清华大学历年概率论考研试卷

合集下载

概率论考研题

概率论考研题

布的概率密度函数,因此函数值是1/3。
(100104)
(100104)
立即想到这是泊松分布当l=1时的分布率函 数,记忆起泊松分布的均值和方差都是l,
因此X2的均值等于方差加上均值的平方,因 此是2, 填2。
(100111)设二维随机变量(X,Y)的联合概率密 度函数为 f (x, y) Ae2x2 2xy y2 , x , y
8. 设随机变量X与Y相互独立,且X服从标准正
态分布N(0,1),
Y的概率分布为P{Y
0}
P{Y
1}
1 2
.
记FZ(z)为随机变量Z=XY的分布函数, 则函数 FZ(z)的间断点个数为( ) (A) 0. (B) 1. (C) 2. (D) 3. 解 FZ(z)=P{Zz}=P{XYz}= P{Y=0}P{XYz|Y=0}+P{Y=1}P{XYz|Y=1} =[F1(z)+F2(z)]/2, 因为F1(z)是在0处单点分布 的分布函数,而F2(z)是标准正态分布函数,因此 F1(z)造成一个间断点, 应填(B)
解 (2) P{Y1}=1e1, 再求P{X1,Y1}:
P{X 1,Y 1} 1 x ex d y d x 00
y 1
1 x ex d x x ex 1 1ex d x
0
00
e1 ex
1
O e1 e1 1 1 2 e1
1
x
0
0.735
22.(本题满分11分) 设二维随机变量(X,Y)的概
(1)求P{X=1|Z=0};
(2)求二维随机变量(X,Y)的概率分布.
解: (1) Z=0表示两次取到的球都不是白球, 此 条件相当于将样本空间压缩为袋中只有一个 红球两个黑球, 因此有

清华大学历年概率论考研试卷

清华大学历年概率论考研试卷

清华大学2000年概率统计研究生入学考试试题一、设(|)0.5P A B =,(|)0.4P B A =,()0.6P A =。

求()P A B ⋃,并问事件A 与事件B是否独立,为什么?二、设随机向量(,)X Y 服从二维正态分布221212(,,,,)N a a σσρ。

试证明:U X Y =+和V X Y =-独立。

三、设(12,,,n X X X )是正态总体2(,)X N μσ的一个简单样本,X 为样本均值,求1(||)n i i E X X =-∑。

四、设12,,,n X X X 是总体X 的简单样本,而总体101X q r p -⎛⎫ ⎪⎝⎭(表示遵从),其中01,01,1p q p q r <<<<++=,1) 求12,,,n X X X 最大值M 的分布。

2) 设0r =。

当n 充分大时,利用极限定理求样本均值X 的近似分布。

五、设总体X 的概率密度函数为(),()0,x e x f x λμλμμ--⎧>=⎨≤⎩x 。

这里μ和λ(>0)都是参数。

又设12,,,n X X X 为该总体的简单样本,而12,,,nx x x 为其样本观察值。

1) 设λ已知,求μ的极大似然估计L μ2) 设μ已知,求λ的矩估计M λ。

六、设网络中在(0,]t 时段内到某个网站访问的次数(0,]t ξ,0t ≥,是强度为λ(>0)的Poisson 流。

(1)试求第k 次访问次网站的时间k η的分布,k 为正整数;(2)求比12ηη的分布和120(|)E t ηη=,00t >;(3)利用Poisson 流的性质,证明Poisson 的可加性,即若随机变量1X ,2X 独立,且()i i X p λ(服从参数为i λ的Poisson 分布),1,2i =。

则12X X +12()P λλ+。

清华大学2001年概率统计研究生入学考试试题一、某项福利彩票的抽奖活动中有n 个号码(1,,n ),中奖的号码定为k 个,采用无放回随机抽样。

清华大学概率论与数理统计复习ppt

清华大学概率论与数理统计复习ppt

i 1

d
ln L( ) d

n


n i 1
ln
xi

0
解得的极大似然估计量为ˆ n n
ln Xi
i 1
(3)当 2时,X的概率密度函数为:
f
(
x)


2 2
x3
,
0,
似然函数为:
x x
L( )
n
f
(
xi
)



(
2n 2n

x 1
,
0,
x 1, 其中未知参数 1,
x 1.
X1,L , Xn为来自X的简单随机样本,
求(1)的矩估计量;
(2)的最大似然估计量。
解:1,由于E( X )

x f ( x; )d x


1
x

x 1d x

, 1
令 X,解得参数的矩估计量ˆ X .
考题(3 2008级 48学时)
三、(本题10分)设总体X 在[0, ]上服从均匀分布, 其中 ( 0)未知,(X1,L , Xn)为来自总体X的样本, 求的矩估计量。(见教材P127-128的例6.2)
考题(4 2008级 48学时)
七、(10分)设某种元件的使用寿命X的概率密度为
f
ln L() N ln (n N ) ln(1 )
令 d ln L = N n N 0, 解得:ˆ N
d 1
n
所以的极大似然估计为ˆ N n
考题(7 2006级 32学时)
三、(本题14分)设总体X的概率密度为:

考研数学三(概率论与数理统计)历年真题试卷汇编5(题后含答案及解析)

考研数学三(概率论与数理统计)历年真题试卷汇编5(题后含答案及解析)

