初中数学动态几何定值问题(word版+详解答案)
中考数学动态几何之定值问题
中考数学动态几何之定值问题一、线段(和差)为定值问题:1、已知:在矩形ABCD中,AB=6cm,AD=9cm,点P从点B出发,沿射线BC方向以每秒2cm的速度移动,同时,点Q从点D出发,沿线段DA以每秒1cm的速度向点A方向移动(当点Q到达点A时,点P与点Q同时停止移动),PQ交BD于点E.求证:在点P、Q的移动过程中,线段BE的长度保持不变.2、如图,已知二次函数L1:y=x2﹣4x+3与x轴交于A、B两点(点A在点B左边),与y轴交于点C,顶点坐标为P.(1)写出二次函数L1的开口方向、对称轴和顶点坐标;(2)研究二次函数L2:y=kx2﹣4kx+3k(k≠0).①写出二次函数L2与二次函数L1有关图象的两条相同的性质;②是否存在实数k,使△ABP为等边三角形?如果存在,请求出k的值;如不存在,请说明理由;③若直线y=8k与抛物线L2交于E、F两点,问线段EF的长度是否发生变化?如果不会,请求出EF的长度;如果会,请说明理由.3、如图,Rt△ABC中,∠A=30°,BC=10cm,点Q在线段BC上从B向C运动,点P在线段BA上从B 向A运动.Q、P两点同时出发,运动的速度相同,当点Q到达点C时,两点都停止运动.作PM⊥PQ交CA于点M,过点P分别作BC、CA的垂线,垂足分别为E、F.(1)求证:△PQE∽△PMF;(2)当点P、Q运动时,请猜想线段PM与MA的大小有怎样的关系?并证明你的猜想;(3)设BP=x,△PEM的面积为y,求y关于x的函数关系式,当x为何值时,y有最大值,并将这个值求出来.4、已知正方形ABCD,点P是对角线AC所在直线上的动点,点E在DC边上所在直线上,且随着点P运动而运动,PE=PD总成立.(1)如图(1),当点P在对角线AC上时,请你通过测量、观察,猜想PE与PB有怎样的关系?(直接写出结论不必证明);(2)如图(2),当点P运动到CA的延长线上时,(1)中猜想的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由;(3)如图(3),当点P运动到CA的反向延长线上时,请你利用图(3)画出满足条件的图形,并判断此时PE与PB有怎样的关系?(直接写出结论不必证明)(1)(2) (3)5、如图,梯形ABCD中,AD∥BC,BC=20cm,AD=10cm,现有两个动点P、Q分别从B、D两点同时..出发,点P以每秒2cm的速度沿BC向终点C移动,点Q以每秒1cm的速度沿DA向终点A移动,线段PQ与BD相交于点E,过E作EF∥BC交CD于点F,射线QF交BC的延长线于点H,设动点P、Q移动的时间为t(单位:秒,0<t<10).(1)当t为何值时,四边形PCDQ为平行四边形?(2)在P、Q移动的过程中,线段PH的长是否发生改变?如果不变,求出线段PH的长;如果改变,请说明理由.6、已知:A、B、C不在同一直线上.(1)若点A、B、C均在半径为R的⊙O上,i)如图一,当∠A=45°时,R=1,求∠BOC的度数和BC的长度;ii)如图二,当∠A为锐角时,求证sin∠A= BC2R;(2).若定长线段....BC的两个端点分别在∠MAN的两边AM、AN(B、C均与点A不重合)滑动,如图三,当∠MAN=60°,BC=2时,分别作BP⊥AM,CP⊥AN,交点为点P,试探索:在整个滑动过程中,P、A 两点的距离是否保持不变?请说明理由.二、面积(和差)为定值问题:1、如图,在梯形ABCD中,AD∥BC,E、F分别是AB、DC边的中点,AB=4,∠B=60°,(1)求点E到BC边的距离;(2)点P为线段EF上的一个动点,过P作PM⊥BC,垂足为M,过点M作MN∥AB交线段AD于点N,连接PN、探究:当点P在线段EF上运动时,△PMN的面积是否发生变化?若不变,请求出△PMN的面积;若变化,请说明理由.2、如图,在平面直角坐标系x O y中,矩形AOCD的顶点A的坐标是(0,4),现有两动点P、Q,点P从点O出发沿线段OC(不包括端点O,C)以每秒2个单位长度的速度,匀速向点C运动,点Q从点C出发沿线段CD(不包括端点C,D)以每秒1个单位长度的速度匀速向点D运动.点P,Q同时出发,同时停止,设运动时间为t秒,当t=2秒时PQ=52.(1)求点D的坐标,并直接写出t的取值范围;(2)连接AQ并延长交x轴于点E,把AE沿AD翻折交CD延长线于点F,连接EF,则△AEF的面积S是否随t的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S的值.(3)在(2)的条件下,t为何值时,四边形APQF是梯形?练习题:1.如图1,在△ABC中,AB=AC=5,BC=6,D、E分别是AB、AC的中点,F、G为BC上的两点,FG=3,线段DG,EF的交点为O,当线段FG在线段BC上移动时,三角形FGO的面积与四边ADOE的面积之和恒为定值,则这个定值是.2.如图2,在矩形ABCD 中,AD=5,AB=4,点E 、G 、H 、F 分别在AB 、BC 、CD 、AD 上,且AF=CG=2,BE=DH=1,点P 是直线EF 、GH 之间任意一点,连接PE 、PF 、PG 、PH ,则△PEF 和△PGH 的面积和等于 _________ .图1 图23.如图所示,四边形OABC 是矩形.点A 、C 的坐标分别为(30-,),(0,1),点D 是线段BC 上的动点(与端点B 、C 不重含),过点D 作直线12y x b =+交折线OAB 于点E 。
专题01 几何动态问题(解析版)
专题01 几何动态问题1.小明发现,若一个三角形中,中线的存在会和三角形的面积有一定的关系.如图1,ABC D 中,CD 为AB 边的中线,可得AD BD =,过点C 作CM AB ^于M ,则1122ADC BDC S AD CM BD CM S D D =×=×=.在持续研究中,小明发现,这个研究可以运用到很多问题解决中,请你帮助小明完成下列任务:(1)如图2,矩形ABCD 中,点M ,N 分别为CD ,AB 上的动点,且DM AN =,AM 与DN 交于点E .连接CE .①判断DAE D 与DME D 的面积关系;②若3AD =,4AB =,当点M 为CD 的中点时,求四边形BCEN 的面积;(2)ABC D 中,30A Ð=°,6AB =,点D 为AB 的中点,连接CD ,将ACD D 沿CD 折叠,点A 的对应点为点E ,若ECD D 与ABC D 重合部分的面积为ABC D 面积的14,直接写出ABC D 的面积.【解答】解:(1)①连接MN ,作DP AM ^,垂足为P ,//DM AN Q ,DM AN =,90ADM Ð=°,\四边形ANMD 是矩形,AE EM \=,DE EN =,12DAE S AE DP D \=×,12DME S EM DP D =×,DAE DME S S D D \=;②DNA DEC BCEN ABCD S S S S D D =--四边形四边形,E Q 为AM 的中点,E \到DM 的距离为12AD ,11114332222DEC S DC AD D \=×=´´´=,111433222DAN S AN AD D =×=´´´=,4312ABCD S AB CD =×=´=Q 矩形,12336BCEN S \=--=四边形;(2)设ACD S D 的高为h ,由前面提到的发现可知,CD 作为中线,可得ACD CDB S S D D =,11132222ACD S AD h AB h h D =×=´×=Q ,23ABC ACD S S h D D \==,设BC 交DE 于点Q ,Q 重合部分面积为ABC S D 的14,即13344CDQ S h h D =´=,11111244222CDQ ABC ADC ADC CDE CDB S S S S S S D D D D D D \==´===,CQ Q 是中线,QD QE \=,1111322222QE DE AD AB \===´=,CDE D Q 是由ACD D 沿CD 折叠,30A E \Ð=Ð=°,cos30°=Q\QE CE ==CE \,根据勾股定理得,CQ ==,CQE CQD S S D D \==14ABC CQE S S D D \=2.【问题再现】苏科版《数学》八年级下册第94页有这样一题:如图1,在正方形ABCD 中,E ,F ,G 分别是BC ,CD ,AD 上的点,GE BF ^,垂足为M ,那么GE = BF .(填“<”、“ =”或“>” )【迁移尝试】如图2,在56´的正方形网格中,点A ,B ,C ,D 为格点,AB 交CD 于点M .求AMC Ð的度数;【拓展应用】如图3,点P 是线段AB 上的动点,分别以AP ,BP 为边在AB 的同侧作正方形APCD 与正方形PBEF ,连接DE 分别交线段BC ,PC 于点M ,N .①求DMC Ð的度数;②连接AC 交DE 于点H ,直接写出DH BC的值为 .【解答】解:【问题再现】GE BF ^Q ,90BMG \Ð=°,将线段GE 向左平移至AL 处,交BF 于I ,AL GE \=,90AIB BMG Ð=Ð=°,90BAL ABI \Ð+Ð=°,Q 四边形ABCD 为正方形,AB BC \=,90ABC C Ð=Ð=°,90CBF ABI \Ð+Ð=°,BAL CBF \Ð=Ð,()ABL BCF ASA \D @D ,AL BF \=,GE BF \=,故答案为:=;【迁移尝试】将线段AB 向右平移至ND 处,使得点B 与点D 重合,连接PN ,如图2所示:AMC NDC \Ð=Ð,设正方形网格的边长为单位1,则由勾股定理可得:DN ==,PD ==,PN ==,222PN PD DN \+=,DPN \D 是直角三角形,90DPN Ð=°,且PN PD =,45AMC NDC \Ð=Ð=°;【拓展应用】①平移线段BC 至DK 处,连接KE ,如图3所示:则DMC KDE Ð=Ð,四边形DKBC 是平行四边形,DC KB \=,Q 四边形ADCP 与四边形PBEF 都是正方形,DC AD AP \==,BP BE =,90DAK KBE Ð=Ð=°DC AD AP KB \===,AG BP BE \==,在AKD D 和BEK D 中,AK BE DAK KBE AD KB =ìïÐ=Ðíï=î,()AKD BEK SAS \D @D ,DK EK \=,ADK EKB Ð=Ð,90EKB AKD ADK AKD \Ð+Ð=Ð+Ð=°,90EKD \Ð=°,45KDE KED \Ð=Ð=°,45DMC KDE \Ð=Ð=°;②如备用图所示:AC Q 为正方形ADCP 的对角线,45DAC PAC DMC \Ð=Ð=Ð=°,AC \=,HCM BCA Ð=ÐQ ,AHD CHM ABC \Ð=Ð=Ð,ADH ACB \D D ∽,\DH AD BC AC ==,.3.已知,矩形ABCD中,4=,AC的垂直平分线EF分别交AD、BCBC cmAB cm=,8于点E、F,垂足为O.(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;D和CDE(2)如图2,动点P、Q分别从A、C两点同时出发,沿AFBD各边匀速运动一周.即点P自A F B A®®®停止.在运动过程中,®®®停止,点Q自C D E C①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.②若点P、Q的运动路程分别为a、b(单位:cm,0)ab¹,已知A、C、P、Q四点为顶点的四边形是平行四边形,求a与b满足的数量关系式.【解答】解:(1)①Q四边形ABCD是矩形,\,AD BC//Ð=Ð,CAD ACB\Ð=Ð,AEF CFEQ垂直平分AC,垂足为O,EF\=,OA OC\D@D,AOE COFOE OF \=,\四边形AFCE 为平行四边形,又EF AC ^Q ,\四边形AFCE 为菱形,②设菱形的边长AF CF xcm ==,则(8)BF x cm =-,在Rt ABF D 中,4AB cm =,由勾股定理得2224(8)x x +-=,解得5x =,5AF cm \=.(2)①显然当P 点在AF 上时,Q 点在CD 上,此时A 、C 、P 、Q 四点不可能构成平行四边形;同理P 点在AB 上时,Q 点在DE 或CE 上或P 在BF ,Q 在CD 时不构成平行四边形,也不能构成平行四边形.因此只有当P 点在BF 上、Q 点在ED 上时,才能构成平行四边形,\以A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,PC QA =,Q 点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,5PC t \=,4124QA CD AD t t =+-=-,即124QA t =-,5124t t \=-,解得43t =,\以A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,43t =秒.②由题意得,四边形APCQ 是平行四边形时,点P 、Q 在互相平行的对应边上.分三种情况:)i 如图1,当P 点在AF 上、Q 点在CE 上时,AP CQ =,即12a b =-,得12a b +=;)ii 如图2,当P 点在BF 上、Q 点在DE 上时,AQ CP =,即12b a -=,得12a b +=;)iii 如图3,当P 点在AB 上、Q 点在CD 上时,AP CQ =,即12a b -=,得12a b +=.综上所述,a 与b 满足的数量关系式是12(0)a b ab +=¹.4.(1)已知:如图1,ABC D 为等边三角形,点D 为BC 边上的一动点(点D 不与B 、C 重合),以AD 为边作等边ADE D ,连接CE .求证:①BD CE =,②120DCE Ð=°;(2)如图2,在ABC D 中,90BAC Ð=°,AC AB =,点D 为BC 上的一动点(点D 不与B 、C 重合),以AD 为边作等腰Rt ADE D ,90DAE Ð=°(顶点A 、D 、E 按逆时针方向排列),连接CE ,类比题(1),请你猜想:①DCE Ð的度数;②线段BD 、CD 、DE 之间的关系,并说明理由;(3)如图3,在(2)的条件下,若D 点在BC 的延长线上运动,以AD 为边作等腰Rt ADE D ,90DAE Ð=°(顶点A 、D 、E 按逆时针方向排列),连接CE .①则题(2)的结论还成立吗?请直接写出,不需论证;②连接BE ,若10BE =,6BC =,直接写出AE 的长.【解答】证明:(1)①如图1,ABC D Q 和ADE D 是等边三角形,AB AC \=,AD AE =,60ACB B Ð=Ð=°,60BAC DAE Ð=Ð=°,BAC DAC DAE DAC \Ð-Ð=Ð-Ð,BAD EAC \Ð=Ð.在ABD D 和ACE D 中,AB AC BAD EAC AD AE =ìïÐ=Ðíï=î,()ABD ACE SAS \D @D ,BD CE \=;②ABD ACE D @D Q ,60ACE B \Ð=Ð=°,6060120DCE ACE ACB \Ð=Ð+Ð=°+°=°;(2)90DCE Ð=°,222BD CD DE +=.证明:如图2,90BAC DAE Ð=Ð=°Q ,BAC DAC DAE DAC \Ð-Ð=Ð-Ð,即BAD CAE Ð=Ð,在ABD D 与ACE D 中,AB AC BAD CAE AD AE =ìïÐ=Ðíï=î,()ABD ACE SAS \D @D ,45B ACE \Ð=Ð=°,BD CE =,90B ACB ACE ACB \Ð+Ð=Ð+Ð=°,90BCE \Ð=°,Rt DCE \D 中,222CE CD DE +=,222BD CD DE \+=;(3)①(2)中的结论还成立.理由:90BAC DAE Ð=Ð=°Q ,BAC DAC DAE DAC \Ð+Ð=Ð+Ð,即BAD CAE Ð=Ð,在ABD D 与ACE D 中,AB AC BAD CAE AD AE =ìïÐ=Ðíï=î,()ABD ACE SAS \D @D ,45ABC ACE \Ð=Ð=°,BD CE =,90ABC ACB ACE ACB \Ð+Ð=Ð+Ð=°,90BCE ECD \Ð=°=Ð,Rt DCE \D 中,222CE CD DE +=,222BD CD DE \+=;②Rt BCE D Q 中,10BE =,6BC =,8CE \===,8BD CE \==,862CD \=-=,Rt DCE \D中,DE ===,D Q\AE ==.5.综合与实践动手操作利用正方形纸片的折叠开展数学活动.探究体会在正方形折叠过程中,图形与线段的变化及其蕴含的数学思想方法.如图1,点E 为正方形ABCD 的AB 边上的一个动点,3AB =,将正方形ABCD 对折,使点A 与点B 重合,点C 与点D 重合,折痕为MN .思考探索(1)将正方形ABCD 展平后沿过点C 的直线CE 折叠,使点B 的对应点B ¢落在MN 上,折痕为EC ,连接DB ¢,如图2.①点B ¢在以点E 为圆心, BE 的长为半径的圆上;②B M ¢= ;③△DB C ¢为 三角形,请证明你的结论.拓展延伸(2)当3AB AE =时,正方形ABCD 沿过点E 的直线l (不过点)B 折叠后,点B 的对应点B ¢落在正方形ABCD 内部或边上.①ABB ¢D 面积的最大值为 ;②连接AB ¢,点P 为AE 的中点,点Q 在AB ¢上,连接PQ ,AQP AB E ¢Ð=Ð,则2B C PQ ¢+的最小值为 .【解答】解:(1)由折叠的性质知,BE BE =¢,BC B C =¢,1322MA MB NC ND AB =====,B EB C Ð=Т,①由题意得,点B ¢在以点E 为圆心,BE 的长为半径的圆上;②3MB MN MB MN ¢=-¢=-==;③BC B C CD =¢=Q ,而B D B C ¢===¢,\△DB C ¢为 等边三角形,故答案为①BE ;;③等边;(2)①33AB AE ==Q ,则1AE =,2BE =,Q 点B ¢在以点E 为圆心,BE 的长为半径的圆上,如图1,ABB ¢\D 面积的最大时,只要AB 边上的高最大即可,\当B E AB ¢^时,ABB ¢D 面积的最大,ABB ¢\D 面积1132322AB B E =´´¢=´´=,故答案为3;②AQP AB E ¢Ð=ÐQ ,//PQ B E \¢,P Q 是AE 的中点,PQ \是AEB D ¢的中位线,如图2,12PQ B E \=¢,即2B C PQ B C B E ¢+=¢+¢,E \、B ¢、C 三点共线时,2B C PQ ¢+取得最小值为CE ,则CE ===,.6.(1)如图1,菱形ABCD 中,4AB =,60ABC Ð=°,点M ,N 分别为边AD ,DC 上的动点,且4DM DN +=,则四边形BMDN 的面积为 (2)如图2,平行四边形ABCD 中,3AB =,5BC =,60ABC Ð=°,点M ,N 分别为边AD 、DC 上的动点,且4DM DN +=,则四边形BMDN 的面积是否为定值?若是,求出定值;若不是,请求出最值;(3)如图3,四边形ABCD 中,AB AD =,1CD =,90A C Ð=Ð=°,60ABC Ð=°,点M 、N 分别为边AD 、DC 上的动点,且2DM DN +=,是否存在M 、N ,使得四边形BMDN 面积最大且DMN D 的周长最小?若存在,求出DMN D 的周长最小值;若不存在,请说明理由.【解答】解:(1)过点B 作BE DA ^延长线于点E ,过点B 作BF DC ^延长线于点F ,则90BEA BFC Ð=Ð=°,Q 四边形ABCD 是菱形,//AB CD \,//AD BC ,60ABC D Ð=Ð=°,60BAE BCF \Ð=Ð=°,BE BF \==,连接BD ,设DM x =,则4DN x =-,BMD BNDBMDN S S S D D =+四边形1122MD BE DN BF =××+××11(4)22x =´+´-=故四边形BMDN 的面积为,故答案为:;(2)过点B 作BP DA ^延长线于点P ,过点B 作BQ DC ^延长线于点Q ,则90BPA BQC Ð=Ð=°,设DM x =,则4DN x =-,5AM AD DM BC DM x =-=-=-,3(4)1CN CD DN AB DN x x =-=-=--=-,Q 四边形ABCD 是平行四边形,//AD BC \,//AB CD ,60BAP ABC \Ð=Ð=°,60BCQ ABC Ð=Ð=°,在Rt ABP D 中,sin 60BP AB =×°=,在Rt BCQ D 中,sin 60BQ BC =×°=ABCD ABM BCNBMDN S S S S D D =--Y 四边形115(5)(1)22x x =-´-´-=-,3DN DC =Q …,43x \-…,1x \…,0k =<Q ,S \随着x 的增大而减小,1x \=时,四边形BMDN 的面积最大为=(3)连接BD ,AB AD =Q ,90A Ð=°,45ADB ABD \Ð=Ð=°,60ABC Ð=°Q ,15DBC \Ð=°,又90BCD Ð=°Q ,75BDC \Ð=°,120ADC Ð=°,设DM x =,则2DN x =-,21x \-…,1x \…,过点M 作MH BD ^,过点N 作NJ BD ^,BMD BDNBMDN S S S D D =+四边形1122BD MH BD NJ =´´+´´1[sin 45(2)sin 75]2BD x x =×××°+-°1[(sin 45sin 75)2sin 75]2BD x =×°-°+°,sin 45sin 750°-°<Q ,\当1x =时,BMDN S 四边形存在最大值,过点M 作CD 的垂线交于延长线于点K ,60MDK \Ð=°,12DK x \=,MK =,112222NK x x x =-+=-,在Rt MKN D 中,22221)(2)(1)32MN x x =+-=-+,当1x =时,2MN 存在最小值,最小值为3,MN \\存在M 、N ,使得四边形BMDN 面积最大且DMN D 的周长最小,DMN D 的周长最小为2+.7.阅读材料如图1,在ABCD中,D,E分别是边AB,AC的中点,小明在证明“三角形的中位线平行于第三边,且等于第三边的一半”时,通过延长DE到点F,使EF DE=,连接CF,证明ADE CFED@D,再证四边形DBCF是平行四边形即得证.类比迁移(1)如图2,AD是ABCD的中线,BE交AC于点E,交AD于点F,且AE EF=,求证:AC BF=.小明发现可以类比材料中的思路进行证明.证明:如图2,延长AD至点M,使MD FD=,连接MC,¼¼请根据小明的思路完成证明过程.方法运用(2)如图3,在等边ABCD中,D是射线BC上一动点(点D在点C的右侧),连接AD.把线段CD绕点D逆时针旋转120°得到线段DE.F是线段BE的中点,连接DF,CF.①请你判断线段DF与AD的数量关系,并给出证明;②若4AB=,12CF CD=请直接写出CF的长.【解答】(1)证明:延长AD至M,使MD FD=,连接MC,在BDFD和CDMD中,BD CD BDF CDM DF DM =ìïÐ=Ðíï=î,()BDF CDM SAS \D @D ,MC BF \=,M BFM Ð=Ð,AE EF =Q ,EAF EFA \Ð=Ð,EFA BFM Ð=ÐQ ,M MAC \Ð=Ð,AC MC \=,AC BF \=;(2)①解:线段DF 与AD 的数量关系为:2AD DF =,证明如下:延长DF 至点M ,使DF FM =,连接BM 、AM ,如图2所示:Q 点F 为BE 的中点,BF EF \=,在BFM D 和EFD D 中,BF EF BFM EFD FM DF =ìïÐ=Ðíï=î,()BFM EFD SAS \D @D ,BM DE \=,MBF DEF Ð=Ð,//BM DE \,Q 线段CD 绕点D 逆时针旋转120°得到线段DE ,CD DE BM \==,120BDE Ð=°,18012060MBD \Ð=°-°=°,ABC D Q 是等边三角形,AB AC \=,60ABC ACB Ð=Ð=°,6060120ABM ABC MBD \Ð=Ð+Ð=°+°=°,180********ACD ACB Ð=°-Ð=°-°=°Q ,ABM ACD \Ð=Ð,在ABM D 和ACD D 中,AB AC ABM ACD BM CD =ìïÐ=Ðíï=î,()ABM ACD SAS \D @D ,AM AD \=,BAM CAD Ð=Ð,60MAD MAC CAD MAC BAM BAC \Ð=Ð+Ð=Ð+Ð=Ð=°,AMD \D 是等边三角形,2AD DM DF \==;②解:CF 的长为1或2.当CF 为BDE D 的中位线时,1122CF CD DE ==,C \为BD 的中点,4CD BC \==,122CF CD \==,如图3,当CF 不是BDE D 的中位线时,连接CE ,取BC 的中点N ,连接FN ,过点D 作DG CE ^,过点G 作GI CD ^于点I ,过点F 作FH BC ^于点H ,CDE D Q 为等腰三角形,120CDE Ð=°,30DCE \Ð=°,12DG CD \=,12CG CE =,12CF CD =Q ,DG CF \=,N Q 为BC 的中点,F 为BE 的中点,NF \是BCE D 的中位线,//NF CE \,12NF CE CG ==,30CNF DCE \Ð=Ð=°,12HF NF \=,12GI CG =,HF GI \=,NH CI =,FC GD =Q ,Rt FCH Rt GDI(HL)\D @D ,CH DI \=,NH CH CI DI \+=+,即NC CD =,2CD \=,即1CF =,综上所述,CF 的长为1或2.8.如图,在正方形ABCD 中,4AB =,点G 在边BC 上,连接AG ,作DE AG ^于点E ,BF AG ^于点F ,连接BE 、DF ,设EDF a Ð=,EBF b Ð=,tan tan k a b =×.(1)求证:DE EF BF =+.(2)求证:BG k BC=.(3)若点G 从点C 沿BC 边运动至点B 停止,求点E ,F 所经过的路径与边AB 围成的图形的面积.【解答】(1)证明:Q 四边形ABCD 是正方形,AB BC AD \==,90BAD ABC Ð=Ð=°,DE AG ^Q ,BF AG ^,90AED BFA \Ð=Ð=°,90ADE DAE \Ð+Ð=°,90BAF DAE Ð+Ð=°Q ,ADE BAF \Ð=Ð,在AED D 和BFA D 中,ADE BAF AED BFA AD BA Ð=ÐìïÐ=Ðíï=î,()AED BFA AAS \D @D ,AE BF \=,DE AF =,DE AF AE EF BF EF \==+=+;(2)证明:在Rt DEF D 和Rt EFB D 中,tan tan EF EDF DE a Ð==,tan tan EF EBF BF b Ð==,\tan tan EF BF BF DE EF DEa b =×=,由(1)可知,ADE BAG Ð=Ð,90AED GBA Ð=Ð=°,AED GBA \D D ∽,\AE DE GB AB=,由(1)可知,AE BF =,\DE BF AB GB =,\BF GB DE AB=,tan tan k a b =×Q ,\GB k AB=,AB BC =Q ,\BG BG BF k BC AB DE===;(3)解:DE AG ^Q ,BF AG ^,90AED BFA \Ð=Ð=°,\当点G 从点B 沿BC 边运动至点C 停止时,点E 经过的路径是以AD 为直径,圆心角为90°的圆弧,同理可得点F 经过的路径,两弧交于正方形的中心点O ,如图所示:4AB AD ==Q ,\所围成的图形的面积14444AOB S S D ==´´=.9.如图,射线AB 和射线CB 相交于点B ,(0180)ABC a a Ð=°<<°,且AB CB =.点D 是射线CB 上的动点(点D 不与点C 和点B 重合),作射线AD ,并在射线AD 上取一点E ,使AEC a Ð=,连接CE ,BE .(1)如图①,当点D 在线段CB 上,90a =°时,请直接写出AEB Ð的度数;(2)如图②,当点D 在线段CB 上,120a =°时,请写出线段AE ,BE ,CE 之间的数量关系,并说明理由;(3)当120a =°,1tan 3DAB Ð=时,请直接写出CE BE的值.