《数学课程与教学论》
数学课程与教学论
数学课程与教学论数学作为一门科学和学科,在教育领域中扮演着重要的角色。
数学课程和教学方法对学生的学习成绩和数学思维能力的培养有着重要的影响。
本文将探讨数学课程与教学论,讨论这两方面对学生数学学习的重要性和影响。
一、数学课程的设计数学课程的设计是为了帮助学生掌握数学知识和培养数学思维能力。
好的数学课程应该有以下几个特点:1. 目标明确:数学课程应该明确学生需要达到的目标。
这包括数学知识的掌握和数学思维能力的培养。
2. 渐进性:数学课程应该按照学生的认知发展水平和学习能力的不同,分阶段有序地组织教学内容。
从简单到复杂,从易到难,帮助学生逐步掌握数学概念和方法。
3. 理论与实践结合:数学是一门理论性很强的学科,但也需要与实际应用相结合。
数学课程应该注重培养学生的问题解决能力和数学建模能力。
4. 多元化评估:数学课程的评估应该多样化,包括考试、作业、项目等形式。
评估应该注重学生的思考过程和解决问题的能力,而不仅仅是答案的正确与否。
二、数学教学方法的选择数学教学方法对学生的数学学习有着重要的影响。
合适的数学教学方法可以激发学生对数学的兴趣,提高学生的学习动力。
以下是几种常见的数学教学方法:1. 探究式教学法:通过提供问题和情境,激发学生的主动性和探究欲望。
学生通过自主探索和合作学习,构建数学概念和解决问题的方法。
2. 合作学习:将学生组织成小组,鼓励他们合作解决问题。
学生在合作中相互交流和分享思路,提高问题解决能力和团队合作能力。
3. 技术支持教学:借助计算机和互联网等技术手段,提供丰富多样的数学学习资源。
学生可以通过在线学习平台、数学软件等进行自主学习和练习。
4. 模型教学:通过将数学概念和方法应用于实际问题中,帮助学生理解和掌握数学。
学生通过建立模型和解决实际问题,培养数学思维和创新能力。
以上只是一些常见的数学教学方法,实际教学中可以根据具体情况选择合适的方法。
三、数学课程与教学的重要性数学课程和教学对学生数学学习的重要性体现在以下几方面:1. 培养逻辑思维:数学课程和教学可以培养学生的逻辑思维和分析能力。
数学课程与教学论试题及答案
数学课程与教学论试题及答案
引言
本文档旨在提供一份数学课程与教学论的试题及答案,以便帮助教师或学生更好地了解数学教育内容,并促进教学效果的提升。
试题及答案
以下是一些数学课程与教学论的试题及答案供参考:
1. 问题:什么是数学教学论?
答案:数学教学论是研究数学教学方法、教学原理和教学理论的学科。
2. 问题:列举一些数学教学的重要原则。
答案:数学教学的重要原则包括培养学生的逻辑思维能力、激发学生的兴趣和动力、提供合理的研究目标和评价标准等。
3. 问题:如何促进学生的数学研究兴趣?
答案:可以通过设置趣味性的数学问题、引导学生发现数学与现实生活的联系、提供有趣的数学实例等方式来促进学生的数学研究兴趣。
4. 问题:如何评价学生的数学研究成果?
答案:评价学生的数学研究成果可以采用定量和定性相结合的方式,包括考试、作业、项目报告、口头表达等方法。
5. 问题:如何设计一个有效的数学教学活动?