考研数学三(概率论与数理统计)历年真题试卷汇编5(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.(03年)将一枚硬币独立地掷两次,引进事件:A1={掷第一次出现正面},A2={掷第二次出现正面},A3={正、反面各出现一次},A4={正面出现两次},则事件【】A.A1,A2,A3相互独立.B.A2,A3,A4相互独立.C.A1,A2,A3两两独立.D.A2,A3,A4两两独立.正确答案:C 涉及知识点:概率论与数理统计2.(07年)某人向同一目标独立重复射击,每次射击命中目标的概率为p(0<P<1),则此人第4次射击恰好第2次命中目标的概率为【】A.3p(1-p)2.B.6p(1-p)2.C.3p2(1-p)2.D.6p2(1-p)2.正确答案:C解析:P{第4次射击恰好第2次命中目标}=P{前3次射击恰中1枪,第4次射击命中目标} =P{前3次射击恰中1枪}.P{第4次射击命中目标}=C31p(1-p)2.P=3p2(1-p)2 知识模块:概率论与数理统计3.(09年)设事件A与事件B互不相容,则【】A.P()=0.B.P(AB)=P(A)P(B).C.P(A)=1-P(B).D.P()-1.正确答案:D 涉及知识点:概率论与数理统计4.(14年)设随机事件A与B相互独立,且P(B)=0.5,P(A-B)=0.3,则P(B-A)=【】A.0.1B.0.2C.0.3D.0.4正确答案:B解析:∵A与B独立,∴P(AB)=P(A)P(B).故0.3=P(A-B)=P(A)-P(AB)=P(A)-P(A)P(B) =P(A)[1-P(B)]=P(A)(1-0.5)=0.5(P(A) 得P(A)==06,P(B-A)=P(B)-P(AB)=P(B)-P(A)P(B)=0.5-0.6×0.5=0.2.知识模块:概率论与数理统计5.(15年)若A,B为任意两个随机事件,则【】A.P(AB)≤P(A)P(B).B.P(AB)≥P(A)P(B).C.P(AB)≤.D.P(AB)≥.正确答案:C解析:由ABA,ABB得P(AB)≤P(A),P(AB)≤P(B),两式相加即得:P(AB)≤.知识模块:概率论与数理统计6.(16年)设A,B为两个随机事件,且0<P(A)<1,0<P(B)<1,如果P(A|B)=1,则【】A.P()=1.B.P(A|)=0.C.P(A∪B)=1.D.P(B|A)=1.正确答案:A解析:由1=P(A|B)=,有P(B)=P(AB) 于是知识模块:概率论与数理统计7.(90年)设随机变量X和Y相互独立,其概率分布为则下列式子正确的是:【】A.X-YB.P{X-Y}=0C.P{X-Y}=D.P{X=Y}=1正确答案:C解析:P(X=Y)=P(X=-1,Y=-1)+P(X=1,Y=1) =P(X=-1)P(Y =-1)+P(X=1)P(Y=1) =知识模块:概率论与数理统计8.(93年)设随机变量X的密度函数为φ(χ),且φ(-χ)-φ(χ),F(χ)为X的分布函数,则对任意实数a,有【】A.F(-a)=1-∫0aφ(χ)dχB.F(-a)=-∫0aφ(χ)dχC.F(-a)=F(a)D.F(-a)=2F(a)-1正确答案:B解析:由概率密度的性质和已知,可得故选B.知识模块:概率论与数理统计9.(95年)设随机变量X~N(μ,σ2),则随着σ的增大,概率P(|X-μ|<σ) 【】A.单调增大.B.单调减小.C.保持不变.D.增减不定.正确答案:C解析:由已知X~N(μ,σ),得~N(0,1) 故P{|X-μ|<σ}==(1)Ф-Ф(-1) 故选C.知识模块:概率论与数理统计填空题10.(89年)设随机变量X的分布函数为则A=_______,P{|X|<}=_______.正确答案:1;解析:∵分布函数是右连续的,故得1=Asin ∴A=1 这时,F(χ)在(-∞,+∞)上都连续,于是知识模块:概率论与数理统计11.(91年)设随机变最X的分布函数为则X的概率分布为_______.正确答案:解析:F(χ)为一阶梯状函数,则X可能取的值为F(χ)的跳跃点:-1,1,3.P(X=-1)=F(-1)-F(-1-0)=0.4 P(X=1)=F(1)-F(1-0)=0.8-0.4=0.4 P(X=3)=F(3)-F(3-0)=1-0.8=0.2 知识模块:概率论与数理统计12.(94年)设随机变量X的概率密度为以Y表示对X的三次独立重复观察中事件{X≤}出现的次数P{Y=2}=_______.正确答案:解析:由题意,Y~B(3,p).其中p=故知识模块:概率论与数理统计13.(00年)设随机变量X的概率密度为若k使得P{X≥k}=,则k的取值范围是_______.正确答案:[1,3]解析:∵P(X≥k)=∫k+∞f(χ)dχ.可见:若k≤0,则P(X≥k)=1 若0<k<1,则P(X≥k)=若k>6,则P(X≥k)=0 若3<k≤6,则P(X ≥k)=若1≤k≤3,则P(X≥k)=综上,可知K∈[1,3].知识模块:概率论与数理统计14.(05年)从数1,2,3,4中任取一个数,记为X,再从1,…,X中任取一个数,记为Y,则P(Y=2}=_______.正确答案:解析:由题意,X的概率分布为而P(Y=2|X=1)=0,P(Y=2|X=2)=,P(Y=2|X=3)=,P(Y=2|X=4)=,故由全概率公式得知识模块:概率论与数理统计15.(05年)设二维随机变量(X,Y)的概率分布为若随机事件{X=0}与{X+Y=1}相互独立,则a=_______,b=_______.正确答案:0.4;0.1.解析:由题意知0.4+a+b+0.1=1,∴a+b=0.5 而P{X=0}=0.4+a,P{X+Y=1}=P{X=0,Y=1}+P{X=1,Y=0}=a+b=0.5,P{X =0,X+Y=1}=P{X=0,Y=1}=a 由P{X=0,X+Y=1)=P{X=0)P{X +Y=1} ∴a=(0.4+a)0.5,得a=0.4,从而b=0.1.知识模块:概率论与数理统计16.(06年)设随机变量X与Y相互独立,且均服从区间[0,3]上的均匀分布,则P{max(X,Y)≤1}=_______.正确答案:解析:由题意知X与Y的概率密度均为:则P(X≤1}=P{Y≤1}=∫-∞1f(χ)dχ=故P{max(X,Y)≤1}=P{X≤1,y≤1}=P{X≤1}P{y≤1}=知识模块:概率论与数理统计17.(99年)设随机变量Xij(i=1,2,…,n;n≥2)独立同分布,Eij=2,则行列式Y=的数学期望EY=_______.正确答案:0解析:由n阶行列式的定义知Y=,P1,…,Pn为(1,…,n)的排列,τ(p1p2…pn)为排列p1p2…pn的逆序数.而Xij(i,j=1,2,…,n)独立同分布且EXij=2,故知识模块:概率论与数理统计解答题解答应写出文字说明、证明过程或演算步骤。

考研数学一(概率论与数理统计)历年真题试卷汇编6(题后含答案及解析)

考研数学一(概率论与数理统计)历年真题试卷汇编6(题后含答案及解析)

考研数学一(概率论与数理统计)历年真题试卷汇编6(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数等于( )A.—1B.0C.D.1正确答案:A解析:掷硬币结果不是正面向上就是反面向上,所以X+Y=n,从而Y=n—X。

由方差的定义:D(X)=E(X2)一[E(X)]2,所以D(Y)=D(n—X)=E(n—X)2一[E(n—X)]2=E(n2—2nX+X2)—[n一E(X)]2=n2—2nE(X) +E(X2)一n2+ 2nE(X) —[E(X)]2=E(X2)一[E(X)]2=D(X)。

由协方差的性质:Cov(X,c)=0(c为常数);Cov(aX,bY)=abCov(X,Y);Cov(X1+X2,Y) = Cov(X1,Y) + Cov(X2,Y),所以Cov(X,Y) = Cov(X,n—X) = Cov(X,n) —Cov(X,X)=0—D(X)=—D(X),由相关系数的定义,得知识模块:概率论与数理统计2.设随机变量X~N(0,1),Y~N(1,4)且相关系数ρXY=1,则( ) A.P{Y=—2X—1}=1B.P{Y=2X—1}=1C.P{Y=一2X+1}=1D.P{Y=2X+1}=1正确答案:D解析:用排除法。

设Y=aX+b。

由ρXY=1,知X、Y正相关,得a>0。

排除A和C。

由X~N(0,1),Y~N(1,4),得E(X)=0,E(Y)=1,E(aX+b)=aE(X)+b,即1=a×0+b,故b=1。

从而排除B。

故应选D。

知识模块:概率论与数理统计3.将长度为1m的木棒随机地截成两段,则两段长度的相关系数为( ) A.1B.C.D.—1正确答案:D解析:设两段长度分别为X,Y,显然X+Y=1,即y=—X+1,故两者是线性关系,且是负相关,所以相关系数为—1。

概率论与数理统计历年考研真题(数一)1995--2012年

概率论与数理统计历年考研真题(数一)1995--2012年

å sˆ 2 = 1
n
z2
3n i i=1
å å (3) E(sˆ 2 ) = 1 n E(z 2 ) = 1 n [(Ez)2 + Dz] = 1 (3ns 2 ) = s 2
3n i=1
i
3n i=1
3n
因此sˆ 2 是s 2 的无偏估计
3
2011 年(数一)
(7)设 F1 (x), F2 (x) 为两个分布函数,其相应的概率密度 f1 (x), f 2 (x) 是连续函数,则必为
( 14 ) 设 A, B, C 是 随 机 事 件 , A 与 C 互 不 相 容 , P( AB) = 1 , P(C) = 1 , 则
2
3
P( AB C) = ________
【答案】 3 4
【解析】 P( AB C) = P( ABC) = P( ABC)
P(C )
1- 1
3
而 P( ABC) + P( ABC) = P( AB) = 1 ,而 0 £ P( ABC) < P( AC) = 0 ,故 P( ABC) = 1
ò ò EX =

0.3xj(x)dx +
4
X
Y
-1
0
1
0
Hale Waihona Puke 0010
再由 X 和 Y 的概率分布可得 ( X ,Y ) 的概率分布为
X
Y
-1
0
1
0
0
13
0
1
13
0
13
(2) XY 的可能取值为 -1,0,1 Z = XY 的概率分布为
XY -1
0
1

清华大学考研-清华大学考研数学 近五年线代真题考点分析

清华大学考研-清华大学考研数学 近五年线代真题考点分析
任爱珠、张建平 天津大学 孔祥元等著 施一民 武汉大学测绘学院等 编 陆化普 陈仲颐 (河海大学)詹道江,(武 汉大学)叶守泽 李玉柱,贺五洲
龙驭球、包世华 注册咨询工程师考试 教材编写委员会 翻译本 胡忠鲠 傅献彩 顾夏声等 周德庆 王家玲等 郭怀城等 马中 程声通 曾思育
王昆林 朱张校主编 秦曾煌主编 申永胜 吴宗泽 郁道银、谈恒英
王向荣
[英]杰弗瑞·杰里柯//苏 珊杰·里柯 译者:刘滨 谊
周维权
刘敦祯 潘谷西 陈志华 罗小未 张筑生 周民强,方企勤
张三慧
宋天佑,程鹏,王杏乔
邢其毅主编
薛华等 刘密新等
潘祖仁主编
何曼君等
606 生物学
《基础生命科学》 高等教育出版社 第二版
吴庆余
607 西方哲学史 《西方哲学简史》 北京大学出版社 2002
《外国城市建设史》 中国建筑工业出版社
《中国古代建筑史》 中国建筑工业出版社
《中国建筑史》
中国建筑工业出版社
《外国建筑史》
中国建筑工业出版社
《外国近现代建筑史》中国建筑工业出版社
601 艺术概论
《艺术概论》
文化艺术出版社
《美学概论》
人民出版社
《中国城市建设史》 中国建筑工业出版社
《外国城市建设史》 中国建筑工业出版社
郑君里等
《电磁场理论》 829 电磁场理论
清华大学出版社 2001 年 2003 年重 王蔷 李国定 龚克