【解答】解:(1)连接AC ,如图①所示:90a =°Q ,ABC a Ð=,AEC a Ð=,90ABC AEC \Ð=Ð=°,A \、B 、E 、C 四点共圆,AEB ACB \Ð=Ð,90ABC Ð=°Q ,AB CB =,ABC \D 是等腰直角三角形,45ACB \Ð=°,45AEB \Ð=°;(2)AE CE =+,理由如下:在AD 上截取AF CE =,连接BF ,过点B 作BH EF ^于H ,如图②所示:ABC AEC Ð=ÐQ ,ADB CDE Ð=Ð,180180ABC ADB AEC CDE \°-Ð-Ð=°-Ð-Ð,A C \Ð=Ð,在ABF D 和CBE D 中,AF CE A C AB CB =ìïÐ=Ðíï=î,()ABF CBE SAS \D @D ,ABF CBE \Ð=Ð,BF BE =,ABF FBD CBE FBD \Ð+Ð=Ð+Ð,ABD FBE \Ð=Ð,120ABC Ð=°Q ,120FBE \Ð=°,BF BE =Q ,11(180)(180120)3022BFE BEF FBE \Ð=Ð=´°-Ð=´°-°=°,BH EF ^Q ,90BHE \Ð=°,FH EH =,在Rt BHE D 中,12BH BE =,FH EH ===,22EF EH \===,AE EF AF =+Q ,AF CE =,AE CE \=+;(3)分两种情况:①当点D 在线段CB 上时,在AD 上截取AF CE =,连接BF ,过点B 作BH EF ^于H ,如图②所示:由(2)得:FH EH ==,1tan 3BH DAB AH Ð==Q ,332AH BH BE \==,32CE AF AH FH BE \==-=-=,\CE BE =②当点D 在线段CB 的延长线上时,在射线AD 上截取AF CE =,连接BF ,过点B 作BH EF ^于H ,如图③所示:同①得:FH EH ==,332AH BH BE ==,32CE AF AH FH BE \==+==,\CE BE =;综上所述,当120a =°,1tan 3DAB Ð=时,CE BE .10.如图,直线:2l y x =+与x 轴交于点A ,与y 轴交于点B ,C 为线段OA 的一个动点,以A 为圆心,AC 长为半径作A e ,A e 交AB 于点D ,连接OD 并延长交A e 于点E ,连接CD .(1)当2AC =时,证明:OBD D 是等边三角形;(2)当OCD ODA D D ∽时,求A e 的半径r ;(3)当点C 在线段OA 上运动时,求OD DE g 的最大值.【解答】解:(1)Q 直线:2l y x =+与x 轴交于点A ,与y 轴交于点B ,\点A ,0),点(0,2)B ,OA \=2OB =,tan OB BAO OA \Ð==30BAO \Ð=°,24AB OB \==,60ABO Ð=°,2AC AD ==Q ,2BD BO \==,且60ABO Ð=°,BDO \D 是等边三角形;(2)如图1,过点D 作DH AO ^于H ,OCD ODA D D Q ∽,30ODC OAB \Ð=Ð=°,AC AD =Q ,30BAO Ð=°,75ACD \Ð=°,45DOH ACD ODC \Ð=Ð-Ð=°,DH AO ^Q ,30DAO Ð=°,12DH r \=,AH ==,DH AO ^Q ,45DOH Ð=°,12DH OH r \==,AO OH AH =+=Q ,12r \=,6r \=-(3)如图2,连接EH ,过点O 作OG AB ^于G ,OG AB ^Q ,30BAO Ð=°,12OG AO \==3AG ==,3GD AD \=-,DH Q 是直径,90DEH OGD \Ð=°=Ð,又ODG HDE Ð=ÐQ ,ODG HDE \D D ∽,\GD OD DE DH=,239(3)22()22OD DE GD DH AD AD AD \==-=--+g g g ,\当32AD =时,OD DE g 的最大值为92.11.[问题提出](1)如图1,已知线段4AB =,点C 是一个动点,且点C 到点B 的距离为2,则线段AC 长度的最大值是 6 ;[问题探究](2)如图2,以正方形ABCD 的边CD 为直径作半圆O ,E 为半圆O 上一动点,若正方形的边长为2,求AE 长度的最大值;[问题解决](3)如图3,某植物园有一块三角形花地ABC ,经测量,AC =120BC =米,30ACB Ð=°,BC 下方有一块空地(空地足够大),为了增加绿化面积,管理员计划在BC 下方找一点P ,将该花地扩建为四边形ABPC ,扩建后沿AP 修一条小路,以便游客观赏.考虑植物园的整体布局,扩建部分BPC D 需满足60BPC Ð=°.为容纳更多游客,要求小路AP 的长度尽可能长,问修建的观赏小路AP 的长度是否存在最大值?若存在,求出AP 的最大长度;若不存在,请说明理由.【解答】解:(1)当C 在线段AB 延长线上时,AC 最大,此时426AC AB BC =+=+=,故答案为:6;(2)连接AO 并延长交半圆O 于F ,如图:Q 正方形ABCD 的边CD 为直径作半圆O ,边长为2,90ADO \Ð=°,2AD =,1OD OD OF ===,当E 运动到F 时,AE 最大,AF 的长度即是AE 的最大值,Rt AOD D 中,AO ==1AF AO OF \=+=,即AE 1;(3)作BC 的垂直平分线DE ,在BC 下方作30BCO Ð=°,射线CO 交DE 于O ,以O 为圆心,OC 为半径作O e ,连接OB 、连接AO 并延长交O e 于P ,则AP 为满足条件的小路,过A 作AF OC ^于F ,如图:30BCO Ð=°Q ,30ACB Ð=°,60ACF \Ð=°,Rt ACF D 中,sin 6030AF AC =×°=,cos60CF AC =×°=DE Q 垂直平分BC ,120BC =,60CE \=,90OEC Ð=°,cos30CE OC OP \===°,OF OC CF \=-=,Rt AOF D 中,60OA ==,60AP OA OP \=+=+.即小路AP 的长度最大为60+12.在O e 中,弦CD 平分圆周角ACB Ð,连接AB ,过点D 作//DE AB 交CB 的延长线于点E .(1)求证:DE 是O e 的切线;(2)若1tan 3CAB Ð=,且B 是CE 的中点,O e DE 的长.(3)P 是弦AB 下方圆上的一个动点,连接AP 和BP ,过点D 作DH BP ^于点H ,请探究点P 在运动的过程中,BH AP BP+的比值是否改变,若改变,请说明理由;若不变,请直接写出比值.【解答】证明:(1)如图1,连接OD 交AB 于点F ,连接OA ,OB ,AD ,CD Q 平分ACB Ð,ACD BCD \Ð=Ð,\AD BD =,AOD BOD \Ð=Ð,OA OB =Q ,OD AB \^,//AB DE Q ,OD DE \^,DE \是O e 的切线.解:(2)如图2,连接OC ,OD ,OE ,过点O 作OF BC ^于点F ,2BOC BAC \Ð=Ð,OB OC =Q ,OF BC ^,12COF COB CAB \Ð=ÐÐ=Ð,1tan tan 3CF COF CAB OF \Ð==Ð=,设CF x =,3OF x =,O Qe ,OC \=,222OF CF +Q ,222(3)x x \=+,解得:12x =,12CF \=,32OF =,1BC \=,B Q 是CE 的中点,1BE BC \==,32EF \=,222OE OF EF =+Q ,2223318((224OE \=+=,222OD DE OE +=Q ,DE \===(3)解法一:如图3,延长BP 至Q 使得PQ AP =,连接AQ ,OC ,连接OB ,BD ,连接OD 交AB 于点K ,连接HK ,A Q ,P ,B ,C 四点共圆,APQ ACB \Ð=Ð,AP PQ =Q ,Q QAP \Ð=Ð,1902Q ACB \Ð=°-Ð,DE Q 是O e 的切线,OD DE \^,//DE AB Q ,OD AB \^,K \是AB 的中点,DH BH ^Q ,90BHD \Ð=°,90BKD Ð=°Q ,B \,K ,H ,D 四点共圆,BHK ODB \Ð=Ð,BOD ACB Ð=ÐQ ,OB OD =,1902ODB ACB \Ð=°-Ð,ODB Q \Ð=Ð,BHK Q \Ð=Ð,//AQ HK \,\12BH BK BQ AB ==,BQ BP QP =+Q ,QP AP =,BQ BP AP \=+,\12BH BP AP =+.解法二:如图4,在BP 上截取BM AP =,连接DM ,BD ,DP ,AD ,Q 弦CD 平分圆周角ACB Ð,AD BD \=,Q AP AP =,PAD PBD MBD \Ð=Ð=Ð,()APD BMD SAS \D @D ,DP DM \=,AP BM =,DH BP ^Q ,DH \为PDM D 的中线,HP HM \=,2BP BM PM BM HM \=+=+,BH BM HM =+Q ,\122BH BM HM AP BP BM BM HM +==+++.13.在ABC D 中,90ACB Ð=°,AC BC =,点D 是直线AB 上的一动点(不与点A ,B 重合)连接CD ,在CD 的右侧以CD 为斜边作等腰直角三角形CDE ,点H 是BD 的中点,连接EH .【问题发现】(1)如图(1),当点D 是AB 的中点时,线段EH 与AD 的数量关系是 12EH AD =, .EH 与AD 的位置关系是 .【猜想论证】(2)如图(2),当点D 在边AB 上且不是AB 的中点时,(1)中的结论是否仍然成立?若成立,请仅就图(2)中的情况给出证明;若不成立,请说明理由.【拓展应用】(3)若AC BC ==,其他条件不变,连接AE 、BE .当BCE D 是等边三角形时,请直接写出ADE D 的面积.【解答】解:(1)如图1中,CA CB=Q,90ACBÐ=°,AD BD=,CD AB\^,CD AD DB==,45A B\Ð=Ð=°,45DCB ACDÐ=Ð=°,45DCEÐ=°Q,\点E在线段CB上,DE BC^Q,45EDB B\Ð=Ð=°,DH HB=Q,EH DB \^,1122EH DB AD==,故答案为12EH AD=,EH AD^.(2)结论仍然成立:理由:如图2中,延长DE到F,使得EF DE=,连接CF,BF.DE EF=Q.CE DF^,CD CF\=,45CDF CFD\Ð=Ð=°,45ECF ECD\Ð=Ð=°,90ACB DCF\Ð=Ð=°,ACD BCF\Ð=Ð,CA CB=Q,()ACD BCF SAS\D@D,AD BF \=,45A CBF Ð=Ð=°,45ABC Ð=°Q ,90ABF \Ð=°,BF AB \^,DE EF =Q ,DH HB =,12EH BF \=,//EH BF ,EH AD \^,12EH AD =.(3)如图31-中,当BCE D 是等边三角形时,过点E 作EH BD ^于H .90ACB Ð=°Q ,60ECB Ð=°,30ACE \Ð=°,AC CB CE EB DE =====Q 75CAE CEA \Ð=Ð=°,45CAB Ð=°Q ,30EAH \Ð=°,90DEC Ð=°Q ,60CEB Ð=°,150DEB \Ð=°,15EDB EBD \Ð=Ð=°,EAH ADE AED Ð=Ð+ÐQ ,15ADE AED \Ð=Ð=°,AD AE \=,设EH x =,则2AD AE x ==,AH =,222EH DH DE +=Q ,22(2)8x x \+=,1x \=-,2AD \=-,112)1)422ADE S AD EH D \=××=´×-=-如图32-中,当BCE D 是等边三角形时,过点E 作EH BD ^于H .同法可求:1EH =,2AD =,111)422ADE S AD EH D \=××=´+=+综上所述,满足条件的ADE D 的面积为4-或4+.14.在正方形ABCD 中,点G 是边AB 上的一个动点,点F 、E 在边BC 上,BF FE AG ==,且12AG AB …,GF 、DE 的延长线相交于点P .(1)如图1,当点E 与点C 重合时,求P Ð的度数;(2)如图2,当点E 与点C 不重合时,问:(1)中P Ð的度数是否发生变化,若有改变,请求出P Ð的度数,若不变,请说明理由;(3)在(2)的条件下,作DN GP ^于点N ,连接CN 、BP ,取BP 的中点M ,连接MN ,在点G 的运动过程中,求证:MN NC 为定值.==Q,E与C重合,BF CF BG AG\===,\Ð=°,BGF45//Q,AB CD\Ð=Ð=°.45P BGF(2)不变.理由如下:如图所示,连接BD,取BD中点O,连接OG,OF,OC.在正方形ABCD中,有:Ð=Ð=°,OC OBOCF OBG=,45又AG BF=Q,\=,BG CF\D@D.OCF OBG SAS()Ð=Ð,\=,COF BOGOG DF\Ð=Ð=°,GOF BOC90GOF\D为等腰直角三角形.又OQ,F分别是BD,BE的中点,\,//OF DE\Ð=Ð=°.P OFG45(3)如图所示,取DP 中点Q ,连接NQ ,BD ,MQ ,由题意可得,DNP D 为等腰直角三角形,Q Q 为DP 中点,NQ DP \^.设CDP a Ð=,则45NDC a Ð=°+,45BDP a Ð=°-,M Q ,Q 分别是BP ,DP 的中点,//MQ BD \,45MQP BDP a \Ð=Ð=°-,90(45)45NQM a a \Ð=°-°-=°+,NQM NDC \Ð=Ð.,CD BD \又NQD D Q 为等腰直角三角形,\NQ ND =\NQ MQ ND CD ==,NQM NDC \D D ∽.\MN NQ NC ND ==\MNNC为定值.15.定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为“直角等邻对补”四边形,简称“直等补”四边形.根据以上定义,解决下列问题:(1)如图1,正方形ABCD中E是CD上的点,将BCED绕B点旋转,使BC与BA重合,此时点E的对应点F在DA的延长线上,则四边形BEDF 是 (填“是”或“不是”)“直等补”四边形;(2)如图2,已知四边形ABCD是“直等补”四边形,10AB BC==,2CD=,AD AB>,过点B作BE AD^于E.①过C作CF BF^于点F,试证明:BE DE=,并求BE的长;②若M是AD边上的动点,求BCMD周长的最小值.【解答】解:(1)Q将BCED绕B点旋转,BC与BA重合,点E的对应点F在DA的延长线上,ABF CBE \Ð=Ð,BF BE =,Q 四边形ABCD 是正方形,90ABC D \Ð=Ð=°,90ABE CBE \Ð+Ð=°,90ABE ABF \Ð+Ð=°,即90EBF D Ð=Ð=°,180EBF D \Ð+Ð=°,90EBF Ð=°Q ,BF BE =,\四边形BEDF 是“直等补”四边形.故答案为:是;(2)①证明:Q 四边形ABCD 是“直等补”四边形,10AB BC ==,2CD =,AD AB >,90ABC \Ð=°,180ABC D Ð+Ð=°,90D \Ð=°,BE AD ^Q ,CF BE ^,90DEF \Ð=°,90CFE Ð=°,\四边形CDEF 是矩形,DE CF \=,2EF CD ==,90ABE A Ð+Ð=°Q ,90ABE CBE Ð+Ð=°,A CBF \Ð=Ð,90AEB BFC Ð=Ð=°Q ,AB BC =,()ABE BCF AAS \D @D ,BE CF \=,AE BF =,DE CF =Q ,BE DE \=;Q 四边形CDEF 是矩形,2EF CD \==,ABE BCF D @D Q ,AE BF \=,2AE BE \=-,设BE x =,则2AE x =-,在Rt ABE D 中,222(2)10x x +-=,解得:8x =或6x =-(舍去),BE \的长是8;②BCM D Q 周长BC BM CM =++,\当BM CM +的值最小时,BCM D 的周长最小,如图,延长CD 到点G ,使DG CD =,连接BG 交AD 于点M ¢,过点G 作GH BC ^,交BC 的延长线于点H ,90ADC Ð=°Q ,\点C 与点G 关于AD 对称,BM CM BM MG BG \+=+…,即BM CM BM M C +¢+¢…,\当点M 与M ¢重合时,BM M C ¢+¢的值最小,即BCM D 的周长最小,在Rt ABE D 中,6AE ===,Q 四边形ABCD 是“直等补”四边形,180A BCD \Ð+Ð=°,180BCD GCH Ð+Ð=°Q ,A GCH \Ð=Ð,90AEB H Ð=Ð=°Q ,ABE CGH \D D ∽,\10542BE AE ABGH CH CG====,即88252GH CH-==,165GH\=,125CH=,12621055BH BCCH\=+=+=,BG\===,BCM\D周长的最小值为10+.16.如图,正方形ABCD中,AB=O是BC边的中点,点E是正方形内一动点,2OE=,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE,CF.(1)求证:AE CF=;(2)若A,E,O三点共线,连接OF,求线段OF的长.(3)求线段OF长的最小值.【解答】(1)证明:如图1,由旋转得:90EDFÐ=°,ED DF=,Q四边形ABCD是正方形,90ADC\Ð=°,AD CD=,ADC EDF\Ð=Ð,即ADE EDC EDC CDFÐ+Ð=Ð+Ð,ADE CDF\Ð=Ð,在ADED和CDFD中,QAD CDADE CDFDE DF=ìïÐ=Ðíï=î,()ADECDF SAS\D@D,AE CF\=;(2)解:如图2,过F作OC的垂线,交BC的延长线于P,O Q 是BC 的中点,且AB BC ==A Q ,E ,O 三点共线,OB \=由勾股定理得:5AO =,2OE =Q ,523AE \=-=,由(1)知:ADE CDF D @D ,DAE DCF \Ð=Ð,3CF AE ==,BAD DCP Ð=ÐQ ,OAB PCF \Ð=Ð,90ABO P Ð=Ð=°Q ,ABO CPF \D D ∽,\2AB CP OB PF ===,2CP PF \=,设PF x =,则2CP x =,由勾股定理得:2223(2)x x =+,x =(舍),\,OP ==,由勾股定理得:OF ==,(3)解:如图3,由于2OE =,所以E 点可以看作是以O 为圆心,2为半径的半圆上运动,延长BA 到P 点,使得AP OC =,连接PE ,AE CF =Q ,PAE OCF Ð=Ð,()PAE OCF SAS \D @D ,PE OF \=,当PE 最小时,为O 、E 、P 三点共线,OP===,\==-=-,PE OF OP OE2\的最小值是2.OF17.ABC=,点D为直线BC上一动点(点D不与B,C重Ð=°,AB ACBACD中,90合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为: 垂直 .②BC,CD,CF之间的数量关系为: ;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D 在线段BC 的延长线上时,延长BA 交CF 于点G ,连接GE .若已知AB =,14CD BC =,请求出GE 的长.【解答】解:(1)①正方形ADEF 中,AD AF =,90BAC DAF Ð=Ð=°Q ,BAD CAF \Ð=Ð,在DAB D 与FAC D 中,AD AF BAD CAF AB AC =ìïÐ=Ðíï=î,()DAB FAC SAS \D @D ,B ACF \Ð=Ð,90ACB ACF \Ð+Ð=°,即BC CF ^;故答案为:垂直;②DAB FAC D @D ,CF BD \=,BC BD CD =+Q ,BC CF CD \=+;故答案为:BC CF CD =+;(2)CF BC ^成立;BC CD CF =+不成立,CD CF BC =+.Q 正方形ADEF 中,AD AF =,90BAC DAF Ð=Ð=°Q ,BAD CAF \Ð=Ð,在DAB D 与FAC D中,AD AF BAD CAF AB AC =ìïÐ=Ðíï=î,()DAB FAC SAS \D @D ,ABD ACF \Ð=Ð,90BAC Ð=°Q ,AB AC =,45ACB ABC \Ð=Ð=°.18045135ABD \Ð=°-°=°,1354590BCF ACF ACB \Ð=Ð-Ð=°-°=°,CF BC \^.CD DB BC =+Q ,DB CF =,CD CF BC \=+.(3)解:过A 作AH BC ^于H ,过E 作EM BD ^于M ,EN CF ^于N ,90BAC Ð=°Q ,AB AC =,4BC \==,122AH BC ==,114CD BC \==,122CH BC ==,3DH \=,由(2)证得BC CF ^,5CF BD ==,Q 四边形ADEF 是正方形,AD DE \=,90ADE Ð=°,BC CF ^Q ,EM BD ^,EN CF ^,\四边形CMEN 是矩形,NE CM \=,EM CN =,90AHD ADE EMD Ð=Ð=Ð=°Q ,90ADH EDM EDM DEM \Ð+Ð=Ð+Ð=°,ADH DEM \Ð=Ð,在ADH D 与DEM D 中,ADH DEM AHD DME AD DE Ð=ÐìïÐ=Ðíï=î,()ADH DEM AAS \D @D .3EM DH \==,2DM AH ==,3CN EM \==,3EN CM ==,45ABC Ð=°Q ,45BGC \Ð=°,BCG \D 是等腰直角三角形,4CG BC \==,1GN \=,EG \==.18.如图(1),已知正方形ABCD 在直线MN 的上方,BC 在直线MN 上,E 是BC 上一点,以AE 为边在直线MN 的上方作正方形AEFG .(1)连接GD ,求证:ADG ABE D @D ;(2)连接FC ,观察并猜测FCN Ð的度数,并说明理由;(3)如图(2),将图(1)中正方形ABCD 改为矩形ABCD ,AB a =,(BC b a =、b 为常数),E 是线段BC 上一动点(不含端点B 、)C ,以AE 为边在直线MN 的上方作矩形AEFG ,使顶点G 恰好落在射线CD 上.判断当点E 由B 向C 运动时,FCN Ð的大小是否总保持不变?若FCN Ð的大小不变,请用含a 、b 的代数式表示tan FCN Ð的值;若FCN Ð的大小发生改变,请举例说明.【解答】(1)证明:Q四边形ABCD和四边形AEFG是正方形,\=,AE AGAB ADÐ=Ð=°,BAD EAG=,90\Ð+Ð=Ð+Ð,BAE EAD DAG EADBAE DAG\Ð=Ð,\D@D.BAE DAG(2)解:45Ð=°,FCN理由是:作FH MN^于H,Q,Ð=Ð=°AEF ABE90Ð+Ð=°,FEH AEB90\Ð+Ð=°,90BAE AEB\Ð=Ð,FEH BAEQ,90又AE EF=Ð=Ð=°,EHF EBA\D@D,EFH ABE\=,EH AB BCFH BE==,\==,CH BE FHÐ=°Q,FHC90\Ð=°.FCN45(3)解:当点E由B向C运动时,FCNÐ的大小总保持不变,理由是:作FH MN^于H,由已知可得90Ð=Ð=Ð=°,EAG BAD AEF结合(1)(2)得FEH BAE DAGÐ=Ð=Ð,又GQ在射线CD上,。
2019-2020年中考数学动态几何中的定值问题
2019-2020年中考数学动态几何中的定值问题动态几何类问题是近几年中考命题的热点,题目灵活、多变,能够全面考查同学们的综合分析和解决问题的能力。
这类问题中就有一类是定值问题,下面通过例题来探究这类问题的解答方法。
【问题1】已知一等腰直角三角形的两直角边AB=AC=1,P 是斜边BC 上的一动点,过P 作PE ⊥AB 于E ,PF ⊥AC 于F ,则PE+PF=。
方法1:特殊值法:把P 点放在特殊的B 点或C 点或BC 中点。
此种方法只适合小题。
方法2:等量转化法:这是绝大部分同学能够想到的方法,PF=AE,PE=BE,所以PE+PF=BE+AE 。
方法3:等面积法:连接AP ,ABCABPAPCSSSAB AC AB PE AC PFAB PE PF总结语:这虽然是一道动态几何问题,难吗?不难,在解决过程中(方法2抓住了边长AB 的不变性和PE,PF 与BE,AE 的不变关系;方法3抓住了面积的不变性),使得问题迎刃而解。
设计:大部分学生都能想到方法2,若其他两种方法学生没有想到,也不要深究,更不要自己讲掉。
此题可叫差生或中等偏下的学生回答。
(设计意图:由简到难,让程度最差的同学也有在课堂上展示自我的机会。
)过渡:这道题太简单了,因为等腰直角三角形太特殊了,我若把等腰直角三角形换成一般的等腰三角形,问题有没有变化,又该如何解决?请看:【变式1】若把问题1中的等腰直角三角形改为等腰三角形,且两腰AB=AC=5,底边BC=6,过P 作PE ⊥AB 于E ,PF ⊥AC 于F ,则PE+PF 还是定值吗?若是,是多少?若不是,为什么?方法1:三角形相似进行量的转化ABMPBEPCF,AM PE PFAM PB AM PC PE PFAB PB PCABAB()462455AM PBPC AM BC PEPFABAB(板书)(M 为BC 中点)(解题要点:等腰三角形中,底边上的中线是常作的辅助线,抓住这条线的长度是不变量这个特点,建立PE,PF 与AM 之间的联系,化动为静)方法2:等面积法:ABCABPAPCS SSBC AM AB PE AC PF642455BC AM PEPFAB(M 为BC 中点)(板书)(解题要点:抓住三角形面积是个不变量,用等面积法求解,这是在三角形中求解与垂线段有关的量的常用方法。
初中数学竞赛精品标准教程及练习63动态几何的定值 2.docx
初中数学竞赛精品标准教程及练习(63)动态几何的定值、内容提要动态几何是指用运动的观点研究几何图形的位置、大小的相互关系.用动的观点看几何定理,常可把几个定理归为一类.例如:梯形的中位线,当梯形的上底逐渐变小,直到长度为零时,则为三角形的中位线;两圆相交,两个公共点关于连心线对称,所以连心线垂直平分公共弦,当两个交点距离逐渐变小,直到两点重合时,则两圆相切,这时切点在连心线上;相交弦定理由于交点位置、个数的变化,而演变为割线定理,切割线定理,切线长定理等等.动态几何的轨迹、极值和定值.几何图形按一定条件运动,有的几何量随着运动的变化而有规律变化,这就出现了轨迹和极值问题,而有的量却始终保持不变,这就是定值问题.例如:半径等于R A的圆A与半径为R B (R B>R A)的定圆B内切.那么:动点A有规律地变化,形成了一条轨迹:以B为圆心,以R B—R A的长为半径的圆.而A, B两点的距离,却始终保持不变:AB=R B —R A.若另有一个半径为Rc的圆C与圆B外切,则A, C两点的距离变化有一定的范围:R B+R C —(R B —R A) W AC WR B+R C+(R B—R A)-即 R C+R A < AC < 2R B+R C-R A .所以AC有最大值:2R B+R C—R A;且有最小值:R C+R A-解答动态几何定值问题的方法,一般有两种:第一种是分两步完成:先探求定值.它要用题中固有的几何量表示.再证明它能成立.探求的方法,常用特殊位置定值法,即把动点放在特殊的位置,找出定值的表达式,然后写出证明.第二种是采用综合法,直接写出证明.二、例题例1.已知:Z\ABC中,AB=AC,点P是BC上任一点,过点P作BC的垂线分别交AB, AC或延长线于E, F.求证:PE+PF有定值.分析:(探求定值)用特位定值法.把点P放在BC中点上.这时过点P的垂线与AB, AC的交点都是点A, PE+PF=2PA,从而可确定定值是底上的高的2倍.因此原题可转化:求证:PA+PB = 2AD (AD为底边上的高).证明:VAD/7PF,PF CP CD+PD"AD BDPE , PFAD CD BDBP * CD+PD _ 2BD 一2AD AD BD BD BDAD.♦.PE+PF=2AD.把点P放在点B上.这时PE=O, PF=2AD (三角形中位线性质),结论与①相同.还可以由PF=BCXtanC,把定值定为:BCXtanC.即求证PE+PF=BCXtanC.(证明略)同一道题的定值,可以有不同的表达式,只要是用题中固有的几何量表示均可.例2.已知:同心圆为。
中考压轴冲刺二 动态几何定值问题解析
