高考数学专题 17 圆锥曲线的几何性质专题
专题 圆锥曲线的定义、方程与性质(课件)2023届高考数学二轮专题复习
√
返回导航
解析:由题意可知,抛物线 的标准方程为 , ,设直线 的方程为 , , ,联立得 消去 ,得 , ,则 , . ,所以当 时, 的面积取得最小值,最小值为2,故选D.
返回导航
(2)(2022·新高考卷Ⅱ)已知直线 <m></m> 与椭圆 <m></m> 在第一象限交于 <m></m> , <m></m> 两点, <m></m> 与 <m></m> 轴、 <m></m> 轴分别交于 <m></m> , <m></m> 两点,且 <m></m> , <m></m> ,则 <m></m> 的方程为__________________.
,所以 ①,又 ②, 得 ,所以四边形 的面积为18.
返回导航
考点二 圆锥曲线的几何性质
例2.(1)(2022·陕西西安五校高三联考)已知双曲线 <m></m> 的离心率为2,则双曲线 <m></m> 的渐近线方程是( )
A. B. C. D.
解析:由题意可知,双曲线的实半轴长的平方 ,虚半轴长的平方 ,所以双曲线的离心率 满足 ,从而 ,所以双曲线的渐近线方程为 ,故选A.
返回导航
2. <m></m> , <m></m> 是椭圆 <m></m> 的两个焦点, <m></m> 是椭圆 <m></m> 上异于顶点的一点, <m></m> 是 <m></m> 的内切圆圆心,若 <m></m> 的面积等于 <m></m> 的面积的3倍,则椭圆 <m></m> 的离心率为_ _.
高考数学最新真题专题解析—圆锥曲线综合(新高考卷)
高考数学最新真题专题解析—圆锥曲线综合(新高考卷)【母题来源】2022年新高考I卷【母题题文】已知点A(2,1)在双曲线C:x2a2−y2a2−1=1(a>1)上,直线l交C于P,Q两点,直线AP,AQ的斜率之和为0.(1)求l的斜率;(2)若tan∠PAQ=2√2,求△PAQ的面积.【答案】解:(1)将点A代入双曲线方程得4a2−1a2−1=1,化简得a4−4a2+4=0得:a2=2,故双曲线方程为x22−y2=1;由题显然直线l的斜率存在,设l:y=kx+m,设P(x1,y1),Q(x2,y2),则联立直线与双曲线得:(2k2−1)x2+4kmx+2m2+2=0,△>0,故x1+x2=−4km2k2−1,x1x2=2m2+22k2−1,k AP+k AQ=y1−1x1−2+y2−1x2−2=kx1+m−1x1−2+kx2+m−1x2−2=0,化简得:2kx1x2+(m−1−2k)(x1+x2)−4(m−1)=0,故2k(2m2+2)2k2−1+(m−1−2k)(−4km2k2−1)−4(m−1)=0,即(k+1)(m+2k−1)=0,而直线l不过A点,故k=−1.(2)设直线AP的倾斜角为α,由tan∠PAQ=2√2,得tan∠PAQ2=√22,由2α+∠PAQ=π,得k AP=tanα=√2,即y1−1x1−2=√2,联立y 1−1x1−2=√2,及x 122−y 12=1得x 1=10−4√23,y 1=4√2−53, 同理,x 2=10+4√23,y 2=−4√2−53, 故x 1+x 2=203,x 1x 2=689而|AP|=√3|x 1−2|,|AQ|=√3|x 2−2|, 由tan∠PAQ =2√2,得sin∠PAQ =2√23, 故S △PAQ =12|AP||AQ|sin∠PAQ =√2|x 1x 2−2(x 1+x 2)+4|=16√29. 【母题来源】2022年新高考II 卷【母题题文】.设双曲线C:x 2a 2−y2b2=1(a >0,b >0)的右焦点为F(2,0),渐近线方程为y =±√3x. (1)求C 的方程;(2)经过F 的直线与C 的渐近线分别交于A ,B 两点,点P(x 1,y 1),Q(x 2,y 2)在C 上,且x 1>x 2>0,y 1>0.过P 且斜率为−√3的直线与过Q 且斜率为√3的直线交于点M ,从下面三个条件 ① ② ③中选择两个条件,证明另一个条件成立: ①M 在AB 上; ②PQ//AB; ③|AM|=|BM|.【答案】解:(1)由题意可得ba =√3,√a 2+b 2=2,故a =1,b =√3. 因此C 的方程为x 2−y 23=1.(2)设直线PQ 的方程为y =kx +m(k ≠0),将直线PQ 的方程代入C 的方程得(3−k 2)x 2−2kmx −m 2−3=0, 则x 1+x 2=2km3−k 2,x 1x 2=−m 2+33−k 2,x 1−x 2=√(x 1+x 2)2−4x 1x 2=2√3(m 2+3−k 2)3−k 2.不段点M 的坐标为(x M ,y M ),则{y M −y 1=−√3(x M −x 1)y M −y 2=√3(x M −x 2).两式相减,得y 1−y 2=2√3x M −√3(x 1+x 2),而y 1−y 2=(kx 1+m)−(kx 2+m)=k(x 1−x 2),故2√3x M =k(x 1−x 2)+√3(x 1+x 2),解得x M =k√m 2+3−k 2+km3−k 2.两式相加,得2y M −(y 1+y 2)=√3(x 1−x 2),而y 1+y 2=(kx 1+m)+(kx 2+m)=k(x 1+x 2)+2m ,故2y M =k(x 1+x 2)+√3(x 1−x 2)+2m ,解得y M =3√m 2+3−k 2+3m3−k 2=3k x M ⋅因此,点M 的轨迹为直线y =3k x ,其中k 为直线PQ 的斜率. 若选择 ① ②:设直线AB 的方程为y =k(x −2),并设A 的坐标为(x A ,y A ),B 的坐标为(x B ,y B ). 则{y A =k(x A −2)y A =√3x A,解得x A =k−√3,y A =√3kk−√3.同理可得x B =k+√3,y B =√3kk+√3.此时x A +x B =4k 2k 2−3,y A +y B =12kk 2−3.而点M 的坐标满足{y M =k(x M −2)y M =3k x M , 解得x M =2k 2k 2−3=x A +x B2,y M =6kk 2−3=y A +y B2,故M 为AB 的中点,即|MA|=|MB|. 若选择 ① ③:当直线AB 的斜率不存在时,点M 即为点F(2,0),此时M 不在直线y =3k x 上,矛盾.故直线AB 的斜率存在,设直线AB 的方程为y =p(x −2)(p ≠0), 并设A 的坐标为(x A ,y A ),B 的坐标为(x B ,y B ). 则{y A =p(x A −2)y A =√3x A,解得x A =p−√3,y A =√3pp−√3.同理可得x B =p+√3,y B =−√3pp+√3.此时x M =x A +x B2=2p 2p 2−3,y M =y A +y B2=6pp 2−3.由于点M 同时在直线y =3k x 上,故6p =3k ·2p 2,解得k =p.因此PQ//AB . 若选择 ② ③:设直线AB 的方程为y =k(x −2),并设A 的坐标为(x A ,y A ),B 的坐标为(x B ,y B ). 则{y A =k(x A −2)y A =√3x A解得x A =k−√3,y A =√3kk−√3.同理可得x B =k+√3,y B =√3kk+√3,设AB 的中点为C(x C ,y C ),则x C =x A +x B2=2k 2k 2−3,y C =y A +y B2=6kk 2−3.由于|MA|=|MB|,故M 在AB 的垂直平分线上,即点M 在直线y −y C =−1k (x −x C )上.将该直线与y =3k x 联立,解得x M =2k 2k 2−3=x C ,y M =6kk 2−3=y C ,即点M 恰为AB 中点,故点而在直线AB 上. 【命题意图】本题考查双曲线的标准方程和几何性质,考查直线与双曲线的位置关系,考查开放探究能力,属于压轴题.主要考查直线与双曲线的位置关系及双曲线中面积问题,属于难题【命题方向】圆锥曲线综合大题是属于高考历年的压轴题之一,难度较大,对学生的综合要求较高。
高中数学-圆锥曲线知识点
高中数学-圆锥曲线知识点解析几何是数学中的一个重要分支,它研究的是几何图形在坐标系中的性质和变换。
其中,圆锥曲线是解析几何中的重要内容之一,下面将介绍椭圆和双曲线的知识点。
一、椭圆1、定义:椭圆是平面内与两定点F1、F2的距离之和(大于│F1F2│)为常数的点的轨迹。
其中,定点F1、F2叫做椭圆的焦点,两焦点之间的距离│F1F2│叫做椭圆的焦距。
注:2a>│F1F2│非常重要,因为当2a=│F1F2│时,其轨迹为线段F1F2;当2a<│F1F2│时,其轨迹不存在。