《电动力学》
高教出版社 1997 年 第二版
郭硕鸿
《Introduction to Semiconductor Devices》
清华大学出版社
Donald A. Neamen

概率第二章历年考研真题(数学一、三、四)

概率第二章历年考研真题(数学一、三、四)

概率第二章历年考研真题(数学一、三、四)第二章随机变量及其分布数学一:1(88,2分)设随机变量X 服从均值为10,均方差为0.02的正态分布上。

已知,9938.0)5.2(,21)(22=Φ=Φ-∞-?du ex u xπ则X 落在区间(9.95, 10.05)内的概率为。

2(88,6分)设随机变量X 的概率密度函数为)1(1)(2x x f X +=π,求随机变量Y=1-3X 的概率密度函数)(y f Y 。

3(89,2分)设随机变量ξ在区间(1,6)上服从均匀分布,则方程012=++x x ξ有实根的概率是。

4(90,2分)已知随机变量X 的概率密度函数||21)(x e x f -=,+∞<<∞-x ,则X 的概率分布函数F (x )=。

5(93,3分)设随机变量X 服从(0,2)上的均匀分布,则随机变量2X Y =在(0,4)内的概率分布密度=)(y f Y。

6(95,6分)设随机变量X 的概率密度为<≥=-0,00)(x x e x f xX 求随机变量Xe Y =的概率密度)(yf Y 。

7(02,3分)设随机变量X 服从正态分布)0)(,(2>σσμN ,且二次方程042=++X y y 无实根的概率为21,则=μ。

8(04,4分)设随机变量X 服从正态分布N(0,1),对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A) 2αu . (B) 21α-u. (C) 21α-u . (D) α-1u . [ ]9(06,4分)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且12{||1}{||1},P X P Y μμ-<>-<(A )1 2.σσ< (B )1 2.σσ> (C )1 2.μμ<(D )1 2.μμ>10(10年,4分)设随机变量X 的分布函数()F x =00101,21e 2x x x x -<≤≤->则{1}P X == (A)0 (B)1(C)11e 2--(D)11e --11(10年,4分)设1()f x 为标准正态分布的概率密度2,()f x 为[1,3]-上均匀分布的概率密度,()f x =12()()af x bf xx x ≤> (0,0)a b >> 为概率密度,则,a b 应满足(A)234a b += (B)324a b +=(C)1a b +=(D)2a b +=12(11,4分)13(13,4分)设123,,X X X 是随机变量,且1(0,1)X N ,22(0,2)X N ,23(5,3)X N ,{}122(1,2,3)i P P X i =-≤≤=,则() A.123P P P >> B.213P P P >> C.322P P P >>D 132P P P >>14(13,4分)设随机变量Y 服从参数为1的指数分布,a 为常数且大于零,则P{Y ≤a+1|Y >a}=数学三:1(87,2分)(是非题)连续型随机变量取任何给定实数值的概率都等于0。

概率论历年考研真题(牛人总结)

概率论历年考研真题(牛人总结)

考研概率论部分历年真题(总结)数学一:1(87,2分) 设在一次试验中A 发生的概率为p ,现进行n 次独立试验,则A 至少发生一次的概率为 ;而事件A 至多发生一次的概率为 。

2(87,2) 三个箱子,第一个箱子中有4个黑球1个白球,第二个箱子中有3个黑球3个白球,第三个箱子中有3个黑球5个白球。

现随机地取一个箱子,再从这个箱子中取出1个球,这个球为白球的概率等于 。

已知取出的球是白球,此球属于第二个箱子的概率为 。

3(88,2分) 设三次独立试验中,事件A 出现的概率相等,若已知A 至少出现一次的概率等于2719,则事件A 在一次试验中出现的概率为 。

4(88,2分) 在区间(0,1)中随机地取两个数,则事件“两数之和小于56”的概率为 。

5(89,2分) 已知随机事件A 的概率P (A )=0.5,随机事件B 的概率P (B )=0.6及条件概率P (B | A )=0.8,则和事件A B 的概率P (A B )= 。

6(89,2分) 甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为 。

7(90,2分) 设随机事件A ,B 及其和事件A B 的概率分别是0.4, 0.3和0.6,若B 表示B 的对立事件,那么积事件A B 的概率P (A B )= 。

8(91,3分) 随机地向半圆0<y <22x ax -(a 为正常数)内掷一点,点落在半圆内任何区域的概率与该区域的面积成正比。

则原点与该点的连线与x 轴的夹角小于4π的概率为 。

9(92,3分) 已知P (A )=P (B )=P (C )=161)()(,0)(,41===BC P AC P AB P ,则事件A 、B 、C 全不发生的概率为 。

10(93,3分) 一批产品有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为 。

考研数学一(概率论与数理统计)历年真题试卷汇编4(题后含答案及解析)

考研数学一(概率论与数理统计)历年真题试卷汇编4(题后含答案及解析)

考研数学一(概率论与数理统计)历年真题试卷汇编4(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.设A、B是两个随机事件,且0<P(A)<1,P(B)>0,P(B|A)=P(B+),则必有( )A.P(A|B)=P(|B)B.P(A|B)≠P(|B)C.P(AB)= P(A)P(B)D.P(AB)≠P(A)P(B)正确答案:C解析:由条件概率公式及条件于是有P(AB)[1一P(A)]=P(A).[P(B)一P(AB)],可见P(AB)=P(A)P (B)。

应选C。

知识模块:概率论与数理统计2.设A,B为随机事件,且P(B)>0,P(A | B)=1,则必有( )A.P(A∪B)>P(A)B.P(A∪B)>P(B)C.P(A∪B)=P(A)D.P(A∪B)=P(B)正确答案:C解析:由题设,知P(A|B)==1,即P(AB)=P(B)。

又P(A∪B)=P(A)+P(B) —P(AB)=P(A)。

故应选C。

知识模块:概率论与数理统计3.设A,B为随机事件,若0<P(A)<1,0<P(B)<1,则P(A|B)>P(A|)的充要条件是( )A.B.C.D.正确答案:A解析:知识模块:概率论与数理统计4.设随机事件A与B相互独立,且P(B)=0.5,P(A —B)=0.3,则P(B—A)=( )A.0.1B.0.2C.0.3D.0.4正确答案:B解析:P(A —B)=0.3,则P(A) —P(AB)=0.3。

又随机事件A与B相互独立,则有P(AB)=P(A)P(B),因此有P(A) —P(A) P(B)=0.3。

又P(B)=0.5,故P(A)=0.6,且P(AB)=P(A)P(B)=0.3。

因此P(B—A)=P(B) —P(AB)=P(B)一P(A)P(B)=0.2。

答案为B。

知识模块:概率论与数理统计5.若A,B为任意两个随机事件,则( )A.P(AB)≤P(A)P(B)B.P(AB)≥P(A)P(B)C.D.正确答案:C解析:P(A)+P(B)=P(A∪B)+P(AB)≥2P(AB),故选C。

