十二、多重线性回归模型解读

合集下载

多元线性回归模型

多元线性回归模型

第三章多元线性回归模型一、名词解释1、多元线性回归模型:在现实经济活动中往往存在一个变量受到其他多个变量影响的现象,表现在线性回归模型中有多个解释变量,这样的模型被称做多元线性回归模型,多元是指多个解释变量2、调整的可决系数R2:又叫调整的决定系数,是一个用于描述多个解释变量对被解释变量的联合影响程2 2-2 2 门度的统计量‘克服了R随解释变量的增加而增大的缺陷,与R的矢系为R2=1 -(1 -R2)-n — k —1 3、偏回归系数:在多元回归模型中,每一个解释变量前的参数即为偏回归系数,它测度了当其他解释变量保持不变时,该变量增加1单位对被解释变量带来的平均影响程度。

4、正规方程组:采用OLS方法估计线性回归模型时,对残差平方和矢于各参数求偏导,并令偏导数为0后得到的方程组,其矩阵形式为XX A XYo5、方程显著1•生检验:是针对所有解释变量对被解释变量的联合影响是否显著所作的检验,旨在对模型中被解释变量与解释变量之间的线性矢系在总体上是否显著成立作岀判断。

、单项选择题1、C : F统计量的意义2、A: F统计量的定义22 Z ei3、B :随机误差项方差的估计值:? ・n _k_14、A :书上P92和P93公式5、C: A参看导论部分内容;B在判断多重共线等问题的时候,很有必要;D在相同解释变量情况下可以衡量6、C :书上P99,比较F统计量和可决系数的公式即可7、A :书P818、D : A截距项可以不管它;B不考虑betaO ;C相矢矢系与因果矢系的辨析9、B :注意!只是在服从基本假设的前提下,统计量才服从相应的分布10、 D : AB不能简单通过可决系数判断模型好坏,还要考虑样本量、异方差等问题;三、多项选择题1、ACDE :概念性2、BD :概念性3、BCD :总体显著,则至少一个参数不为04、BC :参考可决系数和F统计量的公式5、AD :考虑极端情况,ESS=O,可发现CE错四、判断题、1 ' " 2、” 3 > X 4 > X:调整的可决系数5、”五、简答题1、答:多元线性回归模型与一元线性回归模型的区别表现在如下几个方面:一是解释变量的个数不同;二是模型的经典假设不同,多元线性回归模型比一元线性回归模型多了个“解释变量之间不存在线性相矢尖系”的假定:三是多元线性回归模型的参数估计式的表达更为复杂。

第12章-多重线性回归分析

第12章-多重线性回归分析
8
6 因变量总变异的分解
P
(X,Y)

Y
(Y Y) (Y Y)

(Y Y)
Y X

Y
Y
9
Y的总变异分解
Y Y Yˆ Y Y Yˆ
Y Y 2 Yˆ Y 2 Y Yˆ 2
总变异 SS总
回归平方和 剩余平方和
SS回
SS剩
10
Y的总变异分解
病程 (X2)
10.0 3.0 15.0 3.0 4.0 6.0 2.9 9.0 5.0 2.0 8.0 20.0
表 12-1 脂联素水平与相关因素的测量数据
空腹
回归模空型腹 ?
瘦素
脂联 BMI 病程 瘦素
脂联
(X3)

血糖 (X4)
素(Y)
(X1)
(X2)
(X3)
血糖 素(Y) (X4)
5.75 13.6 29.36 21.11 9.0 4.90 6.0 17.28
H 0: 1 2 3 4 0 ,即总体中各偏回归系数均为0; H 1:总体中各偏回归系数不为0或不全为0;
= 0.05。
2 计算检验统计量: 3 确定P值,作出推断结论。
拒绝H0,说明从整体上而言,用这四个自变量构成 的回归方程解释糖尿病患者体内脂联素的变化是有统 计学意义的。
的平方和 (Y Yˆ)2为最小。
只有一个自变量
两个自变量
例12-1 为了研究有关糖尿病患者体内脂联素水平的影响因 素,某医师测定30例患者的BMI、病程、瘦素、空腹血糖, 数据如表12-1所示。
BMI (X1)
24.22 24.22 19.03 23.39 19.49 24.38 19.03 21.11 23.32 24.34 23.82 22.86