2、标准方程、图形和性质:椭圆的标准方程为│MF1│+│MF2│=2a(a>0),其中M为椭圆上任一点。
椭圆的焦点在y项系数的大小决定,由x、y项系数的大小关系可以确定椭圆的长轴、短轴、焦距、焦点坐标、离心率和顶点坐标等性质。
椭圆的离心率e=(<e<1),长轴长=2a,短轴长=2b,焦点在长轴上,对称轴为x轴或y轴,原点是对称中心。
二、双曲线1、定义:双曲线是平面内与两定点F1、F2的距离之差(小于│F1F2│)为常数的点的轨迹。
其中,定点F1、F2叫做双曲线的焦点,两焦点之间的距离│F1F2│叫做双曲线的焦距。
2、标准方程、图形和性质:双曲线的标准方程为│MF1│-│MF2│=2a(a>0),其中M为双曲线上任一点。
双曲线的焦点在y项系数的大小决定,由x、y项系数的大小关系可以确定双曲线的长轴、短轴、焦距、焦点坐标、离心率和顶点坐标等性质。
双曲线的离心率e>1,长轴长=2a,短轴长=2b,焦点在长轴上,对称轴为x轴或y轴,原点是对称中心。
以上是解析几何中椭圆和双曲线的基本知识点,掌握了这些知识,可以更好地理解和应用解析几何。
双曲线是一种与两个定点和一个常数有关的点的轨迹,其轨迹上满足两个定点到该点距离之差的绝对值小于定点之间距离的常数。
这两个定点分别称为双曲线的焦点,该常数为双曲线的焦距。
对于双曲线上的任意一点M,其到焦点F1和F2的距离之差的绝对值减去焦距的结果为常数2a。
高中数学高考17第一部分 板块二 专题五 解析几何 第3讲 圆锥曲线中的最值、范围、证明问题(大题)
设M(x1,y1),M′(x2,y2), 设 MF1 的方程为 x=my- 3,
x=my- 3,
由x42+y2=1
得(m2+4)y2-2 3my-1=0,
故yy11+y2=y2=-mm2 221++3m44.,
设F1M与F2N的距离为d,四边形F1F2NM的面积为S,
则 S=12(|F1M|+|F2N|)d=12(|F1M′|+|F1M|)d=12|MM′|d= S△MF2M′,
2
PART TWO
真题体验 押题预测
真题体验 (2018·全国Ⅰ,文,20)设抛物线C:y2=2x,点A(2,0),B(-2,0),过点A的直线l与 C交于M,N两点. (1)当l与x轴垂直时,求直线BM的方程;
解 当l与x轴垂直时,l的方程为x=2, 可得点M的坐标为(2,2)或(2,-2). 所以直线 BM 的方程为 y=12x+1 或 y=-12x-1. 即x-2y+2=0或x+2y+2=0.
所以 y1+y2=2k,y1y2=-4.
直线 BM,BN 的斜率之和 kBM+kBN=x1y+1 2+x2y+2 2=x2y1+x1x+1y22+x22+y12+ y2.
①
将 x1=yk1+2,x2=yk2+2 及 y1+y2,y1y2 的表达式代入①式分子,
可得 x2y1+x1y2+2(y1+y2)=2y1y2+4kky1+y2=-8k+8=0.
当且仅当 t2=92,即 t=±322时取等号.
故△BPQ
的面积的最大值为
2 2.
热点二 范围问题
圆锥曲线的范围问题的常见解法 (1)几何法:若题目中的条件和结论能明显体现几何特征和意义,则考虑利用图形 性质来解决; (2)代数法:若题目中的条件和结论能体现一种明确的函数关系或不等关系或已知 参数与新参数之间的等量关系等,则可利用这些关系去求参数的范围.
圆锥曲线的几何性质例题和知识点总结
圆锥曲线的几何性质例题和知识点总结圆锥曲线是数学中非常重要的一部分,包括椭圆、双曲线和抛物线。
它们具有独特的几何性质,通过一些例题来理解这些性质会更加直观和深入。
一、椭圆的几何性质1、定义平面内到两个定点\(F_1\)、\(F_2\)的距离之和等于常数(大于\(|F_1F_2|\))的点的轨迹叫做椭圆。
2、标准方程焦点在\(x\)轴上:\(\frac{x^2}{a^2} +\frac{y^2}{b^2}= 1\)(\(a > b > 0\)),其中\(a\)为长半轴,\(b\)为短半轴,\(c\)为半焦距,满足\(c^2 = a^2 b^2\)。
焦点在\(y\)轴上:\(\frac{y^2}{a^2} +\frac{x^2}{b^2}= 1\)(\(a > b > 0\))。
3、几何性质(1)范围:对于焦点在\(x\)轴上的椭圆,\(a \leq x \leqa\),\(b \leq y \leq b\);对于焦点在\(y\)轴上的椭圆,\(b \leq x \leq b\),\(a \leq y \leq a\)。
(2)对称性:椭圆关于\(x\)轴、\(y\)轴和原点对称。
(3)顶点:焦点在\(x\)轴上的椭圆,顶点为\((\pm a, 0)\),\((0, \pm b)\);焦点在\(y\)轴上的椭圆,顶点为\((0, \pm a)\),\((\pm b, 0)\)。
(4)离心率:\(e =\frac{c}{a}\)(\(0 < e < 1\)),离心率反映了椭圆的扁平程度,\(e\)越接近\(0\),椭圆越圆;\(e\)越接近\(1\),椭圆越扁。
例题:已知椭圆方程为\(\frac{x^2}{16} +\frac{y^2}{9} =1\),求其长轴长、短轴长、焦距、焦点坐标、顶点坐标和离心率。
解:因为\(a^2 = 16\),所以\(a = 4\);\(b^2 = 9\),所以\(b = 3\);\(c^2 = a^2 b^2 = 16 9 = 7\),所以\(c =\sqrt{7}\)。
圆锥曲线几何性质总汇
圆锥曲线的几何性质一、椭圆的几何性质(以22a x +22by =1(a ﹥b ﹥0)为例)1、⊿ABF 2的周长为4a(定值) 证明:由椭圆的定义12121212242AF AF a AF AF BF BF a BF BF a +=⎫⎪⇒+++=⎬+=⎪⎭即24ABF Ca =2、焦点⊿PF 1F 2中: (1)S ⊿PF1F2=2tan2θ∙b(2)(S ⊿PF1F2)max = bc(3)当P 在短轴上时,∠F 1PF 2最大 证明:(1)在12AF F 中∵ 22212124cos 2PF PF c PF PF θ+-=⋅∴ ()2121212c o s 2P F P F P F P F P Fθ⋅=+-⋅∴ 21221cos b PF PF θ⋅=+∴ 1222112sin cos tan 21cos 2PF F b S b θθθθ-=⨯⋅=⋅+ (2)(S ⊿PF1F2)max =max 122c h bc ⨯⨯= (3 ()()()2222222212002222222120004444cos 12222PF PF c a ex a ex c a c PF PF a e x a e x θ+-++---===-⋅-+ 当0x =0时 cos θ有最小值2222a c a- 即∠F 1PF 2最大 3、 过点F 1作⊿PF 1F 2的∠P 的外角平分线的垂线,垂足为M 则M 的轨迹是x 2+y 2=a 2证明:延长1F M 交2F P 于F ,连接OMxxx由已知有 1P F F P = M 为1F F 中点 ∴ 212O M F F ==()1212PF PF +=a 所以M 的轨迹方程为 222x y a +=4、以椭圆的任意焦半径为直径的圆,都与圆x 2+y 2=a 2内切证明:取1PF 的中点M ,连接OM 。
令圆M 的直径1PF ,半径为∵ OM =()2111112222PF a PF a PF a r =-=-=- ∴ 圆M 与圆O 内切∴ 以椭圆的任意焦半径为直径的圆,都与圆x 2+y 2=a 2内切5、任一焦点⊿PF 1F 2的内切圆圆心为I ,连结PI 延长交长轴于则 ∣IR ∣:∣IP ∣=e证明:证明:连接12,F I F I 由三角形内角角平分线性质有 ∵1212121222F R F R F R F R I R ce P I P F P F P F P F a +=====+ ∴IRPI= e6、以任一焦点弦为直径的圆与相应准线相离。
圆锥曲线专题(定值)
2、直接法解题步骤
第一步设变量:选择适的量当变量,一般情况先设出直线的方程:y=kx+b或x=my+n、点的坐标;
第二步表示函数:要把证明为定值的量表示成上述变量的函数,一般情况通过题干所给的已知条件,进行正确的运算,将需要用到的所有中间结果(如弦长、距离等)用引入的变量表示出来;
(三) 常见条件转化
1、对边平行:斜率相等,或向量平行;
2、两边垂直:斜率乘积为-1,或向量数量积为0;
3、两角相等:斜率成相反数或相等或利用角平分线性质;
4、直角三角形中线性质:两点的距离公式
5、点与圆的位置关系:(1)圆外:点到直径端点向量数量积为正数;(2)圆上:点到直径端点向量数量积为零;(3)圆内:点到直径端点向量数量积为负数.
