE ∴⊥平面1FCC ,又BE ⊂平面BEP ,故对任意点P ,平面1FCC ⊥平面BEP ,故B 正确;C :由正方体的结构特征可知11//BC AD ,异面直线1D C 和1BC 所成的角即为1AD 和1D C 所成的角,由图可知为60︒,故C 错误;D :由正方体的特征可得1111B D FD B F =====,222222111111111116cos ,4522B D FD B F B D F B D F B D FD +-+-∴∠===∴∠=︒⋅,所以点1B 到直线1D F 的距离1111sin 42d B D B D F =∠==,故D 正确;故选:ABD.12.设定义在R 上的函数(),()f x g x 的导函数分别为(),()f xg x '',若(2)(2)2,()(2)f x g x f x g x ''++-==+且(1)y g x =+为偶函数,则下列说法中正确的是()A.(1)0g '= B.(2)(3)(4)0g g g ++=C.()g x '的图象关于3x =对称 D.函数()f x 为周期函数,且周期为4【答案】AC 【解析】【分析】对于A ,根据(1)y g x =+为偶函数求出()g x 的表达式,然后给()g x 的表达式两边求导,然后取特值求解;对于D ,根据()(2)f x g x ⅱ=+和(1)y g x =+为偶函数找到(),()f x g x 的关系,求出周期;B :根据()g x 的性质,取特值求解;C :根据已知推导出(6)()g x g x ''-=.【详解】A :因为(1)y g x =+为偶函数,所以()()11g x g x -+=+,所以()()11g x g x ''--+=+,令0x =,则()()11g g ''-=,所以()10g '=,故A 正确;D :因为()(2)f x g x ⅱ=+,所以()()2f x g x m =++,用x -代替原来的x 得()()2f x g m x =--+,①又(1)y g x =+为偶函数,所以()()11g x g x -+=+,用1x -代替原来的x 得:()()2g x g x -=,②由①②得()()f x x g m -=+,③又(2)(2)2f x g x ++-=,用2x --代替原来的x 得:()()24x x f g +-+=,④由③④联立得:()()24g m x g x +++=,⑤用4x +代替原来的x 得:()()248g x m x g ++++=,⑥⑥减去⑤得:()()8g x g x +=,故()g x 为周期函数,且周期为8,用x -代替原来的x 得:()()8g x g x -=-,⑦因为(2)(2)2f x g x ++-=,用2x +代替原来的x 得:()()42f x g x ++-=,⑧因为(2)(2)2f x g x ++-=,用6x -代替原来的x 得:()()482f x g x -+-=,⑨由⑦⑧⑨得:()()44f x f x -=+,用4x +代替原来的x 得:()()8f x f x =+,所以()f x 为周期函数,且周期为8,故D 错误;B :因为常函数()()111f g ==为满足题意得一组解,但(2)(3)(4)30g g g ++=¹,故B 错误;C :由(2)(2)2f x g x ++-=,则(2)(2)0f x g x ''+--=,即()(4)f x g x ''=-,又()(2)f x g x ⅱ=+,则(4)(2)g x g x ''-=+,即(6)()g x g x ''-=,故C 正确;故选:AC.【点睛】关键点点睛:对于抽象函数可任意赋值(符合已知条件)得到函数的周期,再根据周期性和奇偶性取特值代入求解.三、填空题(本大题共4小题,每小题5分,共20分.)13.幸福指数是衡量人们对自身生存和发展状况的感受和体验,即人们的幸福感的一种指数.某机构从某社区随机调查了12人,得到他们的幸福指数(满分:10分)分别是7.6,8.5,7.8,9.2,8.1,9,7.9,9.5,8.3,8.8,6.9,9.4,则这组数据的下四分位数(也称第一四分位数)是________.【答案】7.85【解析】【分析】由样本数据结合下四分位数的定义求解即可.【详解】将样本数据按从小到大排列可得,6.9,7.6,7.8,7.9,8.1,8.3,8.5,8.8,9,9.2,9.4,9.5,又1225%3⨯=,所以样本数据的下四分位数为7.87.97.852+=,故答案为:7.85.14.已知有100个半径互不相等的同心圆,其中最小圆的半径为1,在每相邻的两个圆中,小圆的切线被大圆截得的弦长都为2,则这100个圆中最大圆的半径是_____.【答案】10【解析】【分析】设这100个圆的半径从小到大依次为12100,,,r r r ,得211r =且2211n n r r +-=,则2{}n r 是以1为首项,1为公差的等差数列,结合等差数列的通项公式计算即可求解.【详解】设这100个圆的半径从小到大依次为12100,,,r r r ,则211r =,又每相邻的两个圆中,小圆的切线被大圆截得的弦长都为2,所以2211(1,2,,99)n n r r n +-== ,所以数列2{}n r 是以1为首项,1为公差的等差数列,1,2,,100n = ,所以2n r n =,所以2100100r =,由1000r >,解得10010r =.故答案为:1015.设椭圆()2222:10x y a b a bΓ+=>>的右焦点为(),0F c ,点()3,0A c 在椭圆外,P 、Q 在椭圆上,且P是线段AQ 的中点.若直线PQ 、PF 的斜率之积为12-,则椭圆的离心率为______.【答案】2【解析】【分析】取线段PQ 的中点M ,连接OM ,推导出//OM PF ,可得出12OM PQ PF PQ k k k k ==-,利用点差法可求得22b a的值,由此可求得椭圆Γ的离心率的值.【详解】如下图所示:由题意可知,点(),0E c -为椭圆Γ的左焦点,因为点()3,0A c 、(),0F c ,易知点F 为线段AE 的中点,又因为P 为AQ 的中点,所以,//PF QE ,取线段PQ 的中点M ,连接OM ,则2AP AF PMOF==,所以,//OM PF ,所以,OM PF k k =,故12OM PQ PF PQ k k k k ==-,设点()11,P x y 、()22,Q x y ,则点1212,22x x y y M ++⎛⎫⎪⎝⎭,所以,22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两个等式作差可得22221212220x x y y a b --+=,可得2221222212y y b x x a -=--,所以,122221212222121212012202OM PQy y y y y y b k k x x x x x x a +---=⋅==-=-+---,所以,椭圆Γ的离心率为2222222121122c c a b b e a a a a -===--.故答案为:22.16.已知数列{}n a 满足1π(1)cos 3n n n a n a +=-+,若11a =,则2024a =_____.【答案】67512【解析】【分析】用累乘法,结合余弦函数的周期性求解.【详解】因为πcos 3n y =的最小正周期为2π6π3=,且2023=3376余1,由已知可得()()337320242202416751220231111111111111111=222222aa a a a a a a ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅⋅=⨯-+⨯-⨯--⨯-⨯-+⨯+⨯-+ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,故答案为:67512.【点睛】关键点点睛:数列中带有三角函数且求数列中较大的某一项时,通常想到用周期函数的性质求解.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.记ABC 的内角A 、B 、C 的对边分别为a 、b 、csin A c A +=.(1)求角C ;(2)若ABC 的周长为20,面积为,求边c .【答案】17.60︒18.7【解析】【分析】(1)根据正弦定理、诱导公式、两角和的正弦公式和同角的三角函数关系化简,即可求解;(2)根据三角形的面积公式可得40ab =,由余弦定理计算可得22240a b c +=+,结合22()(20)a b c +=-计算即可求解.【小问1详解】cos sin A c A +=,cos sin sin )C A C A B A C +==+,cos sin sin cos cos C A C A A C C A +=+,sin sin cos C A A C =,又0180A ︒<<,得sin 0A >,所以sin C C =,即sin tan cos CC C==,由0180C ︒<<,解得60C ︒=;【小问2详解】由(1),得1sin 2ABC S ab C === 40ab =,由余弦定理,得222cos cos 602a b c C ab ︒+-==,即2221280a b c +-=,得22240a b c +=+.又20a b c ++=,所以22()(20)a b c +=-,即222240040a ab b c c ++=-+,即22408040040c c c ++=-+,解得7c =.18.已知A 、B 是抛物线24y x =上异于顶点的两个动点,直线AB 与x 轴交于P .(1)若OA OB ⊥,求P 的坐标;(2)若P 为抛物线的焦点,且弦AB 的长等于6,求OAB 的面积.【答案】(1)(4,0);(2【解析】【分析】(1)设直线AB 的方程为x my t =+(0)t ≠,与抛物线方程联立,根据韦达定理及平面向量数量积公式可求得t 的值,从而求出P 的坐标;(2)设直线AB 的方程为1x ny =+,与抛物线方程联立,根据韦达定理及弦长公式可求得2n 的值,再求出点O 到直线AB 的距离,从而求出OAB 的面积.【小问1详解】因为直线AB 不垂直于y 轴,设直线AB 的方程为x my t =+,(0)t ≠,1122(,),(,)A x y B x y ,由24x my t y x=+⎧⎨=⎩消去x 得,2440y my t --=,所以216160m t ∆=+>,124y y m +=,124y y t =-,由OA OB ⊥,得12121222212)0((4)441616O y t x x B y y A O y y t t t -=+⋅=+=-=-= ,解得4t =,满足0∆>,所以直线AB 方程为4x my =+,令0y =得4x =,即P 的坐标(4,0).【小问2详解】由题意知抛物线的焦点为(1,0),因为直线AB 不垂直于y 轴,设直线AB 的方程为1x ny =+,点3344(,),(,)A x y B x y ,由214x ny y x=+⎧⎨=⎩消去x 得,2440y ny --=,所以216160n ∆=+>,344y y n +=,344y y =-,所以2344(1)6AB y n =-==+=,解得212n =,点O 到直线AB 的距离为3d ==,所以116223OAB S AB d ==⨯⨯= ,故OAB 的面积为.19.设a 为实数,函数32()3,()ln f x x x a g x x x =-+=.(1)求()f x 的极值;(2)对于1221[1,3],,e e x x ⎡⎤∀∈∀∈⎢⎥⎣⎦,都有()()12f x g x ≥,试求实数a 的取值范围.【答案】(1)极大值为a ,极小值为4a -(2)e 4a ≥+【解析】【分析】(1)利用导数分析函数()f x 的单调性,由此可求得函数()f x 的极大值和极小值;(2)分析可知()()12min max f x g x ≥,利用导数求得函数()f x 在[]1,3上的最小值,求出函数()g x 在1,e e ⎡⎤⎢⎥⎣⎦上的最大值,可得出关于实数a 的不等式,由此可解得实数a 的取值范围.【小问1详解】函数()323f x x x a =-+的定义域为R ,()()23632f x x x x x '=-=-,令()0f x '=,可得0x =或2,列表如下:x(),0∞-0()0,22()2,+∞()f x '+-+()f x 递增极大值递减极小值递增故函数()f x 的极大值为()0f a =,极小值为()24f a =-.【小问2详解】对于[]11,3x ∀∈,21,e e x ⎡⎤∀∈⎢⎥⎣⎦,都有()()12f x g x ≥,则()()12min max f x g x ≥.由(1)可知,函数()f x 在[)1,2上单调递减,在(]2,3上单调递增,故当[]1,3x ∈时,()()min 24f x f a ==-,因为()ln g x x x =,且1,e e x ⎡⎤∈⎢⎥⎣⎦,则()1ln 0g x x '=+≥在1,e ex ⎡⎤∈⎢⎥⎣⎦上恒成立,故函数()g x 在1,e e ⎡⎤⎢⎥⎣⎦上单调递增,故()()max e e g x g ==,由题意可得4e a -≥,故e 4a ≥+.20.设正项等比数列{}n a 的公比为q ,且1q ≠,*q ∈N .令2log n q nn nb a +=,记n T 为数列{}n a 的前n 项积,nS 为数列{}n b 的前n 项和.(1)若2134a a a =,2367S T +=,求{}n a 的通项公式;(2)若{}n b 为等差数列,且99299log 99S T -=,求q .【答案】(1)342n n a -=(2)2【解析】【分析】(1)根据等比数列的性质求得364T =,结合已知化简得()2113log 5log 20q q a a --=,解得11log 3q a =-或1log 2q a =,利用对数运算求得q ,即可求得通项公式;(2)利用等差数列的性质及对数运算得nn a q =或1n n a q +=,分类讨论建立方程求解即可.【小问1详解】因为2134a a a =,所以2224a a =,解得24a =,所以33123264T a a a a =⋅⋅==,又2121126log log 1q q S b b a a =+=++,所以2311266467log log 1q q S T a a +=++=+,整理化简得()2113log 5log 20q q a a --=,解得11log 3q a =-或1log 2q a =,所以131a q-=或21a q =,又214a a q ==,所以8q =或q =(舍去),所以112a =,所以13412n n n a a q--==.【小问2详解】因为{}n b 为等差数列,所以2132b b b =+,即11112212log 1log log 2q q q a a a =+++,解得1log 1q a =或1log 2q a =,所以1a q =或21a q =,所以nn a q =或1n n a q+=,①当n n a q =时,21n n nb n n+==+,易知{}n b 是等差数列,所以()9999210051992S +==⨯,()2999950299222log log log 9950log T q q q qq ⨯=⋅==⨯ ,又99299log 99S T -=,所以251999950log 99q ⨯-⨯=,所以2log 1q =,解得2q =;②当1n n a q+=时,21n n nb n n +==+,易知{}n b 是等差数列,所以()999919950992S +==⨯,()231009951299222log log log 9951log T q q q qq ⨯=⋅==⨯ ,又99299log 99S T -=,所以25051log 1q -=,解得49*512N q =∉,舍去;综上,2q =.21.如图,在三棱锥A BCD -中,平面ABC ⊥平面BCD ,且BC BD BA ==,120CBA CBD ∠∠== ,点P 在线段AC 上,点Q 在线段CD 上.(1)求证:AD BC ⊥;(2)若AC ⊥平面BPQ ,求BPBQ的值;(3)在(2)的条件下,求平面ABD 与平面PBQ 所成角的余弦值.【答案】21.证明见解析22.32BP BQ =23.55【解析】【分析】(1)根据三角形全等,可证明线线垂直,进而可得线面垂直,进而可求证,(2)建立空间直角坐标系,利用向量即可求解.或者利用空间垂直关系的转化即可结合三角形的边角关系求解.(3)建立空间直角坐标系,利用法向量的夹角即可求解.【小问1详解】证明:过A 作AO ⊥直线BC 于O ,连接DO .由题知,,60BA BD BO BO ABO DBO ∠∠==== ,,90ABO DBO DOB AOB ∠∠∴≅∴== ,即BC DO ⊥,又,,,BC AO AO DO O AO DO ⊥⋂=⊂平面AOD ,BC ∴⊥平面AOD ,又AD ⊂平面AOD ,BC AD ∴⊥,即AD BC⊥【小问2详解】方法一: 平面ABC ⊥平面BCD ,平面ABC ⋂平面BCD BC =,,AO BC AO ⊥⊂平面ABC AO ∴⊥平面BCD .以O 为原点,以OB 的长度为单位长度,以,,OD OC OA uuu r uuu r uu r的方向分别为x 轴,y 轴,z 的正方向建立空间直角坐标系O xyz -,如图,则)(()()3,0,0,3,0,1,0,0,3,0DA B C .AC ⊥ 平面,,BPQ AC BP AC BQ ∴⊥⊥.BA BC P =∴ 为AC中点,由题知)(3,0,0,3,CD AC =-=设()))0,2,03,0,23,0BQ BC CD λλλ=+=+-=-,()23230,3AC BQ λλ∴⋅=-=∴=,,0,0,33BQ BQ ⎛⎫∴=∴= ⎪ ⎪⎝⎭,又在ABC 中,2,120BC BA ABC ∠=== ,所以1,2BP BP BQ =∴=.方法二:AC ⊥ 平面,,BPQ AC BP AC BQ ∴⊥⊥.设2BA BC ==,由120ABC ∠= 知,1BP ∴=.平面ABC⊥平面BCD ,平面ABC ⋂平面,,BCD BC AO BC AO =⊥⊂平面ABC ,AO ∴⊥平面BCD ,又BQ ⊂平面,BCD AO BQ ∴⊥,又,AC BQ AC AO A ⊥⋂=,BQ ∴⊥平面ABC BQ BC ∴⊥.2,30,2,332BP BC BCQ BQ BQ ∠==∴=⨯=∴= 【小问3详解】由(2)知,平面PBQ 的一个法向量为AC,设平面ABD 的一个法向量为()((),,.0,1,,n x y z AB DB ===,则0,0,n AB y n DB y ⎧⋅=-=⎪⎨⋅=+=⎪⎩令y =则()n =,cos ,5AC n AC n AC n⋅==,∴平面ABD 与平面PBQ所成角的余弦值为.22.已知椭圆22221(0)x y a b a b+=>>过点(2,1)A,焦距为(3,0)B 作直线l 与椭圆交于C 、D 两点,直线AC AD 、分别与直线3x =交于E 、F .(1)求椭圆的标准方程;(2)记直线AC AD 、的斜率分别为21k k 、,证明21k k +是定值;(3)是否存在实数λ,使CDE CDF S S λ=△△恒成立.若存在,请求出λ的值;若不存在,请说明理由.【答案】(1)22163x y +=(2)证明见解析(3)存在;1λ=【解析】【分析】(1)利用点在椭圆上和焦距列方程组解出即可;(2)设出CD 两点坐标,表示出斜率21k k 、,并设出直线CD 方程与椭圆联立,消去y ,表示出韦达定理,代入21k k +的表达式中化简即可;(3)解方程组分别求出直线的交点,E F 坐标,再求出,E F 到直线CD 的距离,结合已知面积关系表示出两三角面积的方程,再利用212k k +=-代入化简即可.【小问1详解】因为椭圆过点(2,1)A,焦距为,所以222222411633a a bb a b ⎧⎧+==⎪⇒⎨⎨=⎩⎪-=⎩,所以椭圆的标准方程为22163x y +=.【小问2详解】证明:设()()121122121211,,,,,22y y C x y D x y k k x x --==--,直线CD 的斜率一定存在,设为()3y k x =-,则()221633x y y k x ⎧+=⎪⎨⎪=-⎩,消去y 得到()222221121860k x k k +-+-=,()()()2222Δ124211860k k k =-+->,2212122212186,2121k k x x x x k k -+==++,()()()()()1212121212121212222222222313122251242412842118624842144212k k k x k x x x k x x x x x x x x x x k k k k k k k k k +----=+--⎡⎤-++-++⎣⎦=-++-+++=--+++-+=+=-,故21k k +是定值.【小问3详解】设存在实数λ,使CDE CDF S S λ=△△恒成立,由()()11123,13y k x E k x ⎧-=-⇒+⎨=⎩,()()22123,13y k x F k x ⎧-=-⇒+⎨=⎩,设E 到直线CD 的距离为2d ,F 到直线CD 的距离为1d ,则12d d ==因为CDE CDF S S λ=△△,所以211122CD d CD d λ⨯=⨯⨯,②把①代入②并化简可得2111k k λ+=+,由上问可知112222k k k k +=-⇒=--,代入上式可得1111k k λ+=+,所以1λ=.【点睛】关键点点睛:①求曲线的标准方程常用待定系数法和曲线的性质列方程组求解;②证明斜率之和为定值时,首先用曲线上的点表示出斜率,再直曲联立,利用韦达定理化简斜率之和的表达式;。