清华大学考研试题及答案

清华大学考研试题及答案

清华大学考研试题及答案一、单项选择题(每题2分,共20分)1. 清华大学的校训是以下哪一项?A. 厚德载物B. 格物致知C. 自强不息D. 厚德博学答案:A2. 清华大学位于中国的哪个城市?A. 北京B. 上海C. 广州D. 成都答案:A3. 清华大学的创办时间是?A. 1898年B. 1900年C. 1911年D. 1925年答案:A4. 以下哪位不是清华大学的著名校友?A. 钱学森B. 杨振宁C. 陈省身D. 钱伟长答案:D5. 清华大学的校徽颜色是什么?A. 蓝色B. 红色C. 绿色D. 黄色答案:A6. 清华大学的校歌名称是?A. 清华之歌B. 清华校歌C. 清华园D. 清华颂答案:B7. 清华大学的校园内有一个著名的湖泊,它的名称是什么?A. 未名湖B. 镜湖C. 荷塘月色D. 碧波湖答案:A8. 清华大学的校庆日是每年的哪一天?A. 4月29日B. 5月4日C. 6月1日D. 7月1日答案:A9. 清华大学的校训“厚德载物”出自哪部经典?A. 论语B. 孟子C. 大学D. 易经答案:D10. 清华大学的校花是什么?A. 牡丹B. 荷花C. 梅花D. 菊花答案:B二、多项选择题(每题3分,共30分)1. 清华大学的以下哪些学科在国际学术界享有盛誉?A. 工程学B. 物理学C. 经济学D. 文学答案:A, B, C2. 清华大学的以下哪些建筑是校园内的标志性建筑?A. 清华学堂B. 紫荆公寓C. 大礼堂D. 逸夫楼答案:A, C, D3. 清华大学的以下哪些活动是校园文化的重要组成部分?A. 学术讲座B. 体育竞赛C. 艺术展览D. 社团活动答案:A, B, C, D4. 清华大学的以下哪些人物是杰出的科学家?A. 钱学森B. 杨振宁C. 邓稼先D. 钱三强答案:A, B, C, D5. 清华大学的以下哪些学科是国家重点学科?A. 材料科学与工程B. 化学工程与技术C. 机械工程D. 信息与通信工程答案:A, B, C, D三、简答题(每题10分,共40分)1. 简述清华大学的历史沿革。

清华考研辅导班-2021清华大学934概率论与统计学考研经验真题参考书

清华考研辅导班-2021清华大学934概率论与统计学考研经验真题参考书

清华考研辅导班-2021清华大学934概率论与统计学考研经验真题参考书清华大学934概率论与统计学考试科目,2020年初试时间安排为12月22日下午14:00-17:00进行考试,考试时间为3小时一、适用院系专业:清华大学051经济管理学院120100管理科学与工程二、考研参考书目清华大学934概率论与统计学没官方指定的考研参考书目,盛世清北根据专业老师指导及历年考生学员用书,推荐使用如下参考书目:《概率论与数理统计》高等教育出版社,2001年盛聚等盛世清北建议参考书阅读方法:目录法:先通读各本参考书的目录,对于知识体系有着初步了解,了解书的内在逻辑结构,然后再去深入研读书的内容。

体系法:为自己所学的知识建立起框架,否则知识内容浩繁,容易遗忘,最好能够闭上眼睛的时候,眼前出现完整的知识体系。

问题法:将自己所学的知识总结成问题写出来,每章的主标题和副标题都是很好的出题素材。

尽可能把所有的知识要点都能够整理成问题。

三、重难点知识梳理清华大学934概率论与统计学2020年暂未提供考试大纲,但盛世清北的课程中总结了复习的大体方向,考试重难点知识梳理内容如下:第一章随机事件与概率1.1 随机事件1.2 概率的定义1.3 概率的性质1.4 条件概率1.5 独立性第二章随机变量及其分布2.1 随机变量及其分布2.2 随机变量的数学期望2.3 随机变量的方差与标准差2.4、2.5 常用离散分布、连续分布2.6 随机变量函数的分布第三章多维随机变量及其分布3.1 多维随机变量及其联合分布3.2 边际分布与独立性3.3 多维随机变量函数的分布3.4 多维随机变量的特征数3.5 条件分布与条件期望第四章大数定律与中心极限定理4.3 大数定律4.4 中心极限定理第五章统计量及其分布5.1 总体与样本5.2 样本数据的整理与显示5.3统计量及其分布5.4三大抽样分布第六章参数估计6.1 点估计的几种方法6.2 点估计的评价标准6.5 区间估计第七章假设检验7.1 假设检验的基本概念7.2 正态总体参数假设检验7.3 其他分布参数的假设检验7.4 分布假设检四、考研真题2011 年 1 月考题:一、填空1、条件概率;2、联合密度函数、正则性;3、正态分布标准化;4、二项分布的泊松近似;5、假设检验;6、区间估计、置信水平;7、 t 分布的特殊性质。

考研数学一(概率论与数理统计)历年真题试卷汇编2(题后含答案及解析)

考研数学一(概率论与数理统计)历年真题试卷汇编2(题后含答案及解析)

考研数学一(概率论与数理统计)历年真题试卷汇编2(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.(16年)设随机变量X~N(μ,σ2)(σ>0),记p=P{X≤μ+σ2},则A.p随着μ的增加而增加.B.p随着σ的增加而增加.C.p随着μ的增加而减少.D.p随着σ的增加而减少.正确答案:B 涉及知识点:概率论与数理统计2.(97年)设两个相互独立的随机变量X和Y的方差分别为4和2,则随机变量3X一2Y的方差是A.8B.16C.28D.44正确答案:D 涉及知识点:概率论与数理统计3.(00年)设二维随机变量(X,Y)服从二维正态分布,则随机变量ξ=X+Y 与η=X—Y不相关的充分必要条件为A.E(X)=E(Y)B.E(X2)一[E(X)]2=E(Y2)一[E(Y)]2C.E(X2)=E(Y2)D.E(X2)+[E(X)]2=E(Y2)+[E(Y)]2正确答案:B 涉及知识点:概率论与数理统计4.(01年)将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数等于A.一1B.0C.D.1正确答案:A 涉及知识点:概率论与数理统计5.(04年)设随机变量X1,X2,…,Xn(n>1)独立同分布,且其方差σ2>0,令Y=,则A.B.C.D.正确答案:A 涉及知识点:概率论与数理统计6.(07年)设随机变N(X,Y)服从二维正态分布,且X与Y不相关,fX(x),fY(y)分别表示X,Y的概率密度,则在Y=y的条件下,X的条件概率密度fX Y(x|y)为A.fX(x).B.fY(y).C.fX(x)fY(y).D.正确答案:A 涉及知识点:概率论与数理统计7.(08年)设随机变量X~N(0,1),Y~N(1,4),且相关系数ρXY=1,则A.P{Y=一2X—1}=1B.P{Y=2X一1}=1C.P{Y=一2X+1}=1D.P{Y=2X+1}=1正确答案:D 涉及知识点:概率论与数理统计8.(09年)设随机变量X的分布函数为F(x)=0.3φ(x)+其中φ(x)为标准正态分布的分布函数,则EX=A.0.B.0.3.C.0.7.D.1.正确答案:C 涉及知识点:概率论与数理统计9.(11年)设随机变量X与Y相互独立,且EX与EY存在,记U=max{X,Y),V=min{X,Y),则E(UV)=A.EU.EV.B.EX.EY.C.EU.EY.D.EX.EV.正确答案:B 涉及知识点:概率论与数理统计填空题10.(87年)已知连续型随机变量X的概率密度为则EX=______,DX=________.正确答案:1;涉及知识点:概率论与数理统计11.(90年)已知随机变量X服从参数为2的泊松分布,且随机变量Z=3X 一2,则EZ=______.正确答案:4.涉及知识点:概率论与数理统计12.(91年)设随机变量X服从均值为2、方差为σ2的正态分布,且P{2<X<4}=0.3,则P{X<0}=_______.正确答案:0.2.涉及知识点:概率论与数理统计13.(92年)设随机变量X服从参数为1的指数分布,则E(X+e-2X)=__________.正确答案:涉及知识点:概率论与数理统计14.(95年)设X表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则E(X2)=_______正确答案:18.4.涉及知识点:概率论与数理统计15.(96年)设ξ和η是两个相互独立且均服从正态分布N(0,)的随机变量,则E(|ξ-η|)=________正确答案:涉及知识点:概率论与数理统计16.(04年)设随机变量X服从参数为λ的指数分布,则=_______.正确答案:涉及知识点:概率论与数理统计17.(08年)设随机变量服从参数为1的泊松分布,则P{X=EX2}=_____.正确答案:涉及知识点:概率论与数理统计18.(10年)设随机变量X的概率分布为P{X=k}=k=0,1,2,…,则EX2=_________.正确答案:2 涉及知识点:概率论与数理统计19.(11年)设二维随机变量(X,Y)服从正态分布N(μ,μ;σ2,σ2;0),则E(XY2)=______.正确答案:μ3+μσ2.涉及知识点:概率论与数理统计解答题解答应写出文字说明、证明过程或演算步骤。