第三步定值:将中间结果带入目标量,通过计算化简得出目标量与引入的变量无关,是一个常数.
(二) 常见定值问题的处理方法
1、处理较为复杂的问题,可先采用特殊位置(例如斜率不存在的直线等)求出定值,进而给后面一般情况的处理提供一个方向;
2、在运算过程中,尽量减少所求表达式中变量的个数,以便于向定值靠拢;
3、巧妙利用变量间的关系,例如点的坐标符合曲线方程等,尽量做到整体代入,简化运算.
(四) 常用的弦长公式:
(1) 若直线AB的方程设为y=kx+b,A(x1,y1),B(x2,y2),则
|AB|=sqrt(1+k^(2))⋅|x1−x2|=sqrt(1+k^(2))⋅sqrt((x1+x2)^(2)−4x1x2)=sqrt(1+k^(2))⋅(sqrt(Δ))/(|a|)
圆锥曲线的方程与性质
即 c2-2c-3=0,解得 c=-1(舍去)或 c=3.
索引
所以 C1 的标准方程为3x62+2y72 =1, C2的标准方程为y2=12x.
索引
考点整合
///////
1.圆锥曲线的定义 (1)椭圆:|MF1|+|MF2|=2a(2a>|F1F2|); (2)双曲线:||MF1|-|MF2||=2a(2a<|F1F2|); (3)抛物线:|MF|=d(d为M点到准线的距离). 温馨提醒 应用圆锥曲线定义解题时,易忽视定义中隐含条件导致错误.
所以
C
的离心率
e=ac=22ac=|PF|1F|-1F|2P| F2|=
27mm=
7 2.
索引
3.(2021·新高考Ⅰ卷)已知O为坐标原点,抛物线C:y2=2px(p>0)的焦点为F,P为 C上一点,PF与x轴垂直,Q为x轴上一点,且PQ⊥OP.若|FQ|=6,则C的准线 方程为__x_=__-__23_______. 解析 法一 由题意易得|OF|=p2,|PF|=p,∠OPF=∠PQF,所以 tan∠OPF
索引
(2)(2021·江南十校联考)已知椭圆 C:xa22+y2=1(a>1)的左、右焦点分别为 F1,F2, 过 F1 的直线与椭圆交于 M,N 两点,若△MNF2 的周长为 8,则△MF1F2 面积的
最大值为( B )
3 A. 2
B. 3
C.2 3
D.3
解析 由椭圆定义|MF1|+|MF2|=|NF1|+|NF2|=2a, 所以△MNF2的周长为|MN|+|MF2|+|NF2|=|MF1|+|NF1|+|MF2|+|NF2|=4a=8. 则 a=2,故 c= a2-1= 3.
数学圆锥曲线性质及解题技巧
圆锥曲线相关性质及解题技巧椭圆与双曲线的性质椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y ya b +=.6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=. 7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM ABb k k a⋅=-,即0202y a x b K AB-=。
12. 若000(,)P x y 在椭圆22221x y a b+=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b+=+. 13. 若000(,)P x y 在椭圆22221x y a b+=内,则过Po 的弦中点的轨迹方程是22002222x x y yx y a b a b+=+. 双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y ya b-=. 6. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=. 7. 双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t2F PF S b co γ∆=.8. 双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-. 当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是双曲线22221x y a b-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则0202y a x b K K ABOM =⋅,即0202y a x b K AB =。
圆锥曲线专题知识点
圆锥曲线知识点1.圆锥曲线的两个定义:(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点的距离的和等于常数2a,且此常数2a一定要大于,当常数等于时,轨迹是线段,当常数小于时,无轨迹;双曲线中,与两定点的距离的差的绝对值等于常数2a,且此常数2a 一定要小于,定义中的“绝对值”与不可忽视。
若,则轨迹是以为端点的两条射线,若,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
比如:①已知定点,在满足下列条件的平面上动点P的轨迹中是椭圆的是A.B.C.D.(答:C);②方程表示的曲线是_____(答:双曲线的左支)(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率e。
圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。
如已知点及抛物线上一动点P(x,y),则y+|PQ|的最小值是_____(答:2)2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x轴上时(参数方程,其中为参数),焦点在y轴上时。
方程表示椭圆的充要条件是什么?(ABC≠0,且A,B,C 同号,A≠B)。
比如:已知方程表示椭圆,则k的取值范围为____(答:);(2)双曲线:焦点在x轴上:,焦点在y轴上:。
方程表示双曲线的充要条件是什么?(ABC≠0,且A,B异号)。
比如:双曲线的离心率等于,且与椭圆有公共焦点,则该双曲线的方程_______(答:);(3)抛物线:开口向右时,开口向左时,开口向上时,开口向下时。
3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):(1)椭圆:由分母的大小决定,焦点在分母大的坐标轴上。
如已知方程表示焦点在y轴上的椭圆,则m的取值范围是__(答:)(2)双曲线:由项系数的正负决定,焦点在系数为正的坐标轴上;(3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。
圆锥曲线的几何性质例题和知识点总结
圆锥曲线的几何性质例题和知识点总结圆锥曲线是高中数学中的重要内容,包括椭圆、双曲线和抛物线。
它们具有独特的几何性质,在数学和物理学等领域都有广泛的应用。
下面我们将通过一些例题来深入理解圆锥曲线的几何性质,并对相关知识点进行总结。
一、椭圆的几何性质椭圆的标准方程为:$\frac{x^2}{a^2} +\frac{y^2}{b^2} =1$($a > b > 0$),其中$a$为长半轴,$b$为短半轴,$c$为半焦距,满足$c^2 = a^2 b^2$。
1、范围椭圆位于直线$x =\pm a$和$y =\pm b$所围成的矩形内。
2、对称性椭圆关于$x$轴、$y$轴和原点对称。
3、顶点椭圆的顶点坐标为$(\pm a, 0)$和$(0, \pm b)$。
4、离心率离心率$e =\frac{c}{a}$,反映了椭圆的扁平程度,$0 < e <1$,$e$越接近 0,椭圆越接近于圆;$e$越接近 1,椭圆越扁平。
例题 1:已知椭圆方程为$\frac{x^2}{9} +\frac{y^2}{4} = 1$,求其顶点坐标、离心率和焦点坐标。
解:由方程可知,$a = 3$,$b = 2$,则$c =\sqrt{a^2 b^2}=\sqrt{5}$。
顶点坐标为$(\pm 3, 0)$和$(0, \pm 2)$。
离心率$e =\frac{c}{a} =\frac{\sqrt{5}}{3}$。
焦点坐标为$(\pm \sqrt{5}, 0)$。
二、双曲线的几何性质双曲线的标准方程为:$\frac{x^2}{a^2} \frac{y^2}{b^2} =1$($a > 0$,$b > 0$),其中$a$为实半轴,$b$为虚半轴,$c$为半焦距,满足$c^2 = a^2 + b^2$。
1、范围双曲线在$x \leq a$或$x \geq a$上取值。
2、对称性双曲线关于$x$轴、$y$轴和原点对称。
3、顶点双曲线的顶点坐标为$(\pm a, 0)$。
高中数学_圆锥曲线的方程与性质教学课件设计
2.(2018·全国Ⅱ,文,11)已知F1,F2是椭圆C的两个焦点,P是C上的一点.若PF1⊥PF2, 且∠PF2F1=60°,则C的离心率为
值范围是
√A.[ 5, 6]
C.54,32
B.
25,
6
2
D.52,3
x+y=1, 解析 联立ax22+by22=1, 得(a2+b2)x2-2a2x+a2-a2b2=0, 设P(x1,y1),Q(x2,y2), Δ=4a4-4(a2+b2)(a2-a2b2)>0,化为a2+b2>1. x1+x2=a22+a2b2,x1x2=aa2-2+ab2b2 2. ∵OP⊥OQ, ∴O→P·O→Q=x1x2+y1y2=x1x2+(x1-1)(x2-1)=2x1x2-(x1+x2)+1=0,
∴椭圆长轴的取值范围是[ 5, 6].
跟踪演练 3 (1)(2019·合肥质检)已知椭圆ax22+by22=1(a>b>0)的左、右焦点分别为 F1,
F2,右顶点为 A,上顶点为 B,以线段 F1A 为直径的圆交线段 F1B 的延长线于点 P,
若 F2B∥AP,则该椭圆的离心率是
3 A. 3
2 B. 3
当直线AB的斜率不存在时,2t1+2t2=0,此时t1=-t2, 则 AB 的方程为 x=2,焦点 F 到直线 AB 的距离为 2-12=32, ∵kAB=22tt112--22tt222=t1+1 t2,得直线 AB 的方程为 y-2t1=t1+1 t2(x-2t21). 即x-(t1+t2)y-2=0. 令y=0,解得x=2. ∴直线AB恒过定点D(2,0). ∴抛物线的焦点 F 到直线 AB 的距离小于32, 综上,焦点 F 到直线 AB 距离的最大值为32.