中考压轴冲刺二动态几何定值问题解析类型一【线段及线段的和差为定值】例1、已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.(1)如图1,当∠CA′D=15°时,作∠A′EC的平分线EF交BC于点F.①写出旋转角α的度数;②求证:EA′+EC=EF;(2)如图2,在(1)的条件下,设P是直线A′D上的一个动点,连接P A,PF,若AB,求线段P A+PF的最小值.(结果保留根号)【详解】①解:由∠CA′D=15°,可知∠A′CD=90°-15°=75°,所以∠A′CA=180°-75°=105°即旋转角α为105°.②证明:连接A′F,设EF交CA′于点O.在EF时截取EM=EC,连接CM.∵∠CED=∠A′CE+∠CA′E=45°+15°=60°,∴∠CEA′=120°,∵FE平分∠CEA′,∴∠CEF=∠FEA′=60°,∵∠FCO=180°﹣45°﹣75°=60°,∴∠FCO=∠A′EO,∵∠FOC=∠A′OE,∴△FOC∽△A′OE,∴OFA O'=OCOE,∴OFOC=A OOE',∵∠COE=∠FOA′,∴△COE∽△FOA′,∴∠F A′O=∠OEC=60°,∴△A′CF是等边三角形,∴CF=CA′=A′F,∵EM=EC,∠CEM=60°,∴△CEM是等边三角形,∠ECM=60°,CM=CE,∵∠FCA′=∠MCE=60°,∴∠FCM=∠A′CE,∴△FCM≌△A′CE(SAS),∴FM=A′E,∴CE+A′E=EM+FM=EF.(2)解:如图2中,连接A′F,PB′,AB′,作B′M⊥AC交AC的延长线于M.由②可知,∠EA′F=′EA′B′=75°,A′E=A′E,A′F=A′B′,∴△A′EF≌△A′EB′,∴EF=EB′,∴B′,F关于A′E对称,∴PF=PB′,∴P A+PF=P A+PB′≥AB′,在Rt △CB ′M 中,CB ′=BC AB =2,∠MCB ′=30°,∴B ′M =12CB ′=1,CM∴AB ′2∴P A +PF类型二 【线段的积或商为定值】例2、如图①,矩形ABCD 中,2,5,1AB BC BP ===,090MPN ∠=,将MPN ∠绕点P 从PB 处开始按顺时针方向旋转,PM 交边AB (或AD )于点E ,PN 交边AD (或CD )于点F .当PN 旋转至PC 处时,MPN ∠的旋转随即停止.(1)特殊情形:如图②,发现当PM 过点A 时,PN 也恰好过点D ,此时ABP ∆是否与PCD ∆相似?并说明理由;(2)类比探究:如图③,在旋转过程中,PEPF的值是否为定值?若是,请求出该定值;若不是,请说明理由;(3)拓展延伸:设AE t =时,EPF ∆的面积为S ,试用含t 的代数式表示S ; ①在旋转过程中,若1t =时,求对应的EPF ∆的面积; ②在旋转过程中,当EPF ∆的面积为4.2时,求对应的t 的值.【详解】(1)相似理由:∵090BAP BPA ∠+∠=,090CPD BPA ∠+∠=, ∴BAP CPD ∠=∠, 又∵090ABP PCD ∠=∠=, ∴ABP PCD ∆∆:; (2)在旋转过程中PEPF的值为定值, 理由如下:过点F 作FG BC ⊥于点G ,∵BEP GPF ∠=∠,90EBP PGF ∠=∠=,∴EBP PGF ∆∆:,∴PE BPPF GF=, ∵四边形ABCD 为矩形,∴四边形ABGF 为矩形, ∴2,1FG AB BP === ∴12PE PF = 即在旋转过程中,PE PF 的值为定值,12PE PF =; (3)由(2)知:EBP PGF ∆∆:,∴12BE PE PG PF ==, 又∵,2AE t BE t ==-,∴()2242PB t t =-=-,()14252BG AF BP PG t t ==+=+-=-, ∴EPF AEF BEP PFG ABGF S S S S S ∆∆∆∆=---矩形()()()()2111252521224245222t t t t t t t =--⨯--⨯⨯--⨯⨯-=-+即:245S t t =-+;①当1t =时,EPF ∆的面积214152S =-⨯+=, ②当 4.2EPF S ∆=时,∴245 4.2t t -+=解得:12t =-,22t =(舍去)∴当EPF ∆的面积为4.2时,25t =-; 类型三 【角及角的和差定值】例3、如图,在△ABC 中,∠ABC >60°,∠BAC <60°,以AB 为边作等边△ABD (点C 、D 在边AB 的同侧),连接CD.(1)若∠ABC=90°,∠BAC=30°,求∠BDC的度数;(2)当∠BAC=2∠BDC时,请判断△ABC的形状并说明理由;(3)当∠BCD等于多少度时,∠BAC=2∠BDC恒成立.【详解】(1)∵△ABD为等边三角形,∴∠BAD=∠ABD=60°,AB=AD,又∵∠BAC=30°,∴AC平分∠BAD,∴AC垂直平分BD,∴CD=BC,∴∠BDC=∠DBC=∠ABC-∠ABD=90°-60°=30°;(2)△ABC是等腰三角形,理由:设∠BDC=x,则∠BAC=2x,有∠CAD=60°-2x,∠ADC=60°+x,∴∠ACD=180°-∠CAD-∠ADC=60°+x,∴∠ACD=∠ADC,∴AC=AD,又∵AB=AD,∴AB=AC,即△ABC是等腰三角形;(3)当∠BCD=150°时,∠BAC=2∠BDC恒成立,如图,作等边△BCE,连接DE,∴BC=EC,∠BCE=60°.∵∠BCD=150°,∴∠ECD=360°-∠BCD-∠BCE=150°,∴∠DCE=∠DCB.又∵CD=CD,∴△BCD≌△ECD.∴∠BDC=∠EDC,即∠BDE=2∠BDC.又∵△ABD为等边三角形,∴AB=BD,∠ABD=∠CBE=60°,∴∠ABC=∠DBE=60°+∠DBC.又∵BC=BE,∴△BDE≌△BAC.∴∠BAC=∠BDE,∴∠BAC=2∠BDC.类型四【三角形的周长为定值】例4、如图,现有一张边长为的正方形ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP,BH.∠=∠;(1)求证:EPB EBP∠=∠;(2)求证:APB BPH(3)当点P在边AD上移动时,△PDH的周长是否发生变化?不变化,求出周长,若变化,说明理由;(4)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式.【详解】(1)证明:∵四边形EPGF由四边形EFCB折叠而来,EB与EP重叠∴EP = EB∴∠EPB = ∠EBP(2)证明∵四边形EPGF由四边形EFCB折叠而来,EB与EP重叠,PG与BC重叠∴∠EPG = ∠EBC又∵∠EPB = ∠EBP∴∠EPG - ∠EPB = ∠EBC - ∠EBP,即∠BPH = ∠PBC∵AD∥BC,∴∠APB = ∠PBC,∴∠APB = ∠BPH(3)解:△PDH的周长不发生变化.如图所示,过点B作BQ丄PG于点Q.在△BP A和△BPQ中,∵APB QPB PB PBA PQB∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()BPA BPQ ASA ≅V V ∴ ,,PQ AP AB BQ == ∴BQ BC =Rt BHQ V 和Rt BHC V ,∵BQ BCBH BH =⎧⎨=⎩∴ ()Rt BHQ Rt BHC HL V V ≌ ∴QH =HC∴△PDH的周长为:PD DH PH PD AP DH HC AD l BC =++=+++=+=为固定值,固定不变.如图,过点F 作FM 垂直AB 于点M .∵90,90BEF ABP BEF MFE ︒︒∠+∠=∠+∠=∴MFE ABP ∠=∠ 在△ABP 和△MFE 中∵,A EMF AB MFABP MFE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ABP MFE ASA V V ≌ ∴ ME AP x ==在△AEP 中,根据勾股定理,可得:222(4)x BE BE +-=解得:228x BE =+∴1()2EFCB S S CF BE BC ==+⨯四边形 ,即 2221224288=282x x S x x x ⎛⎫=⨯-+++⨯ ⎪⎝⎭-+ 即S 关于x 的关系式为:2282x S x =-+类型五 【三角形的面积及和差为定值】例5、综合与实践:矩形的旋转 问题情境:在综合与实践课上,老师让同学们以“矩形的旋转”为主题开展数学活动.具体要求:如图1,将长与宽都相等的两个矩形纸片ABCD 和EFGH 叠放在一起,这时对角线AC 和EG 互相重合.固定矩形ABCD ,将矩形EFGH 绕AC 的中点O 逆时针方向旋转,直到点E 与点B 重合时停止,在此过程中开展探究活动. 操作发现:(1)雄鹰小组初步发现:在旋转过程中,当边AB 与EF 交于点M ,边CD 与GH 交于点N ,如图2、图3所示,则线段AM 与CN 始终存在的数量关系是 .(2)雄鹰小组继续探究发现:在旋转开始后,当两个矩形纸片重叠部分为四边形QMRN 时,如图3所示,四边形QMRN 为菱形,请你证明这个结论.(3)雄鹰小组还发现在问题(2)中的四边形QMRN 中∠MQN 与旋转角∠AOE 存在着特定的数量关系,请你写出这一关系,并说明理由. 实践探究:(4)在图3中,随着矩形纸片EFGH 的旋转,四边形QMRN的面积会发生变化.若矩形纸片的长为,请你帮助雄鹰小组探究当旋转角∠AOE 为多少度时,四边形QMRN 的面积最大?最大面积是多少?(直接写出答案)【详解】(1)结论:AM=CN.理由:如图2中,设AB交EG于K,CD交EG于J.∵四边形ABCD是矩形,四边形EFGH是矩形,∴AB∥CD,EF∥EG,OA=OC=OE=OG,∴∠MEK=∠JGN,∠OAK=∠OAJ,∵∠AOK=∠AOJ,∴△AOK≌△AOJ(ASA),∴OK=OJ,AK=CJ,∠AOK=∠AJO,∴EK=JG,∵∠EKM=∠AKO,∠GJN=∠CJO,∴∠EKM=∠GJN,∴△EKM≌△GJN(ASA),∴KM=JN,∴AM=AN.(2)证明:过点Q作QK⊥EF,QL⊥CD,垂足分别为点K,L.由题可知:矩形ABCD≌矩形EFGH,∴AD=EH,AB∥CD,EF∥HG,∴四边形QMRN为平行四边形,∵QK⊥EF,QL⊥CD,∴QK=EH,QL=AD,∠QKM=∠QLN=90°,∴QK=QL,又∵AB∥CD,EF∥HG,∴∠KMQ=∠MQN,∠MQN=∠LNQ,∴∠KMQ=∠LNQ,∴△QKM≌△QLN(AAS),∴MQ=NQ∴四边形QMRN为菱形.(3)结论:∠MQN=∠AOE.理由:如图3﹣1中,∵∠QND=∠1+∠2,∠AOE=∠1+∠3,又由题意可知旋转前∠2与∠3重合,∴∠2=∠3,∴∠QND═∠AOE,∵AB∥CD,∴∠MQN=∠QND,∴∠MQN=∠AOE.(4)如图3﹣2中,连接BD,在DC上取一点J,使得DJ=AD,则AJ=2,∵CD=,∴CJ=AJ=2,∴∠JCA=∠JAC,∵∠AJD=45°=∠JCA+∠JAC,∴∠ACJ=22.5°,∵OC=OD,∴∠OCD=∠ODC=22.5°,∴∠BOC=45°,观察图象可知,当点F与点C重合或点G与点D重合时,四边形QMRN的面积最大,最大值=∴∠AOE=45°或135°时,四边形QMRN面积最大为.练习:1.已知在平行四边形ABCD中,AB=6,BC=10,∠BAD=120°,E为线段BC上的一个动点(不与B,C 重合),过E作直线AB的垂线,垂足为F,FE与DC的延长线相交于点G,(1)如图1,当AE⊥BC时,求线段BE、CG的长度.(2)如图2,点E在线段BC上运动时,连接DE,DF,△BEF与△CEG的周长之和是否是一个定值,若是请求出定值,若不是请说明理由.(3)如图2,设BE=x,△DEF的面积为y,试求出y关于x的函数关系式.【详解】(1)∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠BAD +∠B =180°, ∵∠BAD =120°, ∴∠B =60°, ∵AE ⊥BC 于E ,在Rt △ABE 中,∠BAE =30°,AB =6,∴BE =3,AE ∵EF ⊥AB , ∴∠BFE =90°,在Rt △BEF 中,∠BEF =30°,∴BF =12BE =32,EF , ∵S ▱ABCD =BC ×AE =AB ×FG ,∴=6FG ,∴FG∴EG =FG ﹣EF ; (2)如图2,过点A 作AH ⊥BC 于H , ∵∠B =60°,∴BH =3,AH∵∠AHB =∠BFE =90°,∠B =∠B , ∴△ABH ∽△EBF ,∴AB BH AHBE BF EF==, 设BE =a ,∴63a BF EF==, ∴BF =12a ,EF, ∵AB ∥CD , ∴△BEF ∽△CEG ,∴BF BE EF CG CEEG ==, ∴132210a a a CG a EG==-, ∴CG =12(10﹣a ),EG =2(10﹣a ), ∴C △BEF +C △CEG =BE +BF +EF +CE +CG +EG =a +12a +10﹣a +12(10﹣a )10﹣a )(3)同(2)的方法得,EF ,CG =12(10﹣x ),∴DG =CD +CG =6+5﹣12x =11﹣12x , ∴S △DEF =12EF ×DG =12×2x ×(11﹣12x )=﹣8x 2+4(0<x <10). 2.如图,边长为8的正方形OABC 的两边在坐标轴上,以点C 为顶点的抛物线经过点A ,点P 是抛物线上点A 、C 间的一个动点(含端点),过点P 作PF ⊥BC 于点F ,点D 、E 的坐标分别为(0,6),(﹣4,0),连接PD ,PE ,DE .(1)求抛物线的解析式;(2)小明探究点P的位置是发现:当点P与点A或点C重合时,PD与PF的差为定值,进而猜想:对于任意一点P,PD与PF的差为定值,请你判定该猜想是否正确,并说明理由;(3)请直接写出△PDE周长的最大值和最小值.【详解】(1)∵边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,∴C(0,8),A(﹣8,0),设抛物线解析式为:y=ax2+c,则8640 ca c=⎧⎨+=⎩,解得:188ac⎧=-⎪⎨⎪=⎩.∴抛物线解析式为y=﹣18x2+8.(2)设P(x,﹣18x2+8),则F(x,8),则PF=8﹣(﹣18x2+8)=18x2.PD2=x2+[6﹣(﹣18x2+8)]2=164x4+12x2+4=(18x2+2)2∴PD=18x2+2,∴d=|PD﹣PF|=|18x2+2﹣18x2|=2∴d=|PD﹣PF|为定值2;(3)如图,过点E作EF⊥x轴,交抛物线于点P,由d=|PD﹣PF|为定值2,得C△PDE=ED+PE+PD=ED+PE+PF+2=ED+2+(PE+PF),又∵D(0,6),E(﹣4,0)∴DE==∴C△PDE=(PE+PF),当PE和PF在同一直线时PE+PF最小,得C△PDE最小值==2 .设P为抛物线AC上异于点A的任意一点,过P作PM∥x轴,交AB于点M,连接ME,如图2.由于E是AO的中点,易证得ME≥PE(当点P接近点A时,在△PME中,显然∠MPE是钝角,故ME≥PE,与A重合时,等号成立),而ME≤AE+AM,所以PE≤AE+AM.所以当P与A重合时,PE+PF最大,AE=8﹣4=4,PD=10.得C△PDE最大值==.综上所述,△PDE周长的最大值是,最小值是.3.如图,四边形ABCD中,AD∥BC,∠ABC=90°.(1)直接填空:∠BAD=______°.(2)点P在CD上,连结AP,AM平分∠DAP,AN平分∠P AB,AM、AN分别与射线BP交于点M、N.设∠DAM=α°.①求∠BAN的度数(用含α的代数式表示).②若AN⊥BM,试探究∠AMB的度数是否为定值?若为定值,请求出该定值;若不为定值,请用α的代数式表示它.【详解】解:(1)∵AD∥BC,∠ABC=90°,∴∠BAD=180°-90°=90°.故答案为:90;(2)①∵AM平分∠DAP,∠DAM=α°,∴∠DAP=2α°,∵∠BAD=90°,∴∠BAP=(90-2α)°,∵AN平分∠P AB,∴∠BAN=12(90-2α)°=(45-α)°;②∵AM平分∠DAP,AN平分∠P AB,∴∠P AM=12∠P AD,∠P AN=12∠P AB,∴∠MAN=∠MAP+∠P AN=12∠P AD+∠12∠P AB=1290°=45°,∵AN⊥BM,∴∠ANM=90°,∴∠AMB=180°-90°-45°=45°.4.将在同一平面内如图放置的两块三角板绕公共顶点A旋转,连接BC,DE.探究S△ABC与S△ADC的比是否为定值.(1)两块三角板是完全相同的等腰直角三角板时,S△ABC:S△ADE是否为定值?如果是,求出此定值,如果不是,说明理由.(图①)(2)一块是等腰直角三角板,另一块是含有30°角的直角三角板时,S△ABC:S△ADE是否为定值?如果是,求出此定值,如果不是,说明理由.(图②)(3)两块三角板中,∠BAE+∠CAD=180°,AB=a,AE=b,AC=m,AD=n(a,b,m,n为常数),S△ABC:S△ADE是否为定值?如果是,用含a,b,m,n的式子表示此定值(直接写出结论,不写推理过程),如果不是,说明理由.(图③)【详解】(1)结论:S△ABC:S△ADE=定值.理由:如图1中,作DH⊥AE于H,CG⊥BA交BA的延长线于G.∵∠BAE =∠CAD =90°,∴∠BAC +∠EAD =180°,∠BAC +∠CAG =180°, ∴∠DAE =∠CAG , ∵AB =AE =AD =AC ,∴1212ABC AEDAB AC sin CAG S S AE AD sin DAE ⋅⋅⋅∠==⋅⋅⋅∠V V 1. (2)如图2中,S △ABC :S △ADE =定值.理由:如图1中,作DH ⊥AE 于H ,CG ⊥BA 交BA 的延长线于G .不妨设∠ADC =30°,则AD =,AE =AB , ∵∠BAE =∠CAD =90°,∴∠BAC +∠EAD =180°,∠BAC +∠CAG =180°, ∴∠DAE =∠CAG ,∴12132ABC AEDAB AC sin CAGS S AE AD sin DAE ⋅⋅⋅∠==⋅⋅⋅∠V V .(3)如图3中,如图2中,S △ABC :S △ADE =定值.理由:如图1中,作DH ⊥AE 于H ,CG ⊥BA 交BA 的延长线于G .∵∠BAE =∠CAD =90°,∴∠BAC +∠EAD =180°,∠BAC +∠CAG =180°, ∴∠DAE =∠CAG ,∵AB =a ,AE =b ,AC =m ,AD =n∴1212ABC AEDAB AC sin CAGS maS nb AE AD sin DAE ⋅⋅⋅∠==⋅⋅⋅∠V V . 5.(解决问题)如图1,在ABC ∆中,10AB AC ==,CG AB ⊥于点G .点P 是BC 边上任意一点,过点P 作PE AB ⊥,PF AC ⊥,垂足分别为点E ,点F .(1)若3PE =,5PF =,则ABP ∆的面积是______,CG =______. (2)猜想线段PE ,PF ,CG 的数量关系,并说明理由.(3)(变式探究)如图2,在ABC ∆中,若10AB AC BC ===,点P 是ABC ∆内任意一点,且PE BC ⊥,PF AC ⊥,PG AB ⊥,垂足分别为点E ,点F ,点G ,求PE PF PG ++的值.(4)(拓展延伸)如图3,将长方形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点C '处,点P 为折痕EF 上的任意一点,过点P 作PG BE ⊥,PH BC ⊥,垂足分别为点G ,点H .若8AD =,3CF =,直接写出PG PH +的值.【详解】解:(1)∵PE AB ⊥,10AB =,3PE =, ∴ABP ∆的面积111031522AB PE =⨯=⨯⨯=, ∵PE AB ⊥,PF AC ⊥,CG AB ⊥, 且ABC ABP ACP S S S ∆∆∆=+, ∴AB CG AB PE AC PF ⋅=⋅+⋅, ∵AB AC =,∴358CG PE PF =+=+=. 故答案为:15,8.(2)∵PE AB ⊥,PF AC ⊥,CG AB ⊥, 且ABC ABP ACP S S S ∆∆∆=+, ∴AB CG AB PE AC PF ⋅=⋅+⋅,∵AB AC =, ∴CG PE PF =+.(3)连接PA 、PB 、PC ,作AM BC ⊥于M ,如图2所示:∵10AB AC BC ===, ∴ABC ∆是等边三角形, ∵AM BC ⊥, ∴152BM BC ==,∴AM ==∴ABC ∆的面积111022BC AM =⨯=⨯⨯= ∵PE BC ⊥,PF AC ⊥,PG AB ⊥,∴ABC ∆的面积BCP =∆的面积ACP +∆的面积APB +∆的面积111222BC PE AC PF AB PG =⨯+⨯+⨯1()2AB PE PF PG =++=∴210PE PF PG ⨯++==. (4)过点E 作EQ BC ⊥,垂足为Q ,如图3所示:∵四边形ABCD 是矩形,∴AD BC =,90C ADC ∠=∠=︒, ∵8AD =,3CF =,∴5BF BC CF AD CF =-=-=,由折叠可得:5DF BF ==,BEF DEF ∠=∠, ∵90C ∠=︒,∴4DC ===,∵EQ BC ⊥,90C ADC ∠=∠=︒, ∴90EQC C ADC ∠=︒=∠=∠, ∴四边形EQCD 是矩形, ∴4EQ DC ==, ∵//AD BC , ∴DEF EFB ∠=∠, ∵BEF DEF ∠=∠, ∴BEF EFB ∠=∠, ∴BE BF =,由解决问题(1)可得:PG PH EQ +=, ∴4PG PH +=,即PG PH +的值为4.6.如图,已知锐角△ABC 中,AB 、AC 边的中垂线交于点O(1)若∠A =α(0°<α<90°),求∠BOC ;(2)试判断∠ABO +∠ACB 是否为定值;若是,求出定值,若不是,请说明理由. 解:(1)AB 、AC 边的中垂线交于点O , ∴AO =BO =CO ,∴∠OAB =∠OBA ,∠OCA =∠OAC ,∴∠AOB+∠AOC=(180°﹣∠OAB﹣∠OBA)+(180°﹣∠OAC﹣∠OCA),∴∠AOB+∠AOC=(180°﹣2∠OAB)+(180°﹣2∠OAC)=360°﹣2(∠OAB+∠OAC)=360°﹣2∠A=360°﹣2α,∴∠BOC=360°﹣(∠AOB+∠AOC)=2α;(2)∠ABO+∠ACB为定值,∵BO=CO,∴∠OBC=∠OCB,∵∠OAB=∠OBA,∠OCA=∠OAC,∴∠OBC=(180°﹣2∠A)=90°﹣α,∵∠ABO+∠ACB+∠OBC+∠A=180°,∴∠ABO+∠ACB=180°﹣α﹣(90°﹣α)=90°.7.⊙O的直径AB=15cm,有一条定长为9cm的动弦,CD在弧AB上滑动(点C和A、点D与B不重合),且CE⊥CD交AB于E,DF⊥CD交AB于F.(1)求证:AE=BF(2)在动弦CD滑动过程中,四边形CDFE的面积是否为定值,若是定值,请给出证明,并求这个定值,若不是,请说明理由.【详解】(1)如图,过O作OG⊥CD于G,则G为CD的中点,又EC⊥CD,FD⊥CD,∴EC∥OG∥FD,∴O为EF的中点,即OE=OF,又AB为⊙O的直径,∴OA=OB,∴AE=BF(等式性质),(2)四边形CDFE的面积是定值,理由如下:过点O作OG⊥CD于G,连接OD.则14.5cm.2DG CD==在△OGD中,190,7.5cm2OGD OD AB∠===o,根据勾股定理得6cmOG==,则GD=4.5cm.∵OD、DG是定值,∴OG是定值,∵CE∥OG∥DF,G为CD中点,∴O为EF中点,①当CD与AB不平行时.∴OG为梯形CDFE的中位线,∴CE+DF=2OG=2×6=12cm,∵梯形的高也是定值9cm,∴梯形的面积是定值=12×9÷2=54cm2.②当CD∥AB时,四边形ECDF是矩形,OG=EC=FD=6,∴矩形的面积=6×9=54cm2是定值.综上所述,四边形CDFE的面积是定值.8.在平面直角坐标系中,点A和点B分别在x轴的正半轴和y轴的正半轴上,且OA=6,OB=8,点D是AB的中点.(1)直接写出点D的坐标及AB的长;(2)若直角∠NDM绕点D旋转,射线DP分别交x轴、y轴于点P、N,射线DM交x轴于点M,连接MN.①当点P和点N分别在x轴的负半轴和y轴的正半轴时,若△PDM∽△MON,求点N的坐标;②在直角∠NDM绕点D旋转的过程中,∠DMN的大小是否会发生变化?请说明理由.【详解】(1)∵OA=6,OB=8,点D是AB的中点,∴点D的坐标为(3,4),AB==10;(2)①如图,过点D作DC⊥y轴于C,作DE⊥x轴于E,则CD=3=OE,DE=4=CO,∠DCN=∠DEM=90°,设ON=x,则CN=4﹣x.∵∠CDE=∠PDM=90°,∴∠CDN=∠EDM,∴△CDN∽△EDM,∴CD CNED EM=,即344xEM-=,∴EM43=(4﹣x).∵CD∥PO,∴△CDN∽△OPN,∴CD CNOP ON=,即34xOP x-=,∴OP34xx=-.∵△PDM∽△MON,∴∠NPO=∠NMO,∴PN=MN.∵NO⊥PM,∴PO=MO,即34343xx=+-(4﹣x),解得:x1=10(舍去),x252=,∴ON52=,∴点N的坐标为(0,52);②在直角∠NDM绕点D旋转的过程中,∠DMN的大小不会发生变化.理由如下:由①可得:△CDN∽△EDM,∴CD DNED DM=,即34DNDM=.又∵OA=6,OB=8,∴34OAOB=,∴DN OADM OB=,即DN DMAO OB=.又∵∠AOB=∠NDM=90°,∴△AOB∽△NDM,∴∠DMN=∠OBA.∵∠OBA大小不变,∴∠DMN的大小不会发生变化.9.如图,在菱形ABCD中,∠ABC=60°,AB=2.过点A作对角线BD的平行线与边CD的延长线相交于点E.P为边BD上的一个动点(不与端点B,D重合),连接P A,PE,AC.(1)求证:四边形ABDE是平行四边形;(2)求四边形ABDE的周长和面积;(3)记△ABP的周长和面积分别为C1和S1,△PDE的周长和面积分别为C2和S2,在点P的运动过程中,试探究下列两个式子的值或范围:①C1+C2,②S1+S2,如果是定值的,请直接写出这个定值;如果不是定值的,请直接写出它的取值范围.【详解】(1)证明:∵四边形ABCD是菱形,∴AB∥CD,即AB∥DE.∵BD∥AE,∴四边形ABDE是平行四边形.(2)解:设对角线AC与BD相交于点O.∵四边形ABCD是菱形,∠ABC=60°,∴∠ABD=∠CBP=12∠ABC=30°,AC⊥BD.在Rt△AOB中,AO=12AB=1,∴OB∴BD=2BO=∴Y ABDE的周长为:2AB+2BD=YABDE的面积为:BD•AO==(3)①∵C1+C2=AB+PB+AP+PD+PE+DE=2AB+BD+AP+PE=AP+PE,∵C和A关于直线BD对称,∴当P在D处时,AP+PE的值最小,最小值是2+2=4,当P 在点B 处时,AP +PE 的值最大,如图2, 过E 作EG ⊥BD ,交BD 的延长线于G , ∵∠BDE =150°, ∴∠EDG =30°, ∵DE =2,∴EG =1,DGRt △PEG 中,BG =由勾股定理得:PE ==∴AP +PE 的最大值是:∵P 为边BD 上的一个动点(不与端点B ,D 重合),∴C 1+C 2<C 1+C 2< (写对一边的范围给一分)②S 1+S 2理由是:S 1+S 2=1111BP AO PD AO AO()12222BP PD ⋅+⋅=+=⨯=10.如图,抛物线的顶点坐标为C (0,8),并且经过A (8,0),点P 是抛物线上点A ,C 间的一个动点(含端点),过点P 作直线y =8的垂线,垂足为点F ,点D ,E 的坐标分别为(0,6),(4,0),连接PD ,PE ,DE .(1)求抛物线的解析式;(2)猜想并探究:对于任意一点P ,PD 与PF 的差是否为固定值?如果是,请求出此定值;如果不是,请说明理由;(3)求:①当△PDE 的周长最小时的点P 坐标;②使△PDE 的面积为整数的点P 的个数.【答案】(1)抛物线的解析式为y =﹣18x 2+8;(2)PD 与PF 的差是定值,PD ﹣PF =2;(3)①P (4,6),此时△PDE 的周长最小;②共有11个令S △DPE 为整数的点. 【解析】(1)设抛物线的解析式为y =a (x +h )2+k ∵点C (0,8)是它的顶点坐标, ∴y =ax 2+8 又∵经过点A (8,0), 有64a +8=0,解得a =1-8故抛物线的解析式为:y =1-8x 2+8; (2)是定值,解答如下:设P (a ,1-8a 2+8),则F (a ,8), ∵D (0,6),∴PD 2128a ==+ PF =22118888a a ⎛⎫--+=⎪⎝⎭, ∴PD ﹣PF =2;(3)当点P 运动时,DE 大小不变,则PE 与PD 的和最小时,△PDE 的周长最小, ∵PD ﹣PF =2,∴PD =PF +2,∴PE +PD =PE +PF +2,∴当P 、E 、F 三点共线时,PE +PF 最小, 此时点P ,E 的横坐标都为4, 将x =4代入y =1-8x 2+8,得y =6, ∴P (4,6),此时△PDE 的周长最小. 过点P 做PH ⊥x 轴,垂足为H . 设P (a ,1-8a 2+8)∴PH =1-8a 2+8,EH =a -4,OH =a S △DPE =S 梯形PHOD -S △PHE -S △DOE=()2211111-86?844628282a a a a ⎛⎫⎛⎫++--+--⨯⨯ ⎪ ⎪⎝⎭⎝⎭=21-344a a ++ =21-6)134a -+( ∵点P 是抛物线上点A ,C 间的一个动点(含端点) ∴0≤a ≤8当a =6时,S △DPE 取最大值为13. 当a =0时,S △DPE 取最小值为4. 即4≤S △DPE ≤13其中,当S △DPE =12时,有两个点P . 所以,共有11个令S △DPE 为整数的点.。
2020年中考数学动态几何题中的“定值型”问题赏析精品版
特殊的位置,探得定值,如果需要的话再考虑证明;或直接推理、计算,并在计算中消去变
量,从而得到定值 。以下以 2010 年中考题为例说明具体的求解策略
一、长度定值
例 1.( 2010 山东聊城)如图,点 P 是矩形 ABCD 的边 AD 的一个动点,矩形的两条边 AB、
BC 的长分别为 3 和 4,那么点 P 到矩形的两条对角线 AC 和 BD 的距离之和是 (
点 D 是线段 BC 上的动点(与端点 线 OAB 于点 E.