浙江省杭州市数学高二上学期理数期末考试试卷

浙江省杭州市数学高二上学期理数期末考试试卷

浙江省杭州市数学高二上学期理数期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)已知直线l的方程为,则直线l的倾斜角为()A .B .C .D . 与b有关2. (2分)(2018·武邑模拟) 命题“ ”的否定为()A .B .C .D .3. (2分)直线与圆相切,则实数等于()A . 或B . 或C . 或D . 或4. (2分)设l , m , n表示三条直线,α,β,γ表示三个平面,给出下列四个命题:①若l⊥α,m⊥α,则l∥m;②若mÌβ,n是l在β内的射影,m⊥l ,则m⊥n;③若mÌα,m∥n ,则n∥α;④若α⊥γ,β⊥γ,则α∥β.其中真命题为A . ①②B . ①②③C . ①②③④D . ③④5. (2分) (2015高二上·莆田期末) 已知椭圆 +y2=1上一动点P,F为其右焦点,椭圆内一定点A(0,),则|AP|+ |AF|的最小值()A .B . 1C .D . 26. (2分)已知正方体AC1的棱长为1,点P是面AA1D1D的中心,点Q是面A1B1C1D1的对角线B1D1上一点,且PQ∥平面AA1B1B,则线段PQ的长为()A . 1B .C .D .7. (2分) (2019高二上·丽水期中) 已知抛物线C:y2=4x的焦点为F和准线为l,过点F的直线交l于点A,与抛物线的一个交点为B,且 =-2 ,则|AB|=()A . 3B . 6C . 9D . 128. (2分)已知空间4个球,它们的半径分别为2,2,3,3,每个球都与其他三个球外切,另有一个小球与这4个球都外切,则这个小球的半径为()A .B .C .D .二、填空题 (共6题;共6分)9. (1分)已知实数,满足某一前提条件时,命题“若,则”及其逆命题、否命题和逆否命题都是假命题,则实数,应满足的前提条件是________.10. (1分) (2018高二上·哈尔滨月考) 点关于直线的对称点的坐标为________.11. (1分)一个几何体的三视图如图所示,其中俯视图为正三角形,则该几何体的表面积为________.12. (1分) (2016高二下·浦东期末) 设F1和F2是双曲线﹣y2=1的两个焦点,点P在双曲线上,且满足∠F1PF2=90°,则△F1PF2的面积是________.13. (1分)已知正六棱柱的底面边长和侧棱长均为2,其三视图中的俯视图如图所示,则其左视图的面积是________14. (1分) (2016高一上·厦门期中) 设函数f(x)=ln(1+|x|)﹣,则使得f(x)>f(2x﹣1)成立的x的取值范围为________.三、解答题 (共6题;共50分)15. (10分) (2017高一下·盐城期中) 如图,在正方体ABCD﹣A1B1C1D1中,E是棱CC1的中点.(1)证明:AC1∥平面BDE;(2)证明:AC1⊥BD.16. (5分) (2016高二上·台州期中) 已知圆M的圆心M在x轴上,半径为1,直线,被圆M所截的弦长为,且圆心M在直线l的下方.(Ⅰ)求圆M的方程;(Ⅱ)设A(0,t),B(0,t+6)(﹣5≤t≤﹣2),若圆M是△ABC的内切圆,求△ABC的面积S的最大值和最小值.17. (10分)(2018·全国Ⅰ卷文) 如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°.以AC为折痕将△ACM 折起,使点M到达点D的位置,且AB⊥DA(1)证明:平面ACD⊥平面ABC:(2) Q为线段AD上一点,P为线段BC上点,且BP=DQ= DA,求三棱锥Q-ABP的体积.18. (5分)(2018高二上·锦州期末) 如图所示,四棱锥的底面为直角梯形,,,,,底面,为的中点.(Ⅰ)求证:平面平面(Ⅱ)求直线与平面所成的角的正弦值.19. (15分) (2018高一上·沈阳月考) 如图,在正方体中.E,F分别是,CD的中点。

杭州市数学高二上学期理数期末考试试卷C卷

杭州市数学高二上学期理数期末考试试卷C卷

杭州市数学高二上学期理数期末考试试卷C卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)“-3<m<5”是“方程表示椭圆”的().A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 既不充分也不必要条件2. (2分)已知集合,集合,那么集合等于()A .B .C .D .3. (2分) (2015高二上·安徽期末) 曲线+=1.(m<6) 与+=1.(5<m<9)的()A . 准线相同B . 离心率相同C . 焦点相同D . 焦距相同4. (2分)(2018·鸡西模拟) 在△ABC中,若,则△AB C的形状是()A . 等腰三角形B . 直角三角形C . 等腰且直角三角形D . 等边三角形5. (2分)(2016·新课标Ⅰ卷文) 设F为抛物线C:y2=4x的焦点,曲线y= (k>0)与C交于点P,PF⊥x 轴,则k=()A .B . 1C .D . 26. (2分)已知直线与平面α平行,P是直线上的一定点,平面α内的动点B满足:PB与直线成60°.那么B点轨迹是()A . 双曲线B . 椭圆C . 抛物线D . 两直线7. (2分) (2016高一下·长春期中) 在△ABC中,内角A,B,C所对的边分别是a,b,c,若3a=2b,则的值为()A . ﹣B .D .8. (2分) (2016高三上·嘉兴期末) 已知为实数,则()A . ,B . ,C . ,D . ,9. (2分) (2016高二下·洞口期末) 下列判断错误的是()A . “am2<bm2”是“a<b”的充分不必要条件B . 命题“∀x∈R,x3﹣x2≤0”的否定是“∃x∈R,x3﹣x2﹣1>0”C . “若a=1,则直线x+y=0和直线x﹣ay=0互相垂直”的逆否命题为真命题D . 若p∧q为假命题,则p,q均为假命题10. (2分)设等比数列{an}的前n项和为Sn,前n项的倒数之和为Tn,则的值为()A .B .C .D .11. (2分)已知A点的坐标是(-1,-2,6),B点的坐标是(1,2,-6),O为坐标原点,则向量的夹角是()B .C .D .12. (2分)正四棱锥所有棱长均为2,则侧棱和底面所成的角是()A . 30°B . 45°C . 60 °D . 90°二、填空题 (共4题;共5分)13. (1分) (2015高二下·福州期中) 如图:在底面为平行四边形的棱柱ABCD﹣A1B1C1D1中,M为A1C1与B1D1的交点.则向量可用 = , = , = 表示为________.14. (1分)(2016·温岭模拟) 已知实数x,y满足,则目标函数2x+y的最大值为________,目标函数4x2+y2的最小值为________.15. (1分) (2019高二上·集宁月考) 给出以下四个命题:⑴命题,使得,则,都有;⑵已知函数f(x)=|log2x|,若a≠b,且f(a)=f(b),则ab=1;⑶若平面α内存在不共线的三点到平面β的距离相等,则平面α平行于平面β;⑷已知定义在上的函数满足函数为奇函数,则函数的图象关于点对称.其中真命题的序号为________.(写出所有真命题的序号)16. (2分) (2016高二上·辽宁期中) 已知P为椭圆 =1上的一个点,M,N分别为圆(x+3)2+y2=1和圆(x﹣3)2+y2=4上的点,则|PM|+|PN|的最小值为________.三、解答题 (共6题;共50分)17. (10分) (2017高一下·长春期末) 在△ABC中,角A,B,C所对的边分别为a,b,c,若向量 =(﹣cosB,sinC), =(﹣cosC,﹣sinB),且.(Ⅰ)求角A的大小;(Ⅱ)若b+c=4,△ABC的面积,求a的值.18. (5分) (2016高二上·呼和浩特期中) 已知{an}是等差数列,{bn}是各项为正的等比数列,且a1=b1=1,a3+b5=21,a5+b3=13.(1)求数列{an},{bn}的通项公式;(2)求数列{an+bn};的前n项和Sn.19. (5分) (2016高一下·海珠期末) 一个化肥厂生产甲种混合肥料1车皮、乙种混合肥料1车皮所需要的主要原料如表:原料磷酸盐(单位:吨)硝酸盐(单位:吨)种类甲420乙220现库存磷酸盐8吨、硝酸盐60吨,计划在此基础上生产若干车皮的甲、乙两种混合肥料.(1)设x,y分别表示计划生产甲、乙两种肥料的车皮数,试列出x,y满足的数学关系式,并画出相应的平面区域;(2)若生产1车皮甲种肥料,利润为3万元;生产1车皮乙种肥料,利润为2万元.那么分别生产甲、乙两种肥料多少车皮,能够产生最大利润?最大利润是多少?20. (10分)(2018·郑州模拟) 已知等差数列的前项和为,且, .(1)求数列的通项公式;(2)设,求数列的前项和 .21. (10分) (2017高二上·龙海期末) 已知四棱锥P﹣ABCD中PA⊥平面ABCD,且PA=4PQ=4,底面为直角梯形,∠CDA=∠BAD=90°,,M,N分别是PD,PB的中点.(1)求证:MQ∥平面PCB;(2)求截面MCN与底面ABCD所成二面角的大小;(3)求点A到平面MCN的距离.22. (10分) (2015高二上·怀仁期末) 已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切.(1)求椭圆的方程;(2)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交椭圆C于另一点E,证明直线AE与x轴相交于点Q(1,0).参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共5分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共50分) 17-1、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、。

浙江省杭州二中高二上学期期末测试题(数学理).doc

浙江省杭州二中高二上学期期末测试题(数学理).doc

浙江省杭州二中高二上学期期末测试题(数学理)本试卷分为第Ⅰ卷(选择题和填空题)和第Ⅱ卷(答题卷)两部分,共 100 分,考试时间 90 分钟.一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.把答案填在答卷相应空格中)1.双曲线221916x y -=的渐近线方程是 ( )A.430x y ±=B.1690x y ±= C .340x y ±= D. 9160x y ±=2.抛物线252x y=的焦点到准线的距离是( )A. 58B. 52C. 25D.543.若()1nx +展开式的二项式系数之和为64,则n 的值为 ( ) A.4 B.5 C.6 D.74.随机抽取某班n 个学生,得知其数学成绩分别为12,,na a a ⋅⋅⋅,则右边的程序框图输出的s 表示样本的数字特征是 ( ) A.中位数 B.平均数 C. 方差 D.标准差5.在某项测量中,测量结果ξ服从正态分布N(1,2σ)(0)σ>,若ξ在(0,2)内取值的概率为0.6,则ξ在(0,1)内取值的概率为 ( ) A. 0.1 B.0.2 C.0.3 D.0.4 6.已知七位评委为某民族舞蹈参赛演员评定分数的茎叶图 如右,图中左边为十位数,右边为个位数.去掉一个最高分 和一个最低分,所剩数据的平均数和方差分别为 ( ) A.84, 4.84 B.84, 1.6C.85, 1.6D.85,4( 第6题 )7.从圆O:224x y+=上任意一点P向x轴作垂线,垂足为P',点M是线段PP'的中点,则点M的轨迹方程是()A.1416922=+yxB.1416922=+xyC.1422=+yxD.1422=+yx8.直线l的极坐标方程为2cos sin3ρθρθ=+,圆C的极坐标方程为)4πρθ=+.则直线l和圆C的位置关系为()A.相交但不过圆心B.相交且过圆心C.相切D.相离9.有一矩形纸片ABCD,按右图所示方法进行任意折叠,使每次折叠后点B都落在边AD上,将B的落点记为B',其中EF为折痕,点F也可落在边CD上,过B'作B'H∥CD交EF于点H,则点H的轨迹为()A.圆的一部分B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分10.已知椭圆22221(0)x ya ba b+=>>的离心率为e,焦点为F1、F2,抛物线C以F1为顶点,F2为焦点.设P为两条曲线的一个交点,若12PFePF=,则e的值为()A. 12B.D. 2二、填空题(本大题共6小题,每小题3分,共18分.把答案填在答卷中相应横线上)11.从集合{1-,1,2,3}中任意取出两个不同的数记作,m n,则方程122=+nymx表示焦点在x轴上的双曲线的概率是.12.如图,在一个边长为2的正方形中随机撒入100粒豆子, 恰有60粒落在阴影区域内,则该阴影部分的面积约为. (第12题)(第9题)13.已知随机变量1(2,)3B ξ,31ηξ=-.则E η的值为 .14.直线122x t y t =+⎧⎨=⎩(t 为参数)截抛物线24y x =所得 弦长为 . Ks5u15. 右边程序运行后输出的结果是 .16.过点P(5,4)作与双曲线14522=-y x 有且只有一个公共点的直线共有 条 .三、解答题(本大题共4小题,共42分.解答应写出文字说明,证明过程或演算步骤)17. (本小题满分10分)已知某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表:(Ⅰ)画出散点图;(Ⅱ)根据如下的参考公式与参考数据,求利润额y 与销售额x 之间的线性回归方程; (Ⅲ)若该公司还有一个零售店某月销售额为10千万元,试估计它的利润额是多少?(参考公式: 其中:211112,200nni ii i i x yx ====∑∑ )18. (本小题满分10分)已知抛物线C 的顶点在原点,焦点在x 轴上,且抛物线上有一点P (4,m )到焦点的距离为6.(Ⅰ)求抛物线C 的方程;(Ⅱ)若抛物线C 与直线2-=kx y 相交于不同的两点A 、B ,且AB 中点横坐标为2,求k 的值.19. (本小题满分10分)已知参赛号码为1~4号的四名射箭运动员参加射箭比赛.( 第15题 )(Ⅰ)通过抽签将他们安排到1~4号靶位,试求恰有一名运动员所抽靶位号与其参赛号码相同的概率;(Ⅱ)设1号,2号射箭运动员射箭的环数为ξ,其概率分布如下表:①若1,2号运动员各射箭一次,求两人中至少有一人命中8环的概率; ②判断1号,2号射箭运动员谁射箭的平均水平高?并说明理由.(本小题满分12分)已知椭圆C:22221(0)x y a b a b +=>>的离心率12e =,且原点O 到直线1x y a b +=的距离为7d =.(Ⅰ)求椭圆的方程 ;(Ⅱ)过点M 作直线与椭圆C 交于,P Q 两点,求OPQ ∆面积的最大值.参 考 答 案一、 选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共6小题,每小题3分,共18分)11. 41 . 12. 125 . 13. 1 .14. 8 . 15. b= 3732 . 16. 3 .5,30/56,17/5 3.4n x y ===== 3.40.560.4a =-⨯=(3分)则线性回归方程为ˆ0.50.4yx =+ (2分) (3) 将x=10代入线性回归方程中得到ˆ0.5100.4 5.4y =⨯+=(千万元)(2分)18. 解:(Ⅰ)由题意设抛物线方程为px y 22=,其准线方程为2px =-, (2分)∵P (4,m )到焦点的距离等于A 到其准线的距离,4642p p ∴+=∴=∴抛物线C 的方程为x y 82= (2分) (Ⅱ)由⎩⎨⎧-==282kx y xy 消去y ,得 22(48)40k x k x -++= (2分)∵直线2-=kx y 与抛物线相交于不同两点A 、B ,则有0,64(1)0k k ≠∆=+> ,解得01≠->k k 且, (2分)又1222422x x k k ++==,解得 2,1k k ==-或(舍去)∴所求k 的值为2 (2分)19. 解:(1)从4名运动员中任取一名,其靶位号与参赛号相同,有14C 种方法,另3名运动员靶位号与参赛号均不相同的方法有2种,所以恰有一名运动员所抽靶位号与参赛号相同的概率为3124824414==⋅=A C P (3分) (2)①由表可知,两人各射击一次,都未击中8环的概率为 P=(1-0.2)(1-0.32)=0.544∴至少有一人命中8环的概率为p=1-0.544=0.456 (2分)②6.704.0103.092.083.0706.0604.0506.041=⨯+⨯+⨯+⨯+⨯+⨯+⨯=ξE75.702.01032.0932.082.0705.0605.0504.042=⨯+⨯+⨯+⨯+⨯+⨯+⨯=ξE(3分)12E E ξξ<,所以2号射箭运动员的射箭的平均水平高 (2分)解:⑴∵12c e a == ∴222244()a c a b ==-,即2243b a = (1) (2分)又∵直线方程为1x y a b +=,即bx ay ab +=∴d ==,即2222712()a b a b =+ (2) (2分)联立(1)(2) 解得24a =,23b = ∴椭圆方程为22143x y += (2分)⑵由题意,设直线:PQ x my =+代人椭圆C :223412x y +=化简,得22(34)30m y ++-=222)12(34)48(31)0m m ∆=++=+> ,则OPQ ∆的面积为12221223434S OP y y m m =-==++ (3分)S ∴=≤=所以,当222313,3m m +==时,OPQ ∆ (3分)。