最新高考数学必考要点必考要点分类汇编圆锥曲线的方程与性质(完整版)
圆锥曲线的方程与性质1. (2013·课标全国Ⅱ)设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5,若以MF 为直径的圆过点(0,2),则C 的方程为( )A .y 2=4x 或y 2=8xB .y 2=2x 或y 2=8xC .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16x答案 C解析 由题意知:F ⎝⎛⎭⎫p 2,0,抛物线的准线方程为x =-p2,则由抛物线的定义知,x M =5-p 2,设以MF 为直径的圆的圆心为⎝⎛⎭⎫52,y M 2,所以圆的方程为⎝⎛⎭⎫x -522+⎝⎛⎭⎫y -y M 22=254,又因为圆过点(0,2),所以y M =4,又因为点M 在C 上,所以16=2p ⎝⎛⎭⎫5-p2,解得p =2或p =8,所以抛物线C 的方程为y 2=4x 或y 2=16x ,故选C.2. (2013·课标全国Ⅰ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为( )A .y =±14xB .y =±13xC .y =±12xD .y =±x答案 C解析 由e =c a =52知,a =2k ,c =5k (k ∈R +),由b 2=c 2-a 2=k 2知b =k .所以b a =12.即渐近线方程为y =±12x .故选C.3. (2013·山东)抛物线C 1:y =12p x 2(p >0)的焦点与双曲线C 2:x 23-y 2=1的右焦点的连线交C 1于第一象限的点M .若C 1在点M 处的切线平行于C 2的一条渐近线,则p 等于( )A.316B.38C.233D.433 答案 D解析 抛物线C 1的标准方程为:x 2=2py ,其焦点F 为⎝⎛⎭⎫0,p2,双曲线C 2的右焦点F ′为(2,0),渐近线方程为:y =±33x .由y ′=1p x =33得x =33p ,故M ⎝⎛⎭⎫33p ,p6.由F 、F ′、M 三点共线得p =433.4. (2013·福建)椭圆Г:x 2a 2+y 2b2=1(a >b >0)的左,右焦点分别为F 1,F 2,焦距为2c .若直线y=3(x +c )与椭圆Г的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于 ________. 答案3-1解析 由直线方程为y =3(x +c ),知∠MF 1F 2=60°,又∠MF 1F 2=2∠MF 2F 1, 所以∠MF 2F 1=30°,MF 1⊥MF 2, 所以|MF 1|=c ,|MF 2|=3c ,所以|MF 1|+|MF 2|=c +3c =2a .即e =ca=3-1.5. (2013·浙江)设F 为抛物线C :y 2=4x 的焦点,过点P (-1,0)的直线l 交抛物线C 于A 、B 两点,点Q 为线段AB 的中点,若|FQ |=2,则直线l 的斜率等于________. 答案 ±1解析 设直线l 的方程为y =k (x +1),A (x 1,y 1)、B (x 2,y 2)、Q (x 0,y 0).解方程组⎩⎪⎨⎪⎧y =k (x +1)y 2=4x .化简得:k 2x 2+(2k 2-4)x +k 2=0,∴x 1+x 2=4-2k 2k 2,y 1+y 2=k (x 1+x 2+2)=4k .∴x 0=2-k 2k 2,y 0=2k.由(x 0-1)2+(y 0-0)2=2得:⎝⎛⎭⎫2-2k 2k 22+⎝⎛⎭⎫2k 2=4. ∴k =±1.题型一 圆锥曲线的定义与标准方程例1 (1)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么椭圆C 的方程为 __________.(2)已知P 为椭圆x 24+y 2=1和双曲线x 2-y 22=1的一个交点,F 1,F 2为椭圆的两个焦点,那么∠F 1PF 2的余弦值为________.审题破题 (1)根据椭圆定义,△ABF 2的周长=4a ,又e =22可求方程;(2)在焦点△F 1PF 2中使用余弦定理.答案 (1)x 216+y 28=1 (2)-13解析 (1)设椭圆方程为x 2a 2+y 2b 2=1,由e =22知c a =22,故b 2a 2=12. 由于△ABF 2的周长为|AB |+|BF 2|+|AF 2|=|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =16,故a =4.∴b 2=8.∴椭圆C 的方程为x 216+y 28=1.(2)由椭圆和双曲线的方程可知,F 1,F 2为它们的公共焦点,不妨设|PF 1|>|PF 2|,则⎩⎪⎨⎪⎧|PF 1|+|PF 2|=4|PF 1|-|PF 2|=2, 所以⎩⎪⎨⎪⎧|PF 1|=3|PF 2|=1.又|F 1F 2|=23,由余弦定理可知cos ∠F 1PF 2=-13.反思归纳 圆锥曲线的定义反映了它们的基本特征,理解定义是掌握其性质的基础.因此,对于圆锥曲线的定义不仅要熟记,还要深入理解细节部分:比如椭圆的定义中要求|PF 1|+|PF 2|>|F 1F 2|,双曲线的定义中要求||PF 1|-|PF 2||<|F 1F 2|.变式训练1 (1)已知双曲线x 2a 2-y 2b2=1 (a >0,b >0)的两个焦点F 1,F 2,M 为双曲线上一点,且满足∠F 1MF 2=90°,点M 到x 轴的距离为72.若△F 1MF 2的面积为14,则双曲线的渐近线方程为__________.答案 y =±7x解析 由题意得12·2c ·72=14,所以c =4.又⎩⎪⎨⎪⎧||MF 1|-|MF 2||=2a ,|MF 1|2+|MF 2|2=82,12·|MF 1|·|MF 2|=14.所以a =2,b =14.所以渐近线方程为y =±7x .(2)设斜率为2的直线l 过抛物线y 2=ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为________. 答案 y 2=±8x解析 抛物线y 2=ax (a ≠0)的焦点坐标为⎝⎛⎭⎫a 4,0,过焦点且斜率为2的直线方程为y = 2⎝⎛⎭⎫x -a 4,令x =0得y =-a 2. ∴△OAF 的面积为12×⎪⎪⎪⎪a 4×⎪⎪⎪⎪-a 2=4,∴a 2=64,∴a =±8. ∴抛物线方程为y 2=±8x . 题型二 圆锥曲线的性质例2 (1)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB |=43,则C 的实轴长为( )A. 2B .2 2C .4D .8(2)设圆锥曲线C 的两个焦点分别为F 1,F 2,若曲线C 上存在点P 满足|PF 1|∶|F 1F 2|∶|PF 2|=4∶3∶2,则曲线C 的离心率等于( )A.12或32B.23或2C.12或2D.23或32审题破题 (1)利用抛物线的几何性质结合方程组求解;(2)由于已知圆锥曲线的两个焦点,所以该圆锥曲线为椭圆或双曲线,再由离心率的定义即可求解. 答案 (1)C (2)A解析 (1)设C :x 2a 2-y 2a2=1.∵抛物线y 2=16x 的准线为x =-4,联立x 2a 2-y 2a 2=1和x =-4得A (-4,16-a 2),B (-4,-16-a 2), ∴|AB |=216-a 2=43,∴a =2,∴2a =4.∴C 的实轴长为4.(2)当曲线C 为椭圆时,e =|F 1F 2||PF 1|+|PF 2|=34+2=12;当曲线C 为双曲线时,e =|F 1F 2||PF 1|-|PF 2|=34-2=32.反思归纳 (1)求椭圆或双曲线的离心率的方法:①直接求出a 和c ,代入e =ca;②建立关于a ,b ,c 的方程或不等式,然后把b 用a ,c 代换.通过解关于ca 的方程或不等式求得离心率的值或范围.(2)研究圆锥曲线的几何性质,实质是求参数a 、b 、c 或者建立a 、b 、c 的关系式(等式或不等式),然后根据概念讨论相应的几何性质.变式训练2 (1)已知O 为坐标原点,双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,以OF 为直径作圆与双曲线的渐近线交于异于原点的两点A ,B ,若(AO →+AF →)·OF →=0,则双曲线的离心率e 为( )A .2B .3C. 2D. 3答案 C解析 如图,设OF 的中点为T ,由(AO →+AF →)·OF →=0可知 AT ⊥OF ,又A 在以OF 为直径的圆上,∴A ⎝⎛⎭⎫c 2,c 2, 又A 在直线y =bax 上,∴a =b ,∴e = 2.(2)已知双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的左顶点与抛物线y 2=2px (p >0)的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为( )A .2 3B .2 5C .4 3D .4 5答案 B解析 由⎩⎨⎧y =b ax x =-p2,解得⎩⎨⎧y =-bp 2ax =-p2,由题意得⎩⎨⎧-bp2a =-1-p2=-2,得⎩⎪⎨⎪⎧b a =12p =4,又知p2+a =4,故a =2,b =1,c =a 2+b 2=5,∴焦距2c =2 5.题型三 直线与圆锥曲线的位置关系例3 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为33,过右焦点F 的直线l 与C 相交于A ,B 两点.