相似图形知识结构

合集下载

初三相似的图形知识点归纳总结

初三相似的图形知识点归纳总结

初三相似的图形知识点归纳总结相似的图形在初中数学中占据非常重要的位置。

相似的图形具有相同的形状但不一定相等的大小。

在初三学习过程中,我们接触到了许多涉及相似图形的知识点。

本文将对初三相似的图形知识点进行归纳总结,以帮助同学们更好地理解和掌握这一内容。

一、相似三角形的判定条件1. AAA相似定理:如果两个三角形的对应角相等,则它们相似。

2. AA相似定理:如果两个三角形的一个角对应对应地相等,并且两个对应边成比例,则它们相似。

3. 相似三角形的对应边的比例关系:如果两个三角形相似,那么它们的对应边的长度之比等于相似比。

即\(\frac{AB}{A'B'} = \frac{BC}{B'C'} = \frac{CA}{C'A'}\)二、相似三角形的性质和应用1. 相似三角形的边长比例性质:两个相似三角形的相应边的比等于它们的相似比。

即\(\frac{AB}{A'B'} = \frac{BC}{B'C'} = \frac{CA}{C'A'}\)2. 相似三角形的高线比例性质:两个相似三角形的高线与底边之比等于相似比。

即\(\frac{h_1}{h_2} = \frac{AB}{A'B'} = \frac{BC}{B'C'} =\frac{CA}{C'A'}\)3. 相似三角形的面积比例性质:两个相似三角形的面积之比等于边长之比的平方。

即\(\frac{S_1}{S_2} = \left(\frac{AB}{A'B'}\right)^2 =\left(\frac{BC}{B'C'}\right)^2 = \left(\frac{CA}{C'A'}\right)^2\)4. 利用相似三角形性质解决实际问题。

如影子定理、塔楼高度的测量等。

相似三角形知识点梳理

相似三角形知识点梳理

相似三角形知识点梳理知识点1 有关相似形的概念(1) 形状一样的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2) 假如两个边数一样的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多边形.相似多边形对应边长度的比叫做相似比(相似系数) .知识点2 比例线段的相关概念、比例的性质〔1〕定义:在四条线段 d c b a , , , 中,假如 ba和的比等于 d c和的比,那么这四条线段 d c b a , , , 叫做成比例线段,简称比例线段.知识点 4 相似三角形的概念〔1〕定义:对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∽” 表示,读作“相似于” .相似三角形对应边的比叫做相似比(或相似系数) .相似三角形对应角相等,对应边成比例.注:①对应性:即把表示对应顶点的字母写在对应位置上②顺序性:相似三角形的相似比是有顺序的.③两个三角形形状一样,但大小不一定一样.④全等三角形是相似比为 1 的相似三角形.〔2〕三角形相似的断定方法1、平行法:〔图上〕平行于三角形一边的直线和其它两边(或两边的延长线) 相交,所构成的三角形与原三角形相似.2、断定定理 1:简述为:两角对应相等,两三角形相似. AA3、断定定理 2:简述为:两边对应成比例且夹角相等,两三角形相似. SAS4、断定定理 3:简述为:三边对应成比例,两三角形相似. SSS5、断定定理 4:直角三角形中,“HL”全等与相似的比拟:知识点 5 相似三角形的性质(1) 相似三角形对应角相等,对应边成比例.(2) 相似三角形周长的比等于相似比.(3) 相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.(4) 相似三角形面积的比等于相似比的平方知识点 7 等积式证明题常用方法归纳:(1) 总体思路: “等积” 变“比例”,“比例” 找“相似”(2) 找相似:通过“横找”“竖看” 寻找三角形,即横向看或纵向寻找的时候一共各有三个不同的字母,并且这几个字母不在同一条直线上,可以组成三角形,并且有可能是相似的,那么可证明这两个三角形相似,然后由相似三角形对应边成比例即可证的所需的结论.(3) 找中间比:假设没有三角形(即横向看或纵向寻找的时候一共有四个字母或者三个字母,但这几个字母在同一条直线上) ,那么需要进展“转移” (或“交换” ) ,常用的“交换” 方法有这样的三种:等线段代换、等比代换、等积代换.即:找相似找不到,找中间比。

八年级数学下册《相似图形》知识点归纳

八年级数学下册《相似图形》知识点归纳

八年级数学下册《相似图形》知识点归纳八年级数学下册《相似图形》知识点归纳在平平淡淡的学习中,相信大家一定都接触过知识点吧!知识点就是掌握某个问题/知识的学习要点。