杭州市高二上学期期末数学试卷(理科)B卷(测试)

杭州市高二上学期期末数学试卷(理科)B卷(测试)

杭州市高二上学期期末数学试卷(理科)B卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)已知a,b∈R,下列命题正确的是()A . 若a>b,则|a|>|b|B . 若a>b,则C . 若|a|>b,则a2>b2D . 若a>|b|,则a2>b22. (2分)已知抛物线方程为,直线l的方程为,在抛物线上有一动点到轴的距离为,到直线L的距离为,则的最小值为()A .B .C .D .3. (2分)(2017·沈阳模拟) 已知向量,,(m>0,n>0),若m+n∈[1,2],则的取值范围是()A .B .C .D .4. (2分) (2018高二下·哈尔滨月考) 双曲线8kx2-ky2=8的一个焦点是(0,3),则k的值是()A . 1B .C .D . -15. (2分)设m,n是两条不同的直线,是三个不同的平面,给出下列四个命题:①若m⊥α,n∥α,则m⊥n ②若α∥β,β∥γ,m⊥α,则m⊥γ ③若m∥α,n∥α,则m∥n ④若α⊥γ,β⊥γ,则α∥β其中正确命题的序号是()A . ②和③B . ①和②C . ③和④D . ①和④6. (2分) (2018高三上·昭通期末) 椭圆C:的右焦点为F,右顶点为A,抛物线x2=4by 的焦点为B,且.则椭圆C的离心率为()A .B .C .D .7. (2分)椭圆中,以点M(﹣1,2)为中点的弦所在的直线斜率为()A .B .C .D . -8. (2分) (2016高二上·湖北期中) 在△OAB中,C为边AB上任意一点,D为OC上靠近O的一个三等分点,若=λ +μ ,则λ+μ的值为()A .B .C .D . 19. (2分)已知焦点在x轴上的双曲线的渐近线方程是,则双曲线的离心率是()A .B . 2C .D . 410. (2分) (2016高二上·西安期中) 已知向量 =(﹣1,1,﹣1), =(2,0,﹣3),则• 等于()A . ﹣2B . ﹣4C . ﹣5D . 111. (2分) (2016高二上·台州期中) 圆x2+y2﹣2x﹣2y﹣2=0和圆x2+y2+6x﹣2y+6=0的公切线条数为()A . 1B . 2C . 3D . 412. (2分)下列函数是奇函数且在(0,+∞)上单调递增的是()A . y=lnxB . y=x+C . y=x2D .二、填空题 (共4题;共4分)13. (1分)(2018·丰台模拟) 己知抛物线M的开口向下,其焦点是双曲线的一个焦点,则M的标准方程为________.14. (1分) (2016高一下·武城期中) 给出下列命题:①函数是奇函数;②存在实数α,使得sinα+cosα= ;③若α,β是第一象限角且α<β,则tanα<tanβ;④ 是函数的一条对称轴方程;⑤函数的图象关于点成中心对称图形.其中命题正确的是________(填序号).15. (1分) (2020高二上·那曲期末) 设抛物线的顶点在原点,准线方程为,则抛物线的标准方程是________。