答案:设计一个有效的数学教学活动需要考虑教学目标、学生的特点、教学资源和时间等因素,并结合启发式教学方法和合作研究方式进行设计。
结论
本文档提供了数学课程与教学论的一些试题及答案,希望对教师或学生在数学教育方面有所帮助。
然而,应注意本文档中的内容仅供参考,具体的教学实践仍需要根据实际情况进行调整和改进。
小学数学课程与教学论
小学数学课程与教学论小学数学课程及教学论一直是教育界关注的热门话题,也是一个重要的教育理论领域。
小学数学课程与教学问题涉及教育理论、学校与教学实践,深刻影响到小学数学教育的发展。
要想更好地指导小学数学的教学,就必须进行针对性的研究,总结出一套科学的小学数学课程和教学论。
一、小学数学课程的构建1、以培养学生发展潜能为核心,重视建构和发现知识的融合小学数学课程的构建,要以培养学生潜能为核心,注重培养学生利用数学思维解决实际问题的能力,以及利用数学建构知识与发现知识的能力等,即以建构与发现知识的融合为重点。
2、让学生在学习中实践为主小学数学课程的设计,应注重让学生在实践中学习,以实践为主线,让学生掌握和应用数学知识,培养学生的实践能力。
3、多维、立体化发展,突出小学数学课程特色小学数学课程设计要多维、立体化发展,以通、深、应三个方面紧密结合,突出小学数学课程的特色,注重对学生形成基本的数学概念、技能与方法,以及发展学生深层次的数学思维能力等。
二、小学数学教学的原则1、培养学生独立思考的能力在小学数学教学中,要注重培养学生的独立思考能力,改变传统的被动学习模式,让学生主动查找知识、发问与解决问题,真正以学生为中心的教学方式。
2、坚持实践教学,突出思考与应用小学数学教学要以实践为主,让学生在实践中学习,突出思考与应用,让学生充分发挥创新能力,学习共同分享成果,充分激发学生的学习欲络。
3、重视学生在小组活动中的发展小学数学教学要重视学生在小组活动中的发展,让学生在小组中学习,培养学生的团队协作能力。
建立小组学习机制,让学生在小组讨论、互助及实践中运用所学知识,增强学习效果。
三、学数学教学的特点1、认知性与实践性相结合小学数学教学要注重认知性与实践性相结合,力求在实践中实现对概念、定理、公式等的掌握,在认知中实现对问题的解决。
2、重视参与小学数学教学要重视参与,给学生充分发挥空间,以引导学生认识问题、分析问题及解决问题,让学生在小组活动中学习、参与小组共同讨论,学会自我反思。
小学数学课程与教学论
《小学数学课程与教学论》课程大纲一、课程概述本课程是为教育学专业学生开设的一门专业课,也是小学数学教师职业培训的核心课程之一。
这门课是建立在数学和教育学的根底上,并综合运用心理学、认知科学、思维科学、逻辑学等相关学科的成果于数学教育的实践而形成的一门综合性的交叉学科。
1.课程描述“小学数学课程与教学论〞是教育学专业国际教育方向的必修课之一,这是一门理论性、实践性并重的课程,注重促进学生自身能力的提高,为今后进入小学从事数学教育和研究工作以与专业的学习打下良好的根底。
通过本课程的学习,学生能够系统地获得小学数学教育教学的根本理论与方法,懂得数学教育的特殊规律,并能运用这些理论指导小学数学教学实践。
通过各个教学环节,使学生获得数学教育的新思想、新观念,逐步培养学生的教材分析能力、数学教学能力和数学教育研究能力,为成为适应新世纪需要的高素质的小学教师打下坚实根底。
其主要内容包括:小学数学学科的性质、任务和目标;小学数学的主要学习理论和教学模式;小学数学的教学组织和方法;小学数学的概念、几何和问题解决学习;小学数学的学习评价等。
2. 设计思路本课程是一门综合性、独立性很强的跨学科课程,它需要应用有关学科的根本原理、特别是有关数学、哲学、教育学、心理学等方面的新理论、新方法、新思想去思考并解决一系列教学上的问题。
它是一门思想性、理论性很强的学科,特别需要唯物辩证法的指导。
因此要求我们必须全面、正确地运用辨证唯物主义的立场、观点和方法去研究和解决当前所遇到的一些教学实际问题。
它也是一门开展性很强的学科,它需要不断充实新鲜的素材和原理。