B、C 不重合),过点 D 作直线 y =- 1 x + b 交折 2
( 1)略 ( 2)当点 E 在线段 OA 上时,若矩形 OABC 关于直线 DE 的对称图形为四边形 O1A1B1C1,
试探究 O1A1B1C1 与矩形 OABC 的重叠部分的面积是否发生变化,若不变,求出该 重叠部分的面积;若改变,请说明理由 .
y
C
D
B
O
EA
x
思路点拨:(2)重叠部分是一个平行四边形, 由于这个平行四边形上下边上的高不变, 因此
决定重叠部分面积是否变化的因素就是看这个平行四边形落在
OA 边上的线段长度是否变
化.
解:( 1)略
( 2)如图 3,设 O1A1 与 CB 相交于点 M ,OA 与 C1 B1 相交于点 N,则矩形 O1A 1B 1C1 与矩 形 OABC 的重叠部分的面积即为四边形 DNEM 的面积。
解:( 1)如图 4, OE=5, r 2 ,CH =2
( 2)略 ( 3)如图 6,连接 AK ,AM,延长 AM ,
与圆交于点 G,连接 TG,则 GTA 90 2 4 90
3 4 , 2 3 90 由于 BKO 3 90 ,故, BKO 2 ; 而 BKO 1,故 1 2 在 AMK 和 NMA 中, 1 2 ; AMK NMA
动态几何之定值问题
动态几何之定值问题例1:如图,点E 是矩形ABCD 的对角线BD 上的一点,且BE =BC ,AB =3,BC =4,点P 为直线EC 上的一点,且PQ ⊥BC 于点Q ,PR ⊥BD 于点R .(1)如图1,当点P 为线段EC 中点时,易证:PR +PQ =512(不需证明). (2)如图2,当点P 为线段EC 上的任意一点(不与点E 、点C 重合)时,其它条件不变,则(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.(3)如图3,当点P 为线段EC 延长线上的任意一点时,其它条件不变,则PR 与PQ 之间又具有怎样的数量关系?请直接写出你的猜想.例2:如图,O 是正△ABC 内一点,OA =3,OB =4,OC =5,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ′,下列结论:①△BO ′A 可以由△BOC 绕点B 逆时针旋转60°得到;②点O 与O ′的距离为4;③∠AOB =150°;④AOBO S =6+33四形边;⑤AOC AOB 93S S 6+4+= .其中正确的结论是___________例3:如图所示,现有一张边长为4的正方形纸片ABCD ,点P 为正方形AD 边上的一点(不与点A 、点D 重合)将正方形纸片折叠,使点B 落在P 处,点C 落在G 处,PG 交DC 于H ,折痕为EF ,连接BP 、BH . (1)求证:∠APB =∠BPH ;(2)当点P 在边AD 上移动时,△PDH 的周长是否发生变化?并证明你的结论;(3)设AP 为x ,四边形EFGP 的面积为S ,求出S 与x 的函数关系式,试问S 是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.例4:已知正方形ABCD,点P是对角线AC所在直线上的动点,点E在DC边所在直线上,且随着点P的运动而运动,PE=PD总成立.(1)如图(1),当点P在对角线AC上时,请你通过测量、观察,猜想PE与PB有怎样的关系?(直接写出结论不必证明);(2)如图(2),当点P运动到CA的延长线上时,(1)中猜想的结论是否成立?如果成立,请给出证明;如果不成立,请说明理由;(3)如图(3),当点P运动到CA的反向延长线上时,请你利用图(3)画出满足条件的图形,并判断此时PE与PB有怎样的关系?(直接写出结论不必证明)(1)(2)1.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由;(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明)(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最小值.2. 已知菱形ABCD的边长为1.∠ADC=60°,等边△AEF两边分别交边DC、CB于点E、F。
(完整版)2020年中考数学动态问题图形最值问题探究(含答案)
专题 09 动点类题目图形最值问题研究题型一:矩形中的相似求解例 1.( 2019·绍兴) 如图,矩形 ABCD 中, AB=a , BC=b ,点 M 、 N 分别在边 AB 、 CD上,点 E 、 F 分别在边 BC 、 AD 上, MN 、EF 交于点 P. 记 k=MN:EF.( 1)若 a : b 的值为 1,当 MN ⊥ EF 时,求 k 的值 .( 2)若 a : b 的值为 1,求 k 的最大值和最小值 .2( 3)若 k 的值为 3,当点 N 是矩形的极点,∠MPE =60°, MP=EF=3 PE 时,求 a :b 的值 .AFD NMBEC题型二:二次函数中几何图形最值求解 例 2.( 2019·衡阳) 如图,二次函数y =x 2+bx+c 的图象与 x 轴交于点 A (﹣ 1, 0)和点 B(3, 0),与 y 轴交于点 N ,以 AB 为边在 x 轴上方作正方形 ABCD ,点 P 是 x 轴上一动点,连接 CP ,过点 P 作 CP 的垂线与y 轴交于点 E .(1)求该抛物线的函数关系表达式;(2)当点 P 在线段 OB (点 P 不与 O 、B 重合)上运动至哪处时,线段OE 的长有最大值?并求出这个最大值;( 3)在第四象限的抛物线上任取一点M ,连接 MN 、MB .请问: △ MBN 的面积可否存在最大值?若存在,求出此时点M 的坐标;若不存在,请说明原由.题型三:二次函数中面积最值的求解例 3.( 2019·自贡)如图,已知直线AB 与抛物线C : y ax 2 2x c 订交于点A( -1,0)和点 B( 2,3)两点 .(1)求抛物线 C 函数表达式;(2)若点 M 是位于直线AB 上方抛物线上的一动点,以MA、MB为相邻的两边作平行四边形 MANB ,当平行四边形 MANB 的面积最大时,求此时平行四边形MANB 的面积 S 及点 M的坐标;(3)在抛物线 C 的对称轴上可否存在定点F,使抛物线 C 上任意一点 P 到点 F 的距离等于到直线y 17F 的坐标;若不存在,请说明原由 .的距离,若存在,求出定点4题型四:反比率函数中面积最值的求解例 4.( 2018·扬州一模)如图1,反比率函数y= k( x> 0)的图象经过点A( 23, 1),射x线 AB 与反比率函数图象交于另一点B( 1,a),射线 AC 与 y 轴交于点C,∠ BAC=75°,AD ⊥ y 轴,垂足为 D .(1)求 k 的值;(2)求 tan∠ DAC 的值及直线AC 的解析式;(3)如图 2, M 是线段 AC 上方反比率函数图象上一动点,过M 作直线 l⊥ x 轴,与 AC 相交于点 N,连接 CM,求△ CMN 面积的最大值.题型五:反比率函数中面积最值的求解例 5.( 2019·达州)如图 1,已知抛物线 y=- x2+bx+c 过点 A(1,0), B(- 3,0).(1)求抛物线的解析式及其极点 C 的坐标;(2)设点 D 是 x 轴上一点,当tan(∠ CAO+∠ CDO ) =4 时,求点 D 的坐标;(3)如图 2,抛物线与 y 轴交于点 E,点 P 是该抛物线上位于第二象限的点,线段PA 交BE 于点 M,交 y 轴于点 N,△ BMP 和△ EMN 的面积分别为m、 n,求 m- n 的最大值 .题型六:二次函数中最值及最短路径题型例 6.(2019·绵阳)在平面直角坐标系中,将二次函数y=ax2( a>0)的图象向右平移 1 个单位,再向下平移 2 个单位,获取以以下图的抛物线,该抛物线与x 轴交于点 A、 B(点 A 在点 B 的左侧),OA=1,经过点 A 的一次函数 y=kx+b( k≠0)的图象与 y 轴正半轴交于点C,且与抛物线的另一个交点为D,△ ABD 的面积为 5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点 E 在一次函数的图象下方,求△ACE 面积的最大值,并求出此时点E 的坐标;(3)若点 P 为 x 轴上任意一点,在( 2)的结论下,求PE+ 3PA 的最小值.5例 7.( 2019·潍坊)如图,在平面直角坐标系xoy 中, O 为坐标原点,点A( 4, 0),点 B (0, 4),△ ABO 的中线 AC 与 y 轴交于点 C,且⊙M 经过 O, A, C 三点.(1)求圆心 M 的坐标;(2)若直线 AD 与⊙ M 相切于点 A,交 y 轴于点 D,求直线 AD 的函数表达式;(3)在过点 B 且以圆心M 为极点的抛物线上有一动点P,过点 P 作 PE∥ y 轴,交直线AD 于点 E.若以 PE 为半径的⊙ P 与直线 AD 订交于另一点 F .当 EF = 4 5 时,求点 P 的坐标.答案与解析题型一:矩形中的相似求解例1.( 2019·绍兴)如图,矩形 ABCD 中, AB=a, BC=b,点 M、 N 分别在边 AB、 CD 上,点 E、 F 分别在边BC、 AD 上, MN 、EF 交于点 P. 记 k=MN:EF.(1)若 a: b 的值为 1,当 MN ⊥ EF 时,求 k 的值 .(2)若 a: b 的值为1,求 k 的最大值和最小值 . 2( 3)若 k 的值为 3,当点 N 是矩形的极点,∠MPE =60°, MP=EF=3 PE 时,求 a:b 的值.A FDNMB E C【解析】( 1)当 a: b=1 时,可得四边形ABCD 为正方形,由MN ⊥ EF ,可证 MN =EF ,即 k=1;( 2)先确定 MN 和 EF 的取值范围,当 MN 取最大值, EF 取最小值时, k 的值最大,否则反之;( 3)依照 N 是矩形极点,分两种情况谈论,即N 分别与 D 点和 C 点重合,依照不同样图形求解 .【答案】见解析.【解析】解:( 1)当 a:b=1 时,即 AB=BC,∵四边形 ABCD 是矩形,∴四边形 ABCD 是正方形,过 F 作 FG ⊥ BC 于 G,过 M 作 MH ⊥CD 于 H,以以下图所示,A FDNMHBG E C ∵MN⊥ EF ,∴∠ NMH =∠ EFG ,∵∠ MHN =∠ FGE =90°, MH =FG ,∴△ MNH ≌△ FEG ,∴MN=EF ,即 k=1;( 2)由题意知: b=2a,所以得: a≤EF ≤5a,2a≤MN ≤5a ,所以当 MN 取最大值, EF 取最小值时, k 取最大值,为 5 ;25当 MN 取最小值, EF 取最大值时, k 取最小值,为;5( 3)以以下图所示,A F DP NMBEC连接 FN ,ME,设PE=x,则 EF =MP=3x, PF=2x,MN =3EF=9 x, PN=6x,∴PF PN PE PM又∵∠ FPN =∠ MPE,∴△ FPN∽△ EPM ,∴∠ PFN=∠ PEM,∴FN∥ ME ,①当 N 点与 D 点重合时,由FN ∥ ME 得, M 点与 B 点重合,AF(N)DP HB C (M )E过F 作 FH ⊥ BD 于 H ,∵∠ MPE=60°,∴∠ PFH =30°,∴ PH=x , FH = 3x , BH=BP+PH=4x , DH =5x ,在 Rt △ DFH 中, tan ∠FDH =3 ,5即 a:b=3;5②当 N 点与 C 点重合时,过A FDM H PBE(N ) C过点 E 作 EH ⊥ MN 于 H ,连接 EM ,则 PH =x ,EH= 3x , CH=PC+PH =13x ,在 Rt △ ECH 中, tan ∠ECH =3 , 13∵ ME ∥ FC ,∴∠ MEB=∠ FCB=∠ CFD ,∵∠ B=∠ D ,∴△ MEB ∽△ CFD ,∴CD FC=2,MB MECD 2BM 2 3即 a:b=BC;BC13综上所述, a:b 的值为3 或 2 3 .513题型二:二次函数中几何图形最值求解例 2.( 2019·衡阳) 如图,二次函数y =x 2+bx+c 的图象与 x 轴交于点 A (﹣ 1, 0)和点 B(3, 0),与 y 轴交于点 N ,以 AB 为边在 x 轴上方作正方形 ABCD ,点 P 是 x 轴上一动点,连接 CP ,过点 P 作 CP 的垂线与 y 轴交于点 E .(1)求该抛物线的函数关系表达式;(2)当点 P 在线段 OB (点 P 不与 O 、B 重合)上运动至哪处时,线段OE 的长有最大值?并求出这个最大值;( 3)在第四象限的抛物线上任取一点M ,连接 MN 、MB .请问: △ MBN 的面积可否存在最大值?若存在,求出此时点M 的坐标;若不存在,请说明原由.【解析】( 1)将点 A 、B 的坐标代入二次函数解析式求解; ( 2)由 △ POE ∽△ CBP 得出比率 线段,可表示 OE 的长,利用二次函数的性质可求出线段 OE 的最大值;(3)过点 M 作 MH ∥ y轴交 BN 于点 H ,由 S △MNB =S △BMH +S △MNH 即可求解. 【答案】见解析 .【解析】解:( 1) ∵抛物线 y = x 2+bx+c 经过 A (﹣ 1, 0), B ( 3, 0),1 b c 09 3bc ,0 解得:b 2 c,3抛物线函数关系表达式为y = x 2﹣2x ﹣ 3;( 2)由题意知: AB = OA+OB = 4,在正方形 ABCD 中, ∠ ABC = 90°, PC ⊥ BE , ∴∠ OPE+∠ CPB = 90°,∠CPB +∠ PCB = 90°, ∴∠ OPE =∠ PCB ,又∵∠ EOP = ∠ PBC = 90°,∴△ POE ∽△ CBP ,∴BC OP ,BP OE∴4 x , 3 xOE2∴OE =1x 2 3x1 x 3 9 ,44 216当 x3时,即 OP =3时线段 OE 长有最大值,最大值为9 .2216(3)存在.如图,过点 M 作 MH ∥y 轴交 BN 于点 H ,∴N 点坐标为( 0,﹣ 3),设直线 BN 的解析式为 y =kx+b ,3k b 0 ∴,b3∴直线 BN 的解析式为y =x ﹣ 3,设 M ( m , m 2﹣2m ﹣ 3),则 H ( m , m ﹣ 3), ∴MH = m ﹣ 3﹣( m 2 ﹣2m ﹣3)=﹣ m 2+3 m ,∴S △MNB =S △BMH +S △MNH =11 m 2m 2 3m3 27 ,2228∴a = 3时, △ MBN 的面积有最大值,最大值是27,此时 M 点的坐标为( 3,15).2824题型三:二次函数中面积最值的求解例 3.( 2019·自贡) 如图,已知直线 AB 与抛物线 C : y ax 2 2xc 订交于点 A ( -1,0)和点 B ( 2,3)两点 .(1)求抛物线 C 函数表达式;(2)若点 M 是位于直线 AB 上方抛物线上的一动点, 以 MA 、MB 为相邻的两边作平行四边的坐标;(3)在抛物线 C 的对称轴上可否存在定点 F ,使抛物线 C 上任意一点 P 到点 F 的距离等于到直线 y17 F 的坐标;若不存在,请说明原由 .的距离,若存在,求出定点4【答案】见解析 .【解析】解:( 1)把 A ( -1,0),B ( 2,3)代入抛物线得:a 2 c 04a 4 c 3解得a 1c 3∴抛物线的函数表达式为:y=-x 2+2x+3( 2)∵ A ( -1,0), B ( 2,3),∴直线 AB 的解析式为: y=x+1,以以下图所示,过 M 作 MN ∥ y 轴交 AB 于 N ,设 M(m,- m 2+2m+3), N(m,m+1) ,( -1< m <2)∴MN =- m 2+m+2,∴S △△△ 1x A ) MNABM =S AMN +S BMN = ( x B2∴S △ ABM =1( m 2 m 2)33 (m 1 ) 227 ,22 28∴当1 时, △ ABM 的面积有最大值 27,而 S □MANB△ ABM27 ,此时1 7 m8=2S=M (, )242 2( 3)存在,点 F (1,15)4原由以下:抛物线极点为D ,则 D ( 1,4),则极点 D 到直线 y17 的距离为 1 ,174 4设 F (1, n) 、 P(x, x 22x 3) ,设 P 到直线 y的距离为 PG.4则 PG=17( x 2 2 x3) x 22x 5 ,44∵P 为抛物线上任意一点都有 PG=PF ,∴当 P 与极点 D 重合时,也有 PG=PF .此时 PG= 1,即极点 D 到直线 y17 的距离为 1 ,44 41∴PF =DF = ,∴ F (1,15) ,4∵PG=PF ,∴PG 2=PF 2, ∵ PF 2( x 1)2(15x 2 2x 3)2( x 1)2(x 22x3 )244PG 2( x 22x 5) 2(15 43)25)2∴ (x 1)2x 2 2x 3)2 ( x 1)2( x 2 2 x (x 22x44 4整理化简可得 0x=0,∴当 F (1,15) 时,无论 x 取任何实数,均有 PG=PF .4题型四:反比率函数中面积最值的求解k例 4.( 2018·扬州一模) 如图 1,反比率函数 y= x ( x > 0)的图象经过点 A (2 3, 1),射线 AB 与反比率函数图象交于另一点 B ( 1, a ),射线 AC 与 y 轴交于点 C ,∠ BAC=75°,AD ⊥y 轴,垂足为 D . (1)求 k 的值;(2)求 tan ∠ DAC 的值及直线 AC 的解析式;(3)如图 2, M 是线段 AC 上方反比率函数图象上一动点,过 M 作直线 l ⊥ x 轴,与 AC 相交于点 N ,连接 CM ,求 △ CMN 面积的最大值.11【答案】见解析.【解析】解:( 1)∵将 A(2 3 , 1)代入反比率函数y=k ,x∴k= 2 3 ;(2)由( 1)知,反比率函数解析式为y=2 3,x∵点 B( 1, a)在反比率函数y=23 的图象上,x∴a= 2 3 ,∴点 B( 1, 2 3 )过 B 作 BE⊥ AD 于 E,以以下图所示,则AE=BE =2 3 ﹣1.∴∠ ABE=∠ BAE=45°又∵∠ BAC=75°,∴∠ DAC =30°3∴DC = tan30°·AD= 2 3 = 2,∴OC= 1,即 C( 0,﹣ 1)设直线 AC 的解析式为y=kx+b12∴ 2 3kb 1 ,b1解得k3 3 b1∴直线 AC 的解析式为 y = 3 x ﹣ 13( 3)设 M ( m ,2 3), N ( m , 3m ﹣ 1)m3则 MN =2 3- (3 m ﹣ 1)=2 3﹣ 3 m+1,m3 m 3∴S △CMN = 1 (23 ﹣ 3 m+1) m =﹣ m 2+ m+2m 3=﹣3( m ﹣ 3 ) 2+ 9 3628当 m =3时, △ CMN 的面积有最大值,最大值为9 3 .28题型五:反比率函数中面积最值的求解例 5.( 2019·达州) 如图 1,已知抛物线 y=- x 2+bx+c 过点 A(1,0), B(- 3,0).(1)求抛物线的解析式及其极点 C 的坐标;(2)设点 D 是 x 轴上一点,当tan (∠ CAO+∠ CDO ) =4 时,求点 D 的坐标;(3)如图 2,抛物线与 y 轴交于点 E ,点 P 是该抛物线上位于第二象限的点,线段PA 交BE 于点 M ,交 y 轴于点 N , △ BMP 和 △ EMN 的面积分别为 m 、 n ,求 m - n 的最大值 .【答案】见解析 .2【解析】解:( 1)把点( 1,0),(﹣ 3, 0)代入 y =﹣ x +bx+c ,得,0 1 b c , 0 9 3bc解得 b =﹣ 2, c = 3,2 2,∴y =﹣ x ﹣ 2x+3 =-( x+1) +4∴此抛物线解析式为: y =﹣ x 2﹣2x+3,极点 C 的坐标为(﹣ 1, 4);13(2)由( 1)知:抛物线对称轴为x =﹣ 1,设抛物线对称轴与x 轴交于点 H , H (﹣ 1, 0),在 Rt △ CHO 中, CH =4, OH = 1,∴ t an ∠COH = CH=4,OH∵∠ COH = ∠ CAO+∠ ACO ,∴当 ∠ ACO = ∠ CDO 时,tan ( ∠CAO+∠CDO )= tan ∠ COH = 4,以以下图所示,当点 D 在对称轴左侧时,∵∠ ACO =∠ CDO , ∠ CAO =∠ CAO ,∴△ AOC ∽△ ACD ,∴ AC AO ,AD AC∵AC = 2 5 , AO = 1,∴AD = 20, OD = 19,∴D (﹣ 19, 0);当点 D 在对称轴右侧时,点D 关于直线 x = 1 的对称点 D'的坐标为( 17, 0),∴点 D 的坐标为(﹣ 19,0)或( 17, 0);( 3)设 P ( a ,﹣ a 2﹣ 2a+3),设直线 PA 的解析式为: y=kx+b ,将 P ( a ,﹣ a 2﹣ 2a+3), A ( 1, 0)代入 y = kx+b ,ak ba 2 2a 3 k b,解得, k =﹣ a ﹣ 3, b = a+3 ,∴ y =(﹣ a ﹣ 3) x+a+3,当 x = 0 时, y = a+3,∴ N ( 0,a+3),14以以下图所示,∵m=S △ BPM = S △BPA ﹣ S 四边形 BMNO ﹣ S △AON , n=S △EMN = S △EBO ﹣ S 四边形 BMNO ,∴m - n = S △BPA ﹣ S △EBO ﹣ S △AON= 1×4×(﹣ a 2﹣ 2a+3)﹣ 1 ×3×3﹣ 1×1×( a+3) 2 2 2=﹣ 2( a+ 9 ) 2+ 81,8 32 ∴当 a =﹣ 9 时, m - n 有最大值81.832题型六:二次函数中最值及最短路径题型例 6.(2019·绵阳) 在平面直角坐标系中,将二次函数y=ax 2( a >0)的图象向右平移1 个单位,再向下平移 2 个单位,获取以以下图的抛物线,该抛物线与 x 轴交于点 A 、 B (点 A在点 B 的左侧) ,OA=1,经过点 A 的一次函数 y=kx+b ( k ≠0)的图象与 y 轴正半轴交于点 C ,且与抛物线的另一个交点为D , △ ABD 的面积为 5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点 E 在一次函数的图象下方,求 △ACE 面积的最大值,并求出此时点 E 的坐标;(3)若点 P 为 x 轴上任意一点,在(2)的结论下,求PE+ 3PA 的最小值.5【答案】见解析 .【解析】解:( 1)由平移知,平移后获取的抛物线解析式为y=a ( x-1)2 -2,∵OA=1,15∴点 A 的坐标为( -1,0),代入抛物线的解析式得, 4a-2=0 ,得: a= 1,2∴抛物线的解析式为 y1 x 1 21 x2 x3 .2 ,即 y222令 y=0,解得 x 1=-1 , x 2 =3,∴B ( 3,0),∴AB =OA +OB=4,∵△ ABD 的面积为 5,1∴S △ ABD = AB ·y D =5∴ y D = 5,25 1 x 2 x 3 ,解得 x 1=-2, x 2=4,2225∴D ( 4, ),设直线 AD 的解析式为 y=kx+b ,∴ 4kb5k12 ,2 ,解得:k b 0b1 2∴直线 AD 的解析式为: y=1x+ 1 . 2 2( 2)过点 E 作 EM ∥y 轴交 AD 于 M ,以以下图所示,设 E ( a , 1a 2- a - 3 ), M (a , 1 a+ 1),2 2 2 2∴ME = - 1a 2+ 3a+2 ,2 2∴S △ ACE =S △ AME - S △CME =- 1 ( a 2- 3a - 4) =- 1 ( a - 3 ) 2+25,44 2 1616∴当 a= 3 时, △ ACE 的面积有最大值,最大值是25,此时 E 点坐标为( 3 , 15 ).21628( 3)作 E 关于 x 轴的对称点 F ,连接 EF 交 x 轴于点 G ,过点 F 作 FH ⊥ AE 于点 H ,交轴于点 P ,∴AG = 5 , EG = 15,2 8AG 4 ∴,EG3∵∠ AGE=∠ AHP =90° ∴sin ∠= PHEG 3EAGAE,AP53∴PH = AP ,∵E 、 F 关于 x 轴对称,∴PE =PF ,3∴PE + 5 AP=FP+HP=FH ,此时 FH 最小,∵ E F =15, ∠AEG =∠ HEF ,4∴sin ∠ AEG=sin ∠ HEF =AGFH4 AEAE 5∴FH =3.即 PE+ 3PA 的最小值是3. 5例 7.( 2019·潍坊) 如图,在平面直角坐标系 xoy 中, O 为坐标原点,点A ( 4, 0),点 B( 0, 4),△ ABO 的中线 AC 与 y 轴交于点 C ,且 ⊙M 经过 O , A , C 三点.( 1)求圆心 M 的坐标;( 2)若直线 AD 与 ⊙ M 相切于点 A ,交 y 轴于点 D ,求直线 AD 的函数表达式;(3)在过点B 且以圆心 M 为极点的抛物线上有一动点 P ,过点 P 作 PE ∥ y 轴,交直线 AD于点 E .若以 PE 为半径的 ⊙ P 与直线 AD 订交于另一点 F .当 EF = 4 5 时,求点 P 的坐标.17【答案】见解析.【解答】解:( 1)∵ AC 为△ ABO 的中线,点B( 0,4),∴点 C(0, 2),∵点 A( 4, 0),点M 为线段 AC 的中点,即 M( 2, 1);(2)∵⊙P 与直线 AD ,则∠ CAD = 90°,设∠ CAO=α,则∠ CAO=∠ ODA=∠ PEH =α,tan∠ CAO=OC1αα5, cosα=25 ,OA2= tan ,则 sin=55AC= 10 ,则 CD=AC= 10,sin则 D ( 0,﹣ 8),设直线 AD 的解析式为: y= mx+n:b8得:,解得: k=2, b=- 8,4k b 0直线 AD的表达式为: y=2x﹣ 8;(3)抛物线的表达式为:y= a( x﹣ 2)2+1,3将点 B 坐标代入上式并解得:a=,故抛物线的表达式为:y=3x2﹣ 3x+4,41过点 P 作 PH ⊥ EF,则 EH =EF= 2 5 ,18(完满版)2020年中考数学动向问题图形最值问题研究(含答案) 21 / 21 cos ∠PEH = EH cos 2 5PE 5得: PE = 5,设点 P ( x , 3 x 2﹣ 3x+4),则点 E ( x ,2x ﹣ 8),4则 PE = 3 x 2﹣ 3x+4 ﹣ 2x+8=5,4解得 x = 14 或 2(舍),3则点 P ( 14 , 19 ).3 3 19。