清华考研数学试题及答案

清华考研数学试题及答案

清华考研数学试题及答案一、单项选择题(每题4分,共40分)1. 极限的定义中,当自变量趋近于某一点时,函数值趋近于该点的极限值,这个极限值是唯一的。

()A. 正确B. 错误答案:A2. 在二维平面上,若直线L的方程为y=2x+3,则该直线的斜率为2。

()A. 正确B. 错误答案:A3. 函数f(x)=x^2在区间[0,1]上是单调递增的。

()A. 正确B. 错误答案:B4. 已知函数f(x)=sin(x),则f(π)=0。

()A. 正确B. 错误答案:A5. 微分方程dy/dx=2y的通解为y=Ce^(2x),其中C为常数。

()A. 正确B. 错误答案:A6. 矩阵A=[1,2;3,4]的行列式为-2。

()A. 正确B. 错误答案:B7. 概率论中,若事件A和事件B互斥,则P(A∪B)=P(A)+P(B)。

()A. 正确B. 错误答案:A8. 函数f(x)=x^3-3x+2在x=1处取得极小值。

()A. 正确B. 错误答案:B9. 已知函数f(x)=x^2-4x+4,其顶点坐标为(2,0)。

()A. 正确B. 错误答案:A10. 圆的方程为x^2+y^2=1,表示以原点为中心,半径为1的圆。

()A. 正确B. 错误答案:A二、填空题(每题4分,共20分)1. 若函数f(x)=x^2-6x+8,则f(3)=____。

答案:-12. 已知矩阵A=[1,0;0,2],B=[2,1;1,2],则AB=____。

答案:[2,2;2,4]3. 函数f(x)=x^3-3x^2+2x的导数为f'(x)=____。

答案:3x^2-6x+24. 已知等差数列{an}的首项a1=1,公差d=2,则a5=____。

答案:95. 圆心在(1,2),半径为3的圆的标准方程为(x-1)^2+(y-2)^2=____。

答案:9三、解答题(每题10分,共40分)1. 求极限lim(x→0)(x^2sin(1/x))。

答案:02. 求函数f(x)=ln(x)的不定积分。

考研数学一(概率论与数理统计)历年真题试卷汇编11(题后含答案及解析)

考研数学一(概率论与数理统计)历年真题试卷汇编11(题后含答案及解析)

考研数学一(概率论与数理统计)历年真题试卷汇编11(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.设随机变量X~t(n)(n>1),Y=.则A.Y~χ2(n)B.Y~χ2(n-1)C.Y~F(n,1)D.Y~F(1,n)正确答案:C解析:由X~t(n),得X2~F(1,n),故Y=~F(n,1),故选C.知识模块:概率论与数理统计2.设X1,X2,…,Xn(n≥2)为来自总体N(0.1)的简单随机样本,X为样本均值,S2为样本方差,则A.n~N(0,1)B.nS2~χ2(n)C.~t(n-1)D.~F(1,n-1)正确答案:D 涉及知识点:概率论与数理统计3.设随机变量X~t(n),Y~F(1.n),给定α(0<α<0.5).常数c满足P{X>c}=α.则P{Y>c2}=A.α.B.1-α.C.2α.D.1-2α.正确答案:C解析:由题意,X2与Y同分布,即|X|与同分布,且由0<α<0.5,可见c>0,故P(Y>c2)=P(>c)=P(|X|>c) =P(X>c)+P(X<-c)=α+α=2α.知识模块:概率论与数理统计4.设X1,X2,…,Xn(n≥2)为来自总体N(μ,1)的简单随机样本,记,则下列结论中不正确的是A.(Xi-μ)2服从χ2分布.B.2(Xn-X1)2服从χ2分布.C.服从χ2分布.D.n(-μ)2服从χ2分布.正确答案:B解析:由题意,Xn-X1~N(0,2),所以~N(0,1) 得(Xn-X1)2~χ(1),可见选项B结论“不正确”,就选B.知识模块:概率论与数理统计5.设总体X服从正态分布N(μ,σ2),χ1,χ2,…,χn是来自总体X 的简单随机样本,据此样本检验假设:H0:μ=μ0,H1:μ≠μ0,则A.如果在检验水平α=0.05下拒绝H0,那么在检验水平α=0.01下必拒绝H0.B.如果在检验水平α=0.05下拒绝H0,那么在检验水平α=0.01下必接受H0.C.如果在检验水平α=0.05下接受H0,那么在检验水平α=0.01下必拒绝H0.D.如果在检验水平α=0.05下接受H0,那么在检验水平α=0.01下必接受H0.正确答案:D 涉及知识点:概率论与数理统计填空题6.设随机变量X的方差为2,则根据切比雪夫不等式有估计P{|X-E(X)|≥2}≤_______.正确答案:解析:切比雪夫不等式为:P{|X-E(X)|≥ε2}≤.故P{|X-E(X)|≥2}≤.知识模块:概率论与数理统计7.已知一批零件的长度X(单位:cm)服从正态分布N(μ,1),从中随机地抽取16个零件,得到长度的平均值为40cm,则μ的置信度为0.95的置信区间是_______.(注:标准正态分布函数值Ф(1.96)=0.975,Ф(1.645)=0.95)正确答案:(39.51,40.49) 涉及知识点:概率论与数理统计8.设X1,X2,…,Xm为来自二项分布总体B(n,p)的简单随机样本,和S2分别为样本均值和样本方差.若+kS2为np2的无偏估计量,则k=_______.正确答案:-1解析:设总体为X,则知X~B(n,p),EX=np,DX=np(1-p).∴E =np,ES2=np(1-p) 由题意得np2=E(+kS2)=E+kES2=np+knp(1-p) 故得k=-1.知识模块:概率论与数理统计9.设总体X的概率密度为其中θ是未知参数,X1,X2,…,Xn为来自总体X的简单随机样本.若cXi2是θ2的无偏估计,则c=_______.正确答案:解析:由题意得:θ2==ncE(X12) =nc∫-∞+∞χ2f(χ;θ)dχ=故c=.知识模块:概率论与数理统计10.设χ1,χ2,…,χn为来自总体N(μ,σ2)的简单随机样本,样本均值=9.5,参数μ的置信度为0.95的双侧置信区间的置信上限为10.8,则μ的置信度为0.95的双侧置信区间为________.正确答案:(8.2,10.8) 涉及知识点:概率论与数理统计解答题解答应写出文字说明、证明过程或演算步骤。

历年考研概率论试题

历年考研概率论试题

94年(1)已知A 、B 两个事件满足条件P (AB )=P (A B ),且P (A )=p ,则P (B )=。

(3分)(2)设相互独立的两个随机变量,X Y 具有同一分布律,且X 的分布律为则随机变量{}max ,z X Y =的分布律为 。

(3分)(3)已知随机变量,X Y 分别服从正态分布22(1,3),(0,4)N N ,且,X Y 的相关系数12xy ρ=-,设32X Yz =+,(1)求Z 的数学期望EZ 和方差DZ ;(2)求X 与Z 的相关系数xz ρ;(3)问X 与Z 是否相互独立?为什么?(满分6分)95年(1)设X 表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则2X 的数学期望2()E X = 。

(2)设,X Y 为两个随机变量,且{}{}{}340,0,0077P X Y P X P Y ≥≥=≥=≥=,则{}max(,)0P X Y ≥= 。

(3) 设随机变量X 的概率密度为⎩⎨⎧<≥=-0,00)(x x e x f xX求随机变量Xe Y =的概率密度)(yf Y 。

(6分)96年1. 设工厂A 和工厂B 的产品的次品率分别为1%和2%,现从由A 厂和B 厂的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品是A 厂生产的概率是 。

(3分)2. 设,ξη是两个相互独立且均服从正态分布N (0,21)的随机变量,则=-|)(|ηξE。

(3分)3.设,ξη是相互独立且服从同一分布的两个随机变量,已知ξ的分布律为1(),1,2,3,max(,),min(,).3P i i X Y ξξηξη=====又设(1) 写出二维随机变量(X ,Y )的分布律;(2) 求EX 。

(共6分)97年1. 袋中有50个乒乓球,其中20个是黄球,30个是白球。

今有两人依次随机地从袋中各取一球,取后不放回,则第2个人取得黄球的概率是 。

(3分)2.设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量3X -2Y 的方差是( ) (A )8 (B )16 (C )28 (D )44 [3分]3. 从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是52。

历年数学一概率(1987-2015)

历年数学一概率(1987-2015)