所以学生要学会利用资料,善于总结。
最后,它又是一门实践性很强的学科,课堂上需加强学生的数学教学实践活动。
3.本课程与专业人才培养目标的关系- 1 - / 104. 本课程与其它课程的关系5. 学习后的总体目标通过本课程的学习,学生能够达到的总体目标为:学生系统地获得小学数学教育教学的根本理论与方法,懂得数学教育的特殊规律,并能运用这些理论指导小学数学教学实践。
《小学数学课程与教学论》复习试题2套及答案
《小学数学课程与教学论》复习题1一、概念解释1. 数的运算2. 课堂教学模式3. 三算结合4.发现教学模式二、简答题1. 小学儿童数学学习的特点2. 小学测量方面的要求。
3. 低年级“数与代数”教材内容的呈现4. 整数混合运算和运算律的呈现三、论述题1.中年级“实践与综合运用”教学内容的选择与编写特点2. 发现教学模式的主要优点和局限性。
3. 中年级“统计与概率”教学目标确定4. 高年级“统计与概率”教学内容的选择与编写《小学数学课程与教学论》复习题2一、填空1.概念教学包括()、()、()、()。
2.规则教学的形式包括()、()。
3.“三算结合”教学改变了传统的()的()教法,把传授知识、培养能力和发展智力统一起来。
“三算结合”教学的应用,引起课堂教学过程的一系列变化,使教师的主导作用和学生的主体作用得到充分体现,使教与学有机地结合起来,促使课堂效率大大提高,促使教学方法向()发展。
4.低年级“数与代数”的学段目标可以分解为()、()、()、()。
5.中年级儿童“数与代数”学习能力指标包括()、()、()、()、()。
6.美国著名教育心理学家布鲁纳在他的()一书中明确提出了(),为此,人们公认他为现代发现教学的倡导者,在这之后,随着发现法教学在实践中的进一步应用与发展,逐渐形成了具有特色的一种教学模式。
7. 中年级“空间与图形”的教学评估主要关注学生()的形成和对()学习的评价,应结合具体的情境,评价学生对图形基本性质的认识和空间观念的发展。
8.小学教材中()的概念是用相关联量相对应的数的比值(商)一定或积一定来定义的。
教材一般会通过一些常见的(),联系生活实际来引导学生发现和概括出正反比例的意义。
9. 高年级“空间与图形”教材内容的编排包括()、()、()、()。
10. 自学辅导教学模式是一种以学生(),借助教师的(),运用已掌握的知识技能,依靠自学获取知识与技能的教学范式。
二、简答题1.小学低年级图形与变换的要求。
《小学数学课程与教学论》PPT课件教案
问题。借助几何直观可以把复杂的数学问题
变得简明、形象,有助于探索解决问题的思
路,预测结果。几何直观可以帮助学生直观
地理解数学,在整个数学学习过程中都发挥
着重要作用。
❖
(五)数据分析观念
数据分析观念包括:了解在现实生活中有许 多问题应当先做调查研究,收集数据,通过分 析作出判断,体会数据中蕴涵着信息;了解对 于同样的数据可以有多种分析的方法,需要根 据问题的背景选择合适的方法;通过数据分析 体验随机性,一方面对于同样的事情每次收集 到的数据可能不同,另一方面只要有足够的数 据就可能从中发现规律。数据分析是统计的核 心。
❖ 建模思想:简化的思想,量化的思想,函数 的思想,方程的思想,优化的思想,随机的 思想,抽样统计的思想。
对数学建模的认识。
数学建模就是通过建立模 型的方法来求得问题解 决的数学活动过程。 这一过程步骤如下:
观察实际情境 发现提出问题
修改
抽象成数学模型
得到数学结果
检验
不合乎实际
合乎实际 可用结果
40分数的基本性质是一节具有传统意义的概念课是在学生学习了分数的初步认识分数的意义分数与除法的关系等与分数内涵或外延相关的知识具有一定的数学活动经验和生活经验之后对于分数的分子和分母变化而大小不变规律的发现与总结是学生今后学习约分通分分数大小比较异分母分数加减法等相关知识的基础在分数知识结构处于较为重要的地位
一、《数学课程标准》(2011版)相关内容
❖ 一个基本理念:人人都能获得良好的数学教育;不同的 人在数学上得到不同的发展。