解析几何中的定点定值问题含答案
解析几何中的定点和定值问题【教学目标】学会合理选择参数(坐标、斜率等)表示动态图形中的几何对象,探究、证明其不变性质(定点、定值等),体会“设而不求”、“整体代换”在简化运算中的作用.【教学难、重点】解题思路的优化. 【教学方法】讨论式 【教学过程】 一、基础练习1、过直线4x =上动点P 作圆224O x y +=:的切线PA PB 、,则两切点所在直线AB 恒过一定点.此定点的坐标为_________. 【答案】(1,0)【解析】设动点坐标为(4,t P ),则以OP 直径的圆C 方程为:(4)()0x x y y t -+-= , 故AB 是两圆的公共弦,其方程为44x ty +=. 注:部分优秀学生可由200x x y y r += 公式直接得出. 令4400x y -=⎧⎨=⎩得定点(1,0).2、已知PQ 是过椭圆22:21C x y +=中心的任一弦,A 是椭圆C 上异于P Q 、的任意一点.若AP AQ 、 分别有斜率12k k 、 ,则12k k ⋅=______________.【答案】-2【解析】设00(,),(,)P x y A x y ,则(,)Q x y --220001222000y y y y y y k k x x x x x x -+-⋅=⋅=-+-,又由A 、P 均在椭圆上,故有:2200222121x y x y ⎧+=⎪⎨+=⎪⎩,两式相减得2222002()()0x x y y -+-= ,220122202y y k k x x-⋅==-- 3,过右焦点F 作不垂直于x 轴的直线交椭圆于A 、B 两点, AB 的垂直平分线交x 轴于N ,则_______.1=24e【解析】设直线AB 斜率为k ,则直线方程为()3y k x =-,与椭圆方程联立消去y 整理可得()22223424361080k x k x k +-+-=,则221212222436108,3434k k x x x x k k -+==++, 所以1221834ky y k-+=+, 则AB 中点为222129,3434k k k k ⎛⎫- ⎪++⎝⎭. 所以AB 中垂线方程为22291123434k k y x k k k ⎛⎫+=-- ⎪++⎝⎭, 令0y =,则22334k x k =+,即223,034k N k ⎛⎫ ⎪+⎝⎭, 所以222239(1)33434k k NF k k+=-=++.()2236134k AB k +==+,所以14NF AB =.F A ,是其左顶点和左焦点,P 是圆222b y x =+上的动点,若PAPF=常数,则此椭圆的离心率是【答案】e =215- 【解析】 因为PAPF=常数,所以当点P 分别在(±b,0)时比值相等,2b ac =, 又因为222b ac =-, 所以220a c ac --=同除以a 2可得e 2+e -1=0,解得离心率e =215-. 二、典例讨论 例1、如图,在平面直角坐标系xOy 中,椭圆C : 22142x y +=的左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于P ,Q 两点,直线PA ,QA 分别与y 轴交于M ,N 两点. 试问以MN 为直径的圆是否经过定点(与直线PQ 的斜率无关)?请证明你的结论.分析一:设PQ 的方程为y kx =,设点()00,P x y (00x >),则点()00,Q x y --.联立方程组22,24y kx x y =⎧⎨+=⎩消去y 得22412x k =+.所以0x,则0y =.所以直线AP的方程为)2y x =+.从而M ⎛⎫⎝同理可得点N ⎛⎫ ⎝. 所以以MN为直径的圆的方程为2(0x y y ++=整理得:2220x y y +--=由22200x y y ⎧+-=⎨=⎩,可得定点(0)F 分析二:设P (x 0,y 0),则Q (﹣x 0,﹣y 0),代入椭圆方程可得220024x y +=.由直线PA 方程为:00(2)2y y x x =++,可得0020,2y M x ⎛⎫ ⎪+⎝⎭,同理由直线QA 方程可得0020,2y N x ⎛⎫⎪-⎝⎭,可得以MN 为直径的圆为2000022022y y x y y x x ⎛⎫⎛⎫+-⋅-= ⎪ ⎪+-⎝⎭⎝⎭,整理得:2220020002240224y y y x y y x x x ⎛⎫+-++= ⎪+--⎝⎭由于220042x y -=-,代入整理即可得2200204204x y x y y x ⎛⎫+--=⎪-⎝⎭此圆过定点(0)F . 分析三: 易证:2212AP AQb k k a =-=-,故可设直线AP 斜率为k ,则直线AQ 斜率为12k-. 直线AP 方程为(2)y k x =+,从而得(0,2)M k ,以12k -代k 得10,N k ⎛⎫- ⎪⎝⎭故知以MN 为直径的圆的方程为21(2)()0x y k y k+-+= 整理得:2212(2)0x y k y k+-+-=由22200x y y ⎧+-=⎨=⎩,可得定点(0)F . 分析四、设(0,),(0,)M m N n ,则以MN 为直径的圆的方程为2()()0x y m y n +--=即22()0x y m n y mn +-++= 再由221=2AP AQAM AN b k k k k a =-=-得2mn =-,下略例2、已知离心率为e 的椭圆C (1)e ,和()20,. (1) 求椭圆C 的方程;(2) 已知AB MN 、为椭圆C 上的两动弦,其中M N 、关于原点O 对称,AB 过点(1,0)E ,且AB MN 、斜率互为相反数. 试问:直线AM BN 、的斜率之和是否为定值?证明你的结论.解析:(1)由题意:22222111a e e b a b ⎧=⎧=⎪⎪⇒⎨⎨+=⎪⎪=⎩⎩所以椭圆C 的方程为2214x y +=. (2) 设AB 方程为(1)y k x =-,11(,)A x y ,22(,)B x y ,则MN 方程为y kx =-又设33(,)M x kx -,33(,)N x kx -1323132313231323(1)(1)AM BN y kx y kx k x kx k x kx k k x x x x x x x x +--+--+=+=+-+-+则整理得:[]132323131323(1)()(1)()()()AM BN k x x x x x x x x k k x x x x +-++---+=-+212312132322()()()AM BN k x x x x x k k x x x x ⎡⎤+-+⎣⎦+=-+ ①由22(1)44y k x x y =-⎧⎨+=⎩消元整理得:2222(41)8440k x k x k +-+-=, 所以22121222844,4141k k x x x x k k -+==++ ②又由2244y kxx y =-⎧⎨+=⎩消元整理得: 22(41)4k x +=,所以232441x k =+ ③将②、③代入①式得:0AM BN k k +=.例2(变式)、已知离心率为e 的椭圆C (1)e ,和()20,. (3) 求椭圆C 的方程;(4) 已知AB MN 、为椭圆C 上的两动弦,其中M N 、关于原点O 对称,AB 过定点(,0),(22)E m m -<<,且AB MN 、斜率互为相反数. 试问:直线AM BN 、的斜率之和是否为定值?证明你的结论.解析:(3)由题意:222222111a e e b a b ⎧=⎧=⎪⎪⇒⎨⎨+=⎪⎪=⎩⎩所以椭圆C 的方程为2214x y +=. (4) 设AB 方程为()y k x m =-,11(,)A x y ,22(,)B x y ,则MN 方程为y kx =-又设33(,)M x kx -,33(,)N x kx -1323132313231323()()AM BN y kx y kx k k x x x x k x m kx k x m kx x x x x +-+=+-+-+--=+-+则整理得:[]132323131323()()()()()()AM BN k x x m x x x x m x x k k x x x x +-++---+=-+212312132322()()()AM BN k x x x m x x k k x x x x ⎡⎤+-+⎣⎦+=-+ ①由22()44y k x m x y =-⎧⎨+=⎩消元整理得:22222(41)8440k x k mx k m +-+-=, 所以222121222844,4141k m k m x x x x k k -+==++ ②又由2244y kxx y =-⎧⎨+=⎩消元整理得: 22(41)4k x +=,所以232441x k =+ ③将②、③代入①式得:0AM BN k k +=.三、课外作业1、已知椭圆22+142x y =,A 、B 是其左、右顶点,动点M 满足MB ⊥AB ,连结AM 交椭圆于点P ,在x 轴上有异于点A 、B 的定点Q ,以MP 为直径的圆经过直线BP 、MQ 的交点,则点Q 的坐标为____________. 【答案】(0,0) 【解析】试题分析:设(2,),M t 则:(2)4tAM y x =+,与椭圆方程联立消y 得2222(8)44320t x t x t +++-=,所以221628P tx t -=+,288P t y t =+,因此22282816228BP tt k t tt +==---+,即1B P O M k k=-,点Q 的坐标为O (0,0)2、已知PA 、右顶点B 的任意一点,记直线P A ,PB 的斜率分别为1212,,k k k k ⋅则的值为 . 【答案】13- 【解析】设(,)P x y ,因为P 在椭圆上,所以3、已知椭圆22221(0)x y a b a b +=>>的离心率e =12,A,B 是椭圆的左右顶点,P 为椭圆上不同于AB 的动点,直线PA,PB 的倾斜角分别为,αβ,则cos()cos()αβαβ+-= .【答案】7 【解析】试题分析:因为A,B 是椭圆的左右顶点,P 为椭圆上不同于AB 的动点,22PA PBb k k a ∴⋅=-2222211132244c a b b e a a a -=∴=∴=∴=,2234PA PBb k k a ∴⋅=-=-,31cos()cos cos sin sin 1tan tan 473cos()cos cos sin sin 1tan tan 14αβαβαβαβαβαβαβαβ++--====-++- 4、如图所示,已知椭圆C C 上任取不同两点A ,B ,点A 关于x 轴的对称点为'A ,当A ,B 变化时,如果直线AB 经过x 轴上的定点T (1,0),则直线'A B 经过x 轴上的定点为________.【答案】(4,0)【解析】设直线AB 的方程为x =my +1,由22141x y x my ⎧+=⎪⎨⎪=+⎩得(my +1)2+4y 2=4,即(m 2+4)y 2+2my-3=0.记A (x 1,y 1),B (x 2,y 2),则A ′(x 1,-y 1),且y 1+y 2=-224m m +,y 1y 2=-234m +, 当m ≠0时,经过点A′(x 1,-y 1),B(x 2,y 2)的直线方程为121y y y y ++=121x x x x --.令y =0,得x =2121x x y y -+y 1+x 1=2121my my y y -+y 1+my 1+1=2212112121my y my my y my y y -++++1=12212my y y y ++1=2232424m m m m ⋅+-+-+1=4,所以y =0时,x =4. 当m =0时,直线AB 的方程为x =1,此时A′,B 重合,经过A′,B 的直线有无数条,当然可以有一条经过点(4,0)的直线.当直线AB 为x 轴时,直线A ′B 就是直线AB ,即x 轴,这条直线也经过点(4,0).综上所述,当点A ,B 变化时,直线A ′B 经过x 轴上的定点(4,0).5、 的右焦点2F 的直线交椭圆于于,M N 两点,令【解析】试题分析:不失一般性,不妨取MN 垂直x 轴的情况,此时MN :x=1,联立221431x y x ⎧+=⎪⎨⎪=⎩,得M (1,32),N (1,-32),∴m=n=32,∴34mn m n =+6、已知椭圆C 的中心在坐标原点,焦点在x 轴上,左顶点为A ,左焦点为()120F -,,点(B 在椭圆C 上,直线()0y kx k =≠与椭圆C 交于E ,F 两点,直线AE ,AF 分别与y 轴交于点M ,N .(Ⅰ)求椭圆C 的方程;(Ⅱ)以MN 为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.解析:(Ⅰ)解法一:设椭圆C 的方程为22221(0)x y a b a b+=>>,因为椭圆的左焦点为()120F -,,所以224a b -=.设椭圆的右焦点为()220F ,,已知点(2B 在椭圆C 上, 由椭圆的定义知122BF BF a +=,所以2a ==所以a =2b =.所以椭圆C 的方程为22184x y +=. 解法二:设椭圆C 的方程为22221(0)x y a b a b+=>>,因为椭圆的左焦点为()120F -,,所以224a b -=. ①因为点(2B 在椭圆C 上,所以22421a b +=. ②由①②解得,a =2b =.所以椭圆C 的方程为22184x y +=.(Ⅱ)解法一:因为椭圆C 的左顶点为A ,则点A 的坐标为()-.因为直线(0)y kx k =≠与椭圆22184x y +=交于两点E ,F , 设点()00,E x y (不妨设00x >),则点()00,F x y --.联立方程组22,184y kx x y =⎧⎪⎨+=⎪⎩消去y 得22812x k =+.所以0x =,则0y =.所以直线AE的方程为y x =+.因为直线AE ,AF 分别与y 轴交于点M ,N ,令0x =得y =,即点M ⎛ ⎝.同理可得点N ⎛ ⎝.所以MN ==.设MN的中点为P ,则点P 的坐标为0,P k ⎛⎫-⎪ ⎪⎝⎭. 则以MN 为直径的圆的方程为22x y k ⎛⎫++= ⎪⎪⎝⎭2, 即224x y y k++=. 令0y =,得24x =,即2x =或2x =-.故以MN 为直径的圆经过两定点()12,0P ,()22,0P -.解法二:因为椭圆C 的左端点为A ,则点A 的坐标为()-.因为直线(0)y kx k =≠与椭圆22184x y +=交于两点E ,F , 设点00(,)E x y ,则点00(,)F x y --.所以直线AE的方程为y x =+.因为直线AE 与y 轴交于点M ,令0x =得y =M ⎛⎫⎝.同理可得点N ⎛⎫⎝.所以020168y MN x ==-.因为点00(,)E x y 在椭圆C 上,所以2200184x y +=. 所以08MN y =. 设MN 的中点为P ,则点P的坐标为000,P y ⎛⎫- ⎪ ⎪⎝⎭. 则以MN为直径的圆的方程为2200x y y ⎛⎫++= ⎪ ⎪⎝⎭2016y .即220+x y y y +=4. 令0y =,得24x =,即2x =或2x =-.故以MN 为直径的圆经过两定点()12,0P ,()22,0P -.解法三:因为椭圆C 的左顶点为A ,则点A的坐标为()-.因为直线(0)y kx k =≠与椭圆22184x y +=交于两点E ,F ,设点(),2sin E θθ(0θ<<π),则点(),2sin F θθ--. 所以直线AE的方程为y x =+.因为直线AE 与y 轴交于点M ,令0x =得2sin cos 1y θθ=+,即点2sin 0,cos 1M θθ⎛⎫⎪+⎝⎭.同理可得点2sin 0,cos 1N θθ⎛⎫⎪-⎝⎭.所以2sin 2sin 4cos 1cos 1sin MN θθθθθ=-=+-.设MN 的中点为P ,则点P 的坐标为2cos 0,sin P θθ⎛⎫-⎪⎝⎭. 则以MN 为直径的圆的方程为222cos sin x y θθ⎛⎫++= ⎪⎝⎭24sin θ, 即224cos 4sin x y y θθ++=. 令0y =,得24x =,即2x =或2x =-. 故以MN 为直径的圆经过两定点()12,0P ,()22,0P -.7、已知椭圆C: 2222x y a b+=1(a >0,b >0A (1在椭圆C 上.(I)求椭圆C 的方程;(Ⅱ)设动直线l 与椭圆C 有且仅有一个公共点,判断是否存在以原点O 为圆心的圆,满 足此圆与l 相交于两点P 1,P 2(两点均不在坐标轴上),且使得直线OP 1,OP 2的斜率之 积为定值?若存在,求此圆的方程;若不存在,说明理由.(Ⅰ)解:由题意,得c a =,222a b c =+, 又因为点(1,)2A 在椭圆C 上,所以221314ab+=, 解得2a =,1b =,c =,所以椭圆C 的方程为1422=+y x .(Ⅱ)结论:存在符合条件的圆,且此圆的方程为225x y +=.证明如下:假设存在符合条件的圆,并设此圆的方程为222(0)x y r r +=>.当直线l 的斜率存在时,设l 的方程为m kx y +=.由方程组22,1,4y kx m x y =+⎧⎪⎨+=⎪⎩ 得0448)14(222=-+++m kmx x k , 因为直线l 与椭圆C 有且仅有一个公共点,所以2221(8)4(41)(44)0km k m ∆=-+-=,即2241m k =+.由方程组222,,y kx m x y r =+⎧⎨+=⎩ 得2222(1)20k x kmx m r +++-=,则22222(2)4(1)()0km k m r ∆=-+->.设111(,)P x y ,222(,)P x y ,则12221km x x k -+=+,2y x b =-+, 设直线1OP ,2OP的斜率分别为1k ,2k , 所以221212121212121212()()()y y kx m kx m k x x km x x m k k x x x x x x +++++===222222222222222111m r km k km m m r k k k m r m r k --⋅+⋅+-++==--+,将2241m k =+代入上式,得221222(4)14(1)r k k k k r -+⋅=+-. 要使得12k k 为定值,则224141r r -=-,即25r =,验证符合题意. 所以当圆的方程为225x y +=时,圆与l 的交点12,P P 满足12k k 为定值14-. 当直线l 的斜率不存在时,由题意知l 的方程为2x =±, 此时,圆225x y +=与l 的交点12,P P 也满足1214k k =-. 8、已知椭圆C 1:22221(0)y x a b a b+=>>,且过定点M (1.(1)求椭圆C 的方程;(2)已知直线l :1()3y kx k =-∈R 与椭圆C 交于A 、B 两点,试问在y 轴上是否存在定点P ,使得以弦AB 为直径的圆恒过P 点?若存在,求出P 点的坐标,若不存在,说明理由. (1)解:由已知222222252511142c e a a b c a b a b ⎧==⎪⎧=⎪⎪⎪+=⇒⎨⎨⎪⎪=+=⎩⎪⎪⎩∴椭圆C 的方程为2224155y x +=(2)解:由221324155y kx y x ⎧=-⎪⎪⎨⎪+=⎪⎩得:229(24)12430k x kx +--= ①设A (x 1,y 1),B (x 2,y 2),则x 1、x 2是方程①的两根∴12122212439(24)9(24)k x x x x k k +==-++,设P (0,p ),则1122()()PA x y p PB x y p =-=-,,, 22121212121212112()()()()333pPA PB x x y y p y y p x x kx kx pk x x p ⋅=+-++=+---+++2222(1845)3624399(24)p k p p k -++-=+若PA PB ⊥,则0PA PB ⋅=即222(1845)3624390p k p p -++-=对任意k ∈R 恒成立∴22184503624390p p p ⎧-=⎨+-=⎩此方程组无解,∴不存在定点满足条件。
初中数学动态几何定值问题(word版+详解答案)
动态几何定值问题【考题研究】数学因运动而充满活力,数学因变化而精彩纷呈。
动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。
解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。
以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。
【解题攻略】动态几何形成的定值和恒等问题是动态几何中的常见问题,其考点包括线段(和差)为定值问题;角度(和差)为定值问题;面积(和差)为定值问题;其它定值问题。
解答动态几何定值问题的方法,一般有两种:第一种是分两步完成:先探求定值. 它要用题中固有的几何量表示.再证明它能成立.探求的方法,常用特殊位置定值法,即把动点放在特殊的位置,找出定值的表达式,然后写出证明.第二种是采用综合法,直接写出证明.【解题类型及其思路】在中考中,动态几何形成的定值和恒等问题命题形式主要为解答题。
在中考压轴题中,动态几何之定值(恒等)问题的重点是线段(和差)为定值问题,问题的难点在于准确应用适当的定理和方法进行探究。
【典例指引】类型一【线段及线段的和差为定值】【典例指引1】已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.(1)如图1,当∠CA ′D =15°时,作∠A ′EC 的平分线EF 交BC 于点F . ①写出旋转角α的度数; ②求证:EA ′+EC =EF ;(2)如图2,在(1)的条件下,设P 是直线A ′D 上的一个动点,连接PA ,PF ,若AB=2,求线段PA +PF 的最小值.(结果保留根号) 【举一反三】如图(1),已知∠=90MON ,点P 为射线ON 上一点,且=4OP ,B 、C 为射线OM 和ON 上的两个动点(OC OP >),过点P 作PA ⊥BC ,垂足为点A ,且=2PA ,联结BP .(1)若12PAC ABOPS S ∆=四边形时,求tan BPO ∠的值; (2)设PC x =,ABy BC=求y 与x 之间的函数解析式,并写出定义域; (3)如图(2),过点A 作BP 的垂线,垂足为点H ,交射线ON 于点Q ,点B 、C 在射线OM 和ON 上运动时,探索线段OQ 的长是否发生变化?若不发生变化,求出它的值。
动态几何的定值问题
动态几何的定值问题动态几何是指用运动的观点研究几何图形的位置、大小的相互关系.用动的观点看几何定理,常可把几个定理归为一类.几何图形按一定条件运动,有的几何量随着运动的变化而有规律变化,这就出现了轨迹和极值问题,而有的量却始终保持不变,这就是定值问题.解答动态几何定值问题的方法,一般有两种:第一种是先探求定值.再证明它能成立.探求的方法,常用特殊位置定值法,即把动点放在特殊的位置,找出定值的表达式,然后写出证明.第二种是采用综合法,直接写出证明.例1:如图1,设M 是△ABC 的重心,过M 的直线分别交边AB 、AC 于P 、Q 两点,且APPB =m,AQ QC =n ,则11m n+=_______.(第22届“希望杯”初三1试) 分析:因为题设11m n+是一个定值,并且这个值不会因PQ 位置的变化而变化,所以可把图形特殊化处理,即PQ ∥BC 时求出的值就是所求的值。
解:把PQ 看成与BC 平行,易知AP PB =AQ QC =2,所以11m n +=12+12=1。
例2:如图2,在矩形ABCD 中,AB=6,AD=8,P 是AD 上的动点,PE ⊥AC 于E ,PF ⊥BD 于F ,则PE+PF 的值为( )(A) 4.6.(B) 4.8.(C) 5.(D) 7.(第23届“希望杯”初二2试8题)分析:把点P 放在点D 上,这时PE=DG ,PF=0,得出PE+PF=DG ,从而可确定定值是等腰△AOD 其腰上的高,即等腰三角形底边上的任意一点到两腰的距离之和等于其腰上的高。
解:过点D 作DG ⊥AC 于G .若点P 与点D 重合,则PF=0,PE=DG ,于是PE+PF=DG . 在Rt △ACD 中,AD ·CD=AC ·DG ,所以8×6=10×DG .于是DG=4810=4.8,即PE+PF=4.8.故选(B). 注:该题解法还可参见本刊2011年第9期《一个定值定理的应用》一文。
专题19:动态几何之定值问题探讨.docx