浙江省杭州中学2023-2024学年高二上学期期末考试数学试题含答案

浙江省杭州中学2023-2024学年高二上学期期末考试数学试题含答案

杭高2023学年第一学期期末考试高二数学试题卷(答案在最后)命题:1.本试卷分试题卷和答题卡两部分.本卷满分150分,考试时间120分钟.2.答题前务必将自己的学校、班级、姓名用黑色字迹的签字笔或钢笔填写在答题卡规定的地方.3.答题时,请按照答题卡上“注意事项”的要求,在答题卡相应的位置上规范答题,在本试题卷上答题一律无效.4.考试结束后,只需上交答题卡.一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.直线:10l x ++=的倾斜角的大小为()A.30 B.60C.120D.150【答案】D 【解析】【分析】根据斜率等于倾斜角的正切值,结合倾斜角的范围即可求解.【详解】由:10l x ++=可得3333y x =--,所以直线l 的斜率为33k =-,设直线l 的倾斜角为α,则tan 3α=-,因为0180α≤<o ,所以150α= ,故选:D.2.若数列{}n a 的通项公式为2n a n n =+,则12100111a a a +++= ()A.100101B.1101C.101100D.99100【答案】A 【解析】【分析】利用裂项相消求和可得答案.【详解】()111111n a n n n n ==-++,则1210011111111110011223100101101101+++=-+-++-=-= a a a .故选:A.3.若数列{}n a 满足12a =,11n n n a a a +=-,则2024a =()A.3B.2C.12D.1-【答案】C 【解析】【分析】由递推公式计算数列的前几项得出周期,即可的答案.【详解】因为数列{}n a 满足12a =,11n n n a a a +=-,所以212a =,31a =-,42a =,512a =,...,故数列的周期为3,故202421.2a a ==故选:C.4.在空间四边形ABCD 中,,,DA a DB b DC c === ,且,2DM MA BN NC == ,则MN =()A.112233a b c --B.121233a b c-++C.112233a b c-++ D.111222a b c-++ 【答案】C 【解析】【分析】由MN MA AB BN =++可表示出.【详解】()1223MN MA AB BN DA DB DA BC=++=+-+()()1223DA DB DA DC DB =+-+-121112332323DA DB DC a b +=+-+-=+.故选:C.5.以下四个命题中,正确的是()A.若1123OP OA OB =+,则,,P A B 三点共线B.若{},,a b c 为空间的一个基底,则{},,a b b c c a +++构成空间的另一个基底C.()()a b c a b c⋅⋅=⋅⋅r r r r r r D.若a b a c ⋅=⋅r r r r,且0a ≠,则b c =【答案】B 【解析】【分析】根据向量三点共线可判断A ;假设,,a b b c c a +++ 共面,设()()a b m b c n c a +=+++得出矛盾可判断B ;举反例可判断C ;利用数量积公式计算可判断D.【详解】对于A ,若,,P A B 三点共线,则OP OA OB λμ=+,且1λμ+=,而1151236+=≠,故A 错误;对于B ,假设,,a b b c c a +++共面,设()()()a b m b c n c a ma mb m n c +=+++=+++,因为{},,a b b c c a +++ 为空间的一个基底,所以110m n m n =⎧⎪=⎨⎪+=⎩,该方程组无解,假设不成立,故B 正确;对于C ,设()()()1,3,1,2,2,1,3,4,1a b c ==-=,则()()515,20,5a b c c ⋅⋅== ,()()()33,9,315,20,5a b c a ⋅⋅=⨯=≠,故C 错误;对于D ,由a b a c ⋅=⋅r r r r 得()0a b c ⋅-=,设a 与b c - 的夹角为θ,所以cos 0a b c θ⋅-=,因为0a ≠ ,所以cos 0b c θ-= ,不一定有b c = ,故D 错误.6.已知圆()()221:2416C x y -++=,圆222:230C x y x ++-=,则两圆的公切线的条数为()A.1B.2C.3D.4【答案】B 【解析】【分析】根据圆的方程,求得圆心距和两圆的半径之和,之差,判断两圆的位置关系求解.【详解】因为圆()()221:2416C x y -++=,圆()222:14C x y ++=,所以125C C =,12126,2R R R R +=-=,所以121212R R C C R R -<<+,所以两圆相交,所以两圆的公切线的条数为2,故选:B7.已知等比数列{a n }的前n 项和为S n ,S 10=1,S 30=13,S 40=()A.﹣51B.﹣20C.27D.40【答案】D 【解析】【分析】由{a n }是等比数列可得S 10,S 20﹣S 10,S 30﹣S 20,S 40﹣S 30成等比数列,列方程组,从而即可求出S 40的值.【详解】由{a n }是等比数列,且S 10=1>0,S 30=13>0,得S 20>0,S 40>0,且1<S 20<13,S 40>13所以S 10,S 20﹣S 10,S 30﹣S 20,S 40﹣S 30成等比数列,即1,S 20﹣1,13﹣S 20,S 40﹣13构成等比数列,∴(S 20﹣1)2=1×(13﹣S 20),解得S 20=4或S 20=﹣3(舍去),∴(13﹣S 20)2=(S 20﹣1)(S 40﹣13),即92=3×(S 40﹣13),解得S 40=40.故选:D .8.双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12,F F ,点M 是双曲线左支上一点,1290F MF ∠= ,直线2MF 交双曲线的另一支于点N ,22MN NF =,则双曲线的离心率()A.3B.9C.D.2【解析】【分析】根据双曲线定义和22MN NF =得到边长之间的关系,结合勾股定理得到方程,求出离心率.【详解】设2NF n =,则2MN n =,23MF n =,由双曲线定义得212MF MF a -=,故132MF n a =-,由勾股定理得2221212MF MF F F +=,即()2229324n n a c +-=①,连接1NF ,则122NF NF a -=,故12NF a n =+,由勾股定理得22211MF MN NF +=,即()()2224322n n a a n +-=+②,由②得43n a =,代入①得22204a c =,故ca=故选:C二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.下列求导运算正确的是()A.若()cos(23)f x x =+,则()2sin(23)f x x '=+B.若21()e x f x -+=,则21()e x f x -+'=C.若()e xx f x =,则()1e x xf x ='-D.若()ln f x x x =,则()ln 1f x x '=+【答案】CD 【解析】【分析】利用导数公式及运算法则,求解即可.【详解】对于选项A:()cos(23)f x x =+ ,()sin(23)(23)2sin(23)f x x x x ''∴=-+⋅+=-+,故选项A 错误;对于选项B:21()e x f x -+= ,()2121()e 212e x x f x x '-+-+∴=⋅-+=-',故选项B 错误;对于选项C:()ex xf x = ,()()2e e 1e e x xx xx xf x --∴==',故选项C 正确;对于选项D:()ln f x x x = ,1()1ln ln 1f x x x x x'∴=⨯+⋅=+,故选项D 正确;故选:CD.10.某次辩论赛有7位评委进行评分,首先7位评委各给出某选手一个原始分数,评定该选手成绩时从7个原始分数中去掉一个最高分、去掉一个最低分,得到5个有效评分.则这5个有效评分与7个原始评分相比,数字特征可能不同的是()A.极差B.中位数C.平均数D.方差【答案】ACD 【解析】【分析】利用平均数、中位数、平均数、方差的定义进行判断.【详解】因为5个有效评分是7个原始评分中去掉一个最高分、去掉一个最低分,所以中位数不变,平均数、方差、极差可能发生变化.故B 错误.故选:ACD.11.在直三棱柱111ABC A B C -中,90BAC ∠= ,12AB AC AA ===,,E F 分别是11,BC A C 的中点,D 在线段11B C 上,则下面说法中正确的有()A.//EF 平面11AA B BB.若D 是11B C 上的中点,则BD EF ⊥C.直线EF 与平面ABC所成角的正弦值为5D.存在点D 使直线BD 与直线EF 平行【答案】AC 【解析】【分析】以点A 为坐标原点,AB 、AC 、1AA 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法判断各选项的正误.【详解】以点A 为坐标原点,AB 、AC 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,0,0A 、()2,0,0B 、()0,2,0C 、()10,0,2A 、()12,0,2B 、()10,2,2C 、()1,1,0E 、()0,1,2F .对于A 选项,()1,0,2EF =- ,易知平面11AA B B 的一个法向量为()0,1,0m =,0EF m ⋅= ,则EF m ⊥,又因为EF ⊄平面11AA B B ,所以,//EF 平面11AA B B ,故A 正确;对于B 选项,当D 是线段11B C 的中点时,()1,1,2D ,()1,1,2BD =-,则50BD EF ⋅=≠,故B 错误;对于C 选项,由A 知()1,0,2EF =- ,易知平面ABC 的一个法向量为()0,0,1u =,则·sin ,cos ,5EF uEF u EF u EF u===,故C 正确;对于D 选项,设()()1112,2,02,2,0B D B C λλλλ==-=-,其中01λ≤≤,()112,2,2BD BB B D λλ=+=-,假设存在点D 使直线BD 与直线EF 平行,则存在0μ≠使EF BD μ=,即2·20·21·2μμλμλ=⎧⎪=⎨⎪-=-⎩,无解,所以假设不成立,故D 错误.故选:AC.12.在平面直角坐标系xOy 中,已知12(2,0),(2,0),(1,1)F F A --,若动点P 满足126,PF PF +=则()A.存在点P ,使得21PF =B.12PF F 面积的最大值为C.对任意的点P ,都有292PA PF +>D.椭圆上存在2个点P ,使得1PAF 的面积为32【答案】ACD 【解析】【分析】根据题意求得P 的轨迹是椭圆22195x y +=,从而判断椭圆上是否存在点P ,使得21PF =,即可判断A ;当点P 为椭圆上、下顶点时,12PF F 面积的取最大值,即可判断B ;由椭圆定义知,21122PA PF PA a PF a AF +=+-≥-即可判断C ;求得使得1PAF V 的面积为32的P 点坐标满足的关系,与椭圆联立,根据判别式判断交点个数,即可判断D.【详解】由题知,点P 的轨迹是3a =,2c =,焦点在x 轴上的椭圆,则b =22195x y +=,A :当点P 为椭圆右顶点时,2321PF a c =-=-=,故A 正确;B :当点P 为椭圆上、下顶点时,12PF F △面积的取最大值,且最大值为1212F F b =B 错误;C :2112266PA PF PA a PF a AF +=+-≥-==,因为96 4.59 4.52≈>=,故C 正确;D :设使得1PAF V 的面积为32的P 点坐标为()00,P x y ,由A ,1F 坐标知,1AF =,直线1AF 的方程为20x y -+=,则1322=,解得0010x y --=或0050x y -+=,联立00220010195x y x y --=⎧⎪⎨+=⎪⎩,化简得20075200y y +-=,则2528200∆=+⨯>,因此存在两个交点;同理可得直线与椭圆联立00220050195x y x y -+=⎧⎪⎨+=⎪⎩,化简得200725400y y -+=,则22528404950∆=-⨯=-<,所以不存在交点;综上,有且仅有2个点P ,使得1PAF V 的面积为32,故D 正确;故选:ACD.【点睛】方法点睛:①椭圆上任意一点的焦半径范围为a c PF a c -≤≤+;②椭圆中当点P 位于椭圆上下顶点时焦三角形()12PF F 的面积有最大值bc ;③求直线与椭圆交点个数时,将直线与椭圆方程进行联立,利用判别式判断交点个数.三、填空题:(本题共4小题,每小题5分,共20分)13.在等差数列{}n a 中,12565,7a a a a +=+=,则910a a +=________.【答案】9【解析】【分析】根据等差数列的性质可得910a a +的值.【详解】因为()9101256214a a a a a a +++=+=,125a a +=,所以9109a a +=.故答案为:914.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是_____.【答案】710.【解析】【分析】先求事件的总数,再求选出的2名同学中至少有1名女同学的事件数,最后根据古典概型的概率计算公式得出答案.【详解】从3名男同学和2名女同学中任选2名同学参加志愿服务,共有2510C =种情况.若选出的2名学生恰有1名女生,有11326C C =种情况,若选出的2名学生都是女生,有221C =种情况,所以所求的概率为6171010+=.【点睛】计数原理是高考考查的重点内容,考查的形式有两种,一是独立考查,二是与古典概型结合考查,由于古典概型概率的计算比较明确,所以,计算正确基本事件总数是解题的重要一环.在处理问题的过程中,应注意审清题意,明确“分类”“分步”,根据顺序有无,明确“排列”“组合”.15.若函数()21ln f x x x a x =-++在()0,∞+上单调递增,则实数a 的取值范围是________.【答案】18a ≥【解析】【分析】依题意可得()210af x x x'=-+≥在()0,x ∈+∞上恒成立,参变分离得到22a x x ≥-在()0,x ∈+∞上恒成立,令()22g x x x =-,求出()g x 的最大值即可求出参数的取值范围;【详解】解:因为()21ln f x x x a x =-++的定义域为()0,x ∈+∞,且函数()21ln f x x x a x =-++在()0,∞+上单调递增,()210af x x x'∴=-+≥在()0,x ∈+∞上恒成立,即22a x x ≥-在()0,x ∈+∞上恒成立,令()22112248g x x x x ⎛⎫=-=--+ ⎪⎝⎭当14x =时()max 18g x =所以18a ≥即1,8a ⎡⎫∈+∞⎪⎢⎣⎭故答案为:1,8⎡⎫+∞⎪⎢⎣⎭【点睛】本题考查利用导数研究函数的单调性,不等式恒成立问题,属于中档题.16.高斯函数[]y x =是以德国数学家卡尔-高斯命名的初等函数,其中R,[]x x ∈表示不超过x 的最大整数,如[π]3,[3.5]4=-=-.已知{}n a 满足()*111,21n n a a a n +==+∈N ,设1n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n S ,[]{}n S 的前n 项和为n T .则(1)3T =_____;(2)满足2024n T ≥的最小正整数n 为____.【答案】①.1②.91【解析】【分析】利用构造法可得数列{}n a 的通项公式为21nn a =-,则由题意可得,111112221n n n a a ++=-⋅-,231111122212121n n n S +⎛⎫=-⋅+++ ⎪---⎝⎭ ,利用放缩法可得所以122n n n S -<<,所以[]1,2121,22n n n k S nn k -⎧=+⎪⎪=⎨⎪-=⎪⎩,可解问题.【详解】由题可知:()*111,21n n a a a n +==+∈N ,则()()*1121n n a a n ++=+∈N,且112a +=,即{}1n a +为首项为2,公比为2的等比数列,所以12nn a +=,则21nn a =-,所以11121111222121n n n n n a a +++-==-⋅--.所以231111122212121n n n S +⎛⎫=-⋅+++ ⎪---⎝⎭.设231111212121n n R ++++--=- ,则231211111101221212122n n nR +<+++<+++<---= .所以231111112222121212n n n n nS +-⎛⎫<=-⋅+++< ⎪---⎝⎭ .所以[]1,2121,22n n n k S n n k -⎧=-⎪⎪=⎨⎪-=⎪⎩且k 为正整数,所以30011T =++=.所以222001122k T k k k k +=++++++++=+ ,221001122k T k k +=+++++++= .所以9190202520241980T T =>>=,所以满足2024n T ≥的最小正整数n 为91.故答案为:1;91.【点睛】思路点睛:利用放缩法求出122n n n S -<<,从而由题意得[]1,2121,22n n n k S n n k -⎧=+⎪⎪=⎨⎪-=⎪⎩,即可解决问题.四、解答题(本题共6小题,共70分,其中第17题10分,其它每题12分,解答应写出文字说明、证明过程或演算步骤.)17.ABC 的内角,,A B C 的对边分别为,,a b c ,已知2cos (cos cos ).C a B +b A c =(1)求C ;(2)若5c =,ABC的面积为ABC 的周长.【答案】(1)π3C =(2)12【解析】【分析】(1)利用正弦定理将边化角,结合三角恒等变换公式化简计算即可;(2)表示出面积,结合余弦定理计算即可.【小问1详解】由已知及正弦定理得:()2cos sin cos sin cos sin C A B B A C ⋅+⋅=,即()2cos sin sin C A B C ⋅+=,故2cos sin sin C C C ⋅=,由()sin sin 0A B C +=>,可得1cos 2C =,因为()0,πC ∈,π3C ∴=.【小问2详解】由已知得,1sin 2ABC S ab C =⋅= 又π3C =,所以8ab =,由余弦定理得:222cos 25a b ab C +-⋅=,所以2233a b +=,从而()249a b +=,即7a b +=,∴ABC 周长为12a b c ++=.18.如图,在平行四边形ABCD 中,1,2,60AB BC ABC ∠=== ,四边形ACEF 为正方形,且平面ABCD ⊥平面ACEF .(1)证明:AB CF ⊥;(2)求平面BEF 与平面ADF 夹角的余弦值.【答案】(1)证明见解析(2)34.【解析】【分析】(1)由余弦定理和勾股定理逆定理得到AB AC ⊥,由面面垂直得到线面垂直,线线垂直;(2)建立空间直角坐标系,求出平面的法向量,从而得到面面角的余弦值.【小问1详解】因为1AB =,2BC =,60ABC ∠=︒,在ABC 中,由余弦定理可得2222cos603AC AB BC AB BC =+-⋅⋅︒=,于是222AC AB BC +=,所以AB AC ⊥.又平面ABCD ⊥平面ACEF ,平面ABCD ⋂平面ACEF AC =,AB ⊂平面ABCD ,所以AB ⊥平面ACEF ,又CF ⊂平面ACEF ,所以AB CF ⊥【小问2详解】因为四边形ACEF 为正方形,所以AF AC ⊥.又平面ABCD ⊥平面ACEF ,平面ABCD ⋂平面ACEF AC =,AF ⊂平面ACEF ,所以AF ⊥平面ABCD .以A 为原点,AB ,AC ,AF所在直线分别为x 轴,y 轴,z 轴,建立如图所示空间直角坐标系.()0,0,0A,()1,0,0B,()C,(F,(E,()D-,(BE=-,()0,EF=,()AD=-,(AF=.设平面BEF的一个法向量为(),,m x y z=,所以m BE xm EF⎧⋅=-++=⎪⎨⋅==⎪⎩,解得0y=,令1z=,则x=)m= ,设平面ADF的一个法向量为()111,,n x y z= ,所以111n AD xn AF⎧⋅=-+=⎪⎨⋅==⎪⎩,解得10z=,令11y=,则1x=)n= ,所以33cos,224m nm nm n⋅⋅〈〉===⋅⨯,记平面BEF与平面ADF的夹角为θ,则3cos cos,4m nθ=〈〉=,即平面BEF与平面ADF夹角的余弦值为34.19.已知函数32()2f x x ax=-.(1)讨论()f x的单调性;(2)已知1a=时,直线:l y kx=为曲线32()2f x x ax=-的切线,求实数k的值.【答案】(1)答案见解析(2)0k=或18k=-【解析】【分析】(1)求导后因式分解,再讨论当0a>,0a=,0a<时导函数的正负,即可判断原函数的单调性.(2)求导后根据导数的几何意义设切点00(,)P x y,求得切线方程,根据切线过原点计算即可求得结果.【小问1详解】()()26223f x x ax x x a -='=-.令()=0f x ',得0x =或3a x =.若0a >,则当(),0,3a x ∞∞⎛⎫∈-⋃+⎪⎝⎭时,()>0f x ';当0,3a x ⎛⎫∈ ⎪⎝⎭时,()<0f x '.故()f x 在(),0,,3a ∞∞⎛⎫-+⎪⎝⎭上单调递增,在(0,)3a 上单调递减;若0a =时,3()2f x x =,()f x 在(,)-∞+∞上单调递增;若0a <,则当(),0,3a x ∞∞⎛⎫∈-⋃+ ⎪⎝⎭时,()>0f x ';当,03a x ⎛⎫∈ ⎪⎝⎭时,()<0f x '.故()f x 在(),,0,3a ∞∞⎛⎫-+ ⎪⎝⎭上单调递增,在,03a ⎛⎫ ⎪⎝⎭上单调递减.综上所述:当0a >时,()f x 在(),0,,3a ∞∞⎛⎫-+⎪⎝⎭上单调递增,在(0,)3a 上单调递减;当0a =时,()f x 在(,)-∞+∞上单调递增;a<0时,()f x 在(),,0,3a ∞∞⎛⎫-+ ⎪⎝⎭单调递增,在,03a ⎛⎫ ⎪⎝⎭单调递减.【小问2详解】当1a =时,()()3222,62f x x x f x x x'=-=-设切点00(,)P x y ,则切线方程为()()()322000000262y y y x x x x x x -=--=--因为切线过原点,故32320000262x x x x -+=-+,即32004x x =,解得00x =或014x =所以0k =或18k =-.20.已知正项数列{}n a 的前n 项和为n S ,且满足2844n n n S a a =++.(1)求数列{}n a 的通项公式;(2)若11212n n n n b a n --⎧⎪=⎨⎪⎩为奇数为偶数,{}n b 的前n 项和为n T ,求2n T .【答案】(1)42n a n =-(2)224123n n T n n-=+-【解析】【分析】(1)根据n a 与n S 的关系化简求解即可;(2)采用分组求和的方式计算即可.【小问1详解】2844n n n S a a =++ ①2111844n n n S a a ---∴=++②①-②整理得11()(4)0,2n n n n a a a a n --+--=≥ 数列{}n a 是正项数列,14,2n n a a n -∴-=≥当1n =时,21111844, 2.S a a a =++=由可得∴数列{}n a 是以2为首项,4为公差的等差数列,42n a n ∴=-;【小问2详解】由题意知,1223n n n b n n -⎧=⎨-⎩为奇数为偶数,故()()24222122215943n n T n -=+++++++++- ()()114143142nn n ⨯-+-=+-24123n n n -=+-.21.已知抛物线2:4C y x =的焦点为F ,点()11,A x y 是曲线C 上一点.(1)若154AF y =,求点A 的坐标;(2)若直线:l y x m =+与抛物线C 交于,A B 两点,且以AB 为直径的圆过点(4,0)P ,求||AB .【答案】(1)1,14⎛⎫⎪⎝⎭或()4,4(2)或【解析】【分析】(1)利用点()11,A x y 是曲线C 上一点,结合抛物线的定义整理计算即可;(2)结合题意转化为0PA PB ⋅=,借助韦达定理得0m =或12=-m ,再借助弦长公式计算即可.【小问1详解】由抛物线2:4C y x =,可得焦点为()1,0F ,由抛物线的定义可得11AF x =+,而2114y x =,所以2115144y y +=,解得11y =或14y =.当11y =时,114x =;当14y =时,14x =.所以点A 的坐标为114⎛⎫⎪⎝⎭,或()4,4.【小问2详解】设()22,B x y ,联立方程24y x my x=+⎧⎨=⎩,得2440y y m -+=,所以16160m ∆=->,即1m <,且121244y y y y m+=⎧⎨=⎩,由题知,12121212(4)(4)(4)(4)0PA PB x x y y y m y m y y ⋅=--+=----+=,整理得()()()212122440y y m y y m -++++=,即()()284440m m m -+++=,解得0m =或12=-m ,当0m =时,12AB y=-===;当12=-m 时,12AB y y =-===.综上所述:弦长AB 的值为或.22.已知双曲线2222:1(0,0)y x C a b a b-=>>的渐近线方程为3y x =,焦点到渐近线的距离为1,过点(0,4)M 作直线AB (不与y 轴重合)与双曲线C 相交于,A B 两点,过点A 作直线:l y t =的垂线,AE E 为垂足.(1)求双曲线C 的标准方程;(2)是否存在实数t ,使得直线EB 过定点P ,若存在,求t 的值及定点P 的坐标;若不存在,说明理由.【答案】(1)2213y x -=(2)存在实数3t 4=,使得直线EB 过定点190,8P ⎛⎫⎪⎝⎭【解析】【分析】(1)焦点到渐近线的距离为b ,在根据渐近线方程求出a ;(2)计算出EB 的直线方程,再令0x =即可求出定点坐标.【小问1详解】焦点到渐近线的距离不妨求()0,c 直线ay x b=的距离221bc d b a b===+,渐近线方程3ay x b=±=,得3a =所以双曲线方程为2213y x -=;【小问2详解】假设存在实数t ,使得直线EB 过定点P ,设直线()()1122:4,,,,AB y kx A x y B x y =+,则()1,E x t .联立22413y kx y x =+⎧⎪⎨-=⎪⎩,消y 得()2238130k x kx -++=则1212228,3313x k x x k x k +=-=--.直线2121:()y tEB y t x x x x --=--,令0x =得:()211211121121212144p kx x tx y x tx kx x x tx y t t tx x x x x x -++-+--+=+=+=+---又()121212121313,88x x kx x x x x x k =--=++ 2121131988p x t x y t x x ⎛⎫+-+ ⎪⎝⎭∴=+-当1319088t ⎛⎫+-+= ⎪⎝⎭即3t 4=时,p y 为定值198所以存在实数3t 4=,使得直线EB 过定点190,8P ⎛⎫ ⎪⎝⎭.。