❖ 三个学段:九年的学习时间划分为三个学段:第一学段 (1~3年级),第二学段(4~6年级),第三学段 (7~9年级)。
❖ 四个部分(课程内容):“数与代数”“图形与几 何”“统计与概率”“综合与实践”
数学课程与教学论
数学课程与教学论教学目的:通过本章的教学使学生掌握中学数学教育学的研究对象、内容及其学习该学科的意义,明确地指出它对中学数学教学的指导性作用. 同时对我国数学教育发展概况和数学教育现代化运动有一定的了解.教学内容:1、为什么要开设数学课程与教学论课;2、如何学习数学课程与教学论。
教学重、难点:数学课程与教学论的研究对象、内容及其学习该学科的意义为本章的重点;它对中学数学教学的指导性作用为本章难点。
教学方法: 讲解法教学过程:数学课程与教学论是高等师范院校数学教育专业的一门必修课。
它以党的教育方针为依据,以辩证唯物主义为指导,根据中学生个性心理特点的发展,把专业知识和教育学、心理学、科学方法论等学科知识与数学教学中的各种问题有机结合,系统研究数学课程在整个基础教育中的地位和作用,以及数学教学过程的基本规律及应用。
本章要解决的是五个问题:1、为什么要开设数学课程与教学论课;2、数学课程与教学论的研究对象;3、数学课程与教学论的特点;4、数学教学系统;5、数学课程与教学论的研究方法。
§ 1.1 为什么要开设数学课程与教学论数学课程与教学论是高等师范院校数学教育专业的一门必修课1.数学学科知识的学习不能代替教学理论的学习和教学方法的修养当代的数学教师,不论是初中的、高中的还是大学的数学教师,都必须具备现代教育的思想和方法,它包括: 以人为本的现代教育理念、全面的教育质量观、多元的人才观、立体的教学观、课堂教学的多功能观、符合时代特征的学生观,以及现代教育技术和手段的掌握和运用。
很难想象,一个不懂得教学理论和教学方法的教师,他会根据学生的认知水平进行“换位思考”,会充分发挥学生学习的主体作用使课堂教学生动活泼,会使数学教科书中各种静态的知识达到动态、发展的境地,从而使讲授的内容显得通俗易懂、简单明了。
正因为如此,人们把数学教育专业的合格毕业生的知识结构描述为:具备一定深度的物理学科知识和教育学、心理学、教学法等知识,并使这些知识组合成一个有机的整体结构。
数学课程与教学论
克莱因在杜塞尔多夫读的中学,毕业后,他考入了 波恩大学学习数学和物理。他本来是想成为一位 物 理学家,但是数学教授普律克改变了他的主 意。1868年克莱因在普律克教授的指导下完成了 博士论文.在这一年里普律克教授去世了,留下 了未完成的几何基础课题。克莱因是完成这一任 务的最佳人选。后来克莱因又去服了兵役。1871 年,克莱因接受哥廷根大学的邀请担任数学讲师。 1872年他又被埃尔朗根大学聘任为数学教授,这 时他只有23岁。1875年他在慕尼黑高等技术学 院取得了一个教席。在这里,他的学生包括胡尔 维茨、冯戴克、洛恩、普朗克、毕安奇和里奇。 五年之后,克莱因应邀去莱比锡大学讲授几何学。 在这里他和他过去的出色的学生冯戴克、洛恩、 司徒迪和恩格尔等成为了同事
2.数学教育现代化运动 (1)历史背景 (2)数学教育现代化运动 新数学运动的主要特征(1)——(6) 经验教训(1)——(5)
1957年10月4日,苏联将第一颗人造卫星(Sputnik)送入地 球轨道,这件事引起了美国朝野的极度震惊。因为美国向 来自诩为世界的头号科技大国,如今却突然发现自己的科 技水平落在原来认为比自己差的国家之后。于是美国政府 立即进行反省,认为毛病主要出在作为一切科技的基础和 工具的数学上面,人们纷纷要求加强并改革中学的数理教 育,指出中学里学的数学基本上都是三百年前的东西,必 须用“新数”来代替这些过时了的“旧数”,全国电台、 电视台、报纸都大力鼓吹这一观点,出版商更不甘落后, 霎时间,旧数几乎成为保守、落伍的象征物。