当l 的斜率为1时,坐标原点O 到l 的距离为22. (1)求a 、b 的值;(2)C 上是否存在点P ,使得当l 绕F 转到某一位置时,有OP →=OA →+OB →成立?若存在,求出所有的P 的坐标与l 的方程;若不存在,说明理由.审题破题 (1)由直线l 的斜率为1过焦点F ,原点O 到l 的距离为22可求解;(2)需分直线l 的斜率存在或不存在两种情况讨论.设A (x 1,y 1),B (x 2,y 2),由条件OP →=OA →+OB →可得P 点坐标,结合A 、B 、P 在椭圆上列等式消元求解.解 (1)设F (c,0),当l 的斜率为1时,其方程为x -y -c =0,O 到l 的距离为|0-0-c |2=c 2,故c 2=22,c =1. 由e =c a =33,得a =3,b =a 2-c 2= 2.(2)C 上存在点P ,使得当l 绕F 转到某一位置时,有OP →=OA →+OB →成立. 由(1)知C 的方程为2x 2+3y 2=6.设A (x 1,y 1),B (x 2,y 2).(ⅰ)当l 不垂直于x 轴时,设l 的方程为y =k (x -1).C 上的点P 使OP →=OA →+OB →成立的充要条件是P 点坐标为(x 1+x 2,y 1+y 2),且2(x 1+x 2)2+3(y 1+y 2)2=6,整理得2x 21+3y 21+2x 22+3y 22+4x 1x 2+6y 1y 2=6, 又A 、B 在椭圆C 上,即2x 21+3y 21=6,2x 22+3y 22=6,故2x 1x 2+3y 1y 2+3=0.①将y =k (x -1)代入2x 2+3y 2=6,并化简得(2+3k 2)x 2-6k 2x +3k 2-6=0,于是x 1+x 2=6k 22+3k 2,x 1·x 2=3k 2-62+3k 2,y 1·y 2=k 2(x 1-1)(x 2-1)=-4k 22+3k 2.代入①解得k 2=2,此时x 1+x 2=32.于是y 1+y 2=k (x 1+x 2-2)=-k2,即P ⎝⎛⎭⎫32,-k 2. 因此,当k =-2时,P ⎝⎛⎭⎫32,22,l 的方程为2x +y -2=0;当k =2时,P ⎝⎛⎭⎫32,-22,l 的方程为2x -y -2=0.(ⅱ)当l 垂直于x 轴时,由OA →+OB →=(2,0)知,C 上不存在点P 使OP →=OA →+OB →成立.综上,C 上存在点P ⎝⎛⎭⎫32,±22使OP →=OA →+OB →成立,此时l 的方程为2x ±y -2=0.反思归纳 解决直线与圆锥曲线位置关系问题的步骤: (1)设方程及点的坐标;(2)联立直线方程与曲线方程得方程组,消元得方程(注意二次项系数是否为零);(3)应用根与系数的关系及判别式;(4)结合已知条件、中点坐标公式、斜率公式及弦长公式求解.变式训练3 (2013·浙江)如图,点P (0,-1)是椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的一个顶点,C 1的长轴是圆C 2:x 2+y 2=4的直径.l 1,l 2是过点P 且互相垂直的两条直线,其中l 1交圆C 2于A ,B 两点,l 2交椭圆C 1于另一点D . (1)求椭圆C 1的方程;(2)求△ABD 面积取最大值时直线l 1的方程.解 (1)由题意得⎩⎪⎨⎪⎧b =1,a =2.所以椭圆C 1的方程为x 24+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0). 由题意知直线l 1的斜率存在,不妨设其为k , 则直线l 1的方程为y =kx -1. 又圆C 2:x 2+y 2=4, 故点O 到直线l 1的距离d =1k 2+1,所以|AB |=24-d 2=24k 2+3k 2+1. 又l 2⊥l 1,故直线l 2的方程为x +ky +k =0. 由⎩⎪⎨⎪⎧x +ky +k =0,x 2+4y 2=4. 消去y ,整理得(4+k 2)x 2+8kx =0,故x 0=-8k4+k 2.所以|PD |=8k 2+14+k 2.设△ABD 的面积为S ,则S =12·|AB |·|PD |=84k 2+34+k 2,所以S =324k 2+3+134k 2+3≤3224k 2+3·134k 2+3=161313, 当且仅当k =±102时取等号. 所以所求直线l 1的方程为y =±102x -1.典例 (12分)在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y 2b2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上. (1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程. 规范解答解 (1)因为椭圆C 1的左焦点为F 1(-1,0),所以c =1.将点P (0,1)代入椭圆方程x 2a 2+y 2b 2=1,得1b 2=1,即b =1,所以a 2=b 2+c 2=2.所以椭圆C 1的方程为x 22+y 2=1.[4分](2)由题意可知,直线l 的斜率显然存在且不等于0,设直线l 的方程为y =kx +m ,由 ⎩⎪⎨⎪⎧x 22+y 2=1,y =kx +m ,消去y 并整理得(1+2k 2)x 2+4kmx +2m 2-2=0. 因为直线l 与椭圆C 1相切,所以Δ1=16k 2m 2-4(1+2k 2)(2m 2-2)=0. 整理得2k 2-m 2+1=0.①[7分]由⎩⎪⎨⎪⎧y 2=4x ,y =kx +m , 消去y 并整理得k 2x 2+(2km -4)x +m 2=0. 因为直线l 与抛物线C 2相切,所以Δ2=(2km -4)2-4k 2m 2=0,整理得km =1.②[10分]综合①②,解得⎩⎪⎨⎪⎧ k =22,m =2或⎩⎪⎨⎪⎧k =-22,m =- 2. 所以直线l 的方程为y =22x +2或y =-22x - 2.[12分]评分细则 (1)得到b =1给2分;(2)两个判别式应用中,得到化简后的方程均给1分,判别式等于0没化简不扣分;(3)k 、m 的值不全扣2分.阅卷老师提醒 (1)对于直线和圆锥曲线相切的问题,除曲线为y 2=ax 形式的,一般都利用判别式.(2)直线和圆锥曲线是高考热点,判别式、弦长公式、设而不求思想是常用工具.1. (2013·四川)抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( )A.12B.32C .1D. 3答案 B解析 抛物线y 2=4x 的焦点F (1,0),双曲线x 2-y 23=1的渐近线是y =±3x ,即3x ±y=0,∴所求距离为|3±0|(3)2+(±1)2=32.选B. 2. (2013·湖北)已知0<θ<π4 ,则双曲线C 1:x 2cos 2θ-y 2sin 2θ=1与C 2:y 2sin 2θ-x 2sin 2θtan 2θ=1的( )A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等答案 D解析 双曲线C 1:e =sin 2θ+cos 2θcos 2=1cos 2, 双曲线C 2:e =sin 2θ+sin 2θtan 2θsin 2θ=1+tan 2θ=1cos 2θ, ∴C 1,C 2离心率相等.3. 已知方程x 22-k +y 22k -1=1表示焦点在y 轴上的椭圆,则实数k 的取值范围是 ( )A.⎝⎛⎭⎫12,2B .(1,+∞)C .(1,2)D .⎝⎛⎭⎫12,1答案 C解析 由题意可得,2k -1>2-k >0, 即⎩⎪⎨⎪⎧2k -1>2-k ,2-k >0,解得1<k <2,故选C. 4. (2013·江西)抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线x 23-y 23=1相交于A 、B 两点,若△ABF 为等边三角形,则p =________. 答案 6解析 因为△ABF 为等边三角形,所以由题意知B ⎝⎛⎭⎫p 3,-p2,代入方程x 23-y23=1得p =6.5. (2013·湖南)设F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a 且△PF 1F 2的最小内角为30°,则双曲线C 的离心率为______. 答案3解析 不妨设|PF 1|>|PF 2|, 则|PF1|-|PF 2|=2a ,又∵|PF 1|+|PF 2|=6a ,∴|PF 1|=4a ,|PF 2|=2a .又在△PF 1F 2中,∠PF 1F 2=30°,由正弦定理得,∠PF 2F 1=90°,∴|F 1F 2|=23a ,∴双曲线C 的离心率e =23a2a = 3.6. (2013·辽宁)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,椭圆C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|AF |=6,cos ∠ABF =45,则C 的离心率e=________.答案 57解析 如图,在△ABF 中,|AB |=10,|AF |=6,且cos ∠ABF =45,设|BF |=m , 由余弦定理,得 62=102+m 2-20m ·45,∴m 2-16m +64=0,∴m =8.因此|BF |=8,AF ⊥BF ,c =|OF |=12|AB |=5.设椭圆右焦点为F ′,连接BF ′,AF ′, 由对称性,|BF ′|=|AF |=6, ∴2a =|BF |+|BF ′|=14.∴a =7,因此离心率e =c a =57.