历年考研数学一真题1987-2014(经典珍藏版)1987年全国硕士研究生入学统一考试数学(一)试卷十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)设在一次实验中,事件A 发生的概率为,p 现进行n 次独立试验,则A 至少发生一次的概率为____________;而事件A 至多发生一次的概率为____________.(2)有两个箱子,第1个箱子有3个白球,2个红球, 第2个箱子有4个白球,4个红球.现从第1个箱子中随机地取1个球放到第2个箱子里,再从第2个箱子中取出1个球,此球是白球的概率为____________.已知上述从第2个箱子中取出的球是白球,则从第一个箱子中取出的球是白球的概率为____________. (3)已知连续随机变量X 的概率密度函数为221(),xx f x-+-=则X 的数学期望为____________,X 的方差为____________.十一、(本题满分6分)设随机变量,X Y 相互独立,其概率密度函数分别为()X f x = 1001x ≤≤其它,()Y f y = e 0y- 00y y >≤, 求2Z X Y =+的概率密度函数.1988年全国硕士研究生入学统一考试数学(一)试卷十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)设在三次独立试验中,事件A出现的概率相等,若已知A至少出现一次的概率等于19,27则事件A在一次试验中出现的概率是____________.(2)若在区间(0,1)内任取两个数,则事件”两数之和小于65”的概率为____________.(3)设随机变量X服从均值为10,均方差为0.02的正态分布,已知22(),(2.5)0.9938,uxx duφφ-==⎰则X落在区间(9.95,10.05)内的概率为____________.十一、(本题满分6分)设随机变量X的概率密度函数为21(),(1)Xf xxπ=-求随机变量1Y=-的概率密度函数().Yf y1989年全国硕士研究生入学统一考试数学(一)试卷十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)已知随机事件A的概率()0.5,P A=随机事件B的概率()0.6P B=及条件概率(|)0.8,P B A=则和事件A B的概率()P A B=____________.(2)甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为____________.(3)若随机变量ξ在(1,6)上服从均匀分布,则方程210x xξ++=有实根的概率是____________.十一、(本题满分6分)设随机变量X与Y独立,且X服从均值为1、标准差(均方差)的正态分布,而Y服从标准正态分布.试求随机变量23Z X Y=-+的概率密度函数.1990年全国硕士研究生入学统一考试数学(一)试卷十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)已知随机变量X 的概率密度函数1()e ,2xf x x -=-∞<<+∞ 则X 的概率分布函数()F x =____________.(2)设随机事件A 、B 及其和事件的概率分别是0.4、0.3和0.6,若B 表示B 的对立事件,那么积事件AB 的概率()P AB =____________.(3)已知离散型随机变量X 服从参数为2的泊松()Poisson 分布,即22e {},0,1,2,,!k P X k k k -=== 则随机变量32Z X =-的数学期望()E Z =____________.十一、(本题满分6分)设二维随机变量(,)X Y 在区域:01,D x y x <<<内服从均匀分布,求关于X 的边缘概率密度函数及随机变量21Z X =+的方差().D Z1991年全国硕士研究生入学统一考试十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)若随机变量X 服从均值为2、方差为2σ的正态分布,且{24}0.3,P X <<=则{0}P X <=____________.(2)随机地向半圆0y a <<为正常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点和该点的连线与x 轴的夹角小于4π的概率为____________.十一、(本题满分6分)设二维随机变量(,)X Y 的密度函数为(,)f x y =(2)2e 0,00 x y x y -+>>其它求随机变量2Z X Y =+的分布函数.1992年全国硕士研究生入学统一考试数学(一)试卷十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上) (1)已知11()()(),()0,()(),46P A P B P C P AB P AC P BC ======则事件A、B 、C 全不发生的概率为____________.(2)设随机变量X 服从参数为1的指数分布,则数学期望2{e }X E X -+=____________. 十一、(本题满分6分)设随机变量X 与Y 独立,X 服从正态分布2(,),N Y μσ服从[,]ππ-上的均匀分布,试求Z X Y =+的概率分布密度(计算结果用标准正态分布函数Φ表示,其中22()e)t xx dt --∞Φ=.1993年全国硕士研究生入学统一考试数学(一)试卷十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)一批产品共有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为____________.(2)设随机变量X 服从(0,2)上的均匀分布,则随机变量2Y X =在(0,4)内的概率分布密度()Y f y =____________.十一、(本题满分6分) 设随机变量X的概率分布密度为1()e ,.2xf x x -=-∞<<+∞ (1)求X 的数学期望EX 和方差.DX(2)求X 与X 的协方差,并问X 与X 是否不相关? (3)问X 与X 是否相互独立?为什么?1994年全国硕士研究生入学统一考试数学(一)试卷十、填空题(本题共2小题,每小题3分,满分6分. (1)已知A 、B 两个事件满足条件()(),P AB P AB =且(),P A p =则()P B =____________.(2)设相互独立的两个随机变量,X Y 具有同一分布率,且X 的分布率为则随机变量max{,}Z X Y =的分布率为____________. 十一、(本题满分6分) 设随机变量X和Y 分别服从正态分布2(1,3)N 和2(0,4),N 且X 与Y 的相关系数1,2xy ρ=-设,32X Y Z =+(1)求Z 的数学期望EZ 和DZ 方差. (2)求X 与Z 的相关系数.xz ρ (3)问X 与Y 是否相互独立?为什么?1995年全国硕士研究生入学统一考试数学(一)试卷十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)设X 表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则2X 的数学期望2()E X =____________.(2)设X 和Y 为两个随机变量,且34{0,0},{0}{0},77P X Y P X P Y ≥≥=≥=≥= 则{max(,)0}P X Y ≥=____________. 十一、(本题满分6分) 设随机变量X 的概率密度为()X f x = e 0x- 00x x ≥<,求随机变量e XY =的概率密度().Y f y1996年全国硕士研究生入学统一考试数学(一)试卷十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)设工厂A 和工厂B 的产品的次品率分别为1%和2%,现从由A 和B 的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品属A 生产的概率是____________.(2)设,ξη是两个相互独立且均服从正态分布2)N 的随机变量,则随机变量ξη-的数学期望()E ξη-=____________.十一、(本题满分6分)设,ξη是两个相互独立且服从同一分布的两个随机变量,已知ξ的分布率为1(),1,2,3.3P i i ξ===又设max(,),min(,).X Y ξηξη==(1)写出二维随机变量的分布率:(2)求随机变量X 的数学期望().E X 1997年全国硕士研究生入学统一考试数学(一)试卷(5)袋中有50个乒乓球,其中20个是黄球,30个是白球,今有两人依次随机地从袋中各取一球,取后不放回,则第二个人取得黄球的概率是_____________. (5)设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量32X Y -的方差是(A)8 (B)16 (C)28 (D)44 九、(本题满分7分)从学校乘汽车到火车站的途中有3个交通岗,假设再各个交通岗遇到红灯的事件是相互独立的,并且概率都是2.5设X 为途中遇到红灯的次数,求随机变量X 的分布律、分布函数和数学期望. 十、(本题满分5分) 设总体X 的概率密度为()f x =(1)0x θθ+ 01x <<其它 其中1θ>-是未知参数12,,,,n X X X 是来自总体X 的一个容量为n 的简单随机样本,分别用矩估计法和极大似然估计法求θ的估计量.1998年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (5)设平面区域D 由曲线1y x=及直线20,1,e y x x ===所围成,二维随机变量(,)X Y 在区域D 上服从均匀分布,则(,)X Y 关于X的边缘概率密度在2x =处的值为_____________. (5)设,A B是两个随机事件,且0()1,()0,(|)(|),P A P B P B A P B A <<>=则必有(A)(|)(|)P A B P A B = (B)(|)(|)P A B P A B ≠(C)()()()P AB P A P B = (D)()()()P AB P A P B ≠ 十三、(本题满分6分)设两个随机变量,X Y 相互独立,且都服从均值为0、方差为12的正态分布,求随机变量X Y -的方差.十四、(本题满分4分)从正态总体2(3.4,6)N 中抽取容量为n 的样本,如果要求其样本均值位于区间(1.4,5.4)内的概率不小于0.95,问样本容量n 至少应取多大? 附:标准正态分布表22()t zx dt -Φ=⎰十五、(本题满分4分)设某次考试的学生成绩服从正态分布,从中随机地抽取36位考生地成绩,算得平均成绩为66.5分,标准差为15分.问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70 分?并给出检验过程. 附:t 分布表{()()}p P t n t n p ≤=1999年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(5)设两两相互独立的三事件,A B和C 满足条件:1,()()(),2ABC P A P B P C =∅==<且已知9(),16P A B C = 则()P A =_____________.二、选择题(5)设两个相互独立的随机变量X 和Y 分别服从正态分布(0,1)N 和(1,1)N ,则 (A)1{0}2P X Y +≤=(B)1{1}2P X Y +≤=(C)1{0}2P X Y -≤=(D)1{1}2P X Y -≤=十二、(本题满分8分)设随机变量X 与Y 相互独立,下表列出了二维随机变量(,)X Y 联合分布率及关于X 和关于Y 的边缘分布率中的部分数值,试将其余数值填入表中的空白处.十三、(本题满分6分)设X 的概率密度为36() 0< ()0 其它xx x f x θθθ⎧-<⎪=⎨⎪⎩,12,,,n X X X 是取自总体X 的简单随机样本 (1)求θ的矩估计量ˆθ. (2)求ˆθ的方差ˆ().D θ2000年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(5)设两个相互独立的事件A和B都不发生的概率为19,A发生B不发生的概率与B发生A不发生的概率相等,则()P A=_____________.二、选择题(5)设二维随机变量(,)X Y服从二维正态分布,则随机变量X Yξ=+与X Yη=-不相关的充分必要条件为(A)()()E X E Y=(B)2222()[()]()[()]E X E X E Y E Y-=-(C)22()()E X E Y=(D)2222()[()]()[()]E X E X E Y E Y+=+十二、(本题满分8分)某流水线上每个产品不合格的概率为(01)p p<<,各产品合格与否相对独立,当出现1个不合格产品时即停机检修.设开机后第1次停机时已生产了的产品个数为X,求X的数学期望()E X和方差()D X.十三、(本题满分6分)设某种元件的使用寿命X的概率密度为2()2e(;)x xf xxθθθθ-->⎧=⎨≤⎩,其中0θ>为未知参数.又设12,,,nx x x是X的一组样本观测值,求参数θ的最大似然估计值.2001年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把(5)()2D X=,则根据车贝晓夫不等式有估计≤≥-}2)({XEXP _____________.二、选择题(5)将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数, 则X和Y相关系数为(A) -1 (B)0(C)12(D)1十一、(本题满分7分)设某班车起点站上客人数X服从参数为(0)λλ>的泊松分布,每位乘客在中途下车的概率为(01),p p<<且中途下车与否相互独立.Y为中途下车的人数,求:(1)在发车时有n个乘客的条件下,中途有m人下车的概率.(2)二维随机变量(,)X Y的概率分布.十二、(本题满分7分)设2~(,)X Nμσ抽取简单随机样本122,,,(2),nX X X n≥样本均值∑==niiXnX2121,∑=+-+=niiniXXXY12)2(,求().E Y2002年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(5)设随机变量),(~2σμN X ,且二次方程42=++X y y 无实根的概率为0.5,则μ=_____________.