动态题是近年來中考的的一个热点问题,动态包括点动、线动和面动三大类,解这类题目要“以静制动”,即把动态问题,变为静态问题來解,而静态问题又是动态问题的特殊情况。
常见的题型包括最值问题、而积问题、和差问题、定值问题和存在性问题等。
前面我们已经对最值问题、面积问题、和差问题进 行了探讨,本专题对定值问题进行探讨。
结合2011年和2012年全国各地中考的实例,我们从三方而进行动态几何之定值问题的探讨:(1)线段(和差)为定值问题;(2)面积(和差)为定值问题;(3)具它定值问题。
一、线段(和差)为定值问题:典型例题:例1: (2012黑龙江绥化8分)如图,点E 是矩形ABCD 的对角线BD ±的一点,且BE=BC, AB=3, BC=4, 点P 为直线EC±的一点,且PQ 丄BC 于点Q, PR 丄BD 于点R.12(1) ill 图1,当点P 为线段EC 中点时,易证:PR+PQ 二一(不需证明). 5(2) 如图2,当点P 为线段EC±的任意一点(不与点E 、点C 重合)时,其它条件不变,则(I )中的 结论是否仍然成立?若成立,请给予证明;若不成立,请说明理山.(3)如图3,当点P 为线段EC 延长线上的任意一点时,其它条件不变,则PR 与PQ 之间又具有怎样的【2013年中考攻略】 专题19:动态几何之定值问题探讨【答案】解(2)图2中结论PR+PQ=y仍成立。
证明如下:连接BP,过(:点作CK丄BD于点K。
V四边形ABCD为矩形,・•・ZBCD=90°。
又•・• CD=AB=3, BC=4, BD = VcD2+BC2 = ^32 +42 = 5。
I S ABCD= - BC・CD= - BD・CK, Z. 3x4=5CK, Z. CK=—。
2 2 5边),与y 轴交于点C.(1) 写出二次函数L|的开口方向、对称轴和顶点坐标;(2) 研究二次函数 L2: y=kx 2 - 4kx+3k (k#)).① 写出二次函数L 2与二次函数Li 有关图彖的两条相同的性质;② 是否存在实数k,使AABP 为等边三角形?如果存在,请求出k 的值;如不存在,请说明理山;③ 若直线y=8k 与抛物线L2交于E 、F 两点,问线段EF 的长度是否发生变化?如果不会,请求出EF 的长 度;如果会,请说明理山.【答案】解(1) J 抛物线y = X 2-4X + 3 = (X -2)2-1,V S ABCE = — BE ・CK, S ABH >= — PR ・BE, S ABCP = — PQ ・BC, JIL S ABCE 二S/\BEP +S Z \BCP , 2 2 2・•・-BE ・CK= - PR ・BE+ - PQ ・BC 。
武汉市中考数学复习专题——动态几何问题(含答案)
武汉市中考数学复习专题——动态几何问题(含答案)春去秋来,花开花落,物转星移,世间万物每时每刻都处于运动变化、相互联系、相互转化中,事物的本质特征只有在运动中方能凸现出来.动态几何问题,是指以几何知识和图形为背景,渗入运动变化观点的一类问题,常见的形式是:点在线段或弧线上运动、图形的翻折、平移、旋转等,解这类问题的基本策略是:1.动中觅静这里的“静”就是问题中的不变量、不变关系,动中觅静就是在运动变化中探索问题中的不变性.2.动静互化“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动”与“静”的关系.3.以动制动以动制动就是建立图形中两个变量的函数关系,通过研究运动函数,用联系发展的观点来研究变动元素的关系.注:几何动态既是一类问题,也是一种观点与思维方法,运用几何动态的观点,可以把表面看来不同的定理统一起来,可以找到探求几何中的最值、定值等问题的方法;更一般情况是,对于一个数学问题,努力去发掘更多结论,不同解法,通过弱化或强化条件来探讨结论的状况等,这就是常说的“动态思维”.第二十七讲动态几何问题透视春去秋来,花开花落,物转星移,世间万物每时每刻都处于运动变化、相互联系、相互转化中,事物的本质特征只有在运动中方能凸现出来.动态几何问题,是指以几何知识和图形为背景,渗入运动变化观点的一类问题,常见的形式是:点在线段或弧线上运动、图形的翻折、平移、旋转等,解这类问题的基本策略是:1.动中觅静这里的“静”就是问题中的不变量、不变关系,动中觅静就是在运动变化中探索问题中的不变性.2.动静互化“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动”与“静”的关系.3.以动制动以动制动就是建立图形中两个变量的函数关系,通过研究运动函数,用联系发展的观点来研究变动元素的关系.注:几何动态既是一类问题,也是一种观点与思维方法,运用几何动态的观点,可以把表面看来不同的定理统一起来,可以找到探求几何中的最值、定值等问题的方法;更一般情况是,对于一个数学问题,努力去发掘更多结论,不同解法,通过弱化或强化条件来探讨结论的状况等,这就是常说的“动态思维”.【例题求解】【例1】如图,把直角三角形ABC 的斜边AB 放在定直线上,按顺时针方向在l 上转动两次,使它转到A ″B ″C ″的位置,设BC=1,AC=3,则顶点A 运动到点A ″的位置时,点A 经过的路线与直线l 所围成的面积是.(黄冈市中考题)思路点拨解题的关键是将转动的图形准确分割.Rt ΔABC 的两次转动,顶点A 所经过的路线是两段圆弧,其中圆心角分别为120°和90°,半径分别为2和3,但该路线与直线l 所围成的面积不只是两个扇形面积之和.【例2】如图,在⊙O 中,P 是直径AB 上一动点,在AB 同侧作AA ′⊥AB ,BB′⊥AB ,且AA ′=AP ,BB ′=BP ,连结A ′B ′,当点P 从点A 移到点B 时,A ′B ′的中点的位置()A .在平分AB 的某直线上移动B .在垂直AB 的某直线上移动C .在AmB 上移动D .保持固定不移动(荆州市中考题)⌒动态几何问题透视春去秋来,花开花落,物转星移,世间万物每时每刻都处于运动变化、相互联系、相互转化中,事物的本质特征只有在运动中方能凸现出来.动态几何问题,是指以几何知识和图形为背景,渗入运动变化观点的一类问题,常见的形式是:点在线段或弧线上运动、图形的翻折、平移、旋转等,解这类问题的基本策略是: 1.动中觅静这里的“静”就是问题中的不变量、不变关系,动中觅静就是在运动变化中探索问题中的不变性.2.动静互化“静”只是“动”的瞬间,是运动的一种特殊形式,动静互化就是抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动”与“静”的关系. 3.以动制动以动制动就是建立图形中两个变量的函数关系,通过研究运动函数,用联系发展的观点来研究变动元素的关系.注:几何动态既是一类问题,也是一种观点与思维方法,运用几何动态的观点,可以把表面看来不同的定理统一起来,可以找到探求几何中的最值、定值等问题的方法;更一般情况是,对于一个数学问题,努力去发掘更多结论,不同解法,通过弱化或强化条件来探讨结论的状况等,这就是常说的“动态思维”. 【例题求解】【例1】 如图,把直角三角形ABC 的斜边AB 放在定直线上,按顺时针方向在l 上转动两次,使它转到A ″B ″C ″的位置,设BC=1,AC=3,则顶点A 运动到点A ″的位置时,点A 经过的路线与直线l 所围成的面积是 .(黄冈市中考题)思路点拨 解题的关键是将转动的图形准确分割.Rt ΔABC 的两次转动,顶点A 所经过 的路线是两段圆弧,其中圆心角分别为120°和90°,半径分别为2和3,但该路线与直线l 所围成的面积不只是两个扇形面积之和.【例2】如图,在⊙O 中,P 是直径AB 上一动点,在AB 同侧作AA ′⊥AB ,BB ′⊥AB ,且AA ′=AP ,BB ′=BP ,连结A ′B ′,当点P 从点A 移到点B 时,A ′B ′的中点的位置( ) A .在平分AB 的某直线上移动 B .在垂直AB 的某直线上移动C .在AmB 上移动D .保持固定不移动(荆州市中考题)⌒思路点拨画图、操作、实验,从中发现规律.【例3】如图,菱形OABC的长为4厘米,∠AOC=60°,动点P从O出发,以每秒1厘米的速度沿O→A→B路线运动,点P出发2秒后,动点Q从O出发,在OA上以每秒1厘米的速度,在AB上以每秒2厘米的速度沿O→A→B路线运动,过P、Q两点分别作对角线AC的平行线.设P点运动的时间为x秒,这两条平行线在菱形上截出的图形(图中的阴影部分)的周长为y厘米,请你回答下列问题:(1)当x=3时,y的值是多少?(2)就下列各种情形:①0≤x≤2;②2≤x≤4;③4≤x≤6;④6≤x≤8.求y与x之间的函数关系式.(3)在给出的直角坐标系中,用图象表示(2)中的各种情形下y与x的关系.(吉林省中考题)思路点拨本例是一个动态几何问题,又是一个“分段函数”问题,需运用动态的观点,将各段分别讨论、画图、计算.注:动与静是对立的,又是统:一的,无论图形运动变化的哪一类问题,都真实地反映了现实世界中数与形的变与不变两个方面,从辩证的角度去观察、探索、研究此类问题,是一种重要的解题策略.建立运动函数关系就更一般地、整体-地把握了问题,许多相关问题就转化为求函数值或自变量的值.【例4】 如图,正方形ABCD 中,有一直径为BC 的半圆,BC=2cm ,现有两点E 、F ,分别从点B 、点A 同时出发,点E 沿线段BA 以1m /秒的速度向点A 运动,点F 沿折线A —D —C 以2cm /秒的速度向点C 运动,设点E 离开点B 的时间为2 (秒). (1)当t 为何值时,线段EF 与BC 平行?(2)设1<t <2,当t 为何值时,EF 与半圆相切?(3)当1≤t <2时,设EF 与AC 相交于点P ,问点E 、F 运动时,点P 的位置是否发生变化?若发生变化,请说明理由;若不发生变化,请给予证明,并求AP :PC 的值. (江西省中考题)思路点拨 动中取静,根据题意画出不同位置的图形,然后分别求解,这是解本例的基本策略,对于(1)、(2),运用相关几何性质建立关于t 的方程;对于(3),点P 的位置是否发生变化,只需看PCAP是否为一定值.注:动态几何问题常通过观察、比较、分析、归纳等方法寻求图形中某些结论不变或变化规律,而把特定的运动状态,通过代数化来定量刻画描述也是解这类问题的重要思想.【例5】 ⊙O 1与⊙O 2相交于A 、B 两点;如图(1),连结O 2 O 1并延长交⊙O 1于P 点,连结PA 、PB 并分别延长交⊙O 2于C 、D 两点,连结C O 2并延长交⊙O 2于E 点.已知⊙O 2的半径为R ,设∠CAD=α.(1)求:CD 的长(用含R 、α的式子表示);(2)试判断CD 与PO 1的位置关系,并说明理由;(3)设点P ′为⊙O 1上(⊙O 2外)的动点,连结P ′A 、P ′B 并分别延长交⊙O 2于C ′、D ′,请你探究∠C ′AD ′是否等于α? C ′D ′与P ′O l 的位置关系如何?并说明理由.(济南市中考题)思路点拨 对于(1)、(2),作出圆中常见辅助线;对于(3),P 点虽为OO l 上的一个动点,但⊙O 1、⊙O 2一些量(如半径、AB)都是定值或定弧,运用圆的性质,把角与孤联系起来.⌒学力训练1.如图, ΔABC 中,∠C=90°,AB=12cm ,∠ABC=60°,将ΔABC 以点B 为中心顺时针旋转,使点C 旋转到AB 延长线上的D 处,则AC 边扫过的图形的面积是 cm (π=3.14159…,最后结果保留三个有效数字). (济南市中考题) 2.如图,在Rt Δ ABC 中,∠C=90°,∠A=60°,AC=3 cm ,将ΔABC 绕点B 旋转至ΔA'BC'的位置,且使A 、B 、C'三点在同一条直线上,则点A 经过的最短路线的长度是 cm .(黄冈市中考题)3.一块等边三角形的木板,边长为l ,现将木板沿水平线翻滚,那么B 点从开始至结束走过的路径长度为( ) A .23π B .34πC .4D .232π+(烟台市中考题)4.把ΔABC 沿AB 边平移到ΔA'B'C'的位置,它们的重叠部分的面积是ΔABC 的面积的一半,若AB=2,则此三角形移动的距离AA'是( )A .12-B .22C .1D .21(荆门市中考题)5.如图,正三角形ABC 的边长为63厘米,⊙O 的半径为r 厘米,当圆心O 从点A 出发,沿着线路AB —BC —CA 运动,回到点A 时,⊙O 随着点O 的运动而移动. (1)若r=3厘米,求⊙O 首次与BC 边相切时AO 的长;(2)在O 移动过程中,从切点的个数来考虑,相切有几种不同的情况?写出不同的情况下,r 的取值范围及相应的切点个数;(3)设O 在整个移动过程中,在ΔABC 内部,⊙O 未经过的部分的面积为S ,在S>0时,求关于r 的函数解析式,并写出自变量r 的取值范围.(江西省中考题)6.已知:如图,⊙O 韵直径为10,弦AC=8,点B 在圆周上运动(与A 、C 两点不重合),连结BC 、BA ,过点C 作CD ⊥AB 于D .设CB 的长为x ,CD 的长为y . (1)求y 关于x 的函数关系式;当以BC 为直径的圆与AC 相切时,求y 的值; (2)在点B 运动的过程中,以CD 为直径的圆与⊙O 有几种位置关系,并求出不同位置时y 的取值范围;(3)在点B 运动的过程中,如果过B 作BE ⊥AC 于E ,那么以BE 为直径的圆与⊙O 能内切吗?若不能,说明理由;若能,求出BE 的长.(太原市中考题)7.如图,已知A 为∠POQ 的边OQ 上一点,以A 为顶点的∠MAN 的两边分别交射线OP 于M 、N 两点,且∠MAN=∠POQ=α(α为锐角).当∠MAN 以点A 为旋转中心,AM 边从与AO 重合的位置开始,按逆时针方向旋转(∠MAN 保持不变)时,M 、N 两点在射线OP 上同时以不同的速度向右平移移动.设OM=x ,ON= (y >x ≥0),ΔAOM 的面积为S ,若cos α、OA 是方程02522=+-z z 的两个根.(1)当∠MAN 旋转30°(即∠OAM=30°)时,求点N 移动的距离; (2)求证:AN 2=ON ·MN ;(3)求y 与x 之间的函数关系式及自变量x 的取值范围; (4)试写出S 随x 变化的函数关系式,并确定S 的取值范围.(河北省中考题)8.已知:如图,梯形ABCD 中,AD ∥BC ,AB=CD=3cm ,∠C =60°,BD ⊥CD . (1)求BC 、AD 的长度;(2)若点P 从点B 开始沿BC 边向点C 以2cm /s 的速度运动,点Q 从点C 开始沿CD 边向点D 以1cm /s 的速度运动,当P 、Q 分别从B 、C 同时出发时,写出五边形ABPQD 的面积S 与运动时间t 之间的函数关系式,并写出自变量t 的取值范围(不包含点P 在B 、C 两点的情况);(3)在(2)的前提下,是否存在某一时刻t ,使线段PQ 把梯形ABCD 分成两部分的面积比为1:5?若存在,求出t 的值;若不存在,请说明理由.(青岛市中考)9.已知:如图①,E 、F 、G 、H 按照AE=CG ,BF=DH ,BF =nAE(n 是正整数)的关系,分别在两邻边长a 、na 的矩形ABCD 各边上运动. 设AE=x ,四边形EFGH 的面积为S .(1)当n=l 、2时,如图②、③,观察运动情况,写出四边形EFGH 各顶点运动到何位置,使?(2)当n=3时,如图④,求S 与x 之间的函数关系式(写出自变量x 的取值范围),探索S 随x 增大而变化的规律;猜想四边形EFGH 各顶点运动到何位置,使ABCD S S 矩形21; (3)当n=k (k ≥1)时,你所得到的规律和猜想是否成立?请说明理由.(福建省三明市中考题)10.如图1,在直角坐标系中,点E 从O 点出发,以1个单位/秒的速度沿x 轴正方向运动,点F 从O 点出发,以2个单位/秒的速度沿y 轴正方向运动,B(4,2),以BE 为直径作⊙O 1.(1)若点E 、F 同时出发,设线段EF 与线段OB 交于点G ,试判断点G 与⊙O 1的位置关系,并证明你的结论;(2)在(1)的条件下,连结FB ,几秒时FB 与⊙O 1相切?(3)如图2,若E 点提前2秒出发,点F 再出发,当点F 出发后,E 点在A 点左侧时,设BA ⊥x 轴于A 点,连结AF 交⊙O 1于点P ,试问PA ·FA 的值是否会发生变化?若不变,请说明理由,并求其值;若变化,请求其值的变化范围.(武汉市中考题)参考答案。
2020年中考数学热点专练八动态几何问题(江苏版)(解析版)
2020年中考数学热点专练八动态几何问题(江苏版)(解析版)专题导读动态几何问题,是近年来的热点问题.它几乎成了每个城市中考试卷中的亮点,拿到一套试卷,总是习惯先看看有没有关于动态几何的问题.动态几何问题也就是关于图形运动的一类问题,它主要是牵扯到图形的三种变换:平移、旋转、轴对称及动点问题.当然考查图形的运动问题有小题,也有大题,小题主要分布在选择和填空的最后一两个题,也就是小压轴题,解答题中也会有关于图形的运动问题,主要有两类,一类是关于平移、旋转、轴对称的作图,这个比较简单,我们这里就不说了;另一类就是我们介绍的重点一一研究图形在运动过程中产生的一些图形性质上的变化和不变的情况.这几乎成了压轴题基本上共同的特点.中考要求中考要求课程标准和中考说明都要求学生要具备一定的用运动观点分析问题的能力.学会在运动变化中寻求不变的图形性质.学会运用函数的观点研究关于图形运动中性质的变化情况.专题集训考向1图形的运动与最值1.(2019江苏省连云港市)如图,在矩形ABCD中,AB=4,AD=3,以点C为圆心作。
与直线相切,点P是QC±一个动点,连接AP交于点T,则业的最大值是AT2.(2019江苏省无锡市)如图,在AABC中,AB=AC=5,BC=4逐,D为边AB上一动点(3点除外),以CD为一边作正方形CDEF,连接8E,则ABDE面积的最大值为.3.(2019江苏省宿迁市)如图,ZMAN^60°,若△ABC的顶点3在射线AM上,且A3=2,点。
在射线AN上运动,当AABC是锐角三角形时,BC的取值范围是.4.(2019江苏省宿迁市)如图,正方形ABCQ的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为.5.(2019江苏省扬州市)如图,己知等边△ABC的边长为8,点F是边上的一个动点(与点A、B不重合).直线1是经过点P的一条直线,把△ABC沿直线1折叠,点B的对应点是点B'.(1)如图1,当PB=4时,若点可恰好在AC边上,则菌,的长度为;(2)如图2,当PB=5时,若直线1〃AC,则33,的长度为;(3)如图3,点P在AB边上运动过程中,若直线1始终垂直于AC,AACB'的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线1变化过程中,求可面积的最大值.6.(2019江苏省苏州市)已知矩形ABCD AB=5cm,点F为对角线AC上的一点,且AP =26cm.如图①,动点M从点A出发,在矩形边上沿着的方向匀速运动(不包含点C).设动点M的运动时间为I(s),A4PM的面积为S(enF),S与f的函数关系如图②所示:(1)直接写出动点M的运动速度为cm/s,BC的长度为cm-,(2)如图③,动点M重新从点A出发,在矩形边上,按原来的速度和方向匀速运动.同时,另一个动点N从点£>出发,在矩形边上沿着D t C t B的方向匀速运动,设动点N的运动速度为v(cm/s).已知两动点M、N经过时间x(s)在线段BC上相遇(不包含点C),动点N相遇后立即停止运动,记此时AARW与AZJRV的面积为5](<?麻),$2(伽2).①求动点N运动速度v(cm/s)的取值范围;②试探究S] .S?是否存在最大值.若存在,求出S|・S2的最大值并确定运动速度时间x的值;若不存在,请说明理由.(B®)7.(2019江苏省扬州市)如图,四边形A3CD是矩形,A3=20,BC=10,以CD为一边向矩形外部作等腰直角△GDC,ZG=90°.点M在线段AB上,且AM=a,点P沿折线AQ-DG运动,点Q沿折线BC-CG运动(与点G不重合),在运动过程中始终保持线段PQ//AQ.设PQ与AB之间的距离为x.(1)若a=12.①如图1,当点F在线段AD上时,若四边形AMQF的面积为48,则x的值为;②在运动过程中,求四边形AMQP的最大面积;(2)如图2,若点P在线段ZJG上时,要使四边形AMQP的面积始终不小于50,求a的取值范围.考向2动点与函数的结合问题1.(2019江苏省连云港市)如图,在平面直角坐标系xOy中,抛物线L:y^x+bx+c过点C(0,-3),与抛物线£2:-lx2-旦t+2的一个交点为A,且点A的横坐标为2,点22P、Q分别是抛物线3、3上的动点.(1)求抛物线3对应的函数表达式;(2)若以点A、C、P、Q为顶点的四边形恰为平行四边形,求出点F的坐标;(3)设点R为抛物线3上另一个动点,且CA平分ZPCR.若OQ//PR,求出点。
几何动态型问题(解析版)
几何动态型问题(解析版)专题诠释:几何图形动态变化型问题是中考的热点问题。
对于图形运动与变化型试题,要用运动的眼光去观察和研究图形,把握图形运动与变化的全过程,抓住其中的等量关系,并特别关注一些特别的量,不变的关系或特殊关系,善于化动为静。
有特殊情形(特殊点、特殊位置、特殊值、特殊图形)逐步过渡到一般情形,再综合运用各种相关的数学知识,以及数形结合、分类讨论、转化等数学思想加以解决。
第一部分典例剖析+针对练习类型一动点问题典例1(2021•铜仁市模拟)如图①,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿AB→BC→CD向点D运动.设点P的运动路程为x,△AOP的面积为y,y与x 的函数关系图象如图②所示,则对角线BD的长为()A.3B.4C.5D.6思路引领:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,结合图象可得△AOP面积最大为3,得到AB与BC的积为12;当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,得到AB与BC的和为7,构造关于AB的一元二方程可求解.解:当P点在AB上运动时,△AOP面积逐渐增大,当P点到达B点时,△AOP面积最大为3.∴12AB•12BC=3,即AB•BC=12.当P点在BC上运动时,△AOP面积逐渐减小,当P点到达C点时,△AOP面积为0,此时结合图象可知P点运动路径长为7,∴AB+BC=7.则BC=7﹣AB,代入AB•BC=12,得AB2﹣7AB+12=0,解得AB=4或3,∵AB<AD,即AB<BC,∴AB=3,BC=4.∴AD=BC=4,∴BD=5.故选:C.点睛:本题主要考查动点问题的函数图象,解题的关键是分析三角形面积随动点运动的变化过程,找到分界点极值,结合图象得到相关线段的具体数值.针对训练11.(2019•本溪)如图,点P是以AB为直径的半圆上的动点,CA⊥AB,PD⊥AC于点D,连接AP,设AP=x,P A﹣PD=y,则下列函数图象能反映y与x之间关系的是()A.B.C.D.思路引领:设圆的半径为R,连接PB,则sin∠ABP=AP2R=12R x,则PD=AP sinα=x×12R x=12R x2,即可求解.设:圆的半径为R,连接PB,则sin∠ABP=AP2R=12R x,∵CA⊥AB,即AC是圆的切线,则∠P AD=∠PBA=α,则PD=AP sinα=x×12Rx=12R x2,则y=P A﹣PD=−12R x2+x,图象为开口向下的抛物线,故选:C.点睛:本题考查的动点的函数图象,涉及到解直角三角形、圆的切线的性质、二次函数基本性质等,关键是找出相应线段的数量关系,列出函数表达式.典例2(2021•中原区校级四模)如图,已知A、B两点的坐标分别为(﹣8,0)、(0,8),点C、F分别是直线x=5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE的面积取得最小值时,tan∠BAD=.思路引领:如图,设直线x=5交x轴于K.由题意KD=12CF=5,推出点D的运动轨迹是以K为圆心,5为半径的圆,推出当直线AD与⊙K相切时,△ABE的面积最小,作EH⊥AB于H.求出EH,AH即可解决问题.解:如图,设直线x=5交x轴于K,连接DK,由题意KD=12CF=5,∴点D的运动轨迹是以K为圆心,5为半径的圆,∴当直线AD与⊙K相切时,△ABE的面积最小,∵AD是切线,点D是切点,∴AD⊥KD,∵AK=13,DK=5,∴AD=12,∵tan∠EAO=OEOA=DKAD,∴OE8=512,∴OE=10 3,∴AE=√OE2+OA2=26 3,作EH⊥AB于H.∵S△ABE=12•AB•EH=S△AOB﹣S△AOE,∴EH=7√2 3,∴AH=√AE2−EH2=17√2 3,∴tan∠BAD=EHAH=7√2317√23=717.点睛:本题考查解直角三角形,坐标与图形的性质,直线与圆的位置关系,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.针对练习22.如图,△ABC中,∠C=90°,∠A=30°,BC=1.动点D在边AC上,以BD为边作等边△BDE (点E、A在BD的同侧).在点D从点A移动至点C的过程中,点E移动的路径长为√3.思路引领:取特殊点寻找点E的运动轨迹,利用等边三角形的性质即可解决问题;解:当点D与C重合时,点E与AB的中点M重合,当点D与A重合时,点E与等边三角形△ABN的顶点N重合,所以点E的运动轨迹是△ABN的中线MN,在Rt△ABC中,∵∠C=90°,∠A=30°,BC=1,∴AB=2BC=2,∴MN=√3,故答案为√3.