专题限时规范训练一、选择题1. (2013·广东)已知中心在原点的双曲线C 的右焦点为F (3,0),离心率等于32,则C 的方程是( )A.x 24-y25=1 B.x 24-y25=1 C.x 22-y25=1D.x 22-y 25=1 答案 B解析 由题意知:c =3,e =c a =32,∴a =2;b 2=c 2-a 2=9-4=5,故所求双曲线方程为x 24-y 25=1. 2. 已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点M (2,y 0).若点M 到该抛物线焦点的距离为3,则|OM |等于( )A .2 2B .2 3C .4D .2 5答案 B解析 由题意设抛物线方程为y 2=2px (p >0),则M 到焦点的距离为x M +p 2=2+p2=3,∴p =2,∴y 2=4x .∴y 20=4×2=8,∴|OM |=4+y 20=4+8=2 3.3. 已知双曲线C :x 2a 2-y 2b2=1 (a >0,b >0)的左,右焦点分别为F 1,F 2,过F 2作双曲线C 的一条渐近线的垂线,垂足为H ,若F 2H 的中点M 在双曲线C 上,则双曲线C 的离心率为( )A. 2B. 3C .2D .3答案 A解析 取双曲线的渐近线y =b a x ,则过F 2与渐近线垂直的直线方程为y =-ab(x -c ),可解得点H 的坐标为⎝⎛⎭⎫a 2c ,ab c ,则F 2H 的中点M 的坐标为⎝⎛⎭⎫a 2+c 22c ,ab 2c ,代入双曲线方程x 2a 2-y 2b 2=1可得(a 2+c 2)24a 2c 2-a 2b 24c 2b 2=1,整理得c 2=2a 2,即可得e =c a=2,故应选A. 4. 设F 1、F 2分别是双曲线x 2-y 29=1的左、右焦点,若点P 在双曲线上,且PF 1→·PF 2→=0,则|PF 1→+PF 2→|等于 ( )A.10 B .210 C. 5D .2 5答案 B解析 如图,由PF 1→·PF 2→=0,可得PF 1→⊥PF 2→,又由向量加法的平行四边形法则可知▱PF 1QF 2为矩形,因为矩形的对角线相等,故有|PF 1→+PF 2→|=|PQ →|=2c =210, 所以选B.5. 已知抛物线y 2=2px (p >0)的焦点为F ,P 、Q 是抛物线上的两个点,若△PQF 是边长为2的正三角形,则p 的值是 ( )A .2±3B .2+ 3 C.3±1D.3-1答案 A解析 依题意得F ⎝⎛⎭⎫p 2,0,设P ⎝⎛⎭⎫y 212p ,y 1,Q ⎝⎛⎭⎫y 222p ,y 2(y 1≠y 2).由抛物线定义及|PF |=|QF |,得y 212p +p 2=y 222p +p 2,∴y 21=y 22,∴y 1=-y 2.又|PQ |=2,因此|y 1|=|y 2|=1,点P ⎝⎛⎭⎫12p ,y 1.又点P 位于该抛物线上,于是由抛物线的定义得|PF |=12p +p2=2,由此解得p =2±3,故选A.6. (2013·浙江)如图,F 1,F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A ,B 分别是C 1,C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A. 2B. 3C.32D.62答案 D解析 |F 1F 2|=2 3.设双曲线的方程为x 2a 2-y 2b 2=1.∵|AF 2|+|AF 1|=4,|AF 2|-|AF 1|=2a , ∴|AF 2|=2+a ,|AF 1|=2-a . 在Rt △F 1AF 2中,∠F 1AF 2=90°, ∴|AF 1|2+|AF 2|2=|F 1F 2|2,即(2-a )2+(2+a )2=(23)2,∴a =2,∴e =c a =32=62.故选D.7. 已知双曲线x 2a 2-y2b2=1(a >0,b >0)的两条渐近线均和圆C :x 2+y 2-6x +5=0相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为( )A.x 25-y 24=1B.x 24-y 25=1C.x 23-y 26=1D.x 26-y 23=1 答案 A解析 ∵双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±b a x ,圆C 的标准方程为(x -3)2+y 2=4, ∴圆心为C (3,0).又渐近线方程与圆C 相切,即直线bx -ay =0与圆C 相切,∴3ba 2+b 2=2,∴5b 2=4a 2.①又∵x 2a 2-y 2b 2=1的右焦点F 2(a 2+b 2,0)为圆心C (3,0),∴a 2+b 2=9.②由①②得a 2=5,b 2=4.∴双曲线的标准方程为x 25-y 24=1.8. (2012·安徽)过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若|AF |=3,则△AOB 的面积为( )A.22B. 2C.322D .2 2答案 C解析 如图所示,由题意知,抛物线的焦点F 的坐标为(1,0), 又|AF |=3,由抛物线定义知:点A 到准线x =-1的距离为3, ∴点A 的横坐标为2.将x =2代入y 2=4x 得y 2=8, 由图知点A 的纵坐标y =22, ∴A (2,22),∴直线AF 的方程为y =22(x -1).联立直线与抛物线的方程⎩⎨⎧y =22(x -1),y 2=4x ,解之得⎩⎪⎨⎪⎧x =12,y =-2或⎩⎨⎧x =2,y =2 2.由图知B ⎝⎛⎭⎫12,-2,∴S △AOB =12|OF |·|y A -y B |=12×1×|22+2|=32 2.故选C. 二、填空题9. 已知F 1、F 2为椭圆x 225+y 29=1的两个焦点,过F 1的直线交椭圆于A 、B 两点.若|F 2A |+|F 2B |=12,则|AB |=________. 答案 8解析 如图所示,由椭圆定义得 |AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =20, 又|AF 2|+|BF 2|=12,所以|AF 1|+|BF 1|=8,即|AB |=8.10.已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)与双曲线C 2:x 24-y 216=1有相同的渐近线,且C 1的右焦点为F (5,0),则a =________,b =________. 答案 1 2解析 与双曲线x 24-y 216=1有共同渐近线的双曲线的方程可设为x 24-y 216=λ,即x 24λ-y 216λ=1(λ≠0).由题意知c =5,则4λ+16λ=5⇒λ=14,则a 2=1,b 2=4.又a >0,b >0,故a =1,b =2.11.设F 1、F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为________. 答案 15解析 |PF 1|+|PF 2|=10,|PF 1|=10-|PF 2|,|PM |+|PF 1|=10+|PM |-|PF 2|,易知M 点在椭圆外,连接MF 2并延长交椭圆于P 点,此时|PM |-|PF 2|取最大值|MF 2|,故|PM |+|PF 1|的最大值为10+|MF 2|=10+(6-3)2+42=15.12.过双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的左焦点F 作圆x 2+y 2=a 24的切线,切点为E ,延长FE交双曲线的右支于点P ,若E 为PF 的中点,则双曲线的离心率为________. 答案 102解析 设双曲线的右焦点为F ′,由于E 为PF 的中点,坐标原点O 为FF ′的中点,所以EO ∥PF ′,又EO ⊥PF ,所以PF ′⊥PF ,且|PF ′|=2×a2=a ,故|PF |=3a ,根据勾股定理得|FF ′|=10a .所以双曲线的离心率为10a 2a =102.三、解答题13.(2012·安徽)如图,F 1、F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,A 是椭圆C 的顶点,B 是直线AF 2与椭圆C 的另一个交点,∠F 1AF 2=60°. (1)求椭圆C 的离心率;(2)已知△AF 1B 的面积为403,求a ,b 的值. 解 (1)由题意可知,△AF 1F 2为等边三角形,a =2c ,所以e =12.(2)方法一 a 2=4c 2,b 2=3c 2,直线AB 的方程为 y =-3(x -c ),将其代入椭圆方程3x 2+4y 2=12c 2,得B ⎝⎛⎭⎫85c ,-335c ,所以|AB |=1+3·⎪⎪⎪⎪85c -0=165c . 由S △AF 1B =12|AF 1|·|AB |·sin ∠F 1AB =12a ·165c ·32=235a 2=403,解得a =10,b =5 3.方法二 设|AB |=t .因为|AF 2|=a ,所以|BF 2|=t -a . 由椭圆定义|BF 1|+|BF 2|=2a 可知,|BF 1|=3a -t , 再由余弦定理(3a -t )2=a 2+t 2-2at cos 60°可得,t =85a .由S △AF 1B =12a ·85a ·32=235a 2=40 3知,a =10,b =5 3.14.(2013·课标全国Ⅱ)平面直角坐标系xOy 中,过椭圆M :x 2a 2+y 2b2=1(a >b >0)右焦点的直线x +y -3=0交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值.