浙江省杭州市数学高二上学期理数期末考试试卷

浙江省杭州市数学高二上学期理数期末考试试卷

浙江省杭州市数学高二上学期理数期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2017·渝中模拟) 已知集合A={x|1<x2<4},B={x|x≥1},则A∩B=()A . {x|1<x<2}B . {x|1≤x<2}C . {x|﹣1<x<2}D . {x|﹣1≤x<2}2. (2分) (2019高二上·龙潭期中) 若 ,则“ ”是“ ”的()A . 充分而不必要条件B . 必要而不充分条件C . 充要条件D . 既不充分又不必要条件3. (2分) (2017高二下·长春期末) 下列四个推理中,属于类比推理的是()A . 因为铜、铁、铝、金、银等金属能导电,所以一切金属都能导电B . 一切奇数都不能被2整除,是奇数,所以不能被2 整除C . 在数列中,,可以计算出,所以推出D . 若双曲线的焦距是实轴长的2倍,则此双曲线的离心率为2,类似的,若椭圆的焦距是长轴长的一半,则此椭圆的离心率为4. (2分)设等差数列的前n项和为,若,则()A . 54B . 45C . 36D . 275. (2分)要得到函数的图象,只需将函数的图象沿x轴()A . 向左平移个长度单位B . 向左平移个长度单位C . 向右平移个长度单位D . 向右平移个长度单位6. (2分)一个棱锥的三视图如图(尺寸的长度单位为cm),则该棱锥的体积是()A .B . 8C . 4D .7. (2分) (2019高二上·唐山月考) 设直线l与抛物线相交于A,B两点,与圆相切于点M,且M为线段AB的中点.若这样的直线l恰有4条,则r的取值范围是()A .B .C .D .8. (2分)等边中,向量的夹角为()A .B .C .D .9. (2分)已知(x+1)12=a1+a2x+a3x2+…+a13x13 .若数列a1 , a2 , a3 ,…,ak(1≤k≤13,k∈Z)是一个单调递增数列,则k的最大值是()A . 6B . 7C . 8D . 510. (2分) (2017高一下·保定期末) 设三棱柱的侧棱垂直于底面,所有棱的长都为3,顶点都在同一个球面上,则该球的表面积为()A . 2πB . πC . 21πD . 23π11. (2分) (2016高二上·南昌期中) 已知双曲线 =1的右焦点为(3,0),则该双曲线的离心率等于()A .B .C .D .12. (2分)(2019高二下·凤城月考) 已知函数,若关于的方程有5个不同的实数解,则实数的取值范围是()A .B .C .D .二、非选择题 (共4题;共4分)13. (1分) (2019高二上·兴庆期中) 某中学采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号.已知从33~48这16个数中取的数是39,则在第1小组1~16中随机抽到的数是________.14. (1分)设a,b∈R,a2+2b2=6,则a+b的最小值是________.15. (1分)(2017·南通模拟) 根据如图所示的伪代码,可知输出的结果是________.16. (1分)(2017·昆明模拟) 函数f(x)=xlnx+a在点(1,f(1))处的切线方程为y=kx+b,则a﹣b=________.三、解答题 (共6题;共40分)17. (5分)在△A BC中,角 A.B.C所对的边分别为a.b.c,已知sin2 B+sin2C=sin2 A+sin BsinC.(1)求角 A的大小;(2)若cosB=, a=3,求c值.18. (10分)已知数列{an}满足a1=4,an+1=an+P•3n+1(n∈N* , P为常数),a1 , a2+6,a3成等差数列.(1)求P的值及数列{an}的通项an;(2)设数列{bn}满足bn= ,试证明:bn≤ .19. (5分)(2017·朝阳模拟) 从某市的中学生中随机调查了部分男生,获得了他们的身高数据,整理得到如下频率分布直方图.(Ⅰ)求a的值;(Ⅱ)假设同组中的每个数据用该组区间的中点值代替,估计该市中学生中的全体男生的平均身高;(Ⅲ)从该市的中学生中随机抽取一名男生,根据直方图中的信息,估计其身高在180cm 以上的概率.若从全市中学的男生(人数众多)中随机抽取3人,用X表示身高在180cm以上的男生人数,求随机变量X的分布列和数学期望EX.20. (5分) (2017高二上·衡阳期末) 如图,四棱锥P﹣ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB 和△PAD是两个边长为2的正三角形,DC=4,O为BD的中点,E为PA的中点.(Ⅰ)求证:PO⊥平面ABCD;(Ⅱ)求证:OE∥平面PDC;(Ⅲ)求面PAD与面PBC所成角的大小.21. (5分)(2017·顺义模拟) 已知椭圆E: + =1(a>b>0)经过点(﹣1,),其离心率e= .(Ⅰ)求椭圆E的方程;(Ⅱ)设动直线l:y=kx+m与椭圆C相切,切点为T,且l与直线x=﹣4相交于点S.试问:在x轴上是否存在一定点,使得以ST为直径的圆恒过该定点?若存在,求出该点的坐标;若不存在,请说明理由.22. (10分)(2020·洛阳模拟) 设函数 .(1)若,求的单调区间;(2)若存在三个极值点,且,求的取值范围,并证明: .参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、非选择题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共40分) 17-1、18-1、18-2、19-1、20-1、21-1、22-1、22-2、。

浙江省杭州市数学高二上学期理数期末考试试卷

浙江省杭州市数学高二上学期理数期末考试试卷

浙江省杭州市数学高二上学期理数期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)“<1”是“x>1”的()A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件2. (2分)设,,为单位向量,且,,则(-)(-)的最小值是()A . -2B . 1-C . -2D . -13. (2分) (2019高二上·龙江月考) 已知椭圆上的点到椭圆一个焦点的距离为7,则到另一焦点的距离为()A . 2B . 3C . 5D . 74. (2分)已知命题P:,那么命题为()A . ,B . ,C . ,D . ,5. (2分) (2015高二上·朝阳期末) 抛物线y2=2x上与其焦点距离等于3的点的横坐标是()A . 1B . 2C .D .6. (2分)(2018·延边模拟) 设直线过双曲线的一个焦点,且与的一条对称轴垂直,与交于两点,为的实轴长的2倍,则的离心率为()A .B .C .D .7. (2分) (2018高一下·扶余期末) 已知向量,且,则的值是()A . -6B . 6C . 9D . 128. (2分)在平行四边形中,为一条对角线,,则()A .B .C .D .9. (2分)(2019·浙江) 已知空间向量a=(-1,1,3),b=(2,-2,x),若a∥b,则实数x的值是()A .B .C . -6D . 610. (2分) (2018高三上·定州期末) 已知椭圆的左顶点和上顶点分别为,左、右焦点分别是,在线段上有且只有一个点满足,则椭圆的离心率的平方为()A .B .C .D .11. (2分) (2020高二下·鹤壁月考) 设,是椭圆的两个焦点,是椭圆上的点,且,则的面积等于()A . 5B . 4C . 3D . 112. (2分) (2019高三上·双鸭山月考) 已知点是抛物线的对称轴与准线的交点,点为抛物线的焦点,点在抛物线上且满足,若取得最大值时,点恰好在以为焦点的椭圆上,则椭圆的离心率为()A .B .C .D .二、填空题 (共6题;共6分)13. (1分)命题:“若A∪B=A ,则A∩B=B”的否命题是________.14. (1分) (2020高二上·那曲期末) 在平面直角坐标系中,若双曲线的离心率为,则的值为________.15. (1分)已知A(﹣1,0),B(1,0),点C、点D满足||=4,=(+),则点C的轨迹方程是1;点D的轨迹方程是216. (1分) (2019高二下·雅安月考) 有公共焦点F1 , F2的椭圆和双曲线的离心率分别为,,点A为两曲线的一个公共点,且满足∠F1AF2=90°,则的值为________.17. (1分)若命题“∃x0∈R,x02+(a﹣1)x0+1<0”是假命题,则实数a的取值范围为________18. (1分) (2019高二上·长治月考) 椭圆的焦点坐标为________.三、解答题 (共5题;共40分)19. (10分) (2017高三上·嘉兴期末) 已知椭圆的左、右焦点分别为,离心率为,经过点且倾斜角为的直线交椭圆于两点.(1)若的周长为16,求直线的方程;(2)若,求椭圆的方程.20. (5分)已知命题p:∃x0∈[1,3],x0﹣lnx0<m;命题q:∀x∈R,x2+2>m2(1)若(¬p)∧q为真命题,求实数m的取值范围;(2)若p∨q为真命题,p∧q为假命题,求实数m的取值范围.21. (10分)如图,三棱柱ABC﹣A1B1C1中,BC⊥平面AA1C1C,BC=CA=AA1=2,∠CAA1=60°.(1)求证:AC1⊥A1B;(2)求直线A1B与平面BAC1所成角的正弦值.22. (10分)(2020·甘肃模拟) 设椭圆的右焦点为,离心率为,过点且与轴垂直的直线被椭圆截得的线段长为 .(1)求椭圆的方程;(2)若上存在两点,椭圆上存在两个点满足:三点共线,三点共线,且,求四边形的面积的最小值.23. (5分) (2019高二上·揭阳月考) 设为等差数列,是等差数列的前项和,已知,.(1)求数列的通项公式;(2)为数列的前项和,求 .参考答案一、单选题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共6题;共6分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共5题;共40分)答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:。