1886年,克莱因接受了哥廷根大学的邀请来到哥廷根, 开始了他的数学家的生涯。他讲授的课程非常广泛,主 要是在数学和物理之间的交叉课题,如力学和势论。他 在这里直到1913年退休。他实现了要重建哥廷根大学作 为世界数学研究的重要中心的愿望。 著名的数学杂志 《数学年刊》就是在克莱因的主持管理下才能在重要性 上达到和超过了《克莱尔杂志》的。这本杂志在复分析、 代数几何和不变量理论方面很有特色。在实分析和群论 新领域也很出色。 要了解克莱因对在几何学上所作的贡献的特点是有 点难的,因为即使用我们今天数学思想的大部分来理解 他的结果的新奇之处也是很困难的。 克莱因在数学上做出的第一个贡献是在1870年与李 合作发现的。他们发现了库默尔面上曲线的渐近线的基 本性质。他进一步地与李合作研究W-曲线。1871年克莱 因出版了两篇有关非欧几何的论文,论文中证明了如果 欧氏几何是相容的,那么非欧几何也是相容的。这就把 非欧几何置于与欧氏几何同样坚实的基础之上。
数学课程与教学论
《数学课程与教学论》复习题库1.当前,我国已由原来的仅适合精英教育的数学课程,向着大众化、层次化教育的课程转变。
2.当前中学数学教学改革的三大趋势是大众数学、服务性学科、问题解决。
3.数学是研究现实世界的空间形式与数量关系的科学。
4.数学具有高度的抽象性、逻辑的严密性和应用的广泛性。
5.数学概念是指反映事物在量或形方面本质属性的抽象思维形式。
6.数学教育是传承人类数学文化的教育活动。
7.数学学习的特点有哪些?答:数学学习是数学语言的学习,也是一种科学的公共语言的学习;数学学习是一个“数学化”的过程,需要较强的抽象概括能力;数学学习是一个逻辑推理过程,需要较强的逻辑推理能力;数学学习是一个再创造的过程,需要极强的非逻辑思维能力;数学学习是能使学习者形成良好心理品质、科学态度、富于创造开拓精神和良好素质。
8.中学数学学习的特点有哪些?答:中学数学学习是人类发现基础上的再发现;是有目的、有计划地进行学习;中学数学学习的重点在于知识的学习和能力的培养。
9.数学概念学习的基本方式是什么?什么是概念形成?什么是概念同化?答:有概念形成和概念同化。
概念形成的学习过程一般是主体对客观事物反复感知和进行分析、比较、抽象的基础上,概括出某一类事物的本质性的过程. 概念同化的学习过程一般是接受他人以定义方式给出的概念,主体进行认知磨合,得其要领,掌握概念。
10.以概念形成理论为基础的数学概念教学的基本步骤是什么?答:数学概念教学的基本步骤依次是:(1)创设情境引入数学概念;(2)分析、比较不同的例证,对相关属性进行概括和综合;(3)从例证中概括出共同特征;(4)抽象出概念的本质属性;(5)形成概念的定义,并用符号表示数学概念;(6)概念正反例证辨析,进一步明确概念的内涵和外延;(7)概念的初步应用,建立与相关概念的联系。
11.影响数学概念学习的原因有那些?答主要有数学概念意象化;受直觉的影响;游离于概念本质;认知惯性;概念僵化;概念简单化。
《数学课程与教学论》研究生课程教学大纲
《数学课程与教学论》研究生课程教学大
纲
数学课程与教学论研究生课程教学大纲
一、课程目标
本课程旨在帮助研究生掌握数学课程设计与教学理论,培养其在高等教育机构从事数学课程教学与研究的能力和素养。
二、课程内容
1. 数学教育历史与发展概述
- 数学教育的起源和发展
- 数学教育的理念与目标
2. 数学课程设计
- 数学课程的结构与组织
- 数学课程的目标与要求
- 数学教材的选择与使用
3. 数学教学理论
- 数学研究的认知过程
- 数学教学的有效策略
- 数学教学的评价与反馈
4. 数学教学方法与技能
- 演讲与讲解技巧
- 互动与合作研究
- 使用教具与技术支持教学
5. 数学课程评价与改进
- 数学课程评价的原则与方法
- 数学课程改进的策略与路径
三、课程要求
1. 学生应参加课堂讨论,并积极提问与回答。
2. 学生需完成课程作业及项目,并按时提交。
3. 学生应阅读相关的教学论文和研究文章,并参与学术讨论。
4. 学生需要参加课程考试,以检验对课程内容的掌握情况。
四、参考资料
1. 张三. 数学课程与教学理论. 清华大学出版社, 2010.