多元线性回归模型的估计与解释

多元线性回归模型的估计与解释

多元线性回归模型的估计与解释多元线性回归是一种广泛应用于统计学和机器学习领域的预测模型。

与简单线性回归模型相比,多元线性回归模型允许我们将多个自变量引入到模型中,以更准确地解释因变量的变化。

一、多元线性回归模型的基本原理多元线性回归模型的基本原理是建立一个包含多个自变量的线性方程,通过对样本数据进行参数估计,求解出各个自变量的系数,从而得到一个可以预测因变量的模型。

其数学表达形式为:Y = β0 + β1X1 + β2X2 + ... + βnXn + ε其中,Y为因变量,X1、X2、...、Xn为自变量,β0、β1、β2、...、βn为模型的系数,ε为误差项。

二、多元线性回归模型的估计方法1. 最小二乘法估计最小二乘法是最常用的多元线性回归模型估计方法。

它通过使残差平方和最小化来确定模型的系数。

残差即观测值与预测值之间的差异,最小二乘法通过找到使残差平方和最小的系数组合来拟合数据。

2. 矩阵求解方法多元线性回归模型也可以通过矩阵求解方法进行参数估计。

将自变量和因变量分别构成矩阵,利用矩阵运算,可以直接求解出模型的系数。

三、多元线性回归模型的解释多元线性回归模型可以通过系数估计来解释自变量与因变量之间的关系。

系数的符号表示了自变量对因变量的影响方向,而系数的大小则表示了自变量对因变量的影响程度。

此外,多元线性回归模型还可以通过假设检验来验证模型的显著性。

假设检验包括对模型整体的显著性检验和对各个自变量的显著性检验。

对于整体的显著性检验,一般采用F检验或R方检验。

F检验通过比较回归平方和和残差平方和的比值来判断模型是否显著。

对于各个自变量的显著性检验,一般采用t检验,通过检验系数的置信区间与预先设定的显著性水平进行比较,来判断自变量的系数是否显著不为零。

通过解释模型的系数和做假设检验,我们可以对多元线性回归模型进行全面的解释和评估。

四、多元线性回归模型的应用多元线性回归模型在实际应用中具有广泛的应用价值。

应用统计学多重线性回归模型

应用统计学多重线性回归模型

2020年8月3日星期一
重庆交通大学管理学院
08:19:10
残差分析
❖ 残差种类 非标准化残差(原始残差) 标准化残差(Pearson残差) 学生化残差 剔除残差 学生化剔除残差
2020年8月3日星期一
重庆交通大学管理学院
08:19:10
残差分析
❖ 模型适用条件的检验-因变量与自变量之间存在线性 关系的检验(以例1为例:年龄)
初步分析: 与简单线性回归相类似,先绘制散点图,以便在进行回 归分析之前了解各变量之间是否存在线性关系。本例有 两个自变量与一个反应变量,绘制散点图矩阵,如下。
2020年8月3日星期一
重庆交通大学管理学院
08:19:08
简单分析实例-初步分析
❖ 绘制散点图矩阵
2020年8月3日星期一
重庆交通大学管理学院
模型的进一步诊断与修正
❖ 多重共线性的识别
多重共线性:是指自变量间存在相关关系,即一个自变量可以用其他 一个或几个自变量的线性表达式进行表示。有以下表现形式:
整个模型的方差分析结果为P<,但各自变量的偏回归系数的统计学 结果却为P> ;
专业上认为应该有统计学意义的自变量检验结果却无统计学意义; 自变量的偏回归系数取值大小甚至符号明显与实际情况违背,难以 解释; 增加或删除一条记录或一个自变量,偏回归系数发生很大变化。
2020年8月3日星期一
重庆交通大学管理学院
08:19:11
残差分析
❖ 模型适用条件的检验-方差齐性的检验
2020年8月3日星期一
重庆交通大学管理学院
08:19:11
残差分析
❖ 模型适用条件的检验-正态性的检验
2020年8月3日星期一