解 (1)设A (x 1,y 1),B (x 2,y 2),则 x 21a 2+y 21b2=1 ① x 22a 2+y 22b2=1②①-②,得(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b 2=0.因为y 1-y 2x 1-x 2=-1,设P (x 0,y 0),因为P 为AB 的中点,且OP 的斜率为12,所以y 0=12x 0,即y 1+y 2=12(x 1+x 2).所以可以解得a 2=2b 2,即a 2=2(a 2-c 2),即a 2=2c 2, 又因为c =3,所以a 2=6,所以M 的方程为x 26+y 23=1.(2)因为CD ⊥AB ,直线AB 方程为x +y -3=0, 所以设直线CD 方程为y =x +m ,将x +y -3=0代入x 26+y 23=1得:3x 2-43x =0,即A (0,3),B ⎝⎛⎭⎫433,-33, 所以可得|AB |=463;将y =x +m 代入x 26+y 23=1得:3x 2+4mx +2m 2-6=0, 设C (x 3,y 3),D (x 4,y 4),则|CD |=2(x 3+x 4)2-4x 3x 4=22318-2m 2,又因为Δ=16m 2-12(2m 2-6)>0,即-3<m <3,所以当m =0时,|CD |取得最大值4,所以四边形ACBD 面积的最大值为12|AB |·|CD |=863.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考专题训练 培优点十七 圆锥曲线的几何性质1.椭圆的几何性质例1:如图,椭圆()2222+10x y a b a b =>>的上顶点、左顶点、左焦点分别为B 、A 、F ,中心为O ,则:ABF BFO S S =△△( )A .(2:3B .()3:3C .(2:2D .()3:2【答案】B【解析】由ABF ABO BFO S S S =-△△△,得()():::ABF BFO ABO BFO BFO S S S S S ab bc bc =-=-△△△△△而c a =():3:3ABF BFO S S =△△,故选B .2.抛物线的几何性质例2:已知抛物线()2:20C y px p =>的焦点为F ,准线:1l x =-,点M 在抛物线C 上,点M在直线:1l x =-上的射影为A ,且直线AF 的斜率为MAF △的面积为( )A B .C .D .【答案】C 【解析】设准线l 与x 轴交于点N ,所以2FN =,因为直线AF 的斜率为60AFN ∠=︒,所以4AF =,由抛物线定义知,MA MF =,且60MAF AFN ∠=∠=︒,所以MAF △是以4为边长的正三24=.故选C .3.双曲线的几何性质例3:已知点P 是双曲线2213664x y -=的右支上一点,M ,N 分别是圆()22104x y ++=和()22101x y -+=上的点,则PM PN -的最大值为_________.【答案】15【解析】在双曲线2213664x y -=中,6a =,8b =,10c =,()110,0F ∴-,()210,0F ,12212PF PF a -==,11MP PF MF ≤+,22PN PF NF ≥-,112215PM PN PF MF PF NF ∴-≤+-+=.一、单选题1.抛物线()220y px p =>上的动点Q 到其焦点的距离的最小值为1,则p =( ) A .12B .1C .2D .4【答案】C【解析】抛物线()220y px p =>上的动点Q 到其焦点的距离的最小值即到准线的最小值, 很明显满足最小值的点为抛物线的顶点,据此可知:12p=,2p ∴=.本题选择C 选项. 2.设点1F ,2F 是双曲线2213y x -=的两个焦点,点P 是双曲线上一点,若1234PF PF =,则12PF F △的面积等于( )A .B .C .D .对点增分集训【答案】B【解析】据题意,1243PF PF =,且122PF PF -=,解得18PF =,26PF =. 又124F F =,在12PF F △中由余弦定理,得222121212127cos 28PF PF F F F PF PF PF +-∠==.从而12sin F PF ∠=121682PF F S =⨯⨯=△B . 3.经过椭圆2222x y +=的一个焦点作倾斜角为45︒的直线l ,交椭圆于M ,N 两点,设O 为坐标原点,则OM ON ⋅等于( ) A .3- B .13±C .13-D .12-【答案】C【解析】椭圆方程为2212x y +=,a 1b =,1c =,取一个焦点()1,0F ,则直线方程为1y x =-,代入椭圆方程得2340x x -=,()0,1M -,41,33N ⎛⎫⎪⎝⎭,所以13OM ON =⋅-,故选C .4.过抛物线()20y mx m =>的焦点作直线交抛物线于P ,Q 两点,若线段PQ 中点的横坐标为3,54PQ m =,则m =( )A .4B .6C .8D .10【答案】B【解析】设PQ 的坐标分别为()11,x y ,()22,x y ,线段PQ 中点的横坐标为3,则1232x x +=,125644m PQ x x p m =++=+=,由此解得6m =.故选B . 5.已知双曲线()222210,0x y a b a b -=>>的右焦点为F ,点A 在双曲线的渐近线上,OAF △是边长为2的等边三角形(O 为原点),则双曲线的方程为( ) A .2213x y -=B .2213y x -=C .221412x y -=D .221124x y -=【答案】B【解析】双曲线()222210,0x y a b a b -=>>的右焦点为F ,点A 在双曲线的渐近线上,OAF△是边长为2的等边三角形(O 为原点),可得2c =,ba ,即223b a =,2223c a a -=,解得1a =,b =,双曲线的焦点坐标在x 轴,所得双曲线的方程为2213y x -=,故选B .6.如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 变轨进入以月球球心F 为一个焦点的椭圆轨道I 绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行.已知椭圆轨道I 和Ⅱ的中心与F 在同一直线上,设椭圆轨道I 和Ⅱ的长半轴长分别为1a ,2a ,半焦距分别为1c ,2c ,则有( )A .1212c c a a =B .1122a c a c -<-C .1212c c a a >D .1122a c a c ->-【答案】C【解析】设圆形轨道Ⅲ的半径为R ,1122a c a c R -=-=,111111c a R Ra a a -==-,222221c a R R a a a -==-, 由12a a >知1212c c a a >,故选C . 7.已知双曲线221:14x C y -=,双曲线()22222:10x y C a b a b-=>>的左、右焦点分别为1F ,2F ,M 是双曲线2C 的一条渐近线上的点,且2OM MF ⊥,O 为坐标原点,若216OMF S =△,且双曲线1C ,2C 的离心率相同,则双曲线2C 的实轴长是( ) A .32B .4C .8D .16【答案】D【解析】双曲线221:14x C y -=,设()2,0F c ,双曲线2C 一条渐近线方程为by x a=,可得2F M b =,即有OM a =,由216OMF S =△,可得1162ab =,即32ab =,又222a b c +=,且c a =,解得8a =,4b =,c =16.故选D .8.已知F 是抛物线2:2C y x =的焦点,N 是x 轴上一点,线段FN 与抛物线C 相交于点M , 若2FM MN =,则FN =( ) A .1 B .12C .52D .58【答案】D【解析】由题意得点F 的坐标为10,8⎛⎫⎪⎝⎭,设点M 的坐标()00,x y ,点N 的坐标(),0a ,所以向量:00,18FM x y ⎛⎫=- ⎪⎝⎭,()00,MN a x y =--,由向量线性关系可得:03x a =,00124y y -=-,解得:0112y =,代入抛物线方程可得:0x =,则a =, 由两点之间的距离公式可得:58FN =.故选D .9.已知椭圆()221112211:10x y C a b a b +=>>与双曲线()222222222:10,0x y C a b a b -=>>有相同的焦点1F ,2F ,点P 是曲线1C 与2C 的一个公共点,1e ,2e 分别是1C 和2C 的离心率,若12PF PF ⊥,则22124e e +的最小值为( )A .92B .4C .52D .9【答案】A【解析】由题意设焦距为2c ,椭圆长轴长为12a ,双曲线实轴为22a , 令P 在双曲线的右支上,由双曲线的定义1222PF PF a =-,① 由椭圆定义1212PF PF a +=,②又∵12PF PF ⊥,∴222124PF PF c +=,③ 22+①②,得2222121244PF PF a a +=+,④将④代入③,得222122a a c +=, ∴22222221122222121224559422222a a c c e e a a a a +=+=++≥+=,故选A .10.已知F 为抛物线2:4C y x =的焦点,A ,B ,C 为抛物线C 上三点,当FA FB FC ++=0时,称ABC △为“和谐三角形”,则“和谐三角形”有( ) A .0个 B .1个 C .3个 D .