点睛:本题考查轨迹、等边三角形的性质、解直角三角形等知识,解题的关键是学会取特殊点寻找点的运动轨迹,所以中考常考题型.类型二动图问题典例3 (2021秋•高州市期末)在平面直角坐标系中,O为坐标原点,点A(6,0),点B在y轴的正半轴上,∠ABO=30°,矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2.(1)如图,求点E的坐标;(2)将矩形CODE沿x轴向右平移,得到矩形C'O'D'E',点D,O,C,E的对应点分别为C',O',D',E'.设OO'=t,矩形C'O'D'E'与△ABO重叠部分的面积为s.如图,当矩形C'O'D'E'与△ABO 重叠部分为五边形时,C'E'、D'E'分别与AB相交于点M,F,试用含有t的式子表示s,并直接写出t的范围.思路引领:(1)由已知得出AD=OA﹣OD=4,再由含30°角的直角三角形的性质得AE=2AD=8,由勾股定理得出ED=4√3,即可得出答案;(2)由平移的性质得:O′D′=2,E′D′=4√3,ME′=OO′=t,D′E′∥O′C′∥OB,则∠E′FM=∠ABO=30°,再由含30°角的直角三角形的性质得MF=2ME′=2t,FE′=√3t,求出S△MFE′=12√3t2,S矩形C′O′D′E′=8√3,即可得出答案.解:(1)由点A(6,0)得OA=6,又OD=2,∴AD=OA﹣OD=4,在矩形CODE中,由DE∥CO,得∠AED=∠ABO=30°,∴在Rt△AED中,AE=2AD=8,由勾股定理得:ED=√AE2−AD2=4√3,又CO=4√3,∴点E的坐标为(2,4√3);(2)由平移可知,O'D'=OD=2,E'D'=ED=4√3,ME'=OO'=t.由E'D'∥BO,得∠E'FM=∠ABO=30°,在Rt△MFE'中,MF=2ME'=2t.∴由勾股定理得FE′=√MF2−ME′2=√3t,∴S△MFE′=12ME′⋅FE′=12t⋅√3t=√32t2,S矩形C′O′D′E′=O′D′⋅E′D′=8√3,∴s=−√32t2+8√3(0<t<2).点睛:本题考查了矩形的性质、坐标与图形性质、勾股定理、平移的性质、含30°角的直角三角形的性质、三角形面积等知识;熟练掌握矩形的性质和直角三角形的性质是解题的关键.针对训练33.(2019•宁夏)将直角三角板ABC按如图1放置,直角顶点C与坐标原点重合,直角边AC、BC 分别与x轴和y轴重合,其中∠ABC=30°.将此三角板沿y轴向下平移,当点B平移到原点O 时运动停止.设平移的距离为m,平移过程中三角板落在第一象限部分的面积为s,s关于m的函数图象(如图2所示)与m轴相交于点P(√3,0),与s轴相交于点Q.(1)试确定三角板ABC的面积;(2)求平移前AB边所在直线的解析式;(3)求s关于m的函数关系式,并写出Q点的坐标.思路引领:(1)与m轴相交于点P(√3,0),可知OB=√3,OA=1;(2)设AB 的解析式y =kx +b ,将点B (0,√3),A (1,0)代入即可; (3)在移动过程中OB =√3−m ,则OA =tan30°×OB =√33×(√3−m )=1−√33m ,所以s =12×(√3−m )×(1−√33m )=√36m 2−m +√32,(0≤m ≤√3);当m =0时,s =√32,即可求Q (0,√32). 解:(1)∵与m 轴相交于点P (√3,0), ∴OB =√3, ∵∠ABC =30°, ∴OA =1, ∴S =12×1×√3=√32; (2)∵B (0,√3),A (1,0), 设AB 的解析式y =kx +b , ∴{b =√3k +b =0, ∴{k =−√3b =√3, ∴y =−√3x +√3;(3)在移动过程中OB =√3−m ,则OA =tan30°×OB =√33×(√3−m )=1−√33m ,∴s =12×(√3−m )×(1−√33m )=√36m 2−m +√32,(0≤m ≤√3) 当m =0时,s =√32,∴Q (0,√32). 点睛:本题考查直角三角形平移,一次函数的性质;能够通过函数图象得到B (0,√3)是解题的关键.典例4 如图,等边△ABC 边长为2,四边形DEFG 是平行四边形,DG =2,DE =3,∠GDE =60°,BC 和DE 在同一条直线上,且点C 与点D 重合,现将△ABC 沿D →E 的方向以每秒1个单位的速度匀速运动,当点B 与点E 重合时停止,则在这个运动过程中,△ABC 与四边形DEFG 的重合部分的面积S 与运动时间t 之间的函数关系图象大致是( )A.B.C.D.思路引领:分三种情况:①0≤t≤2时,由重叠部分为边长为t的等边三角形可得S=√34t2;②2<t≤3时,由重叠部分即为△ABC得S=√34×22=√3;③3<t≤5时由重叠部分是S△ABC﹣S△HEC且△HEC边长为t﹣3可得S=−√34t2+3√32t−5√34,据此可得答案.解:①当0≤t≤2时,如图1,由题意知CD=t,∠HDC=∠HCD=60°,∴△CDH是等边三角形,则S=√34t2;②当2<t≤3时,如图2,S=√34×22=√3;③当3<t≤5时,如图3,根据题意可得CE=CD﹣DE=t﹣3,∠C=∠HEC=60°,∴△CEH为等边三角形,则S=S△ABC﹣S△HEC=√34×22−√34(t﹣3)2=−√34t2+3√32t−5√34;综上,0≤t≤2时函数图象是开口向上的抛物线的一部分,2<t≤3时函数图象是平行于x轴的一部分,当3<t≤5时函数图象是开口向下的抛物线的一部分;故选:B.点睛:本题主要考查动点问题的函数图象,根据重叠部分形状的变化情况分类讨论是解题的关键.针对训练44.(2020•滁州模拟)在△EFG中,∠G=90°,EG=FG=2√2,正方形ABCD的边长为1,将正方形ABCD和△EFG如图放置,AD与EF在一条直线上,点A与点E重合.现将正方形ABCD沿EF方向以每秒1个单位的速度匀速运动,当点A与点F重合时停止.在这个运动过程中,正方形ABCD和△EFG重叠部分的面积S与运动时间t的函数图象大致是()A.B.C.D.思路引领:分0≤t≤1、1<t≤2、2<t≤3、3<t≤4分别求出函数表达式即可求解.解:EG=FG=2√2,则EF=4,①当0≤t≤1时,如图1,设AB交EG于点H,则AE=t=AH,S=12×AE×AH=12t2,函数为开口向上的抛物线,当t=1时,y=12;②当1<t≤2时,如图2,设直线EG交BC于点G,交CD于点H,则ED=AE﹣AD=t﹣1=HD,则CH=CD﹣HD=2﹣t=CG,S=S正方形ABCD﹣S△CGH=1−12×CH×CG=1−12(2﹣t)2,函数为开口向下的抛物线,当t=2时,y=1;③当2<t≤3时,S=S正方形ABCD=1,④当3<t≤4时,同理可得:S=1−12(t﹣3)2,为开口向下的抛物线;故选:C.点睛:本题考查动点问题的函数过图象,解答本题的关键是明确题意,利用数形结合的思想解答.第二部分专题提优练习1.(2021•罗湖区校级模拟)如图,▱ABCD中,∠DAB=60°,AB=6,BC=2,P为边CD上的一动点,则PB+√32PD的最小值等于()A.√3B.3C.3√3D.2+2√3思路引领:过点P作PE⊥AD,交AD的延长线于点E,有锐角三角函数可得EP=√32PD,即PB+√32PD=PB+PE,则当点B,点P,点E三点共线且BE⊥AD时,PB+PE有最小值,即最小值为BE.解:如图,过点P作PE⊥AD,交AD的延长线于点E,∵AB∥CD,∴∠EDP=∠DAB=60°,∴sin∠EDP=EPDP=√32,∴EP=√32PD∴PB+√32PD=PB+PE∴当点B,点P,点E三点共线且BE⊥AD时,PB+PE有最小值,即最小值为BE,∵sin∠A=BEAB=√32,∴BE=3√3,故选:C.点睛:本题考查了平行四边形的性质,垂线段最短,解直角三角形等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.2.(2019•泰安)如图,矩形ABCD中,AB=4,AD=2,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是()A.2B.4C.√2D.2√2思路引领:根据中位线定理可得出点P的运动轨迹是线段P1P2,再根据垂线段最短可得当BP⊥P1P2时,PB取得最小值;由矩形的性质以及已知的数据即可知BP1⊥P1P2,故BP的最小值为BP1的长,由勾股定理求解即可.解:如图:当点F与点C重合时,点P在P1处,CP1=DP1,当点F与点E重合时,点P在P2处,EP2=DP2,∴P1P2∥CE且P1P2=12CE,当点F在EC上除点C、E的位置处时,有DP=FP,由中位线定理可知:P1P∥CE且P1P=12CF,∴点P的运动轨迹是线段P1P2,∴当BP⊥P1P2时,PB取得最小值,∵矩形ABCD中,AB=4,AD=2,E为AB的中点,∴△CBE、△ADE、△BCP1为等腰直角三角形,CP1=2,∴∠ADE=∠CDE=∠CP1B=45°,∠DEC=90°,∴∠DP2P1=90°,∴∠DP1P2=45°,∴∠P2P1B=90°,即BP1⊥P1P2,∴BP的最小值为BP1的长,在等腰直角△BCP1中,CP1=BC=2,∴BP1=2√2,∴PB的最小值是2√2.故选:D.点睛:本题考查轨迹问题、矩形的性质等知识,解题的关键是学会利用特殊位置解决问题,有难度.3.(2019•潍坊)如图,直线y=x+1与抛物线y=x2﹣4x+5交于A,B两点,点P是y轴上的一个动点,当△P AB的周长最小时,S△P AB=125.思路引领:根据轴对称,可以求得使得△P AB 的周长最小时点P 的坐标,然后求出点P 到直线AB 的距离和AB 的长度,即可求得△P AB 的面积,本题得以解决. 解:{y =x +1y =x 2−4x +5,解得,{x =1y =2或{x =4y =5,∴点A 的坐标为(1,2),点B 的坐标为(4,5), ∴AB =√(5−2)2+(4−1)2=3√2,作点A 关于y 轴的对称点A ′,连接A ′B 与y 轴的交于P ,则此时△P AB 的周长最小, 点A ′的坐标为(﹣1,2),点B 的坐标为(4,5), 设直线A ′B 的函数解析式为y =kx +b , {−k +b =24k +b =5,得{k =35b =135, ∴直线A ′B 的函数解析式为y =35x +135, 当x =0时,y =135, 即点P 的坐标为(0,135),将x =0代入直线y =x +1中,得y =1, ∵直线y =x +1与y 轴的夹角是45°, ∴点P 到直线AB 的距离是:(135−1)×sin45°=85×√22=4√25, ∴△P AB 的面积是:3√2×4√252=125,故答案为:125.点睛:本题考查二次函数的性质、一次函数的性质、轴对称﹣最短路径问题,解答本题的关键是明确题意,利用数形结合的思想解答.4.(2020•长春一模)如图,直线y =x +1与抛物线y =x 2﹣4x +5交于A ,B 两点,点P 是y 轴上的一个动点,当△P AB 的周长最小时,点P 的坐标为 .思路引领:首先确定点A 和点B 的坐标,然后根据轴对称,可以求得使得△P AB 的周长最小时点P 的坐标.解:{y =x +1y =x 2−4x +5,解得,{x =1y =2或{x =4y =5,∴点A 的坐标为(1,2),点B 的坐标为(4,5), ∴AB =√(5−2)2+(4−1)2=3√2,作点A 关于y 轴的对称点A ′,连接A ′B 与y 轴的交于P ,则此时△P AB 的周长最小, 点A ′的坐标为(﹣1,2),点B 的坐标为(4,5), 设直线A ′B 的函数解析式为y =kx +b , {−k +b =24k +b =5,得{k =35b =135,∴直线A ′B 的函数解析式为y =35x +135, 当x =0时,y =135, 即点P 的坐标为(0,135),故答案为:(0,135).点睛:本题考查二次函数的性质、一次函数的性质、轴对称﹣最短路径问题,解答本题的关键是明确题意,利用数形结合的思想解答.5.(2021春•汉阴县月考)如图,在三角形ABC 中,∠ABC =90°,BC =11,把三角形ABC 向下平移至三角形DEF 后,AD =CG =6,则图中阴影部分的面积为 .思路引领:先根据平移的性质得到AD =BE =6,EF =BC =11,S △ABC =S △DEF ,则BG =5,由于S阴影部分=S 梯形BEFG ,所以利用梯形的面积公式计算即可.解:∵三角形ABC 向下平移至三角形DEF , ∴AD =BE =6,EF =BC =11,S △ABC =S △DEF , ∵BG =BC ﹣CG =11﹣6=5, ∴S 梯形BEFG =12(5+11)×6=48, ∵S 阴影部分+S △DBG =S △DBG +S 梯形BEFG , ∴S 阴影部分=S 梯形BEFG =48. 故答案为48.点睛:本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.6.(2021•仪征市二模)如图,Rt △ABC ≌Rt △FDE ,∠ABC =∠FDE =90°,∠BAC =30°,AC =4,将Rt △FDE 沿直线l 向右平移,连接BD 、BE ,则BD +BE 的最小值为 .思路引领:根据平面直角坐标系,可以假设E(m,√3),则D(m+1,2√3),则BD+BE=√(m+1)2+(2√3)2+√m2+(√3)2,欲求BD+BE的最小值,相当于在x轴上找一点R(m,0),使得R到M(﹣1,2√3),N(0,√3)的距离和的最小值,如图1中,作点N关于x轴的对称点N′,连接MN′交x轴题意R,连接RN,此时RM+RN的值最小,最小值=MN′的长.解:建立如图坐标系,在Rt△ABC中,∠ABC=90°,AC=4,∠BAC=30°,∴BC=12AC=2,AB=√3BC=2√3,∴斜边AC上的高=2×2√34=√3,∵△ABC≌△FDE,∴EF=AC=4,斜边EF上的高为√3,∴可以假设E(m,√3),则D(m+1,2√3),∴BD+BE=√(m+1)2+(2√3)2+√m2+(√3)2,欲求BD+BE的最小值,相当于在x轴上找一点R(m,0),使得R到M(﹣1,2√3),N(0,√3)的距离和的最小值,如图1中,作点N关于x轴的对称点N′,连接MN′交x轴题意R,连接RN,此时RM+RN的值最小,最小值=MN′=√12+(3√3)2=2√7,∴BD+BE的最小值为2√7,故答案为:2√7.点睛:本题考查轴对称最短问题,平面直角坐标系,勾股定理等知识,解题的关键是学会用转化的思想思考问题,属于中考填空题中的压轴题.7.(2019•乐山)如图1,在四边形ABCD中,AD∥BC,∠B=30°,直线l⊥AB.当直线l沿射线BC方向,从点B开始向右平移时,直线l与四边形ABCD的边分别相交于点E、F.设直线l向右平移的距离为x,线段EF的长为y,且y与x的函数关系如图2所示,则四边形ABCD的周长是.思路引领:根据题意和函数图象中的数据,可以得到AB、BC、AD的长,再根据平行线的性质和图形中的数据可以得到CD的长,从而可以求得四边形ABCD的周长.解:∵∠B=30°,直线l⊥AB,∴BE=2EF,由图可得,AB=4cos30°=4×√32=2√3,BC=5,AD=7﹣4=3,由图象可得,AN=5﹣4=1,ND=CM=7﹣5=2,DM=2,∵∠B=30°,EF⊥AB,∴∠M=60°,又∵DM=MC=2,∴△DMC是等边三角形,∴DC=DM=2,∴四边形ABCD的周长是:AB+BC+AD+CD=2√3+5+3+2=10+2√3,故答案为:10+2√3.点睛:本题考查动点问题的函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.8.(2019•大庆)如图,在Rt△ABC中,∠A=90°.AB=8cm,AC=6cm,若动点D从B出发,沿线段BA运动到点A为止(不考虑D与B,A重合的情况),运动速度为2cm/s,过点D作DE∥BC交AC于点E,连接BE,设动点D运动的时间为x(s),AE的长为y(cm).(1)求y关于x的函数表达式,并写出自变量x的取值范围;(2)当x为何值时,△BDE的面积S有最大值?最大值为多少?思路引领:(1)由平行线得△ABC∽△ADE,根据相似形的性质得关系式;(2)由S=12•BD•AE;得到函数解析式,然后运用函数性质求解.解:(1)动点D运动x秒后,BD=2x.又∵AB=8,∴AD=8﹣2x.∵DE∥BC,∴ADAB=AEAC,∴AE=6(8−2x)8=6−32x,∴y关于x的函数关系式为y=−32x+6(0<x<4).(2)解:S△BDE=12⋅BD⋅AE=12×2x(−32x+6)=−32x2+6x(0<x<4).当x=−62×(−32)=2时,S△BDE最大,最大值为6cm2.点睛:本题主要考查相似三角形的判定、三角形的面积及涉及到二次函数的最值问题,找到等量比是解题的关键.9.已知,大正方形的边长为4厘米,小正方形的边长为2厘米,状态如图所示.大正方形固定不动,把小正方形以1厘米/秒的速度向大正方形的内部沿直线平移,设平移的时间为t秒,两个正方形重叠部分的面积为S厘米2,完成下列问题:(1)平移到1.5秒时,重叠部分的面积为厘米2.(2)求小正方形在平移过程中,S与t的关系式.思路引领:(1)1.5秒时,小正方形向右移动1.5厘米,即可计算出重叠部分的面积;(2)分情况讨论:当0≤t<2时,当2≤t≤4时,当4<t≤6时,当t>6时,分别用t表示出S即可.解:(1)1.5秒时,小正方形向右移动1.5厘米,S=2×1.5=3(厘米2);故答案为:3;(2)分情况讨论:当0≤t<2时,小正方形未完全进入大正方形,此时S=2t;当2≤t≤4时,小正方形完全在大正方形内,此时S=2×2=4;当4<t≤6时,小正方形逐渐离开大正方形,此时S=2×2﹣2(t﹣4)=12﹣2t;当t>6时,无重叠部分,此时S=0.综上所述:小正方形在平移过程中,当0≤t<2时,S=2t;当2≤t≤4时,S=4;当4<t≤6时,S=12﹣2t;当t>6时,S=0.点睛:本题考查了正方形的性质,平移的性质,解决本题的关键是计算各个阶段S随t的变化规律.10.(2021•南通一模)如图1,△ABC中,∠ACB=90°,AC=4cm,BC=6cm,D是BC的中点.点E从A出发,以acm/s(a>0)的速度沿AC匀速向点C运动,点F同时以1cm/s的速度从C出发,沿CB匀速向点B运动,其中一个动点到达端点时,另一个动点也随之停止运动,过点E作AC的垂线,交AD于点G,连接EF,FG.设它们运动的时间为t秒(t>0).(1)当t=2时,△ECF∽△BCA,求a的值;(2)当a=12时,以点E、F、D、G为顶点的四边形是平行四边形,求t的值;(3)当a=2时,是否存在某个时间t,使△DFG是直角三角形?若存在,请求出t的值;若不存在,请说明理由.思路引领:(1)先表示出CF ,AE ,EC ,由相似三角形的性质得出比例式建立方程求解即可得出结论;(2)先判断出△AEG ∽△ACD ,得出EG ,再判断出EG =DF ,最后分两种情况讨论,建立方程求解即可得出结论;(3)先表示出AG =52t 厘米,EG =32t ,DF =3﹣t 厘米,DG =5−52t (厘米),再分两种情况讨论,建立方程求解即可得出结论. 解:(1)∵t =2,∴CF =2厘米,AE =2a 厘米, ∴EC =(4﹣2a ) 厘米, ∵△ECF ∽△BCA . ∴EC CB =CF AC.(2分)∴4−2a6=24.∴a =12.(2)由题意,AE =12t 厘米,CD =3厘米,CF =t 厘米. ∵EG ∥CD , ∴△AEG ∽△ACD . ∴EG CD=AEAC ,EG3=12t 4.∴EG =38t .∵以点E 、F 、D 、G 为顶点的四边形是平行四边形, ∴EG =DF .当0≤t <3时,38t =3−t ,∴t =2411.(7分)当3<t ≤6时,38t =t −3,21 ∴t =245. 综上,t =2411或245 (3)∵点D 是BC 中点,∴CD =12BC =3,在Rt △ACD 中,根据勾股定理得,AD =5,由题意,AE =2t 厘米,CF =t 厘米,由(2)知,△AEG ∽△ACD ,∴AE AC =AG AD =EG CD , ∴2t 4=AG 5=EG 3∴AG =52t 厘米,EG =32t ,DF =3﹣t 厘米,DG =5−52t (厘米).若∠GFD =90°,则EG =CF ,32t =t . ∴t =0,(舍去)若∠FGD =90°,则△ACD ∽△FGD .∴AD CD=FD GD , ∴53=3−t 5−52t . ∴t =3219. 综上:t =3219,△DFG 是直角三角形.点睛:此题是相似形综合题,主要考查了相似三角形的判定和性质,平行四边形的性质,勾股定理,直角三角形的性质,分类讨论是解本题的关键.。
专题44 动态几何之定值(恒等)问题(压轴题)
《中考压轴题》专题42:动态几何之定值(恒等)问题一、解答题1.阅读材料:如图1,在△AOB中,∠O=90°,OA=OB,点P在AB边上,PE⊥OA于点E,PF⊥OB于点F,则PE+PF=OA.(此结论不必证明,可直接应用)(1)【理解与应用】如图2,正方形ABCD的边长为2,对角线AC,BD相交于点O,点P在AB边上,PE⊥OA于点E,PF⊥OB 于点F,则PE+PF的值为.(2)【类比与推理】如图3,矩形ABCD的对角线AC,BD相交于点O,AB=4,AD=3,点P在AB边上,PE∥OB交AC于点E,PF∥OA交BD于点F,求PE+PF的值;(3)【拓展与延伸】如图4,⊙O的半径为4,A,B,C,D是⊙O上的四点,过点C,D的切线CH,DG相交于点M,点P在弦AB上,PE∥BC交AC于点E,PF∥AD于点F,当∠ADG=∠BCH=30°时,PE+PF是否为定值?若是,请求出这个定值;若不是,请说明理由.2.已知二次函数图象的顶点坐标为(0,1),且过点(﹣1,54),直线y=kx+2与y 轴相交于点P ,与二次函数图象交于不同的两点A (x 1,y 1),B (x 2,y 2).(1)求该二次函数的解析式.(2)对(1)中的二次函数,当自变量x 取值范围在﹣1<x <3时,请写出其函数值y 的取值范围;(不必说明理由)(3)求证:在此二次函数图象下方的y 轴上,必存在定点G ,使△ABG 的内切圆的圆心落在y 轴上,并求△GAB 面积的最小值.(注:在解题过程中,你也可以阅读后面的材料)附:阅读材料任何一个一元二次方程的根与系数的关系为:两根的和等于一次项系数与二次项系数的比的相反数,两根的积等于常数项与二次项系数的比.即:设一元二次方程ax 2+bx+c=0的两根为x 1,x 2,则:1212bc x x x x a a+=⋅=能灵活运用这种关系,有时可以使解题更为简单.例:不解方程,求方程x 2﹣3x=15两根的和与积.解:原方程变为:x 2﹣3x ﹣15=0∵一元二次方程的根与系数有关系:1212b c x x x x a a +=⋅=∴原方程两根之和=331--=,两根之积=15151-=-.3.给定直线l :y=kx ,抛物线C :y=ax 2+bx+1.(1)当b=1时,l 与C 相交于A ,B 两点,其中A 为C 的顶点,B 与A 关于原点对称,求a 的值;(2)若把直线l 向上平移k 2+1个单位长度得到直线r ,则无论非零实数k 取何值,直线r 与抛物线C 都只有一个交点.①求此抛物线的解析式;②若P 是此抛物线上任一点,过P 作PQ ∥y 轴且与直线y=2交于Q 点,O 为原点.求证:OP=PQ.4.如图,在平面直角坐标系xOy 中,一次函数5y x m 4=+的图象与x 轴交于A (﹣1,0),与y 轴交于点C .以直线x=2为对称轴的抛物线C 1:y=ax 2+bx+c (a≠0)经过A 、C 两点,并与x 轴正半轴交于点B .(1)求m 的值及抛物线C 1:y=ax 2+bx+c (a≠0)的函数表达式.(2)设点D (0,2512),若F 是抛物线C 1:y=ax 2+bx+c (a≠0)对称轴上使得△ADF 的周长取得最小值的点,过F 任意作一条与y 轴不平行的直线交抛物线C 1于M 1(x 1,y 1),M 2(x 2,y 2)两点,试探究1211M F M F +是否为定值?请说明理由.(3)将抛物线C 1作适当平移,得到抛物线C 2:()221y x h 4=--,h >1.若当1<x≤m 时,y 2≥﹣x 恒成立,求m的最大值.5.如图,正方形OABC 的边OA ,OC 在坐标轴上,点B 的坐标为(﹣4,4).点P 从点A 出发,以每秒1个单位长度的速度沿x 轴向点O 运动;点Q 从点O 同时出发,以相同的速度沿x 轴的正方向运动,规定点P 到达点O 时,点Q 也停止运动.连接BP ,过P 点作BP 的垂线,与过点Q 平行于y 轴的直线l 相交于点D .BD 与y 轴交于点E ,连接PE .设点P 运动的时间为t (s ).(1)∠PBD 的度数为,点D 的坐标为(用t 表示);(2)当t 为何值时,△PBE 为等腰三角形?(3)探索△POE 周长是否随时间t 的变化而变化?若变化,说明理由;若不变,试求这个定值.6.如图,已知直线AB :y kx 2k 4=++与抛物线21y x 2=交于A 、B 两点,(1)直线AB 总经过一个定点C ,请直接写出点C 坐标;(2)当1k 2=-时,在直线AB 下方的抛物线上求点P ,使△ABP 的面积等于5;(3)若在抛物线上存在定点D 使∠ADB =90°,求点D 到直线AB 的最大距离.7.如图,在矩形ABCD 中,把点D 沿AE 对折,使点D 落在OC 上的F 点,已知AO=8.AD=10.