《医学统计学》之多元(重)线性回归

《医学统计学》之多元(重)线性回归

多元(重)线性回归模型的假设
1 线性关系
假设自变量与因变量之间存在线性关系,即因变量可以用自变量的线性组合来表示。
2 独立性
假设误差项之间相互独立,即每个观测值的误差项不受其他观测值的影响。
3 常数方差
假设误差项具有常数方差,即各个观测值的误差方差相同。
多元(重)线性回归模型的估计方法
最小二乘法
多元(重)线性回归模型的模型选择方法
前向选择法
从不包含自变量的空模型开 始,逐步添加自变量,选择 最佳的组合。
后向消除法
从包含所有自变量的全模型 开始,逐步删除自变量,选 择最简单且最有效的模型。
逐步回归法
结合前向选择法和后向消除 法,逐步调整自变量,找到 最优的模型。
多元(重)线性回归模型的实际应用
医学研究
用于分析多个影响因素对疾病发生、病程进展和治 疗效果的影响。
市场分析
用于预测市场需求和销售量,并确定最佳的市场推 广策略。
财务预测
社会科学
用于预测企业的财务状况,并制定相应的经营决策。
用于研究社会现象和群体行为,解释和预测社会现 象的变化。
通过方差膨胀因子等指标,判断自变量之间是否存在高度相关性,以避免估计结果的不 准确性。
多元(重)线性回归模型的模型检验
1
残差分析
通过观察残差的分布和模式,检验回归模型是否符合基本假设。
2
拟合优度检验
通过比较拟合优度指标(如决定系数R²)和假设分布,评估回归模型的拟合程度。
3
异常值检验
通过检测异常值对回归分析结果的影响,判断数据中是否存在异常观测值。
《医学统计学》之多元 (重)线性回归
在医学统计学中,多元(重)线性回归是一种强大的数据分析方法,可用于探索 和建立多个自变量与因变量之间的关系。

12章多重线性回归与相关

12章多重线性回归与相关

一、自变量筛选的标准与原则
2.残差均方缩小与调整决定系数增大 MS残=SS残/(n-p-1) MS残缩小的准则可以看做是在SS残缩小准则的基础上 增加了(n-p-1)-1因子,该因子随模型中自变量个数 p的增加而增加,体现了对模型中自变量个数增加而 施加的“惩罚”。 调整决定系数Ra2越大越好,与MS残等价。
包含汽车流量、气温、气湿与风速这四个自变量的回
归方程可解释交通点空气NO浓度变异性的78.74%
2.复相关系数R (multiple correlation coefficient)
定义为确定系数的算术平方根,
R SS回 SS总
表示变量Y与k个自变量的线性相关的密切程度。 对本例R=0.8837,表示交通点空气NO浓度与汽车流量、
表12-5 空气中NO浓度与各自变量的相关系数与偏相关系数
自变量 车流X1 相关系数 0.80800 偏相关系数 0.6920 偏相关系数P值 0.0005
气温X2
气湿X3 风速X4
0.1724
0.2754 -0.67957
0.47670
-0.00218 -0.59275
0.0289
0.9925 0.0046
第十二章
第一节 第二节 第三节 第四节
多重线性回归与相关
多重线性回归的概念与统计描述 多重线性回归的假设检验 复相关系数与偏相关系数 自变量筛选
一、整体回归效应的假设检验(方差分析)
表12-2 检验回归方程整体意义的方差分析表
变异来源 回归模型
残差 总变异
SS
0.0639 6 0.0172 7 0.0812 3
风速
(X4) 2.00 2.40 3.00 1.00 2.80 1.45 1.50 1.50 0.90 0.65 1.83 2.00

如何理解和使用多元线性回归分析

如何理解和使用多元线性回归分析

如何理解和使用多元线性回归分析多元线性回归分析是一种统计分析方法,用于探索自变量与因变量之间的关系。

它基于线性假设,假设自变量和因变量之间存在线性关系,并通过最小二乘法估计未知参数。

多元线性回归可以同时考虑多个自变量对因变量的影响,相比于一元线性回归,具有更多的灵活性和应用场景。

以下是关于多元线性回归分析的理解和使用。

一、理解多元线性回归分析:1.模型表达:多元线性回归模型可以表示为:Y=β0+β1X1+β2X2+...+βnXn+ε,其中Y是因变量,X1~Xn是自变量,β0~βn是回归系数,ε是误差项。