2. 李四. 数学教育研究导论. 高等教育出版社, 2015.
以上内容为《数学课程与教学论》研究生课程教学大纲。
本大纲可根据实际情况进行调整和完善。
数学课程与教学论
数学课程与教学论数学作为一门重要的学科,对于学生的思维能力、逻辑思维和问题解决能力有着极大的培养作用。
在数学课程的教学中,教师的教学方法和学生的学习态度都起着至关重要的影响。
本文将从数学课程的设计、教学方法的选择和学生学习策略的培养等方面来探讨数学课程与教学之间的关系。
一、数学课程的设计数学课程的设计应该充分考虑学生的学习需求和个体差异。
针对不同年级和不同能力的学生,可以设置基础课程和拓展课程。
基础课程可以注重学生的基本概念和算术运算能力的培养,让学生牢固掌握数学的基础知识;而拓展课程则可以注重学生的推理能力和问题解决能力的培养,通过一些有趣且具有挑战性的问题来激发学生的兴趣和动力。
在数学课程的设计中,教师可以结合实际生活中的问题来设置数学题目,让学生能够将数学知识应用到实际问题中去解决。
这样不仅有利于培养学生的数学思维能力,还可以增强学生对数学的兴趣和学习动力。
二、教学方法的选择在数学课程的教学中,教师的教学方法是至关重要的。
传统的教学方法注重教师的讲解和学生的听讲,学生往往是被动接受知识的。
而现代教学方法注重学生的主动参与和探索式学习,通过合作学习等方式来培养学生的自主学习和解决问题的能力。
教师可以采用探究式教学的方法,引导学生通过自己的思考和探索来发现问题的本质和解决方法。
同时,教师还可以运用信息技术来辅助教学,通过动画、模拟实验等方式来帮助学生更好地理解抽象的数学概念和原理。
三、学生学习策略的培养在数学课程的学习中,学生的学习策略对于学习效果起着决定性的影响。
学生需要培养良好的学习习惯和学习方法,如合理安排学习时间、制定学习计划、积极参与课堂讨论等。
此外,学生还可以通过解决数学问题的不同方法和策略来培养自己的问题解决能力。
比如,学生可以采用逆向思维的方法来解决问题,也可以通过列方程、画图等方式来解决问题。
这样的学习策略不仅能够提高学生的解决问题的能力,还能够培养学生的创新思维和批判性思维。
小学数学课程与教学论
数学是研究数量关系和空间形式的科学。
数学素养:懂数学价值对自己数学能力有信心有解决现实问题能力学会数学交流学会数学思想方法小学数学性质:基础性,普及性和发展性。
课程基本理念:一,数学课程,应致力于实现义务教育阶段的培养目标,要面向全体学生,适应学生个体发展的需要。
2课程内容要反映社会的需要,数学的特点要符合学生的认知规律,三,数学活动是师生积极参与,交往互动,共同发展的过程,四,学习评价的主要目的是为了全面了解学生数学学习的过程和结果,激励学生学习和改进教师教学。
,五,信息技术的发展,对数学教育的价值目标内容以及教学方式产生了很大影响。
数感:只关于数与数量,数量关系,运算结果估计等方面的感悟。
符号意思主要是指能够理解,并且运用符号表示数,数量关系和变化规律。
空间观念主要是指根据物体特征,抽象出几何图形,根据几何图形想象出所描述的实际物体,想象出物体的方位和相互之间的位置关系,描述图形的运动和变化。
总目标,基础知识,基本技能,基本思想基本活动经验,二,体会数学知识之间,数学与其他学科之间,数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的能力分析和解决问题的能力,三了解数学的价值,提高学习数学的兴趣,增强学好数学的信心。
养成良好的学习习惯,具有初步的创新意识和科学态度。
数学学科的任务,数学素养,和培养数学思维。
培养数学思维,一以数和形及其结构关系为思维对象,以数学语言和符号为载体,认识和发现数学规律为目的的一种思维,特点,概括性整体性相似性问题性。