(1)求F 点的坐标;(2)如果一条不与抛物线对称轴平行的直线与该抛物线仅有一个交点,我们把这条直线称为抛物线的切线,已知抛物线经过点O ,F ,且直线y=6x ﹣36是该抛物线的切线,求抛物线的解析式;(3)直线()35y k x 34=--与(2)中的抛物线交于P 、Q 两点,点B 的坐标为(3,354-),求证:11PB QB +为定值.(参考公式:在平面直角坐标系中,若M (x 1,y 1),N (x 2,y 2),则M ,N 两点间的距离为|MN|=.8.数学活动﹣求重叠部分的面积(1)问题情境:如图①,将顶角为120°的等腰三角形纸片(纸片足够大)的顶点P 与等边△ABC 的内心O 重合,已知OA=2,则图中重叠部分△PAB 的面积为.(2)探究1:在(1)的条件下,将纸片绕P 点旋转至如图②所示位置,纸片两边分别与AC ,AB 交于点E ,F ,图②中重叠部分的面积与图①重叠部分的面积是否相等?如果相等,请给予证明;如果不相等,请说明理由.(3)探究2:如图③,若∠CAB=α(0°<α<90°),AD 为∠CAB 的角平分线,点P 在射线AD 上,且AP=2,以P 为顶点的等腰三角形纸片(纸片足够大)与∠CAB 的两边AC ,AB 分别交于点E 、F ,∠EPF=180°﹣α,求重叠部分的面积.(用α或2的三角函数值表示)9.如图,在平面直角坐标系中,O 为坐标原点,抛物线过2y ax bx c(a 0)=++≠过O 、B 、C 三点,B 、C 坐标分别为(10,0)和(185,245-),以OB 为直径的⊙A 经过C 点,直线l 垂直于x 轴于点B.(1)求直线BC 的解析;(2)求抛物线解析式及顶点坐标;(3)点M 是⊙A 上一动点(不同于O ,B ),过点M 作⊙A 的切线,交y 轴于点E ,交直线l 于点F ,设线段ME 长为m ,MF 长为n ,请猜想m n ⋅的值,并证明你的结论;(4)点P 从O 出发,以每秒1个单位速度向点B 作直线运动,点Q 同时从B 出发,以相同速度向点C 作直线运动,经过t(0<t )秒时恰好使△BPQ 为等腰三角形,请求出满足条件的t 值.10.某数学兴趣小组对线段上的动点问题进行探究,已知AB=8.问题思考:如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC与正方形PBFE.(1)在点P运动时,这两个正方形面积之和是定值吗?如果时求出;若不是,求出这两个正方形面积之和的最小值.(2)分别连接AD、DF、AF,AF交DP于点A,当点P运动时,在△APK、△ADK、△DFK中,是否存在两个面积始终相等的三角形?请说明理由.问题拓展:(3)如图2,以AB为边作正方形ABCD,动点P、Q在正方形ABCD的边上运动,且PQ=8.若点P从点A出发,沿A→B→C→D的线路,向D点运动,求点P从A到D的运动过程中,PQ的中点O所经过的路径的长.(4)如图(3),在“问题思考”中,若点M、N是线段AB上的两点,且AM=BM=1,点G、H分别是边CD、EF的中点.请直接写出点P从M到N的运动过程中,GH的中点O所经过的路径的长及OM+OB的最小值.11.如图,二次函数22y a x 2()mx 3m =--(其中a ,m 是常数,且a>0,m>0)的图象与x 轴分别交于点A ,B (点A 位于点B 的左侧),与y 轴交于点C(0,-3),点D 在二次函数的图象上,CD ∥AB ,连接AD .过点A 作射线AE 交二次函数的图象于点E ,AB 平分∠DAE .(1)用含m 的代数式表示a ;(2))求证:AD AE为定值;(3)设该二次函数图象的顶点为F .探索:在x 轴的负半轴上是否存在点G ,连接CF ,以线段GF 、AD 、AE 的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G 即可,并用含m 的代数式表示该点的横坐标;如果不存在,请说明理由.12.如图,已知抛物线y=ax 2+bx+c (a >0,c <0)交x 轴于点A ,B ,交y 轴于点C ,设过点A ,B ,C 三点的圆与y 轴的另一个交点为D .(1)如图1,已知点A ,B ,C 的坐标分别为(﹣2,0),(8,0),(0,﹣4);①求此抛物线的表达式与点D 的坐标;②若点M 为抛物线上的一动点,且位于第四象限,求△BDM 面积的最大值;(2)如图2,若a=1,求证:无论b ,c 取何值,点D 均为定点,求出该定点坐标.13.已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.(1)如图1,已知折痕与边BC交于点O,连接AP,OP,OA.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长;(2)若图1中的点P恰巧是CD边的中点,求∠OAB的度数;(3)如图2,在(1)条件下,擦去折痕AO、线段OP,连结BP.动点M在线段AP上(点M与点P、A 不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E.试问当点M,N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求线段EF的长度.14.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由;(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明)(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最小值.15.如图,以点P(﹣1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D两点(A在D的下方),AD=,将△ABC绕点P旋转180°,得到△MCB.(1)求B、C两点的坐标;(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.16.如图,在平面坐标系中,直线y=﹣x+2与x 轴,y 轴分别交于点A ,点B ,动点P (a ,b )在第一象限内,由点P 向x 轴,y 轴所作的垂线PM ,PN (垂足为M ,N )分别与直线AB 相交于点E ,点F ,当点P (a ,b )运动时,矩形PMON 的面积为定值2.(1)求∠OAB 的度数;(2)求证:△AOF ∽△BEO ;(3)当点E ,F 都在线段AB 上时,由三条线段AE ,EF ,BF 组成一个三角形,记此三角形的外接圆面积为S 1,△OEF 的面积为S 2.试探究:S 1+S 2是否存在最小值?若存在,请求出该最小值;若不存在,请说明理由.17.如图1,已知正方形ABCD 的边长为1,点E 在边BC 上,若∠AEF=900,且EF 交正方形外角的平分线CF 于点F .(1)图1中若点E 是边BC 的中点,我们可以构造两个三角形全等来证明AE=EF ,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明);(2)如图2,若点E 在线段BC 上滑动(不与点B ,C 重合).①AE=EF 是否总成立?请给出证明;②在如图2的直角坐标系中,当点E 滑动到某处时,点F 恰好落在抛物线2y x x 1=-++上,求此时点F 的坐标.18.如图,已知正方形ABCD 的边长为4,对称中心为点P ,点F 为BC 边上一个动点,点E 在AB 边上,且满足条件∠EPF=45°,图中两块阴影部分图形关于直线AC 成轴对称,设它们的面积和为S 1.(1)求证:∠APE=∠CFP ;(2)设四边形CMPF 的面积为S 2,CF=x ,12S y S .①求y 关于x 的函数解析式和自变量x 的取值范围,并求出y 的最大值;②当图中两块阴影部分图形关于点P 成中心对称时,求y的值.19.如图,在平面直角坐标系中,O 为坐标原点,点A 的坐标为(0,4),点B 的坐标为(4,0),点C 的坐标为(﹣4,0),点P 在射线AB 上运动,连结CP 与y 轴交于点D ,连结BD .过P ,D ,B 三点作⊙Q 与y 轴的另一个交点为E ,延长DQ 交⊙Q 于点F ,连结EF ,BF.(1)求直线AB 的函数解析式;(2)当点P 在线段AB (不包括A ,B 两点)上时.①求证:∠BDE=∠ADP ;②设DE=x ,DF=y .请求出y 关于x 的函数解析式;(3)请你探究:点P 在运动过程中,是否存在以B ,D ,F 为顶点的直角三角形,满足两条直角边之比为2:1?如果存在,求出此时点P 的坐标:如果不存在,请说明理由.20.已知,如图(a),抛物线2y ax bx c =++经过点A(x 1,0),B(x 2,0),C(0,-2),其顶点为D.以AB 为直径的⊙M 交y 轴于点E 、F ,过点E 作⊙M 的切线交x 轴于点N 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动态几何定值问题【考题研究】数学因运动而充满活力,数学因变化而精彩纷呈。
动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。
解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。
以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。
【解题攻略】动态几何形成的定值和恒等问题是动态几何中的常见问题,其考点包括线段(和差)为定值问题;角度(和差)为定值问题;面积(和差)为定值问题;其它定值问题。
解答动态几何定值问题的方法,一般有两种:第一种是分两步完成:先探求定值. 它要用题中固有的几何量表示.再证明它能成立.探求的方法,常用特殊位置定值法,即把动点放在特殊的位置,找出定值的表达式,然后写出证明.第二种是采用综合法,直接写出证明.【解题类型及其思路】在中考中,动态几何形成的定值和恒等问题命题形式主要为解答题。
在中考压轴题中,动态几何之定值(恒等)问题的重点是线段(和差)为定值问题,问题的难点在于准确应用适当的定理和方法进行探究。
【典例指引】类型一【线段及线段的和差为定值】【典例指引1】已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.(1)如图1,当∠CA ′D =15°时,作∠A ′EC 的平分线EF 交BC 于点F . ①写出旋转角α的度数; ②求证:EA ′+EC =EF ;(2)如图2,在(1)的条件下,设P 是直线A ′D 上的一个动点,连接PA ,PF ,若AB=2,求线段PA +PF 的最小值.(结果保留根号) 【举一反三】如图(1),已知∠=90MON ,点P 为射线ON 上一点,且=4OP ,B 、C 为射线OM 和ON 上的两个动点(OC OP >),过点P 作PA ⊥BC ,垂足为点A ,且=2PA ,联结BP .(1)若12PAC ABOPS S ∆=四边形时,求tan BPO ∠的值; (2)设PC x =,ABy BC=求y 与x 之间的函数解析式,并写出定义域; (3)如图(2),过点A 作BP 的垂线,垂足为点H ,交射线ON 于点Q ,点B 、C 在射线OM 和ON 上运动时,探索线段OQ 的长是否发生变化?若不发生变化,求出它的值。
若发生变化,试用含x 的代数式表示OQ 的长.类型二 【线段的积或商为定值】【典例指引2】如图①,矩形ABCD 中,2,5,1AB BC BP ===,090MPN ∠=,将MPN ∠绕点P 从PB 处开始按顺时针方向旋转,PM 交边AB (或AD )于点E ,PN 交边AD (或CD )于点F .当PN 旋转至PC 处时,MPN ∠的旋转随即停止.(1)特殊情形:如图②,发现当PM 过点A 时,PN 也恰好过点D ,此时ABP ∆是否与PCD ∆相似?并说明理由;(2)类比探究:如图③,在旋转过程中,PEPF的值是否为定值?若是,请求出该定值;若不是,请说明理由;(3)拓展延伸:设AE t =时,EPF ∆的面积为S ,试用含t 的代数式表示S ; ①在旋转过程中,若1t =时,求对应的EPF ∆的面积; ②在旋转过程中,当EPF ∆的面积为4.2时,求对应的t 的值.【举一反三】如图1,已知直线y =a 与抛物线214y x =交于A 、B 两点(A 在B 的左侧),交y 轴于点C (1)若AB =4,求a 的值(2)若抛物线上存在点D(不与A 、B 重合),使12CD AB =,求a 的取值范围 (3)如图2,直线y =kx +2与抛物线交于点E 、F,点P 是抛物线上的动点,延长PE 、PF 分别交直线y =-2于M 、N 两点,MN 交y 轴于Q 点,求QM·QN 的值。
图1 图2类型三 【角及角的和差定值】【典例指引3】如图,在△ABC 中,∠ABC >60°,∠BAC <60°,以AB 为边作等边△ABD (点C 、D 在边AB 的同侧),连接CD .(1)若∠ABC =90°,∠BAC =30°,求∠BDC 的度数;(2)当∠BAC =2∠BDC 时,请判断△ABC 的形状并说明理由; (3)当∠BCD 等于多少度时,∠BAC =2∠BDC 恒成立.【举一反三】如图1,抛物线2: 2W y ax =-的顶点为点A ,与x 轴的负半轴交于点D ,直线AB 交抛物线W 于另一点C ,点B 的坐标为()1,0.(1)求直线AB 的解析式;(2)过点C 作CE x ⊥轴,交x 轴于点E ,若AC 平分DCE ∠,求抛物线W 的解析式; (3)若12a =,将抛物线W 向下平移()0m m >个单位得到抛物线1W ,如图2,记抛物线1W 的顶点为1A ,与x 轴负半轴的交点为1D ,与射线BC 的交点为1C .问:在平移的过程中,11tan D C B ∠是否恒为定值?若是,请求出11tan D C B ∠的值;若不是,请说明理由.类型四 【三角形的周长为定值】【典例指引4】如图,现有一张边长为22的正方形ABCD ,点P 为正方形 AD 边上的一点(不与点 A 、点D 重合),将正方形纸片折叠,使点 B 落在 P 处,点 C 落在 G 处,PG 交DC 于H ,折痕为 EF ,连接 BP ,BH.(1)求证:EPB EBP ∠=∠; (2)求证:APB BPH ∠=∠;(3)当点P 在边AD 上移动时,△PDH 的周长是否发生变化?不变化,求出周长,若变化,说明理由; (4)设AP 为x ,四边形EFGP 的面积为S ,求出S 与x 的函数关系式.【举一反三】如图,在等腰直角三角形ABC中,∠C=90°,AB=82,点O是AB的中点.将一个边长足够大的Rt△DEF的直角顶点E放在点O处,并将其绕点O旋转,始终保持DE与AC边交于点G,EF 与BC边交于点H.(1)当点G在AC边什么位置时,四边形CGOH是正方形.(2)等腰直角三角ABC的边被Rt△DEF覆盖部分的两条线段CG与CH的长度之和是否会发生变化,如不发生变化,请求出CG与CH之和的值:如发生变化,请说明理由.类型五【三角形的面积及和差为定值】【典例指引5】综合与实践:矩形的旋转问题情境:在综合与实践课上,老师让同学们以“矩形的旋转”为主题开展数学活动.具体要求:如图1,将长与宽都相等的两个矩形纸片ABCD和EFGH叠放在一起,这时对角线AC和EG互相重合.固定矩形ABCD,将矩形EFGH绕AC的中点O逆时针方向旋转,直到点E与点B重合时停止,在此过程中开展探究活动.操作发现:(1)雄鹰小组初步发现:在旋转过程中,当边AB与EF交于点M,边CD与GH交于点N,如图2、图3所示,则线段AM与CN始终存在的数量关系是.(2)雄鹰小组继续探究发现:在旋转开始后,当两个矩形纸片重叠部分为四边形QMRN时,如图3所示,四边形QMRN为菱形,请你证明这个结论.(3)雄鹰小组还发现在问题(2)中的四边形QMRN中∠MQN与旋转角∠AOE存在着特定的数量关系,请你写出这一关系,并说明理由.实践探究:(4)在图3中,随着矩形纸片EFGH的旋转,四边形QMRN的面积会发生变化.若矩形纸片的长为2 2,请你帮助雄鹰小组探究当旋转角∠AOE为多少度时,四边形QMRN的面积最大?最大面积是多少?(直接写出答案)【举一反三】如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.(1)求证:BE=CE(2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)①求证:△BEM≌△CEN;②若AB=2,求△BMN面积的最大值;③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.【新题训练】1.已知在平行四边形ABCD中,AB=6,BC=10,∠BAD=120°,E为线段BC上的一个动点(不与B,C 重合),过E作直线AB的垂线,垂足为F,FE与DC的延长线相交于点G,(1)如图1,当AE⊥BC时,求线段BE、CG的长度.(2)如图2,点E在线段BC上运动时,连接DE,DF,△BEF与△CEG的周长之和是否是一个定值,若是请求出定值,若不是请说明理由.(3)如图2,设BE=x,△DEF的面积为y,试求出y关于x的函数关系式.2.如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A、C间的一个动点(含端点),过点P作PF⊥BC于点F,点D、E的坐标分别为(0,6),(﹣4,0),连接PD,PE,DE.(1)求抛物线的解析式;(2)小明探究点P的位置是发现:当点P与点A或点C重合时,PD与PF的差为定值,进而猜想:对于任意一点P,PD与PF的差为定值,请你判定该猜想是否正确,并说明理由;(3)请直接写出△PDE周长的最大值和最小值.3.如图,四边形ABCD中,AD∥BC,∠ABC=90°.(1)直接填空:∠BAD=______°.(2)点P在CD上,连结AP,AM平分∠DAP,AN平分∠PAB,AM、AN分别与射线BP交于点M、N.设∠DAM=α°.①求∠BAN的度数(用含α的代数式表示).②若AN⊥BM,试探究∠AMB的度数是否为定值?若为定值,请求出该定值;若不为定值,请用α的代数式表示它.4.将在同一平面内如图放置的两块三角板绕公共顶点A 旋转,连接BC ,DE .探究S △ABC 与S △ADC 的比是否为定值.(1)两块三角板是完全相同的等腰直角三角板时,S △ABC :S △ADE 是否为定值?如果是,求出此定值,如果不是,说明理由.(图①)(2)一块是等腰直角三角板,另一块是含有30°角的直角三角板时,S △ABC :S △ADE 是否为定值?如果是,求出此定值,如果不是,说明理由.(图②)(3)两块三角板中,∠BAE +∠CAD =180°,AB =a ,AE =b ,AC =m ,AD =n (a ,b ,m ,n 为常数),S △ABC :S △ADE 是否为定值?如果是,用含a ,b ,m ,n 的式子表示此定值(直接写出结论,不写推理过程),如果不是,说明理由.(图③)5.(解决问题)如图1,在ABC ∆中,10AB AC ==,CG AB ⊥于点G .点P 是BC 边上任意一点,过点P 作PE AB ⊥,PF AC ⊥,垂足分别为点E ,点F .(1)若3PE =,5PF =,则ABP ∆的面积是______,CG =______.(2)猜想线段PE ,PF ,CG 的数量关系,并说明理由.(3)(变式探究)如图2,在ABC ∆中,若10AB AC BC ===,点P 是ABC ∆内任意一点,且PE BC ⊥,PF AC ⊥,PG AB ⊥,垂足分别为点E ,点F ,点G ,求PE PF PG ++的值.(4)(拓展延伸)如图3,将长方形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点C '处,点P 为折痕EF 上的任意一点,过点P 作PG BE ⊥,PH BC ⊥,垂足分别为点G ,点H .若8AD =,3CF =,直接写出PG PH +的值.6.如图,已知锐角△ABC 中,AB 、AC 边的中垂线交于点O(1)若∠A=α(0°<α<90°),求∠BOC ;(2)试判断∠ABO+∠ACB 是否为定值;若是,求出定值,若不是,请说明理由.7.⊙O 的直径AB =15cm ,有一条定长为9cm 的动弦,CD 在弧AB 上滑动(点C 和A 、点D 与B 不重合),且CE ⊥CD 交AB 于E ,DF ⊥CD 交AB 于F . (1)求证:AE =BF(2)在动弦CD滑动过程中,四边形CDFE的面积是否为定值,若是定值,请给出证明,并求这个定值,若不是,请说明理由.8.如图,动点在以为圆心,为直径的半圆弧上运动(点不与点及的中点重合),连接.过点作于点,以为边在半圆同侧作正方形,过点作的切线交射线于点,连接、.(1)探究:如左图,当动点在上运动时;①判断是否成立?请说明理由;②设,是否为定值?若是,求出该定值,若不是,请说明理由;③设,是否为定值?若是,求出该定值,若不是,请说明理由;(2)拓展:如右图,当动点在上运动时;分别判断(1)中的三个结论是否保持不变?如有变化,请直接写出正确的结论.(均不必说明理由)9.如图,已知⊙O的半径为2,AB为直径,CD为弦.AB与CD交于点M,将CD沿着CD翻折后,,链接PC.点A与圆心O重合,延长OA至P,使AP OA(1)求CD的长.(2)求证:PC是⊙O的切线.(3)点G为ADB的中点,在PC延长线上有一动点Q,连接QG交AB于点E,交BC于点F(F与B、C不重合).则GE GF为一定值.请说明理由,并求出该定值.10.在平面直角坐标系中,点A和点B分别在x轴的正半轴和y轴的正半轴上,且OA=6,OB=8,点D是AB的中点.(1)直接写出点D的坐标及AB的长;(2)若直角∠NDM绕点D旋转,射线DP分别交x轴、y轴于点P、N,射线DM交x轴于点M,连接MN.①当点P和点N分别在x轴的负半轴和y轴的正半轴时,若△PDM∽△MON,求点N的坐标;②在直角∠NDM绕点D旋转的过程中,∠DMN的大小是否会发生变化?请说明理由.11.如图,△AOB中,A(-8,0),B(0,323),AC平分∠OAB,交y轴于点C,点P是x轴上一点,⊙P经过点A、C,与x轴于点D,过点C作CE⊥AB,垂足为E,EC的延长线交x轴于点F,(1)⊙P的半径为;(2)求证:EF为⊙P的切线;(3)若点H是CD上一动点,连接OH、FH,当点H在CD上运动时,试探究OHFH是否为定值?若为定值,求其值;若不是定值,请说明理由.12.如图,在菱形ABCD中,∠ABC=60°,AB=2.过点A作对角线BD的平行线与边CD的延长线相交于点E.P为边BD上的一个动点(不与端点B,D重合),连接P A,PE,AC.(1)求证:四边形ABDE是平行四边形;(2)求四边形ABDE的周长和面积;(3)记△ABP的周长和面积分别为C1和S1,△PDE的周长和面积分别为C2和S2,在点P的运动过程中,试探究下列两个式子的值或范围:①C1+C2,②S1+S2,如果是定值的,请直接写出这个定值;如果不是定值的,请直接写出它的取值范围.13.如图,在O中,圆心O关于弦AB的对称点C恰好在O上,连接AC、BC、BO、AO. (1)求证:四边形AOBC是菱形;(2)如图,若点Q是优弧AmB(不含端点A、B)上任意一点,连接CQ交AB于点P,O的半径为23.试探究是否为定值?若是,求出该定值;若不是,请说明理由;①线段CP与CQ的积CP CQCP PO的取值范围.②求·14.如图,抛物线的顶点坐标为C(0,8),并且经过A(8,0),点P是抛物线上点A,C间的一个动点(含端点),过点P作直线y=8的垂线,垂足为点F,点D,E的坐标分别为(0,6),(4,0),连接PD,PE,DE.(1)求抛物线的解析式;(2)猜想并探究:对于任意一点P ,PD 与PF 的差是否为固定值?如果是,请求出此定值;如果不是,请说明理由;(3)求:①当△PDE 的周长最小时的点P 坐标;②使△PDE 的面积为整数的点P 的个数.15.如图1,点(),0A a 、(,0)B b ,其中a 、b 满足()2340a b b a ++--=,将点A 、B 分别向上平移2个单位,再向右平移1个单位至C 、D ,连接AC 、BD .(1)直接写出点D 的坐标:__________; (2)连接AD 交OC 于一点F ,求CFOF的值: (3)如图2,点M 从O 点出发,以每秒1个单位的速度向上平移运动,同时点N 从B 点出发,以每秒2个单位的速度向左平移运动,设射线DN 交y 轴于F .问FMD OFN S S ∆∆-的值是否为定值?如果是定值,请求出它的值;如果不是定值,请说明理由.16.如图所示,D 为等腰ABC ∆底边BC 上一动点,DE AB ⊥于,E DF AC ⊥于F ,8,24ABC AC cm S ∆==,问当D 点在C 边上运动时,DE DF +的值是否为定值,如果是,求出这个定值,如果不是,说明理由.17.如图,在平面直角坐标系中,已知直线2y x =+和6y x =-+与x 轴分别相交于点A 和点B ,设两直线相交于点C ,点D 为AB 的中点,点E 是线段AC 上一个动点(不与点A 和C 重合),连结DE ,并过点D 作DF DE ⊥交BC 于点F . (1)判断ABC △的形状,并说明理由.(2)当点E 在线段AC 上运动时,四边形CEDF 的面积是否为定值?若是,请求出这个定值;若不是,请说明理由.(3)当点E 的横坐标为12-时,在x 轴上找到一点P 使得PEF 的周长最小,请直接写出点P 的坐标.动态几何定值问题【考题研究】数学因运动而充满活力,数学因变化而精彩纷呈。