2.线性假设:多元线性回归假设自变量和因变量之间的关系是线性的,即因变量的期望值在给定自变量的条件下是一个线性函数。

3.参数估计:根据最小二乘法原理,通过使残差平方和最小化来估计回归系数。

最小二乘估计量是使得残差平方和最小的回归系数。

4.假设检验:在多元线性回归中,常用的假设检验包括回归系数的显著性检验、模型整体的显著性检验和多重共线性检验等。

二、使用多元线性回归分析:1.确定研究目标:明确研究目标,确定自变量和因变量。

了解问题背景、变量间关系,并结合实际情况选择合适的方法进行分析。

2.数据收集与整理:收集需要的数据,包括自变量和因变量的观测值。

对数据进行验证和清洗,排除缺失值、异常值等。

3.变量选择:根据研究目标和变量间的相关性,进行自变量的筛选。

可以通过相关分析、方差膨胀因子(VIF)等指标来评估自变量间的共线性。

4.模型建立与估计:根据选定的自变量和因变量,使用统计软件进行模型建立和回归系数的估计。

多元线性回归可以通过扩展一元线性回归的方法来计算。

5.模型诊断与改善:对建立的模型进行诊断,检验残差的正态性、独立性、同方差性等假设。

若存在违反假设的情况,则需要考虑进一步改善模型。

6.模型解释与预测:解释回归系数的含义,明确变量间的关系。

利用模型进行预测和决策,对未知因变量进行估计和预测。

7.模型评价与报告:评估模型的拟合程度,包括R方、调整R方、残差分析等指标。

线性模型(3)——多重线性回归模型

线性模型(3)——多重线性回归模型

前面介绍了简单线性回归模型,接下来讲多重线性回归模型。

简单线性回归是针对一个因变量和一个自变量之间的线性回归关系,而多重线性回归是指一个因变量和多个自变量之间的线性回归关系。

相对于简单线性回归,多重线性回归更具有实际意义,因为在实际生活中,多因素相互作用非常普遍,同时对因变量造成影响的往往不止一个自变量。

多重线性回归主要解决的问题是1.估计自变量与因变量之间的线性关系(估计回归方程)2.确定哪些自变量对因变量有影响(影响因素分析)3.确定哪个自变量对因变量最影响最大,哪个最小(自变量重要性分析)4.使用自变量预测因变量,或在控制某些自变量的前提下,进行预测(预测分析)多重线性回归方程的基本模型为上式中:β0和b0为常数项βk和b k为偏回归系数,表示在其他自变量固定的情况下,某个自变量变化一个单位,相应Y的变换值μ和e为误差项,即Y变化中不能由现有自变量解释的部分===============================================偏回归系数偏回归系数是多重线性回归和简单线性回归最主要的区别,若要考察一个自变量对因变量的影响,就必须假设其他自变量保持不变。

偏回归系数的标准化:偏回归系数是有量纲的,由于各自变量的单位量纲不同,导致他们的偏回归系数无法直接比较,如果我们想综合评价各自变量对因变量Y的贡献大小,就需要对偏标准化系数进行标准化,标准化之后的偏回归系数没有单位,系数越大,说明该自变量对Y的影响幅度越大。

偏标准化系数的计算方法为:=====================================================多重线性回归的适用条件1.线性:因变量与各自变量之间具有线性关系,可通过散点图矩阵来加以判断2.无自相关性:任意两个xi、xj对应的随机误差μi,μj之间是独立不相关的3.随机误差服从均值为0,方差为一定值的正态分布4.在x一定条件下,残差的方差相等(为一常数),也就是方差齐性以上四点适用条件和简单线性回归类似,需要通过残差图进行判断,如果不满足,需要作出相应的改变,不满足线性条件需要修改模型或使用曲线拟合,不满足2、3点要进行变量转换,不满足第4点不要采用最小二乘法估计回归参数。