浙江省杭州学校2023-2024学年高二上学期期末数学试题含答案

浙江省杭州学校2023-2024学年高二上学期期末数学试题含答案

2023-2024学年浙江省杭州高二(上)期末数学试卷(答案在最后)一、单项选择题(本大题共8小题,每小题5分,共40分)1.在等比数列{}n a 中,24a =,32a =,则5a 的值为()A.2-B.0C.12D.1【答案】C 【解析】【分析】利用等比数列的通项公式求解.【详解】∵{}n a 为等比数列,∴公比3212a q a ==,∴218a a q==,∴445111822a a q ⎛⎫==⨯= ⎪⎝⎭,故选:C .2.过点(2,-3)、斜率为12-的直线在y 轴上的截距为()A.2B.-2C.4D.-4【答案】B 【解析】【分析】根据点斜式公式,整理直线方程,令0x =,可得答案.【详解】由题意得直线方程为()1322y x +=--,令x =0,解得y =-2.故选:B .3.某班有8名优秀学生,其中男生有5人,女生有3人.现从中选3人参加一次答辩比赛,要求选出的3人中,既有男生又有女生,则不同的选法共有()A.45种 B.56种C.90种D.120种【答案】A 【解析】【分析】利用间接的方法,先求出8人中选3人总共有多少种,再分别求出都是女生和都是男生的有多少种,即可求解.【详解】解:8人中选3人共有:3887656321C ⨯⨯==⨯⨯种,其中都是男生的有:3554310321C ⨯⨯==⨯⨯种,都是女生的有:333211321C ⨯⨯==⨯⨯,故既有男生又有女生,则不同的选法共有:5610145--=.故选:A .4.设函数()f x 的导函数为()f x ',且()()21ln =+'f x f x x ,则()2f '=()A.0 B.1- C.e- D.e【答案】A 【解析】【分析】对()f x 求导后,将1x =代入先求出()1f ',然后求出()2f '即可.【详解】由()()21ln =+'f x f x x ,求导可得,()()1211f x f x'=⋅+',取1x =得到()12(1)1f f ''=+,解得()11f '=-,此时()21f x x=-+',则()20f '=.故选:A5.如图,将边长为1的正方形ABCD 沿对角线BD 折成直二面角,若点P 满足1122BP BA BC BD =-+,则||BP的值为()A.32B.2C.1024D.94【答案】A 【解析】【分析】根据题意建立合适空间直角坐标系,根据向量关系求解出BP的坐标,则||BP 可求.【详解】记正方形的对角线交于O 点,连接,AO CO ,所以AO BD ⊥,因为二面角为直二面角,且CO BD ⊥,平面CBD ⋂平面ABD BD =,所以CO ⊥平面ABD ,建立空间直角坐标系如下图所示:所以,0,0,0,,0,0,0,,0,,02222A B C D ⎛⎫⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以(),,0,0,,,0,2222BA BC BD ⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,因为1122BP BA BC BD =-+,所以22,44BP ⎛⎫=- ⎪ ⎪⎝⎭ ,所以32BP =,故选:A.6.已知等差数列{}n a 的前n 项和为n S ,5711125,26,n n na S a ab a +=-+==,则数列{}n b ()A.有最大项,无最小项B.有最小项,无最大项C.既无最大项,又无最小项D.既有最大项,又有最小项【答案】D 【解析】【分析】根据等差数列的首项1a ,公差d 列方程,可得1a 和d ,进而可得{}n a ,{}n b 通项,进而根据{}n b 的单调性,即可得最值.【详解】等差数列{}n a 的首项为1a ,公差为d ,由571125,26,S a a =-+=得1115102511216263a d a a d d +=-=-⎧⎧⇒⎨⎨+==⎩⎩,故()1131314n a n n =-+-=-11=13-14n n n a b a n +=+当5,n n N ≥∈时,{}n b 单调递减,故5671b b b >>>>L ,且52b =当15,n n N ≤<∈时,{}n b 单调递减,故12341b b b b >>>>,且14101112b b ==故{}n b 有最大值为2,最小值为12故选:D7.已知点(),a b 是圆2248160x y x y +---=上任意一点,0a ≠,则()A.b 的最大值是4B.b a的最小值是34C.22a b +的最小值是2-D.直线1y x =-与圆相交【答案】B 【解析】【分析】利用三角换元求最值,将圆心到直线的距离和圆的半径比较可得到直线和圆的位置关系.【详解】对于A ,圆的方程可化为()()22244x y -+-=,设22cos 42sin a b θθ=+⎧⎨=+⎩,02πθ≤<且πθ≠,当π2θ=时,sin 1θ=,b 的最大值是6,则A 错误;对于B ,2222s 42sin 2sin 22cos 1co in 2cos 2sin cos 22222cos 2s b a θθθθθθθθθ++=++=++=2tan tan 122θθ=++213tan 224θ⎛⎫=++ ⎪⎝⎭,当1tan22θ=-时,b a的最小值是34,则B 正确;对于C ,()()222222cos 42sin a b θθ+=+++()()82sin cos 2424θθθϕ=++=-+,其中cos ,sin ,55ϕϕ==当()cos 1θϕ-=-时,22a b +的最小值是24-,则C 错误;对于D ,圆心到直线1y x =-的距离为3222d r ==>=,所以直线和圆相离,则D 错误;故选:B.8.定义方程()()f x f x '=的实根0x 叫做函数()f x 的“新驻点”,若函数()21xg x xe =+,()ln 2h x x =+,()31x x ϕ=-的“新驻点”分别为a ,b ,c ,则a ,b ,c 的大小关系为()A.a b c >>B.c b a>> C.c a b>> D.b c a>>【答案】B 【解析】【分析】分别求出导函数,由导函数与原函数相等列出方程,直接解得1ln02a =<,再引入新函数,利用新函数的导数确定新函数的零点所在区间,得,bc 的范围,从而确定它们的大小.【详解】()2(1)x g x x e '=+,由()()g x g x '=得21x e =,1ln2x =,即1ln 02a =<,1()h x x '=,由()()h x h x '=得1ln 2x x =+,1ln 20x x-+=,令1()ln 2H x x x =-+,0x >,211()0H x x x '=+>恒成立,所以()H x 在(0,)+∞递增,又11(ln 022H =<,(1)10H =>,所以()H x 在1(,1)2上存在唯一零点,所以1(,1)2b ∈,2()3x x ϕ'=,则()()x x ϕϕ'=得2331x x =-,即32310x x --=,令32()31p x x x =--,2()363(2)p x x x x x '=-=-,0x <或2x >时,()0p x '>,02x <<时,()0p x '<,所以()p x 在(,0)-∞和(2,)+∞上是增函数,在(0,2)上是减函数,而(0)10p =-<,(2)50p =-<,(4)150p =>,所以()p x 在(2,)+∞上有唯一零点,所以2>c .综上a b c <<.故选:B .【点睛】本题考查导数新定义,用导数研究方程的根,解题关键是理解新定义,对方程根的研究,通过引入新函数,利用导数确定函数的单调性,结合零点存在定理得出根(零点)的范围,从而比较大小.二、多项选择题(本大题共4小题,每小题5分,共20分)9.已知椭圆C :2214x y +=的左、右焦点分别为F 1,F 2,点P 在椭圆C 上,则()A.椭圆C 的离心率为2B.椭圆C 的离心率为12C.12PF F 的周长为6 D.12F PF ∠可以是直角【答案】AD 【解析】【分析】求出离心率,判断AB ;利用椭圆定义求出周长判断C ;判断∠F 1PF 2是否可以是直角判断D.【详解】由椭圆C :2214x y +=得2,1,a b c ===,则椭圆C 的离心率为32c a =,A 正确,B 错误,12PF F 的周长为224a c +=+,C 错误;因为b c <,所以以12F F 为直径的圆与椭圆有交点,所以12F PF ∠可以是直角,D 正确.故选:AD .10.已知()ln xf x x=,下列说法正确的是()A.f x ()在1x =处的切线方程为22y x =-B.f x ()的单调递减区间为e +∞(,)C.f x ()的极大值为1eD.方程1f x ()=-有两个不同的解【答案】BC 【解析】【分析】根据导数的几何意义求解切线方程;根据导数求解函数的单调区间,从而求出极值;求出函数f x ()零点即可求出()f x 与1y =-交点的个数,从而判断出方程1f x ()=-的解.【详解】对于选项A ,()ln xf x x=的定义域为+∞(0,),()10f =,∵()21ln xf x x-'=,∴()11f '=,由导数的几何意义可知f x ()在1x =处的切线方程的斜率为1k =,∴f x ()在1x =处的切线方程为1y x =-,则A 错误;对于选项B ,令()0f x '<得e x <,∴f x ()的单调递减区间为e +∞(,),则B 正确;对于选项C ,令()0f x ¢>得0<e x <,∴f x ()的单调递增区间为e (0,),∵f x ()在e (0,)上单调递增,在e +∞(,)上单调递减,∴f x ()在e x =处取得极大值,()1e ef =,则C 正确;对于选项D ,∵()10f =,∴()f x 在()0,e 上存在一个零点,∵当e x >时,()0f x >,∴()f x 在()e,+∞上没有零点,∴()f x 与1y =-只有一个交点,∴方程1f x ()=-只有一个解,则D 错误;故选:BC .11.如图,在棱长为6的正方体1111ABCD A B C D -中,,,E F G 分别为1,,AB BC CC 的中点,点P 是正方形11DCC D 面内(包含边界)动点,则()A.1D C 与EF 所成角为30B.平面EFG 截正方体所得截面的面积为C.1//AD 平面EFGD.若APD FPC ∠∠=,则三棱锥P BCD -的体积最大值是【答案】BCD【解析】【分析】A 选项,如图建立以A 为原点的空间直角坐标系,利用空间向量可判断选项;做出截面求得截面面积可判断B ;利用线线平行可得线面平行判断C ,求得P 的轨迹方程可求得三棱锥P BCD -的体积最大值判断D.【详解】以A 为坐标原点,以1,,AB AD AA 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则(3,0,0)E ,(6,0,0)B ,(6,3,0)F ,(6,6,0)C ,1(0,6,6)D ,(6,6,3)G ,1(6,0,6)B ,∴1D C(6,0,6)=-,11B D (6,6,0)=-,(3,3,0),(3,6,3)EF EG == ,对A 选项,111cos ,||D C EF D C EF D C EF ⋅<>=⋅12==,则直线1D C 与EF 所成角为60 ,故A 错误;对B 选项,由平面在两平行平面上的交线互相平行,取11C D 的中点11,N A D 的中点H ,1AA 的中点K ,连接,,,GN NH HK KE ,延长EF NG ,一定与CD 交于一点M ,所以,,,E F G N 四点共面,同理可证,,,E F K H 四点共面,则过点,,E F G 作正方体的截面,截面为正六边形EFGNHK,边长为则正六边形EFGNHK的面积为16622EFG S =⨯⨯= ,故B 正确.由正方体1111ABCD A B C D -,可得1AD 1//BC ,∵,F G 分别为1,BC CC 的中点,∴//FG 1BC ,∴1//,FG AD FG ⊂ 平面1,EFG AD ⊂/平面EFG ,∴1//AD 平面EFG ,故C 正确;如图,AD ⊥面11CDD C ,又PD ⊂面11CDD C ,故AD DP ⊥,同理FC CP ⊥,63tan ,tan ,AD FC APD FPC DP DP CP CP∠==∠== 又63,,2DP APD FPC DP CP CP∠=∠∴==,根据题意可得(0,6,0),(6,6,0)D C ,设(,6,)P x z ,又222,4DP DP CP CP=∴=,∴22224(6)x z x z+=-+,整理得22(8)16x z -+=,∴在正方形11CDD C 面内(包括边界),P 是以(8,6,0)Q 为圆心,半径4r =的圆上的点,令6x =,可得||y =,∴当P 为圆Q 与线段1CC 的交点时,P 到底面ABCD 的距离最大,最大距离为,∴三棱锥P BCD -的体积最大值是11166332BCD S ⨯⨯=⨯⨯⨯⨯ ,故D 正确.故选:BCD.【点睛】关键点点睛:本题解题关键是建立空间直角坐标系,用向量的方法研究点线面的位置关系及数量计算.12.分形几何学是一门以不规则几何形态为研究对象的几何学,分形的外表结构极为复杂,但其内部却是有规律可寻的,一个数学意义上的分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统.下面我们用分形的方法得到一系列图形,如图1,在长度为1的线段AB 上取两个点C 、D ,使得14AC DB AB ==,以CD 为边在线段AB 的上方做一个正方形,然后擦掉CD ,就得到图形2;对图形2中的最上方的线段EF 作同样的操作,得到图形3;依次类推,我们就得到以下的一系列图形设图1,图2,图3,…,图n ,各图中的线段长度和为n a ,数列{}n a 的前n 项和为n S ,则()A.数列{}n a 是等比数列B.10767256a =C.3n a <恒成立D.存在正数m ,使得n S m <恒成立【答案】BC 【解析】【分析】由题意写出数列前三项,类比归纳出数列的递推公式,利用累加法可得通项公式,结合数列的相关概念,可得答案.【详解】由题意可知,121322111,2,222a a a a a ==+⨯=+⨯,以此类推可得,1122n n n a a +=+⨯,则122n n n a a +-=,所以当2n ≥时,()()()121321n n n a a a a a a a a -=+-+-++- (1)121211222121131222212n n n ---⎛⎫- ⎪⎝⎭=+++⋯+=+=--,经检验,当1n =时,1121312n a a -=-==,故2132n n a -=-,所以数列{}n a 不是等比数列,故A 错误;所以108176732256a =-=,故B 正确;因为21332n n a -=-<恒成立,故C 正确;因为122121123341212n n n n S a a a n n -⎛⎫- ⎪⎝⎭=+++=-=-+- ,根据一次函数与指数函数的单调性,所以数列{}n S 无最大值,因此不存在正数m ,使得n S m <,故D 错误.故选:BC.三、填空题(本大题共4小题,每小题5分,共20分)13.已知函数()cos e x f x x =-,则函数()f x 在点()()0,0f 处切线方程为_________.【答案】0x y +=【解析】【分析】求导,求出斜率,写出切线方程.【详解】由已知()sin e x f x x =-'-,则()01f '=-,又()00f =,所以切线方程为y x =-,即0x y +=.故答案为:0x y +=.14.已知抛物线()2:20C y px p =>的焦点为F ,过F 的直线l 交抛物线C 于AB 两点,且min 6AB =,则p 的值为______.【答案】3【解析】【分析】根据抛物线焦点弦性质求解,或联立l 与抛物线方程,表示出AB ,求其最值即可.【详解】已知,02P F ⎛⎫ ⎪⎝⎭,设2p x my =+,()11,A x y ,()22,B x y ,则2222022p x my y pmy p y px⎧=+⎪⇒--=⎨⎪=⎩,∵Δ0>,所以122y y pm +=,212y y p =-,∴()212212AB y y p m p =-==+ ,当且仅当m =0时,取“”=.263p p ∴=⇒=.故答案为:3.15.对于数列{}n a ,定义{}n a 的“优值”为11222n n n a a a H n-+++= .若{}n a 的“优值”2n n H =,则n a =________.【答案】1n +##1n+【解析】【分析】根据优值利用作差法可求{}n a 的通项.【详解】因为{}n a 的“优值”2nn H =,故112222n n n a a a n -+++= ,所以112222n n n a a a n -+++=⨯ ,故()211212212n n n a a a n ---+++=- ,故当2n ≥时,()()111221212n n n n n a n n n ---=⨯--=+,则1n a n =+,而121a =,故12a =,符合,故1n a n =+.故答案为:1n +.16.一个五位数abcde 满足a b <,b c d >>,d e <,且a d >,b e >(如37201、45412),则称这个五位数符合“正弦规律”,那么,共有______个五位数符合“正弦规律”.【答案】2892【解析】【分析】将情况分为五个数中没有数相同;五个数中有两个数相同;五个数中有三个数相同三种情况,分别计算得到答案.【详解】根据意义知,五位数中,b 最大,d 最小.当五个数中没有数相同时:选五个数,最大数赋值给b ,最小数赋值给d ,剩余三个全排列,共有531031512C A ⨯=个;当五个数中有两个数相同时:选四个数,最大数赋值给b ,最小数赋值给d ,剩余两个数赋值给ace ,共有42210321260C C A ⨯⨯=个;当五个数中有三个数相同时:选三个数,最大数赋值给b ,最小数赋值给d ,剩余的一个数赋值给ace ,共有310120C =个;故共有151212*********++=故答案为:2892【点睛】本题考查了排列组合的综合应用,分类讨论是解题的关键.四、解答题(本答题共6小题,满分70分)17.已知函数()2e a x f x x -=,0x >,0a >.(1)当1a =时,讨论函数()f x 在区间(]0,2上的单调性.(2)设()g a 是函数()f x 的最大值.求出()g a 的表达式并比较()1g 与()2g 的大小.【答案】17.在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,22⎛⎤ ⎥⎝⎦上单调递减18.()42e a a g a a -⎛⎫= ⎪⎝⎭,()()12g g <.【解析】【分析】(1)利用导数求解函数()f x 的单调区间;(2)利用导数求出函数()f x 的单调区间,得到()f x 的最大值()g a ,通过构造函数根据单调性比较()1g 与()2g 的大小.【小问1详解】当1a =时()2ex f x x -=,则()()2e 12x f x x -'=-,令()0f x '>得12x <,令()0f x '<得12x >,∴()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,22⎛⎤ ⎥⎝⎦上单调递减;【小问2详解】()()12e 2a x f x x a x --=-',令()0f x '>得2x a <,令()0f x '<得2x a >,∴()f x 在20,a ⎛⎫ ⎪⎝⎭上单调递增,在2,a ∞⎛⎫+ ⎪⎝⎭上单调递减,∴()f x 的最大值()422e a a g a f a a -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,∵()444421ln e 12e e 2e g -===⋅,()222211ln e 2e e 2e g -===⋅,构造函数()ln x h x x =,()1ln x h x x-'=,令()0h x '>得0e x <<,令()0h x '<得e x >,∴()h x 在()0,e 上单调递增,在()e,+∞上单调递减,∴()()24e e h h >,即2424ln e ln e e e>,∴24241ln e 1lne 2e 2e⋅>⋅,∴()()12g g <.18.动圆M 满足:①圆心的横坐标大于0;②与直线y x =-相切;③与直线y x =相交,且直线被圆截得的弦长为4.(1)求证:动圆圆心M 在曲线()2,0xy x =>上.(2)设A 是曲线2xy =上任一点,曲线在A 处的切线交x 轴于P ,交y 轴于Q .求证:PA AQ =.【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)由已知结合直线与圆相切的性质即可求解;(2)结合导数的几何意义求出切线的斜率,进而可求切线方程,然后结合两点间的距离公式即可求解.【小问1详解】设(),,0M x y x >,半径为r ,由题意可得r =,22||42x y r -=+,化简可得2xy =,即动圆圆心M 在曲线()2,0xy x =>上;【小问2详解】设(),A m n ,0m >,由题意得222,mn y x '==-,所以曲线在A 处的切线方程为()22y n x m m -=--,即222y x n m m =-++,令0x =得22y n n m =+=,即()0,2Q n ,令0y =得222m n x m m =+=,即()2,0P m ,所以||AP ==,||AQ ==,所以PA AQ =.19.如图,在梯形ABCD 中,AB CD ,1===AD DC CB ,60ABC ∠= ,四边形ACFE 为矩形,平面ACFE ⊥平面ABCD ,1CF =.(1)求证:BC ⊥平面ACFE .(2)点M 是线段EF 的中点,求平面MAB 与平面EAD 所成夹角的余弦值.【答案】(1)证明见解析(2)21919【解析】【分析】(1)先证明BC AC ⊥,再利用面面垂直的性质定理得结论;(2)利用,,CA CB CF 两两垂直建立空间直角坐标系,利用向量法求面面角.【小问1详解】因为在梯形ABCD 中,AB CD ,1===AD DC CB ,60ABC ∠= ,如图:过C 作CF AD ∥交AB 于G ,可得2AB =,则2222cos 603AC AB BC AB BC =+-⋅⋅=o ,所以222AB AC BC =+,得BC AC ⊥,又平面ACFE ⊥平面ABCD ,平面ACFE ⋂平面ABCD AC =,BC ⊂面ABCD ,所以BC ⊥平面ACFE ;【小问2详解】因为四边形ACFE 为矩形所以AC CF ⊥,又平面ACFE ⊥平面ABCD ,又平面ACFE ⋂平面ABCD AC =,CF ⊂平面ACFE ,所以CF ⊥平面ABCD ,则,,CA CB CF 两两垂直,如图建立空间直角坐标系,则)())1,0,1,0,,0,1,,,,0222A B M E D ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以()()1,0,1,,0,0,1,,,0222AM AB EA AD ⎛⎫⎛⎫=-==-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ,设平面MAB 的法向量为()111,,n x y z =,则1111020n AM x z n AB y ⎧⋅=-+=⎪⎨⎪⋅=+=⎩ ,取12x =可得(2,n = ,设平面EAD 的法向量为()222,,m x y z = ,则222031022m EA z m AD x y ⎧⋅=-=⎪⎨⋅=--=⎪⎩ ,取22x =可得()2,m =- ,所以,cos,19n mn mn m===-.所以平面MAB与平面EAD所成夹角的余弦值为19.20.已知数列{}n a满足12a=,()111nnn aan+++=.(1)证明:211n n n na a a a+++-=-对任意的Nn*∈成立.(2)记2n anb=,求数列{}n b的前n项和n T.(3)证明:1223111116n na a a a a a-+++<.【答案】(1)证明见解析(2)()4817n-(3)证明见解析【解析】【分析】(1)将条件变形,可得构造数列1nan n⎧⎫+⎨⎬⎩⎭为常数数列,据此可求出数列{}n a的通项公式,根据其为等差数列可得结论;(2)利用等比数列求和公式计算即可;(3)利用裂项相消法可求和并证明不等式.【小问1详解】由()111nnn aan+++=得()111n nna n a+=++,即()1111111n n na a an n n n n n n+=+=+-+++,即11111n n a a n n n n++=+++,故数列1n a n n ⎧⎫+⎨⎬⎩⎭为常数数列,所以1113n a na n +=+=,整理得31n a n =-,即数列{}n a 为等差数列,所以211n n n n a a a a +++-=-;【小问2详解】由(1)得318221n n n b -==⨯,故数列{}n b 是以4为首项,8为公比的等比数列,所以()()418481187n n n T -==--;【小问3详解】由(1)()()111111,2343133431n n n a a n n n n -⎛⎫==-≥ ⎪----⎝⎭,所以1223111111111111113255834313231n n a a a a a a n n n -⎛⎫⎛⎫+++=-+-++=- ⎪ ⎪---⎝⎭⎝⎭因为1031n >-,所以1223111116n n a a a a a a -+++< .21.已知椭圆()2222:10x y C a b a b+=>>的焦距为2,且过点31,2⎛⎫- ⎪⎝⎭.(1)求C 的方程.(2)记1F 和2F 分别是椭圆C 的左、右焦点.设D 是椭圆C 上一个动点且纵坐标不为0.直线1DF 交椭圆C 于点A (异于D ),直线2DF 交椭圆C 于点B (异于D ).若AB 的中点为M ,求三角形12F F M 面积的最大值.【答案】(1)22143x y +=(2)8【解析】【分析】(1)根据焦距和椭圆所过点可构造方程求得结果;(2)设直线1:1DF x ty =-,与椭圆方程联立可得韦达定理的结论,结合中点坐标公式可整理得到02015425M y y x =-,结合三角形面积公式和基本不等式可求得最值.【小问1详解】椭圆C 的焦距22c =,1c ∴=;椭圆C 过点31,2⎛⎫- ⎪⎝⎭,221914a b∴+=,又22221a b c b =+=+,234b ∴=-(舍)或23b =,24a ∴=,∴椭圆C 的方程为:22143x y +=.【小问2详解】由(1)知:()11,0F -,()21,0F ,设()()000,0D x y y ≠,()11,A x y ,()22,B x y ,由题意可设直线1:1DF x ty =-,其中001x t y +=,2200143x y +=,由221143x ty x y =-⎧⎪⎨+=⎪⎩得:()2243690t y ty +--=,()()22Δ4843148330t t =+-=+>,()()()()0000000122222200000066616164343112331143x y x y x y t y y t y x x x x y +++∴+====+++-++⎛⎫++⨯ ⎪⎝⎭()0002125y x x +=+;同理可得:()000202125y x y y x -+=-;()()()()()200000001020122000425212122525425y x y x y x y y y y y y y x x x -+-∴+++=++=+=+--,()20001202200225152425425M y x y y y y y x x -+∴==-=--,1200012222000001515451452716242516271693F F M M y y y S F F y y x y y y ∴=⋅====-++--8≤=(当且仅当002716y y =,即04y =±时取等号),12F F M ∴面积的最大值为8.【点睛】关键点点睛:本题考查直线与椭圆综合应用中的三角形面积最值的求解问题,解题关键是能够将三角形面积表示为关于某一变量的函数,从而利用函数最值的求法或基本不等式求得结果.22.已知函数()3,0f x x ax a =->.(1)当1a =时,求出函数在点()()1,1f 处的切线方程.(2)如图所示,函数()f x 图像上一点A 处的切线与函数图像交于点B ,过A 的切线AD (D 为切点)与B 处的切线交于点C .问:三角形ABC 是否可能是等边三角形?若是,求此时a 的值;若不是,说明理由.【答案】(1)220x y --=(2)能,15a =【解析】【分析】(1)求导,求出斜率,进而可得切线方程;(2)设点()3,A s s as -,求出过点A 的切线方程,与3y x ax =-联立求出点B 的坐标,进而可求出过点B 的切线方程,然后求出过点D 的切线方程,与过点B 的切线方程联立求出点C 坐标,进而可根据AB AC BC ==列方程求出a 的值.【小问1详解】当a =1时,()3f x x x =-,则()231f x x '=-,所以()12f '=,又()10f =,所以函数在点(1,f (1))处的切线方程为()21y x =-,即220x y --=;【小问2详解】设点()3,A s s as -,又()23f x x a '=-,所以()23f s s a '=-,过点A 的切线方程为()()()323y s as s ax s --=--,整理得()2332y s a x s =--,联立()23332y s a x s y x ax ⎧=--⎪⎨=-⎪⎩,消去y 得23332s x s x -=,变形得()()220x s x s -+=,()3,0f x x ax a =->所以点()32,82B s s as --+,又()2212f s s a '-=-,所以过点B 的切线方程为()()()3282122y s as s ax s --+=-+,整理得()231216y s a x s =-+,设点()3,D t t at -,又()23f t t a '=-,过点D 的切线方程为()()()323y t at t a x t --=--,整理得()2332y t a x t =--,将点()3,A s s as -代入得()32332s as t a s t -=--,整理得32332s t s t =-,变形得()()220s t s t -+=,得s t =或2s t=-所以点3,282s s as D ⎛⎫--+ ⎪⎝⎭,即过点D 的切线方程为23344s s y a x ⎛⎫=-+ ⎪⎝⎭,联立()23233441216s s y a x y s a x s ⎧⎛⎫=-+⎪ ⎪⎪⎝⎭⎨⎪=-+⎪⎩,解得3774,555x s y as s =-=-即点3774,555C s as s ⎛⎫-- ⎪⎝⎭,假设三角形ABC 是等边三角形,则AB AC BC ==,所以()()22322322223312912393555129123363555555s s s as s s s s as s as ⎧⎛⎫⎛⎫⎪+-=+- ⎪ ⎪⎝⎭⎪⎝⎭⎨⎛⎫⎛⎫⎪⎛⎫⎛⎫+-=+- ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎩①②,由②解得4291s a -=,代入①得15a =,所以当15a =时,三角形ABC 是等边三角形.【点睛】方法点睛:在知道切点的情况下,可直接求出切线方程,若不知道切点,可设出切点,然后列方程求解.。