课程是按照一定的社会需要,根据特定的文化和社会取向,考虑不同年龄阶段学生的特点,为培养下一代所,制定的一套有目的可执行的方案。
课程内容是指根据一定目标制定的某一学科中特定的事实,观点,原理方法和问题,以及处理它们的方式。
小学数学课程内容研究包括两方面,课程内容的选择和课程内容呈现的方式。
课程内容选择依据,数学课程目标,学生发展需要,社会进步需要,数学自身发展。
小学数学课程与教学论
小学数学课程与教学论(教案)教学总目标:使学生掌握小学数学课程与教学论的基本理论,提高教育、教学理论、教学实践和教学研究的基本能力。
同时,使学生能对小学数学课程与教学有初步的了解,为以后从事研究和教学打下比较好的基础。
第一章绪论(2课时)学习目的与要求:通过本章的学习,使学生了解小学数学课程与教学论研究的对象,了解数学发展的历史,以及小学数学课程与教学的发展过程。
明确学习小学数学教学论的意义和方法。
第一节小学数学课程与教学论的研究对象一、数学的性质小学数学课程与教学论就是以在小学数学课程与教学这一领域内的事物作为它研究的对象,以求发现它内在的结构,得出客观的规律,以指导小学数学教学实践。
(一)数学的发生和发展1.数学的产生数学的产生和发展存在着两个起点。
首先,数学的产生是以实际问题为起点的。
即为了适应人类了解客观存在的内部性质并用于解决实践上的问题的需要。
例如,人类在生产与生活中,需要对一些事物进行量的刻画和描述,于是,“数”就产生了;又如,人类在生产与生活中,需要对一些对象进行集合意义的合并与分解,于是,四则运算就产生了。
其次,数学的产生是以理论问题为起点,即为了适应人类了解思想存在的内部性质,用以解决理论上的问题的需要。
当然,数学的最初起点还是现实世界,它更多地来自于人类的问题提出和问题解决,是人类对现实世界的最本质和最一般的反映。
2.数学的发展数学的发展经过了漫长的历史阶段,大致可以分为五个时期:(1)萌芽时期(公元前600以前)由于生产力的发展,人们要对获取的生活资料作出量的估计,于是逐步产生了自然数、分数及四则运算;同时,人们在测田亩、定四时的过程中也形成了一些常见的几何概念,促使了几何学的初步发展。
当然这时期的知识往往是片断的、零碎的、缺乏逻辑的,尤其是缺乏对命题的证明,没有严密的体系。
(2)初等数学时期(公元前600年—17世纪中叶)公元前六七世纪,地中海一带文化发达的地区,在生产、商业的影响下,促进了数学的发展。
(完整版)小学数学课程与教学论
小学数学课程与教学论数学:是研究现实世界的空间形式和数量关系的一种科学!数学的基本特征:理论的抽象性,逻辑的严谨性,应用的广泛性小学数学学科的性质:生活性,现实性,体验性。
数学的发展过程:小学数学课程的改革和发展:《数学课程标准》的基本理念:1.数学课程应致力于实现义务教育阶段的培养目标,体现基础性、普及性和发展性。
义务教育阶段的数学课程要面向全体学生,适应学生个性发展的需要。
2.课程内容既要反映社会的需要、数学学科的特征,也要符合学生的认知规律它不仅包括数学的结论,也应包括数学结论的形成过程和数学思想方法。
课程内容的的选择要贴近学生的实际,有利于学生体验、思考与探索。
课程内容的组织要处理好过程与结果的关系,只关于抽象的关系,直接经验与间接经验的关系。
课程内容的呈现应注意层次性和多样性。
3.教学活动是教师积极参与、交往互动、共同发展的过程。
学生应有足够的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。
4.学习评价的主要目的是为了全面了解学生数学学习的过程和结果,激励学生学习和改进教师教学。