卫生统计学课件12多重线性回归分析(研)

卫生统计学课件12多重线性回归分析(研)

多重线性回归分析的步骤
(一)估计各项参数,建立多重线性回归方程模型 (二)对整个模型进行假设检验,模型有意义的前提 下,再分别对各偏回归系数进行假设检验。 (三)计算相应指标,对模型的拟合效果进行评价。
多重线性回归方程的建立
Analyze→Regression→Linear Dependent :Y Independent(s):X1、X2、X3 Method:Enter OK
Mo del S um mary
Model 1
Std. Error of
R R Square Adju sted R Square the E stimate
.8 84a .7 81
.7 40 216.0570 680
a. Predictors: (Constant), X3, X2, X1
R (复相关系数)
(二)偏回归系数的假设检验及其评价
各偏回归系数的t检验
C oe fficien tas
Unstand ardized Co efficients
St an d ard ized Co efficients
Model
B
Std. Error
Bet a
1
(Constant) -2262.081 1081 .870
(三)有关评价指标
R (复相关系数)
0.884
R Square (决定系数)
0.781
Adj R-Sq (校正决定系数)
0.740
Std.Error of the Estimate (剩余标准差)
216.0570680
Std.Error of the Estimate (剩余标准差)
SY ,12...m

十二、多重线性回归模型解读

十二、多重线性回归模型解读



n = 样本含量(观察数)
R2 = 未校正的R2
校正R2
• 校正R2是近似无偏的
• 校正R2的优点:

只有新引入的自变量对回归方程有贡献时,新的校正R2值才会较原来的
校正R2值增大

如新引入的自变量对y不起作用,校正R2值不增加
• 当n >> k时,R2 ≈ 校正R2。
多变量线性回归方程的评价(续)
获得满意结果。
“最优回归模型”
• 所谓“最优回归模型”是指:
• (1)全模型及其各参数估计值均有统计学显著性意义
• (2)如效果相似,模型所包含的变量数越少越好 • (3)各个变量在专业上都有实际意义
变量选择的常用方法
• 逐步回归(stepwise regression) • 在供选的多个自变量xi中,按其对y的作用大小(即偏回归平方和的大小), 由大到小将自变量逐个引入方程 • 每引入一个自变量,对其作显著性检验,如有显著性才可将其列入方程 • 每引入一个新自变量,再对原方程中的各自变量重新作显著性检验,将退 变为无显著性作用的自变量剔除出方程

ν= 自由度
• 算得F值后,查F值表即可知P值
直线回归方程的评价(续)
• t检验 • b b • t = ── = ───────────,ν= n-2 • sb √[Σ(yi-y)2 /(n-2)]
• 上式 b = 回归系数 • • • sb = 回归系数b的标准误 用于衡量y的估计值yi的精确性 可用于估计b的可信区间
• (j = 0,1,2,3……k)
• (i = 观察对象序号)
• 上式 y = 因变量(连续变量)
• b0 = 常数项,其含义同简单直线回归中的a

多元线性回归模型的分析

多元线性回归模型的分析

多元线性回归模型的分析Y=β0+β1X1+β2X2+...+βnXn+ε其中,Y表示因变量,X1,X2,...,Xn表示自变量,β0,β1,...,βn表示参数,ε表示误差项。

通过最小二乘法对模型进行估计,可以得到参数的估计值:β̂0,β̂1,...,β̂n在进行多元线性回归模型分析时,需要进行以下步骤:1.收集数据:收集与研究主题相关的自变量和因变量的数据。