杭州市高二上学期期末数学试卷(理科)(I)卷

杭州市高二上学期期末数学试卷(理科)(I)卷

杭州市高二上学期期末数学试卷(理科)(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)若,且,则下列不等式一定成立的是()A .B .C .D .2. (2分) (2017高二上·四川期中) 命题“ ,”的否定是()A . ,B . ,C . ,D . 不存在,3. (2分)已知数列满足,,则此数列的通项等于A .B .C .D .4. (2分) (2016高一下·赣州期中) 已知△ABC的内角A,B,C的对边分别是a,b,c,若cos C= ,b=atan C,则等于()A . 2B .C .D .5. (2分)设a∈R,函数f(x)=x3+ax2+(a-3)x的导函数是f′(x),若f′(x)是偶函数,则曲线y=f(x)在原点处的切线方程为()A . y=-3xB . y=-2xC . y=3xD . y=2x6. (2分)已知是实数,则““是“”的()A . 充分而不必要条件B . 必要而不充分条件C . 充要条件D . 既不充分也不必要条件7. (2分)已知在区间上是减函数,那么2b+c()A . 有最小值9B . 有最大值9C . 有最小值-9D . 有最大值-98. (2分)若a,b 是函数的两个不同的零点,且a,b,-2 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q 的值等于()A . 6B . 7C . 8D . 99. (2分)(2017·重庆模拟) 从双曲线﹣ =1(a>0,b>0)的左焦点F引圆x2+y2=a2的切线,切点为T,延长FT交双曲线右支于P点,若M为线段FP的中点,O为坐标原点,则|MO|﹣|MT|等于()A . c﹣aB . b﹣aC . a﹣bD . c﹣b10. (2分)已知命题p:函数有极值;命题q:函数且恒成立.若为真命题,为真命题,则的取值范围是()A .B .C .D .11. (2分) (2015高二上·天水期末) 如图,正方体ABCD﹣A′B′C′D′中,.设点F在线段CC'上,直线EF与平面A'BD所成的角为α,则sinα的取值范围是()A .B .C .D .12. (2分) (2015高二下·伊宁期中) 椭圆x2+4y2=1的离心率为()A .B .C .D .二、填空题 (共4题;共4分)13. (1分) (2017高二上·泉港期末) 若 =(2,3,m), =(2n,6,8)且,为共线向量,则m+n=________.14. (1分) (2016高二上·葫芦岛期中) 设实数x,y满足条件若目标函数z=ax+by(a>0,b>0)的最大值为12,则的最小值为________.15. (1分) (2015高二上·菏泽期末) 如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个测点C与D.测得∠BCD=15°,∠BDC=30°,CD=30米,并在点C测得塔顶A的仰角为60°,则塔高AB=________米.16. (1分)(2018·临川模拟) 已知,数列满足,则 ________.三、解答题 (共6题;共55分)17. (10分) (2016高一下·海南期中) 设Sn是公差不为0的等差数列{an}的前n项和,且S1 , S2 , S4成等比数列,a5=9.(1)求数列{an}的通项公式;(2)证明: + +…+ <(n∈N*).18. (10分) (2016高二上·南昌开学考) 在△ABC中,AC=6,cosB= ,C= .(1)求AB的长;(2)求cos(A﹣)的值.19. (15分) (2015高二上·黄石期末) 已知抛物线y2=4 x的交点为椭圆(a>b>0)的右焦点,且椭圆的长轴长为4,左右顶点分别为A,B,经过椭圆左焦点的直线l与椭圆交于C,D(异于A,B)两点.(1)求椭圆标准方程;(2)求四边形ADBC的面积的最大值;(3)若M(x1,y1)N(x2,y2)是椭圆上的两动点,且满x1x2+2y1y2=0,动点P满足(其中O为坐标原点),是否存在两定点F1,F2使得|PF1|+|PF2|为定值,若存在求出该定值,若不存在说明理由.20. (5分)如图,在四棱锥P﹣ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD= AD,E为棱AD的中点,异面直线PA与CD所成的角为90°.(Ⅰ)证明:CD⊥平面PAD;(Ⅱ)若二面角P﹣CD﹣A的大小为45°,求直线PA与平面PCE所成角的正弦值.21. (10分)已知函数的图象如图,直线在原点处与函数图象相切,且此切线与函数图象所围成的区域(阴影)面积为 .(1)求的解析式;(2)若常数,求函数在区间上的最大值.22. (5分)已知椭圆C:(a>b>0)的两个焦点分别为F1(﹣1,0),F2(1,0),且椭圆C 经过点P(,).(Ⅰ)求椭圆C的离心率;(Ⅱ)过点F2的直线l与椭圆C相交于P,Q两点,且,求直线l的方程.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共55分) 17-1、17-2、18-1、18-2、19-1、19-2、19-3、20-1、21-1、21-2、22-1、。

杭州高级中学2023学年第一学期期末考试高二数学考试试题(附答案解析)

杭州高级中学2023学年第一学期期末考试高二数学考试试题(附答案解析)

杭高2023学年第一学期期末考试高二数学试题卷命题:高二数学备课组 审题:高二数学备课组1. 本试卷分试题卷和答题卡两部分。

本卷满分150分,考试时间120分钟。

2. 答题前务必将自己的学校、班级、姓名用黑色字迹的签字笔或钢笔填写在答题卡规定的地方。

3. 答题时,请按照答题卡上“注意事项”的要求,在答题卡相应的位置上规范答题,在本试题卷上答题一律无效。

4. 考试结束后,只需上交答题卡。

一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.直线10x ++=的倾斜角的大小为( ) A. 30B. 60C. 120D. 1502.若数列{}n a 的通项公式为2n a n n =+,则12100111a a a +++= ( ) A.100101B.1101 C.101100D.991003.若数列{}n a 满足112,1n nn a a a a +==−,则2024a =( ) A. 3B. 2C.12D. 1−4.在空间四边形ABCD 中,,,DA a DB b DC c === ,且,2DM MA BN NC == ,则MN =( ) A.112233a b c −−B. 121233a b c −++C. 112233a b c −++D. 111222a b c −++5.以下四个命题中,正确的是( )A. 若1123OP OA OB =+,则,,P A B 三点共线 B. 若{},,a b c为空间的一个基底,则{},,a b b c c a +++ 构成空间的另一个基底C. ()()a b c a b c ⋅⋅=⋅⋅D. 若a b a c ⋅=⋅,且0a ≠ ,则b c =6.已知圆221:(2)(4)16C x y −++=,圆222:230C x y x ++−=,则两圆的公切线的条数为( ) A. 1B. 2C. 3D. 47.已知等比数列{}n a 的前n 项和为n S ,且10301,13S S ==,则40S =( ) A. 20−B. 40C. 27D. 51−8.双曲线22221(0,0)x y a b a b−=>>的左、右焦点分别为12,F F ,点M 是双曲线左支上一点,1290F MF ∠= ,直线2MF 交双曲线的另一支于点N ,22MN NF =,则双曲线的离心率( )A. 3B. 9C.D. 2二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.) 9.下列求导运算正确的是( )A. 若()cos(23)f x x =+,则()2sin(23)f x x ′=+ B. 若21()x f x e −+=,则21()x f x e −+′= C. 若()x x f x e =,则1()xxf x e −′=D. 若()ln f x x x =,则()ln 1f x x ′=+ 10.某次辩论赛有7位评委进行评分,首先7位评委各给出某选手一个原始分数,评定该选手成绩时从7个原始分数中去掉一个最高分、去掉一个最低分,得到5个有效评分.则这5个有效评分与7个原始评分相比,数字特征可能不同的是( ) A. 极差B. 中位数C. 平均数D. 方差11.在直三棱柱111ABC A B C −中,90BAC ∠= ,12AB AC AA ===,,E F 分别是11,BC A C 的中点,D 在线段11B C 上,则下面说法中正确的有( )A. //EF 平面11AA B BB. 若D 是11B C 上的中点,则BD EF ⊥C. 直线EF 与平面ABCD. 存在点D 使直线BD 与直线EF 平行12.在平面直角坐标系xOy 中,已知12(2,0),(2,0),(1,1)F F A −−,若动点P 满足126,PF PF +=则( )A. 存在点P ,使得21PF =B. 12PF F ∆面积的最大值为 C. 对任意的点P ,都有292PA PF +>D. 椭圆上存在2个点P ,使得1PAF ∆的面积为32三、填空题:(本题共4小题,每小题5分,共20分)13.在等差数列{}n a 中,12565,7a a a a +=+=,则910a a += .14.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 .15.若函数2()1ln f x x x a x =−++在(0,)+∞上单调递增,则实数a 的取值范围是 .16.高斯函数[]y x =是以德国数学家卡尔-高斯命名的初等函数,其中,[]x x ∈R 表示不超过x 的最大整数,如[]3,[ 3.5]4π=−=−.已知{}n a 满足()*111,21n n a a a n +==+∈N ,设1n n a a +的前n 项和为n S ,[]{}n S 的前n 项和为n T .则(1)3T = ;(2)满足2024n T ≥的最小正整数n 为 .(第一空2分,第二空3分) 四、解答题(本题共6小题,共70分,其中第17题10分,其它每题12分,解答应写出文字说明、证明过程或演算步骤.)17.ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2cos (cos cos ).C a B+b A c = (1)求C ; (2)若5c =,ABC ∆的面积为求ABC ∆的周长.18.如图,在平行四边形ABCD 中,1,2,60AB BC ABC ==∠= ,四边形ACEF 为正方形,且平面ABCD ⊥平面ACEF .(1)证明:AB CF ⊥;(2)求平面BEF 与平面ADF 夹角的余弦值.19.已知函数32()2f x x ax =−. (1)讨论()f x 的单调性;(2)已知1a =时,直线:l y kx =为曲线32()2f x x ax =−的切线,求实数k 的值.20.已知正项数列{}n a 的前n 项和为n S ,且满足2844n n n S a a =++. (1)求数列{}n a 的通项公式;(2)若112 1 2n n n b n a n −−= 为奇数为偶数,{}n b 的前n 项和为n T ,求2n T .21.已知抛物线2:4C y x =的焦点为F ,点11(,)A x y 是曲线C 上一点. (1)若154AF y =,求点A 的坐标; (2)若直线:l y x m =+与抛物线C 交于,A B 两点,且以AB 为直径的圆过点(4,0)P ,求||AB .22.已知双曲线2222:1(0,0)x C a b a b y −=>>的渐近线方程为y =,焦点到渐近线的距离为1,过点(0,4)M 作直线AB (不与y 轴重合)与双曲线C 相交于,A B 两点,过点A 作直线:l y t =的垂线,AE E 为垂足. (1)求双曲线C 的标准方程;(2)是否存在实数t ,使得直线EB 过定点P ,若存在,求t 的值及定点P 的坐标;若不存在,说明理由.杭高2023学年第一学期期末考试高二数学试题卷命题:高二数学备课组 审题:高二数学备课组1. 本试卷分试题卷和答题卡两部分。