二、选择题(5)设X 和Y 是相互独立的连续型随机变量,它们的密度函数分别为)(x f X 和)(y f Y ,分布函数分别为)(x F X 和)(y F Y ,则(A))(x f X +)(y f Y 必为密度函数 (B))(x f X )(y f Y 必为密度函数(C))(x F X +)(y F Y 必为某一随机变量的分布函数 (D))(x F X )(y F Y 必为某一随机变量的分布函数.十一、(本题满分7分)设维随机变量X 的概率密度为()f x =1cos 0220 xx x≤≤其它对X 独立地重复观察4次,用Y 表示观察值大于3π的次数,求2Y 的数学期望.十二、(本题满分7分) 设总体X 的概率分布为其中θ(102θ<<)是未知参数,利用总体X 的如下样本值 3,1,3,0,3,1,2,3.求θ的矩估计和最大似然估计值.2003年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (5)设二维随机变量(,)X Y 的概率密度为(,)f x y =60x01x y ≤≤≤其它,则=≤+}1{Y X P .(6)已知一批零件的长度X (单位:cm)服从正态分布)1,(μN ,从中随机地抽取16个零件,得到长度的平均值为40 (cm),则μ的置信度为0.95的置信区间是 . (注:标准正态分布函数值.)95.0)645.1(,975.0)96.1(=Φ=Φ 二、选择题(6)设随机变量21),1)((~X Y n n t X =>,则 (A)2~()Y n χ (B)2~(1)Y n χ- (C)~(,1)Y F n (D)~(1,)Y F n 十一 、(本题满分10分)已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品. 从甲箱中任取3件产品放入乙箱后,求:(1)乙箱中次品件数的数学期望.(2)从乙箱中任取一件产品是次品的概率. 十二 、(本题满分8分) 设总体X 的概率密度为()f x =2()2e 0x θ-- 0x x θ>≤ 其中0>θ是未知参数. 从总体X 中抽取简单随机样本n X X X ,,,21 ,记).,,,min(ˆ21nX X X =θ (1)求总体X 的分布函数()F x .(2)求统计量θˆ的分布函数)(ˆx F θ.(3)如果用θˆ作为θ的估计量,讨论它是否具有无偏性.2004年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= __________ . 二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(13)设随机变量X 服从正态分布(0,1),N 对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A)2αu (B)21α-u(C)21α-u (D) α-1u(14)设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A)21Cov(,)X Y nσ= (B)21Cov(,)X Y σ=(C)212)(σnn Y X D +=+ (D)211)(σnn Y X D +=- (22)(本题满分9分)设,A B 为随机事件,且111(),(|),(|)432P A P B A P A B ===,令;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧= 求:(1)二维随机变量(,)X Y 的概率分布. (2)X 和Y 的相关系数.XY ρ (23)(本题满分9分)设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x x x F ββ其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(1)β的矩估计量. (2)β的最大似然估计量.2005年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (6)从数1,2,3,4中任取一个数,记为X , 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =____________.二、选择题(13)设二维随机变量(,)X Y 的概率分布为已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A)0.2,0.3a b == (B)0.4,0.1a b == (C)0.3,0.2a b == (D)0.1,0.4a b ==(14)设)2(,,,21≥n X X X n 为来自总体(0,1)N 的简单随机样本,X 为样本均值,2S 为样本方差,则(A))1,0(~N X n (B)22~()nS n χ(C))1(~)1(--n t SXn (D)2122(1)~(1,1)nii n X F n X=--∑(22)(本题满分9分)设二维随机变量(,)X Y 的概率密度为(,)f x y = 10 01,02x y x<<<<其它求:(1)(,)X Y 的边缘概率密度)(),(y f x f Y X . (2)YX Z-=2的概率密度).(z f Z(23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体(0,1)N 的简单随机样本,为样本均值,记.,,2,1,n i X X Y i i =-=求:(1)i Y 的方差n i DY i ,,2,1, =. (2)1Y 与n Y 的协方差1Cov(,).n Y Y数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (6)设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,则{}max{,}1P X Y ≤= .二、选择题(13)设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有(A)()()P A B P A > (B)()()P A B P B > (C)()()P A B P A = (D)()()P A B P B = (14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ, 且12{||1}{||1},P X P Y μμ-<>-<则(A)12σσ< (B)12σσ> (C)12μμ< (D)12μμ>(22)随机变量x 的概率密度为()()21,1021,02,,40,令其它x x f x x y x F x y ⎧-<<⎪⎪⎪=≤<=⎨⎪⎪⎪⎩为二维随机变量(,)X Y 的分布函数.(1)求Y 的概率密度()Y f y .(2)1,42F ⎛⎫- ⎪⎝⎭. (23)(本题满分9分)设总体X 的概率密度为(,0)F X = 10θθ- 0112x x <<≤<其它,其中θ是未知参数(01)θ<<,12n ,...,X X X 为来自总体X 的简单随机样本,记N 为样本值12,...,n x x x 中小于1的个数,求θ的最大似然估计.数学(一)试卷一、选择题(9)某人向同一目标独立重复射击,每次射击命中目标的概率为()01p p <<,则此人第4次射击恰好第2次命中目标的概率为(A)23(1)p p - (B)26(1)p p - (C)223(1)p p - (D)226(1)p p -(10)设随即变量(,)X Y 服从二维正态分布,且X 与Y 不相关,()X f x ,()Y f y 分别表示,X Y的概率密度,则在Y y =的条件下,X 的条件概率密度|(|)X Y f x y 为(A)()X f x (B)()Y f y (C)()X f x ()Y f y (D)()()X Y f x f y 二、填空题(16)在区间(0,1)中随机地取两个数,则这两个数之差的绝对值小于12的概率为________.(23)设二维随机变量(,)X Y 的概率密度为2,01,01(,)0,x y x y f x y --<<<<⎧=⎨⎩其他(1)求{2}.P X Y > (2)求Z X Y =+的概率密度.(24)设总体X 的概率密度为1,021(;),12(1)0,x f x x θθθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他 12,,n X X X 是来自总体x 的简单随机样本,X 是样本均值(1)求参数θ的矩估计量ˆθ.(2)判断24X 是否为2θ的无偏估计量,并说明理由.2008年全国硕士研究生入学统一考试数学(一)试卷一、选择题(7)设随机变量,X Y 独立同分布且X 分布函数为()F x ,则{}max ,Z X Y =分布函数为 (A)()2F x (B) ()()F x F y (C) ()211F x --⎡⎤⎣⎦ (D) ()()11F x F y --⎡⎤⎡⎤⎣⎦⎣⎦ (8)设随机变量()~0,1X N ,()~1,4Y N 且相关系数1XY ρ=,则 (A){}211P Y X =--= (B){}211P Y X =-= (C){}211P Y X =-+= (D){}211P Y X =+= 二、填空题(14)设随机变量X 服从参数为1的泊松分布,则{}2P X EX == .(22)设随机变量X 与Y 相互独立,X 的概率分布为{}()11,0,13P X i i ===-,Y 的概率密度为()1010Y y f y ≤≤⎧=⎨⎩其它,记Z X Y =+,(1)求102P Z X ⎧⎫≤=⎨⎬⎩⎭.(2)求Z 的概率密度. (23)设12,,,n X X X 是总体为2(,)N μσ的简单随机样本.记11n i i X X n ==∑,2211()1n ii S X X n ==--∑,221T X S n =- (1)证明T 是2μ的无偏估计量. (2)当0,1μσ==时 ,求DT .2009年全国硕士研究生入学统一考试数学(一)试卷一、选择题(7)设随机变量X 的分布函数为()()10.30.72x F x x -⎛⎫=Φ+Φ ⎪⎝⎭,其中()x Φ为标准正态分布函数,则EX =(A)0 (B)0.3 (C)0.7 (D)1(8)设随机变量X 与Y 相互独立,且X 服从标准正态分布()0,1N ,Y 的概率分布为{}{}1012P Y P Y ====,记()Z F z 为随机变量Z XY =的分布函数,则函数()Z F z 的间断点个数为(A)0 (B)1 (C)2 (D)3 二、填空题(14)设12,,,m X X X 为来自二项分布总体(),B n p 的简单随机样本,X 和2S 分别为样本均值和样本方差.若2X kS +为2np 的无偏估计量,则k = .(22)袋中有1个红色球,2个黑色球与3个白球,现有回放地从袋中取两次,每次取一球,以,,X Y Z 分别表示两次取球所取得的红球、黑球与白球的个数.(1)求{}10p X Z ==. (2)求二维随机变量(),X Y 概率分布(23)设总体X 的概率密度为2,0()0,x xe x f x λλ-⎧>=⎨⎩其他,其中参数(0)λλ>未知,1X ,2X ,…n X 是来自总体X 的简单随机样本.(1)求参数λ的矩估计量. (2)求参数λ的最大似然估计量.2010年全国硕士研究生入学统一考试数学(一)试卷一、选择题(7)设随机变量X的分布函数()F x = 00101,21e 2x x x x -<≤≤->则{1}P X ==(A)0 (B)1 (C)11e 2-- (D)11e --(8)设1()f x 为标准正态分布的概率密度2,()f x 为[1,3]-上均匀分布的概率密度,()f x =12()()af x bf xx x ≤> (0,0)a b >>为概率密度,则,a b 应满足(A)234a b += (B)324a b += (C)1a b += (D)2a b +=二、填空题(9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.) (14)设随机变量X 概率分布为{}(0,1,2,),!CP X k k k === 则2EX = . (22)(本题满分11分)设二维随机变量()X Y +的概率密度为2222(,)e ,,,x xy y f x y A x y -+-=-∞<<∞-∞<<∞求常数及A 条件概率密度|(|).Y X f y x(23)(本题满分11 分) 设总体X 的概率分布为其中(0,1)θ∈未知,以i N 来表示来自总体X 的简单随机样本(样本容量为n )中等于i 的个数(1,2,3),i =试求常数123,,,a a a 使31i i i T a N ==∑为θ的无偏估计量,并求T 的方差.212011年全国硕士研究生入学统一考试数学(一)试卷一、选择题7、设)()(21x F x F 为两个分布函数,且连续函数)()(21x f x f 为相应的概率密度,则必为概率密度的是( )A )()(21x f x fB )()(212x F x fC )()(21x F x fD )()(21x F x f +)()(12x F x f8、设随机变量Y X ,相互独立,且EY EX ,都存在,记{}Y X U ,max ={}Y X V ,min =,则=EUV ( )A EV EU ⋅B EY EX ⋅C EY EU ⋅D EV EX ⋅二、填空题14、设二维随机变量)0,,,,(~),(22σσμμN Y X ,则____________)(2=XY E22、设随机变量X 与Y 的概率分布分别为且{}122==Y X P求(1)二维随机变量(X ,Y )的概率分布; (2)XYZ=的概率分布(3)X 与Y 的相关系数XY ρ23、(本题满分11分)设n X X X 21,是来自正态总体),(20σμN 的简单随机样本,其中0μ已知,02>σ未知.2,S X 为样本均值和样本方差. 求(1)求参数2σ的最大似然估计Λ2σ(2) 计算E Λ2σ和D Λ2σ222012年全国硕士研究生入学统一考试数学(一)试卷一、选择题:(7)设随机变量x 与y 相互独立,且分别服从参数为1与参数为4的指数分布,则{}=<y x p ()1124()()() ()5355A B C D(8)将长度为1m 的木棒随机地截成两段,则两段长度的相关系数为()1)(21)(21)(1)(--D C B A二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上. (14)设,,A B C 是随机事件,,A C 互不相容,1()2P AB =,1()3P C =,则()P AB C -=________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