应建立评价目标多元、评价方法多样的评价体系。
评价要关注学生学习的结果,也要关注学习的过程;要关注学生数学学习的水平,也要关注学生在数学活动中所表现出来的情感与态度,帮助学生认识自我、建立信心。
5.信息技术的发展对数学教育的价值、目标、内容以及教学方式产生了很大的影响。
要充分考虑计算器、计算机对数学学习内容和方式的影响,开发并向学生提供丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的有力工具,有效地改进教与学的方式,使学生乐意并有可能投入到现实的、探索性的教育活动中。
总体目标:1.获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想基本活动经验。
2.体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题、分析和解决问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、简述20世纪我国数学教育观的变化.
20世纪90年代以前,我国数学教育研究的成果,主要体现在教育部历次颁布的数学教学大纲之中.自从国家提出素质教育和创新教育的理念以后,数学教育研究开始走上学术研究的道路.与此同时,国际上的数学教育理论和经验,也先后介绍到国内来.数学教育研究呈现蓬勃发展的态势,研究领域大为开阔.数学教学大纲、数学课程、数学知识本身对教师的数学观会产生很大的影响.
一、由关心教师的“教”转向也关注学生的“学”
二、从“双基”与“三大能力”观点的形成、发展到更宽广的能力观和素质观
三、从听课、阅读、演题,到提倡实验、讨论、探索的学习方式
四、从看重数学的抽象和严禁,到关注数学文化、数学探索和数学应用
2、简述《普通高中数学课程标准》中课程基本理念之一“注重信息技术与数学课程的整合”的具体内容.
答:对于中学数学学科来说,按《普通高中数学课程标准(实验)》中所提出的要求,在新编教材的内容中适当地反映信息技术的应用,是一件顺理成章的事情。
如果教材内容中不直接反映信息技术的应用,不提信息技术,信息技术不成其为课程的必备元素、不介入教材,那么执教者在教学过程中想要有效地实现信息技术与课程的整合,会遇到许多困难;如果课本完全不提信息技术,课本中知识的呈现方式完全依旧,基于课本引导下的学生的学习方式和师生互动方式完全依旧,那么执教者在教学过程中就可以完全不用信息技术手段。
使用这样的课本上课,即使执教者从更新教学手段的角度运用信息技术,这样的技术手段也只是起外在的辅助作用,及表不及里,很难反映课程的内涵,很难与课程内容融为一体。
这样的技术手段的运用很容易给人以“可有可无”的感觉,给人以“中看不中用”的感觉。
3、简述数学能力的含义。
答:数学能力(mathematical ability)数学教育的基本概念之一。
指个体迅速、成功地完成数学活动(数学学习活动、数学研究活动)的一种稳定的个性特征.逻辑思维能力表现了数学能力的典型特征,尽管这种能力也为其他领域所需要,但在数学中它表现为用数和符号来进行思维活动的能力,具有较高的抽象水平和较高的心智活动标准.事实上,在数学的感知、记忆、思维、想象活动中都表现出很强的个性,并且这种个性特征以某种机能系统或结构形式在个体身上固定下来,使之具有一种经常的、稳定的性质,这种个性特征就是数学能力.数学能力从活动水平上可以分为“再造性”数学能力和“创造性”数学能力.所谓再造性数学能力是指迅速而顺利地掌握知识、形成技能和灵活运用知识、技能的能力.这通常表现为学生学习数学的能力.所谓创造性数学能力是指在数学研究活动中,发现数学新事实,创造新成果的能力。