浙江省杭州2023-2024学年高二上学期期末考试数学试题含答案

浙江省杭州2023-2024学年高二上学期期末考试数学试题含答案

杭州2023学年第一学期高二年级期末数学试卷(答案在最后)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟第Ⅰ卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.抛物线24x y =的准线方程为()A. 1x =-B. 1x = C. 1y =- D. 1y =【答案】C 【解析】【分析】根据抛物线标准方程即可求解.【详解】由题知,抛物线方程为24x y =,则其准线方程为1y =-.故选:C2.圆2240x y x +-=上的点到直线3490x y -+=的距离的最小值为()A.1 B.2C.4D.5【答案】A 【解析】【分析】求出圆的圆心和半径,利用点到直线的距离以及半径关系,求解即可.【详解】由2240x y x +-=,得22(2)4x y -+=,圆心为(2,0),半径2r =,圆心到直线3490x y -+=的距离3d ==,故圆上的点到直线3490x y -+=的距离的最小值为1d r -=.故选:A3.设平面α内不共线的三点A ,B ,C 以及平面外一点P ,若平面α内存在一点D 满足()2PD xPA x =+- 3PB xPC +,则x 的值为()A.0B.19-C.13-D.23-【答案】C【解析】【分析】由空间向量共面定理构造方程求得结果.【详解】 空间A B C D 、、、四点共面,但任意三点不共线,231x x x ∴+-+=,解得:13x=-.故选:C4.已知ABC 的三个顶点分别为()1,0,0A ,()0,2,0B ,()2,0,2C ,则BC 边上的中线长为()A.1B.C.D.2【答案】B 【解析】【分析】利用中点坐标公式与空间两点的距离公式即可得解.【详解】因为()0,2,0B ,()2,0,2C ,所以BC 的中点为()1,1,1,又()1,0,0A ,则BC =.故选:B.5.设{}n a 是公差为d 的等差数列,n S 是其前n 项和,且10a <,48S S =,则()A.0d <B.70a = C.120S = D.7n S S ≥【答案】C 【解析】【分析】根据等差数列的通项公式和前n 项求和公式,结合选项计算依次判断即可.【详解】A :由48S S =,得1143874822a d a d ⨯⨯+=+,则1112a d =-,又10a <,所以11102a d =-<,得0d >,故A 错误;B :7111166022a a d d d d =+=-+=>,故B 错误;C :121121111121266022S a d d d ⨯=+=-⨯+=,故C 正确;D :7177711135()()22222S a a d d d -=+=-+=,21(1)1222n n n n nS na d d --=+=,由21235n n -≥-,得15n ≤≤或7n ≥,即当15n ≤≤或7n ≥时,有7n S S ≥,故D 错误.故选:C6.用数学归纳法证明:()111212322n n f n +=++++≥ (*n ∈N )的过程中,从n k =到1n k =+时,()1f k +比()f k 共增加了()A.1项B.21k -项C.12k +项D.2k 项【答案】D 【解析】【分析】分别计算出()1f k +和()f k 的项数,进而作差即得结论.【详解】因为()1111232n f n =++++ ,所以()1111232k f k =++++ ,共2k 项,则()11111112321221k k k f k +++++++++=+ 共12k +项,所以()1f k +比()f k 共增加了1222k k k +-=项,故选:D7.若数列{}n a 满足递推关系式122nn n a a a +=+,且12a =,则2024a =()A.11012B.22023C.11011D.22021【答案】A 【解析】【分析】利用取倒数法可得11112n n a a +-=,结合等差数列的定义和通项公式即可求解.【详解】因为122n n n a a a +=+,所以1211122n n n n a a a a ++==+,所以11112n n a a +-=,又12a =,所以1112=a ,故数列1{}na 是以12为首项,以12为公差的等差数列,则1111(1)222n n n a =+-=,得2n a n=,所以20242120241012a ==.故选:A8.设双曲线Γ的中心为O ,右焦点为F ,点B 满足2FB OF =,若在双曲线Γ的右支上存在一点A ,使得OA OF =,且3OAB OBA ∠≥∠,则Γ的离心率的取值范围是()A.22,77⎡⎤-⎢⎥⎣⎦ B.21,7⎛⎤+ ⎥ ⎝⎦C.31,7⎛⎤+ ⎥ ⎝⎦D.33,77⎡⎤-+⎢⎥⎣⎦【答案】B 【解析】【分析】因为OA OF =,所以A 是以O 为圆心,为OF 半径的圆O 与Γ的交点,根据条件结合双曲线的定义得27480e e --≤求解即可.【详解】不妨设A 在第一象限.因为OA OF =,所以A 是以O 为圆心,为OF 半径的圆O 与Γ的交点.设Γ的左焦点为X ,则4XOA OAB OBA OBA ∠=∠+∠≥∠,122AFO XOA OBA ∠=∠≥∠,即A FAB FB ≥∠∠,FA BF ≤在圆O 上上取一点C ,使FC B F =,则FC FA ≥由双曲线的定义知2CX FC a -≤(a 是实半轴长),即()222224FC aC c C X F +≥=-(c 是半焦距),由2FB OF = ,得212c FB FO ==,得22222242c c c Xa C ⎛⎫+≥=⎭⎛⎫⎪⎝ ⎪⎭-⎝2274202a ac c +-≥,又离心率ce a =,所以27480e e --≤,又1e >,所以21,7e ⎛⎤⎝∈⎥⎦,故选:B二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知()f x ,()g x 在R 上连续且可导,且()00'≠f x ,下列关于导数与极限的说法中正确的是()A.()()()000Δ0ΔlimΔx f x x f x f x x→--'= B.()()()Δ0ΔΔlim2Δh f t h f t h f t h→+--'=C.()()()000Δ03Δlim3Δx f x x f x f x x→+-'= D.()()()()()()000Δ0000Δlim Δx g x x g x g x f x x f x f x →'+-='+-【答案】BCD 【解析】【分析】利用导数的定义逐个求解.【详解】()()()()()000000limlimx x f x x f x f x x f x f x xx∆→∆→+⎡⎤-∆--∆-'=-=-∆-∆⎣⎦,故A 错;()()()()()02limlim22h h f t h f t h f t h f t f t hh∆→∆→+∆--∆+∆-'==∆∆,故B 对;()()()00003lim3x f x x f x f x x∆→+∆-'=∆,由导数的定义知C 对;()()()()()()()()()()0000000000000limlimlim x x x g x x g x g x x g x g x x f x x f x f x x f x f x x ∆→∆→∆→+∆-'+∆-∆==+∆-'+∆-∆,故D 对;故选:BCD10.已知等差数列{}n a 的前n 项和为n S ,正项等比数列{}n b 的前n 项积为n T ,则()A.数列n S n ⎧⎫⎨⎬⎩⎭是等差数列 B.数列{}3na 是等比数列C.数列{}ln n T 是等差数列D.数列2n n T T +⎧⎫⎨⎬⎩⎭是等比数列【答案】ABD 【解析】【分析】根据等差数列与等比数列的定义及等差数列前n 项和公式为计算即可.【详解】设{}n a 的公差为d ,{}n b 的公比为q ,则2112222n n S d d d d S n a n n a n ⎛⎫⎛⎫=+-⇒=+- ⎪ ⎪⎝⎭⎝⎭,所以()1212n n S S d n n n --=≥-是常数,故A 正确;易知()1133323nn n n a a a d a n ---==≥是常数,故B 正确;由()1ln ln ln 2n n n T T b n --=≥不是常数,故C 错误;()221212n n n n n nT T b q n T T b +++-÷==≥是常数,故D 正确.故选:ABD11.已知O 为抛物线()2:20C y px p =>的顶点,直线l 交抛物线于,M N 两点,过点,M N 分别向准线2px =-作垂线,垂足分别为,P Q ,则下列说法正确的是()A.若直线l 过焦点F ,则以MN 为直径的圆与y 轴相切B.若直线l 过焦点F ,则PF QF⊥C.若,M N 两点的纵坐标之积为28p -,则直线l 过定点()4,0pD.若OM ON ⊥,则直线l 恒过点()2,0p 【答案】BCD 【解析】【分析】根据抛物线的焦半径公式结合条件判断AB ,设直线l 方程为x my b =+,与抛物线方程联立,利用韦达定理结合条件判断CD.【详解】设()()1122,,,M x y N x y ,选项A :MN 中点H 即以MN 为直径的圆的圆心横坐标为122x x +,则由抛物线的定义可知12MN MP NQ x x p =+=++,所以梯形PMNQ 的中位线122x x pGH ++=,所以点H 到y 轴的距离为1222x x p GH +-=不等于半径1222x x pMN ++=,A 说法错误;选项B :由抛物线的定义可知MP MF =,NF NQ =,又根据平行线的性质可得1MPF PFO MFP ∠=∠=∠=∠,2NQF QFO NFQ ∠=∠=∠=∠,因为()212π∠+∠=,所以π122∠+∠=,即PF QF ⊥,B 说法正确;选项C :由题意可知直线l 斜率不为0,设直线l 方程为x my b =+,联立22x my b y px=+⎧⎨=⎩得2220y pmy pb --=,22480p m pb ∆=+>,所以122y y pb =-,由21228y y pb p =-=-解得4b p =,满足0∆>,所以直线:4l x my p =+过定点()4,0p ,C 说法正确;选项D :因为OM ON ⊥,所以由0OM ON ⋅= 可得12110x x y y +=,所以221212022y y y y p p⋅+=①,将122y y pb =-,代入①得2b p =,满足0∆>,所以直线:2l x my p =+过定点()2,0p ,D 说法正确;故选:BCD12.布达佩斯的伊帕姆维泽蒂博物馆收藏的达·芬奇方砖是在正六边形上画了具有视觉效果的正方体图案(如图1),把三片这样的达·芬奇方砖拼成图2的组合,这个组合再转化成图3所示的几何体,若图3中每个正方体的棱长为1,则()A.122QC AD AB AA =+- B.若M 为线段CQ 上的一个动点,则BM BD ⋅的最小值为1C.点F 到直线CQ 的距离是3D.异面直线CQ 与1AD 【答案】ABD 【解析】【分析】根据空间向量线性运算法则判断A ,以1A 为坐标原点,1A F 所在直线为x 轴,11A B 所在直线为y 轴建立空间直角坐标系,利用空间向量法计算B 、C 、D .【详解】因为()1112222CQ CB BQ AD BA AD AA AB AB AD AA =+=-+=-+-=--+,所以()112222QC CQ AB AD AA AD AB AA =-=---+=+-,故A 正确;如图以1A为坐标原点,建立空间直角坐标系,则()0,1,1B -,()11,0,0D -,()1,0,1D --,()0,1,1Q -,()1,1,1C --,()0,0,1A -,()1,0,0F ,()1,1,0BD =-- ,()1,2,2CQ =- ,()11,0,1AD =- ,()2,1,1CF =-,对于B :因为M 为线段CQ 上的一个动点,设CM CQ λ=,[]0,1λ∈,则()()()1,0,01,2,21,2,2BM BC CM λλλλ=+=-+-=--,所以()121BM BD λλλ⋅=--+=+,所以当0λ=时()min1BM BD ⋅= ,故B 正确;对于C :CF ==63CF CQ CQ ⨯+-⨯-+⨯⋅==,所以点F到直线CQ的距离d ==,故C 错误;对于D:因为111cos ,6CQ AD CQ AD CQ AD ⋅===⋅ ,所以1sin ,6CQ AD ==,所以1tan ,CQ AD =,即异面直线CQ 与1AD ,故D 正确;故选:ABD .第Ⅱ卷(非选择题)三、填空题:本题共4小题,每小题5分,共20分.13.已知()sin exf x =,则()f x '=_____________.【答案】sin e cos x x ⋅【解析】【分析】利用复合函数求导函数方法求解即可.【详解】由()()()sin sin sin c e e e sin os x x x x x x f '=⋅=⋅''=,故答案为:sin e cos x x⋅14.若平面内两定点A ,B 间的距离为3,动点P 满足2PA PB=,则△PAB 面积的最大值为_____________.【答案】3【解析】【分析】首先求点P 的轨迹方程,再利用数形结合求PAB 面积的最大值.【详解】以AB 所在直线为x 轴,以线段AB 的中垂线为y 轴建立平面直角坐标系,设33(,),(,0),(,0)22P x y A B -,因为2PA PB=,即2PA PB =,=,整理为:22542x y ⎛⎫-+= ⎪⎝⎭,则点P 的轨迹是以点5,02⎛⎫⎪⎝⎭为圆心,半径为2的圆,所以点P 到AB 距离的最大值是2,所以PAB 面积的最大值是13232⨯⨯=.故答案为:315.已知点P 是抛物线24y x =上动点,F 是抛物线的焦点,点A 的坐标为()1,0-,则PFPA的最小值为________.【答案】2【解析】【分析】过P 做准线的垂线,根据定义可得PF PM =,将所求PFPA最小,转化为sin PM PAM PA =∠的最小,结合图像分析出,当PA 与抛物线相切时,PAM ∠最小,联立直线与抛物线方程,根据判别式求出PA 斜率k ,进而可得PAM ∠的值,代入所求即可。

2023-2024学年浙江省杭州高级中学高二(上)期末数学试卷【答案版】

2023-2024学年浙江省杭州高级中学高二(上)期末数学试卷【答案版】

2023-2024学年浙江省杭州高级中学高二(上)期末数学试卷一、单选题。

(本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.直线x +√3y +1=0的倾斜角是( ) A .30°B .60°C .120°D .150°2.若数列{a n }的通项公式为a n =n 2+n ,则1a 1+1a 2+⋯+1a 100=( )A .100101B .1101C .101100D .99100 3.若数列{a n }满足a 1=2,a n +1a n =a n ﹣1,则a 2024=( ) A .3B .2C .12D .﹣14.在空间四边形ABCD 中,DA →=a →,DB →=b →,DC →=c →,且DM →=MA →,BN →=2NC →,则MN →=( ) A .12a →−13b →−23c →B .−12a →+23b →+13c →C .−12a →+13b →+23c →D .−12a →+12b →+12c →5.以下四个命题中,正确的是( )A .若OP →=12OA →+13OB →,则P ,A ,B 三点共线B .若{a →,b →,c →}为空间的一个基底,则{a →+b →,b →+c ,c →+a →}构成空间的另一个基底C .(a →⋅b →)⋅c →=a →⋅(b →⋅c →)D .若a →•b →=a →•c →,且a →≠0,则b =c6.已知圆C 1:(x −2)2+(y +4)2=16,圆C 2:x 2+y 2+2x −3=0,则两圆的公切线的条数为( ) A .1B .2C .3D .47.已知等比数列{a n }的前n 项和为S n ,S 10=1,S 30=13,S 40=( ) A .﹣51 B .﹣20C .27D .408.双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点M 是双曲线左支上一点,∠F 1MF 2=90°,直线MF 2交双曲线的另一支于点N ,|MN |=2|NF 2|,则双曲线的离心率( ) A .3B .9C .√5D .2二、多选题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省杭州市高二上学期期末数学试卷(理科)
姓名:________ 班级:________ 成绩:________
一、选择题: (共12题;共24分)
1. (2分)若,,则的终边在()
A . 第一象限
B . 第二象限
C . 第三象限
D . 第四象限
2. (2分) (2019高二上·丽水期中) 已知抛物线C:y2=4x的焦点为F和准线为l,过点F的直线交l于点A,与抛物线的一个交点为B,且 =-2 ,则|AB|=()
A . 3
B . 6
C . 9
D . 12
3. (2分) (2018高二下·台州期中) 若满足约束条件,则的最大值是()
A .
B .
C . 5
D . 7
4. (2分) (2016高二上·吉林期中) 在△ABC中,a=80,b=100,A=45°,则此三角形解的情况是()
A . 一解
B . 两解
C . 一解或两解
D . 无解
5. (2分)等比数列中,,前3项之和,则数列的公比为()
A . 1
B . 1或
C .
D . -1或
6. (2分)(2017·日照模拟) 函数f(x)=(x﹣2)(ax+b)为偶函数,且在(0,+∞)单调递增,则f(2﹣x)>0的解集为()
A . {x|x>2或x<﹣2}
B . {x|﹣2<x<2}
C . {x|x<0或x>4}
D . {x|0<x<4}
7. (2分)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是()
A . 2x+y+5=0或2x+y-5=0
B . 2x+y+=0或2x+y-=0
C . 2x-y+5=0或2x-y-5=0
D . 2x-y+=0或2x-y-=0
8. (2分) (2016高二上·桓台期中) 已知2x+y=0是双曲线x2﹣λy2=1的一条渐近线,则双曲线的离心率
是()
A .
B .
C .
D . 2
9. (2分)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则几何体的体积为()
A . 6
B . 9
C . 12
D . 18
10. (2分) (2016高二上·公安期中) 同时抛掷两枚骰子,向上点数之和为5的概率是()
A .
B .
C .
D .
11. (2分)正方体ABCD—A1B1C1D1中,E、F分别是BB1、DD1的中点,则AA1与平面AEF所成角的余弦值为()
A .
B .
C .
D .
12. (2分) (2019高三上·双流期中) 已知函数,若方程有3个不同的实根,则实数的取值范围为()
A .
B .
C .
D .
二、填空题:) (共4题;共4分)
13. (1分) (2016高一上·无锡期末) 已知sin(α+π)=﹣,则sin(2α+ )=________.
14. (1分)(2012·江西理) 下图是某算法的程序框图,则程序运行后输出的结果是________.
15. (1分) (2018高二上·泸县期末) 某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段任何的时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为________
16. (1分) (2016高一上·盐城期中) 下列四个命题:
①定义在R上的函数f(x)满足f(﹣2)=f(2),则f(x)不是奇函数
②定义在R上的函数f(x)恒满足f(﹣x)=|f(x)|,则f(x)一定是偶函数
③一个函数的解析式为y=x2 ,它的值域为{0,1,4},这样的不同函数共有9个
④设函数f(x)=lnx,则对于定义域中的任意x1 , x2(x1≠x2),恒有,
其中为真命题的序号有________(填上所有真命题的序号).
三、解答题: (共6题;共45分)
17. (5分) (2016高二下·上饶期中) 在同一平面直角坐标系中,求满足下列图形变换的伸缩变换:曲线4x2+9y2=36变成曲线x′2+y′2=1.
18. (5分)数列中,,求,并归纳出.
19. (5分) (2016高二上·郑州开学考) 某校从参加高三模拟考试的学生中随机抽取60名学生,按其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到如下部分频率分布直方图,观察图中的信息,回答下列问题:
(Ⅰ)补全频率分布直方图;
(Ⅱ)估计本次考试的数学平均成绩(同一组中的数据用该组区间的中点值作代表);
(Ⅲ)用分层抽样的方法在分数段为[110,130)的学生成绩中抽取一个容量为6的样本,再从这6个样本中任取2人成绩,求至多有1人成绩在分数段[120,130)内的概率.
20. (10分)(2014·四川理) 已知函数f(x)=sin(3x+ ).
(1)求f(x)的单调递增区间;
(2)若α是第二象限角,f()= cos(α+ )cos2α,求cosα﹣sinα的值.
21. (10分) (2018高三上·广东月考) 如图,在梯形中,,,
,平面平面,四边形是菱形,.
(1)求证:;
(2)求二面角的平面角的正切值.
22. (10分)已知焦点在x轴上的椭圆C: + =1,其离心率为,过椭圆左焦点F1与上顶点B的直线为l0 .
(1)求椭圆的方程及直线l0的方程;
(2)直线l:y=kx(k≠0)与椭圆C交于M,N两点,点P是椭圆上异于M,N的一点.
①求证:当直线PM,PN存在斜率时,两直线的斜率之积为定值,即kPM•kPN为定值;
②当直线l与点P满足什么条件时,△PMN有最大面积?并求此最大面积.
参考答案一、选择题: (共12题;共24分)
1-1、
2-1、
3-1、
4、答案:略
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12、答案:略
二、填空题:) (共4题;共4分)
13-1、
14-1、
15-1、
16、答案:略
三、解答题: (共6题;共45分)
17、答案:略
18、答案:略
19-1、
20-1、
20-2、21-1、
21-2、22-1、
22-2、。

相关文档
最新文档