无数个【答案】D【解析】抛物线方程为24y x =,A ,B ,C 为曲线C 上三点, 当FA FB FC ++=0时,F 为ABC △的重心,用如下办法构造ABC △,连接AF 并延长至D ,使12FD AF =, 当D 在抛物线内部时,设()00,D x y ,若存在以D 为中点的弦BC , 设()11,B m n ,()22,C m n , 则1202m m x +=,1202n n y +=,1212BC n n k m m -=-,则21122244n m n m ⎧==⎪⎨⎪⎩,两式相减化为()1212124n n n n m m -+=-,121202BC n n k m m y -==-,所以总存在以D 为中点的弦BC ,所以这样的三角形有无数个,故选D .11.已知双曲线()22122:10,0x y a b a b Γ-=>>的左右焦点分别为1F ,2F ,椭圆222:134x y Γ+=的离心率为e ,直线MN 过点2F 与双曲线交于M ,N 两点,若112cos cos F MN F F M ∠=∠,且11F M e F N=,则双曲线1Γ的两条渐近线的倾斜角分别为( )A .30︒,150︒B .45︒,135︒C .60︒,120︒D .15︒,165︒【答案】C 【解析】由题112cos cos F MN F F M ∠=∠,112F MN F F M ∴∠=∠,1122MF F F c ∴==, 由双曲线的定义可得| 21|222MF MF a c a =-=-,∵椭圆222:134x y Γ+=的离心率为:12e =,∴1112F M e F N ==,14NF c ∴=,242NF c a =-,在12MF F △中,由余弦定理的()()222124224cos 22222c c a c c aF F M c c a c+---∠==⋅⋅-, 在12NF F △中,由余弦定理可得:()()()2222212442164cos 224222c c a c a c acF F N c c a c c a +--+-∠==⋅⋅--, ∵1212πF F M F F N ∠+∠=,1212cos cos 0F F M F F N ∴∠+∠=,即()2240222c a a c acc c c a -+-+=-, 整理得,设双曲线的离心率为1e ,2113720e e ∴-+=,解得12e =或13(舍).∴2224a b a +=,223a b ∴=,即b a =y =, ∴渐近线的倾斜角为60︒,120︒.故选C .12.已知P 为椭圆22143x y +=上一个动点,过点P 作圆()2211x y ++=的两条切线,切点分别是A ,B ,则PA PB ⋅的取值范围为( )A .3,2⎡⎫+∞⎪⎢⎣⎭B .356,29⎡⎤⎢⎥⎣⎦C.563,9⎡⎤⎢⎥⎣⎦D.)3,⎡+∞⎣【答案】C【解析】如图,由题意设2APB θ∠=,则1tan PA PB θ==,∴211cos2cos2cos2cos21cos2tan PA PB PA PB θθθθθθ+⋅==⋅=⋅-,设cos2t θ=,则()()12133311t t PA PB t tt +⋅==-+-≥=--,当且仅当211t t-=-,即1t =-cos 21θ= 又当点P 在椭圆的右顶点时,1sin 3θ=,∴27cos212sin 9θθ=-=,此时PA PB ⋅最大,且最大值71756979919+⨯=-.∴PA PB ⋅的取值范围是563,9⎡⎤⎢⎥⎣⎦,故选C .二、填空题13.已知过抛物线22y x =-的焦点FA 、B 两点,则AF BF AB⋅=__________.【答案】12【解析】由22y x =-知1p =,由焦点弦性质112+2AF BF p==, 而1111+22+AF BF AF BF p ABAF BFAF BF⋅⋅====. 14.已知椭圆2221x y a +=的左、右焦点为1F 、2F ,点1F 关于直线y x =-的对称点P 仍在椭圆上,则12PF F △的周长为__________.【答案】2【解析】设()1,0F c -,()()2,00F c c >,1F 关于直线y x =-的对称点P 坐标为()0,c ,点P 在椭圆上,则:2201c a+=,则1c b ==,2222a b c =+=,则a 故12PF F △的周长为:1212222PF PF F F a c ++=+=.15.P 为双曲线22149x y -=右支上一点,1F ,2F 分别为双曲线的左、右焦点,且120PF PF ⋅=,直线2PF 交y 轴于点A ,则1AF P △的内切圆半径为__________. 【答案】2【解析】∵12PF PF ⊥,1APF △的内切圆半径为r ,∴112PF PA AF r -+=,∴2122PF a PA AF r -++=, ∴2124AF AF r =--,∵由图形的对称性知:21AF AF =,∴2r =.故答案为2.16.已知直线l 与椭圆()222210,0x y a b a b +=>>相切于第一象限的点()00,P x y ,且直线l 与x轴、y 轴分别交于点A 、B ,当AOB △(O 为坐标原点)的面积最小时,1260F PF ∠=︒(1F 、2F 是椭圆的两个焦点),若此时在12PF F △中,12F PF ∠,则实数m 的值是__________. 【答案】52【解析】由题意,切线方程为00221x y x y ab+=,直线l 与x 轴分别相交于点A ,B ,20,0a A x ⎛⎫∴ ⎪⎝⎭,20,b B y ⎛⎫ ⎪⎝⎭,220012AOB a b S x y ∴=⋅△, 2200002221x y x y ab a b +=≥,0012xy ab ∴≥,AOB S ab ∴≥△,当且仅当00x y a b ==时,AOB △(O 为坐标原点)的面积最小, 设1PF x =,2PF y =,由余弦定理可得2222443c x y xy a xy =+-=-,243xy b ∴=,1221sin 602PF F S xy ∴=︒=△,20122cy ∴⨯⨯=,0y ∴==,c ∴,a ∴=,12F PF ∠,211112222x y ∴⨯⨯+⨯⨯=,)212x y ∴+,22115229a b ∴=, 52m ∴=,故答案为52.三、解答题17.设常数2t >.在平面直角坐标系xOy 中,已知点()2,0F ,直线l :x t =,曲线Γ:()280,0y x x t y =≤≤≥.l 与x 轴交于点A 、与Γ交于点B .P 、Q 分别是曲线Γ与线段AB上的动点.(1)用t 表示点B 到点F 距离;(2)设3t =,2FQ =,线段OQ 的中点在直线FP ,求AQP △的面积;(3)设8t =,是否存在以FP 、FQ 为邻边的矩形FPEQ ,使得点E 在Γ上?若存在,求点P 的坐标;若不存在,说明理由.【答案】(1)2t +;(2(3)存在,25P ⎛ ⎝⎭.【解析】(1)方法一:由题意可知:设()B t ,则2BF t ==+,∴2BFt =+;方法二:由题意可知:设()B t ,由抛物线的性质可知:22pBF t t =+=+,∴2BF t =+; (2)()2,0F ,2FQ =,3t =,则1FA =,∴AQ =,∴(Q ,设OQ 的中点D,32D ⎛ ⎝⎭,02322QFk -==-PF方程:)2y x =-,联立)228y x y x=-=⎧⎪⎨⎪⎩,整理得:2320120x x -+=, 解得:23x =,6x =(舍去),∴AQP △的面积1723S ==;(3)存在,设2,8y P y ⎛⎫ ⎪⎝⎭,2,8m E m ⎛⎫ ⎪⎝⎭,则2281628PF y yk y y ==--,2168FQ y k y -=, 直线QF 方程为()21628y y x y -=-,∴()22164838284Q y y y y y --=-=,248384y Q y ⎛⎫- ⎪⎝⎭,, 根据FP FQ FE +=,则22486,84y y E y ⎛⎫++ ⎪⎝⎭, ∴222488648y y y ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭,解得:2165y =,∴存在以FP 、FQ 为邻边的矩形FPEQ ,使得点E 在Γ上,且25P ⎛ ⎝⎭.18.与椭圆相交于A 、B 两点,2F 关于直线1l 的对称点E 在椭圆上.斜率为1-的直线2l 与线段AB 相交于点P ,与椭圆相交于C 、D 两点.(1)求椭圆的标准方程;(2)求四边形ACBD 面积的取值范围. 【答案】(1)22184x y +=;(2)3232,93⎛⎤⎥⎝⎦. 【解析】(1)由椭圆焦距为4,设()12,0F -,()22,0F ,连结1EF ,设12EF F α∠=, 则tan b cα=,又222a b c =+,得sin b a α=,cos c a α=,()12122sin9012||sin sin 90F F c a ce b c a EF EF b c aa aαα︒∴======++︒-++, 解得222a bc c b c =+⇒==,28a =,所以椭圆方程为22184x y +=.(2)设直线2l 方程:y x m =-+,()11,C x y 、()22,D x y , 由22184x y y x m +==-+⎧⎪⎨⎪⎩,得2234280x mx m -+-=,所以1221243283x x m m x x +=-=⎧⎪⎪⎨⎪⎪⎩,由(1)知直线1l :y x =,代入椭圆得A ⎛ ⎝,B,得AB =,由直线2l 与线段AB 相交于点P,得m ⎛∈ ⎝,12CD x =-=,而21l k =-与11l k =,知21l l ⊥,12ACBD S AB CD ∴=⨯由m ⎛∈ ⎝,得232,03m ⎛⎤-∈- ⎥⎝⎦3232,93⎛⎤⎥⎝⎦,四边形ACBD 面积的取值范围3232,93⎛⎤⎥⎝⎦.。