清华大学2000年概率统计研究生入学考试试题
一、设(|)0.5P A B =,(|)0.4P B A =,()0.6P A =。

求()P A B ⋃,并问事件A 与事件B 是否独立,为什么?
二、设随机向量(,)X Y 服从二维正态分布22
1212(,,,,)N a a σσρ。

试证明:U X Y =+和V X Y =-独立。

三、设(12,,
,n X X X )是正态总体2(,)X N μσ的一个简单样本,X 为样本均值,求
1
(||)n i i E X X =-∑。

四、设12,,,n X X X 是总体X 的简单样本,而总体101X q r p -⎛⎫ ⎪⎝⎭(表示遵从)
,其中01,01,1p q p q r <<<<++=,
1) 求12,,,n X X X 最大值M 的分布。

2) 设0r =。

当n 充分大时,利用极限定理求样本均值X 的近似分布。

五、设总体X 的概率密度函数为
(),()0,
x e x f x λμλμμ--⎧>=⎨≤⎩x 。

这里μ和λ(>0)都是参数。

又设12,,
,n X X X 为该总体的简单样本,而12,,,n
x x x 为其样本观察值。

1) 设λ已知,求μ的极大似然估计L μ
2) 设μ已知,求λ的矩估计M λ。

六、设网络中在(0,]t 时段内到某个网站访问的次数(0,]t ξ,0t ≥,是强度为λ(>0)的
Poisson 流。

(1)试求第k 次访问次网站的时间k η的分布,k 为正整数;
(2)求比12
ηη的分布和120(|)E t ηη=,00t >;
(3)利用Poisson 流的性质,证明Poisson 的可加性,即若随机变量1X ,2X 独立,且()i i X p λ(服从参数为i λ的Poisson 分布),1,2i =。

则12X X +12()P λλ+。

清华大学2001年概率统计研究生入学考试试题
一、某项福利彩票的抽奖活动中有n 个号码(1,,n )
,中奖的号码定为k 个,采用无放回随机抽样。

求k 个中奖号码算术平均值的期望。

二、12,,,n X X X 为独立2(,)N μσ分布样本,X 为样本均值,
1) 求(||)i E X X -;
2) 用1||n i i c X
X σ==-∑作为σ的估计,确定c 使得次估计是无偏的。

三、1212,,;,,
X X Y Y ,为两串随机变量序列。

1) 设当n →∞,n Y 依分布收敛到常数a ,证明n Y 依概率收敛到a 。

2) 设当n →∞,n X 依概率收敛到随机变量X ,n Y 依概率收敛到随机变量Y ,证明
n n X Y +依概率收敛到X Y +。

四、设X 和Y 为两个独立的随机变量,都服从期望值为θ的指数分布。

(1)求在已知X Y t +=的条件下,Y 的条件分布;
(2)求Y X Y
+的分布。

五、12,,
,n X X X 为独立(,1)N μ分布随机变量,记12(,,,)T n X X X X =,A 为n 阶对称矩阵。

证明,当下列的三条件:
(1)2A A =
(2)()tr A k =
(3)AI =0,其中I 为所有元素为1的n 阶向量,0为所有元素为0的n 阶向量 全部满足时,T X AX 服从自由度为k 的2χ分布。

相关文档
最新文档