2.假设检验:对自变量进行假设检验,确定哪些自变量对因变量的影响是显著的。

3.多重共线性检验:在包含多个自变量的情况下,需要检验自变量之间是否存在多重共线性。

多重共线性会导致参数估计不准确,因此需要对其进行处理,可以通过剔除一些自变量或者进行主成分分析等方法来解决。

4.模型拟合度检验:使用相关系数、R方和调整R方等指标来检验回归模型的拟合度。

拟合度高的模型意味着因变量和自变量之间的线性关系较好。

5.模型解释和分析:通过模型参数的估计值,分析自变量对因变量的影响程度和方向。

可以通过参数的显著性检验和参数估计的符号来判断自变量对因变量的影响。

6.预测和验证:使用已建立的多元线性回归模型进行预测,并验证模型的准确性和可靠性。

然而,多元线性回归模型也存在一些局限性。

首先,模型假设自变量和因变量之间存在线性关系,并且具有不变的方差和无自相关性。

如果数据不满足这些假设,模型的分析结果可能不准确。

其次,模型中的自变量需要是独立的,不存在多重共线性。

如果存在多重共线性,模型的参数估计可能不稳定。

另外,模型的拟合度可能不够高,无法完全解释因变量的变异。

因此,在进行多元线性回归模型的分析时,需要注意数据的选择和处理,以及对模型结果的解释和验证。

此外,还可以结合其他统计方法和模型进行综合分析,以获取更准确和全面的结论。

12多重线性回归分析(研)

12多重线性回归分析(研)
➢校正决定系数(考虑了自变量的个数) ➢Cp准则(C即criterion,p为所选模型中变量的个 数;Cp接近(p+1)模型为最优) ➢AIC (Akaike’s Information Criterion)准则;
AIC越小越好
(二)逐步选择法
1. 前进法(forward selection) 2. 后退法(backward elimination) 3. 逐步回归法(stepwise regression)
➢ 向前引入法:由一个自变量开始,每次引入一个 有统计学意义的自变量,由少到多,直到无自变 量可以引入为止。此法建立的方程有时不够精炼
➢ 逐步筛选法:取上述两种方法的优点,引入和剔 除交替进行,直到无变量可以引入,同时也无自 变量可以剔除为止。目前比较常用
SPSS操作
Analyze→Regression→Linear Dependent :Y Independent(s):X1、X2、X3 Method:Stepwise OK
(一)回归方程的方差分析
H0:所有回归系数为0 H1:至少有一个回归系数不为0
ANO VbA
Mo d el
Su m o f Squ ares d f Mean Squ are F
1
Reg re2ss6i6o4n4 8 4 .4 9 4
838 8 16 1 .49 8 1 9 .0 2 6
Resid u a7l4 6 89 0 .50 6
X2
3 8. 55 0
1 3. 34 6
.444 2.889
X3
104.585
7 4. 36 1
.260 1.406
a. Dep en den t Variab le: Y