那么,都有哪些知识点呢?下面是店铺精心整理的八年级数学下册《相似图形》知识点归纳,供大家参考借鉴,希望可以帮助到有需要的朋友。

八年级数学下册《相似图形》知识点归纳篇1第四章相似图形一、线段的比1、如果选用同一个长度单位量得两条线段AB,CD的长度分别是、n,那么就说这两条线段的比AB:CD=:n ,或写成。

2、四条线段a、b、c、d中,如果a与b的比等于c与d的比,即,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段。

3、注意点:①a:b=,说明a是b的倍;②由于线段 a、b的长度都是正数,所以是正数;③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致;④除了a=b之外,a:b≠b:a,与互为倒数;⑤比例的基本性质:若,则ad=bc;若ad=bc,则二、黄金分割1、如图1,点C把线段AB分成两条线段AC和BC,如果,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC 与AB的比叫做黄金比。

2、黄金分割点是最优美、最令人赏心悦目的点。

三、相似多边形1、一般地,形状相同的图形称为相似图形。

2、对应角相等、对应边成比例的两个多边形叫做相似多边形。

相似多边形对应边的比叫做相似比。

四、相似三角形1、在相似多边形中,最为简简单的就是相似三角形。

2、对应角相等、对应边成比例的三角形叫做相似三角形。

相似三角形对应边的比叫做相似比。

3、全等三角形是相似三角的特例,这时相似比等于1。

注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上。

4、相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比。

5、相似三角形周长的比等于相似比。

6、相似三角形面积的比等于相似比的平方。

五、探索三角形相似的条件1、相似三角形的判定方法:一般三角形直角三角形基本定理:平行于三角形的一边且和其他两边(或两边的延长线)相交的直线,所截得的三角形与原三角形相似。

相似三角形知识点归纳(全)精选全文完整版

相似三角形知识点归纳(全)精选全文完整版

可编辑修改精选全文完整版《相似三角形》—中考考点归纳与典型例题知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2 比例线段的相关概念、比例的性质(1)定义:在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad c b =. ②()()()a bc d a c d c b d b ad bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 核心内容:bc ad = (2)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB.即AC BC AB AC ==简记为:12长短==全长 注:①黄金三角形:顶角是360的等腰三角形②黄金矩形:宽与长的比等于黄金数的矩形 (3)合、分比性质:a c abcd b d b d±±=⇔=.注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc dc b a b a ccd a a b d c b a 等等.(4)等比性质:如果)0(≠++++====n f d b nmf e d c b a那么ban f d b m e c a =++++++++ .知识点3 比例线段的有关定理平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例. 已知AD ∥BE ∥CF,可得AB DE AB DE BC EF BC EF AB BCBC EF AC DF AB DE AC DF DE =====或或或或等. 特别在三角形中: 由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或知识点4 相似三角形的概念(1)定义:对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∽”表示,读作“相似于” .相似三角形对应边的比叫做相似比(或相似系数).相似三角形对应角相等,对应边成比例.注:①对应性:即把表示对应顶点的字母写在对应位置上 ②顺序性:相似三角形的相似比是有顺序的.③两个三角形形状一样,但大小不一定一样. ④全等三角形是相似比为1的相似三角形.(2)三角形相似的判定方法1、平行法:(图上)平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.2、判定定理1:简述为:两角对应相等,两三角形相似.AA3、判定定理2:简述为:两边对应成比例且夹角相等,两三角形相似.SAS4、判定定理3:简述为:三边对应成比例,两三角形相似.SSS5、判定定理4:直角三角形中,“HL ” 全等与相似的比较:三角形全等三角形相似两角夹一边对应相等(ASA) 两角一对边对应相等(AAS) 两边及夹角对应相等(SAS) 三边对应相等(SSS)、(HL )两角对应相等两边对应成比例,且夹角相等三边对应成比例“HL ”如图,Rt △ABC 中,∠BAC=90°,AD 是斜边BC 上的高,则∽==>AD 2=BD ·DC ,∽==>AB 2=BD ·BC ,∽==>AC 2=CD ·BC .知识点5 相似三角形的性质E BD DB C(1)相似三角形对应角相等,对应边成比例. (2)相似三角形周长的比等于相似比.(3)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比. (4)相似三角形面积的比等于相似比的平方.知识点6 相似三角形的几种基本图形:(1) 如图:称为“平行线型”的相似三角形(有“A 型”与“X 型”图)(2) 如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形。