多元线性回归模型分析

多元线性回归模型分析

多元线性回归模型分析多元线性回归模型是一种用于分析多个自变量对于一个目标变量的影响的统计模型。

在多元线性回归模型中,通过使用多个自变量来预测目标变量的值,可以帮助我们理解不同自变量之间的关系,以及它们与目标变量之间的影响。

在多元线性回归模型中,假设有一个目标变量Y和k个自变量X1,X2,...,Xk。

我们的目标是通过找到一个线性函数来描述目标变量Y与自变量之间的关系。

这个线性函数可以表示为:Y=β0+β1X1+β2X2+...+βkXk+ε其中,β0,β1,β2,...,βk是回归系数,代表自变量对于目标变量的影响程度。

ε是误差项,表示模型不能完全解释的未观测因素。

1.数据收集:收集自变量和目标变量的数据。

这些数据可以是实验数据或观测数据。

2.数据预处理:对数据进行清洗和处理,包括处理缺失值、异常值和离群值等。

3.变量选择:通过相关性分析、方差膨胀因子(VIF)等方法选择最相关的自变量。

4.拟合模型:使用最小二乘法或其他方法,拟合出最佳的回归系数。

5. 模型评估:通过各种统计指标如R-squared、调整R-squared等评估模型的拟合程度。

6.模型解释与推断:通过解释回归系数,了解各自变量对于目标变量的影响程度,并进行统计推断。

在多元线性回归模型中,我们可以利用回归系数的显著性检验来判断自变量是否对目标变量产生重要影响。

如果回归系数显著不为零,则表明该自变量对目标变量具有显著的影响。

此外,还可以利用F检验来判断整体回归模型的拟合程度,以及各自变量的联合影响是否显著。

同时,多元线性回归模型还可以应用于预测和预测目的。

通过使用已知的自变量值,可以利用回归模型来预测目标变量的值,并计算其置信区间。

然而,多元线性回归模型也有一些限制。

首先,模型的准确性依赖于所选择的自变量和数据的质量。

如果自变量不足或者数据存在误差,那么模型的预测结果可能不准确。

此外,多元线性回归模型还假设自变量之间是线性相关的,并且误差项是独立且具有常量方差的。

多元线性回归

多元线性回归

2. 由 表 Excel 输 出 的 结 果 可 知 , 回 归 模 型 的 线 性 关 系 显 著 (Significance-F=1.03539E-06<=0.05)。而回归系数检验时 却 有 3 个 没 有 通 过 t 检 验 (P-Value=0.075 、 0.86 、 0.067>=0.05) 。这也暗示了模型中存在多重共线性
作出统计决策。给定显著性水平,并进行决策 t>t2,拒绝H0; t<t2,不拒绝H0
经管类 核心课程
统计学
12.3.2 回归系数检验和推断
【例12.3】根据例12.1建立的回归方程,对回归方程各系数的显著 性进行检验(0.05)
解:提出假设
H0:bi=0 (i=1,2,3,4) H1:bi≠0
经管类 核心课程
统计学
12.3.1 线性关系检验
【例12.2】根据例12.1建立的回归方程,对回归方程线性关系的显 著性进行检验(0.05)
解:提出假设 H0:b1=b2=b3=b4=0 H1:b1,b2,b3,b4至少有一个不等于0
计算检验统计量F
作出统计决策。给定显著性水平=0.05和分子自由度4、分母
经管类 核心课程
统计学
12.3.1 线性关系检验
第1步:提出假设
H0:b1b2bk=0 线性关系不显著 H1:b1,b2,,bk至少有一个不等于0
第2步:计算检验统计量F
第3步:作出统计决策。给定显著性水平和分子自由度k、分 母自由度n-k-1找出临界值F,若F>F,拒绝H0;若F<F ,则不拒绝H0。也可利用P值来判断。
计算检验统计量

由excel可知,t1=3.84,t2=1.88,t3=0.17,t4=1.88
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多变量线性回归方程的评价
• 建立了多变量线性回归方程后,只要将x1、x2、 x3、... ...xk的值代入方程
即可求得y的估计值 • 多变量回归方程建立后,需对其作出评价,包括三个方面: • (1)评价整个方程在α水准下有否显著性,可用F检验。 • 回归均方 • F = ─────,ν1 = k,ν2 = n-k-1 • 剩余均方 • 上式中k = 自变量的数目 • n = 观察的样本数
• y = b0 + b1x 或 • 上式y = 因变量拟合值(或预期的估计值) • • • x = 自变量观察值 a 或 b0 = 方程式中的截距,其含义是x = 0时的y值 b 或 b1 = 回归系数,相当于回归直线的斜率,它的含义 是指x每改变一个单位时,y的相应变化
回归系数b的估计
• Σ(yi-y)(xi-x) • b = ────────── • Σ(xi - x)2
• (j = 0,1,2,3……k)
• (i = 观察对象序号)
• 上式 y = 因变量(连续变量)
• b0 = 常数项,其含义同简单直线回归中的a


b1、b2、b3......bk = 偏回归系数
e = 误差项
偏回归系数bk的含义
• b1的含义是指当b2、b3......的作用保持恒定后,x1改变一个单位时,y将


求各个变量与其均数的离均差平方和、离均差积和
按最小二乘法原理,用逆矩阵法解出
• 已有现成的计算机软件可敷应用,十分方便,关键在于掌握
适用条件、正确解释结果。
标化偏回归系数
• • 偏回归系数bi的大小与自变量xj的取值范围宽窄有关 偏回归系数是有量纲的,由于各自变量的单位(量纲)不同,它们的偏回归系数 无法直接比较

ν= 自由度
• 算得F值后,查F值表即可知P值
直线回归方程的评价(ຫໍສະໝຸດ )• t检验 • b b • t = ── = ───────────,ν= n-2 • sb √[Σ(yi-y)2 /(n-2)]
• 上式 b = 回归系数 • • • sb = 回归系数b的标准误 用于衡量y的估计值yi的精确性 可用于估计b的可信区间

• • • • • • • •
如欲比较,需求标准化偏回归系数bsj,其与xj的单位无关
Σ(xj- x)2 /(n-1) bsj = bj × √[───────────] / sy Σ(yi- y)2 /(n-1) √[Σ(xj- x)2] = bj×───────── / sy。 √[Σ(yi- y)2] 或bsj= bjsj÷σy,或 bsj = bisj / √var by 式中sj为xj的标准差,σy为yi的标准差。
多变量线性回归分析
多变量线性回归分析
• 如果对因变量y(发生疾病或死亡或其它结局效应)能产生 影响的自变量x(或称预测变量、危险因素、混杂因素、效 应修饰因素)的数目不止1个,而有k个 • 上述(简单)直线回归方程即可写成多变量线性回归方程
多变量线性回归方程
• y = b0 + b1x1 + b2x2 + b3x3......+ bkxk + e • = b0 + Σbjxj + e
• 算得t值后,查t值表即可知P值。
直线回归方程的评价(续)
• (2)计算决定系数(R2,coefficient of determination) • Σ(yi-y)2 回归平方和 • R2 = ───── = ────── • Σ(yi-y)2 总平方和 • R2数值上与相关系数 r的平方相等,取值在0~1之间 • R2含义是“回归方程总变异中可由x解释部份所占百分比”。
标化偏回归系数(续)
• bj÷σy表示xj改变一个标准差时yi的改变 • 如xj以克表示与xj以千克表示时,前者的bj只有后者的1/1000, 而后者的σy也较前者大1000倍 • 但bj /σy不变,即bj /σy与单位无关 • 比较不同自变量的bj /σy大小,可找出绝对值最大的bj /σy • 其相应的xj即为对y作用最大的自变量
多重线性回归模型
直线回归分析
直线回归的回顾
• 最简单的直线回归分析是研究两个变量之间的依存关系。 • 如果因变量y(某种疾病或健康危害或其它结局效应)与自变 量x(某种病因或危险因素)之间有依存关系,且在散点图上 呈直线趋势,x与y的关系可用简单直线回归方程式来表示。
简单直线回归方程式
• y = a + bx 或
直线回归分析的例子
• 某研究显示的成人收缩血压与体重间依存关系的直线回归方程如下:


y = 90.243 + 0.275x
• 上式y = 收缩血压(mm Hg) x = 体重(磅)

• •
a = 90.243
b = 0.275 sb = 0.0816

t = 3.371,P = 0.0050
• 据此,知道了个体的体重即可估计其收缩血压 • R2 = 0.4664,说明体重可解释方程总变异的约46%
相应平均改变的(b1个)单位
• 或是在x2、x3、......xk与x1、以及x2、x3、…...xk与y的线性关系除去后,
x1改变一个单位时,y将相应平均改变b1个单位 • 多变量线性回归中,估计某个自变量的作用时,调整了其它变量的影响 • b1为正时,随x1增加y也增加 • b1为负时,随x1增加y就减少
• •
Σxiyi -(Σyi)(Σxi)/ n = ────────────
• Σxi2 -(Σxi)2 / n • a = y - bx
线性回归图示
(IMT与SBP)线性回归散点图
直线回归方程的评价
• 求出回归方程后,需对方程的意义作出评价,包括两方面:
• (1)回归系数的显著性(假设)检验: • 可用方差分析的F检验,也可用t检验,两者的结论一致 • F检验 • Σ(yi-y)2 / 1 • F = ─────────,ν1 = 1,ν2 = n -2 • Σ(yi-y)2 /(n-2) • 上式中n = 观察的样本数
偏回归系数bk的含义
• b2的含义是指当b1、b3、......bk的作用保持恒定后,x2改变一 个单位时,y将相应平均改变b2个单位
• b3、......bk的含义可依次类推
多变量线性回归分析(续)
• 建立多变量线性回归方程的关键是求出各个偏回归系数bj • 偏回归系数估计方法: • 先收集一组变量的原始数据
相关文档
最新文档