相似图形的知识点总结(16篇)

相似图形的知识点总结(16篇)

相似图形的知识点总结(16篇)篇1:相似图形的知识点总结相似图形的知识点总结知识点1.概念把形状相同的图形叫做相似图形。

(即对应角相等、对应边的比也相等的图形)解读:(1)两个图形相似,其中一个图形可以看做由另一个图形放大或缩小得到.(2)全等形可以看成是一种特殊的相似,即不仅形状相同,大小也相同.(3)判断两个图形是否相似,就是看这两个图形是不是形状相同,与其他因素无关.知识点2.比例线段对于四条线段a,b,c,d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a:b=c:d)那么这四条线段叫做成比例线段,简称比例线段.知识点3.相似多边形的性质相似多边形的性质:相似多边形的对应角相等,对应边的比相等.解读:(1)正确理解相似多边形的定义,明确“对应”关系.(2)明确相似多边形的“对应”来自于书写,且要明确相似比具有顺序性.知识点4.相似三角形的概念对应角相等,对应边之比相等的三角形叫做相似三角形.解读:(1)相似三角形是相似多边形中的一种;(2)应结合相似多边形的性质来理解相似三角形;(3)相似三角形应满足形状一样,但大小可以不同;(4)相似用“∽”表示,读作“相似于”;(5)相似三角形的对应边之比叫做相似比.知识点5.相似三角的判定方法(1)定义:对应角相等,对应边成比例的两个三角形相似;(2)平行于三角形一边的直线截其他两边(或其他两边的延长线)所构成的三角形与原三角形相似.(3)如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似.(4)如果一个三角的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.(5)如果一个三角形的三条边分别与另一个三角形的三条边对应成比例,那么这两个三角形相似.(6)直角三角形被斜边上的高分成的两个直角三角形与原三角形都相似.知识点6.相似三角形的性质(1)对应角相等,对应边的比相等;(2)对应高的比,对应中线的比,对应角平分线的比都等于相似比;(3)相似三角形周长之比等于相似比;面积之比等于相似比的平方.(4)射影定理篇2:相似图形相似图形教学交流课教案:第四章相似图形教学目标:1、知道线段比的概念。

人教版 相似知识点总结

人教版 相似知识点总结

人教版相似知识点总结一、相似三角形1. 定义相似三角形指的是具有相同形状但是大小不一样的三角形。

在相似三角形中,对应的角度相等,对应的边的比例也相等。

2. 判定判定两个三角形相似的方法有三种:(1)AAA相似判定法:如果两个三角形的对应角是相等的,那么这两个三角形就是相似的。

(2)AA相似判定法:如果两个三角形的其中一个角相等,并且它们的对边的比例相等,那么这两个三角形就是相似的。

(3)SAS相似判定法:如果两个三角形的一个角相等,并且它们的两个边的比例相等,那么这两个三角形就是相似的。

3. 性质(1)相似三角形对应边的比例:在相似三角形中,对应边的比例是相等的。

(2)相似三角形内角对应:在相似三角形中,对应角是相等的。

(3)相似三角形内角和的性质:在相似三角形中,每个对应角的和都是180°。

4. 应用相似三角形的性质和判定方法在几何问题中有着广泛的应用。

比如在测量高楼的高度、计算不规则图形的面积等问题中,都会用到相似三角形的知识。

二、三角形的中线、角平分线、中线及高的关系1. 定义中线:三角形中线指的是连接三角形的一个顶点和对边中点的线段。

角平分线:三角形角平分线指的是从三角形的一个顶点出发,分别平分相邻的两个角的线段。

高:三角形的高指的是从顶点到对边的垂直距离的线段。

2. 性质(1)三角形的中线:三角形三个顶点的连线的中点所组成的线段是三角形的中线,三角形的三条中线交于一个点,并且相互平分。

(2)三角形的角平分线:三角形的每个内角的角平分线相交于一个点,这个点和三个顶点连线的中点共线。

(3)三角形的高:三角形的三条高交于一个点,这个点叫做三角形的垂心。

3. 中线、角平分线、高的关系中线长等于底边一半,角平分线分割对边成比例,高的平方等于底边乘以斜边的差的一半。

4. 应用三角形的中线、角平分线、高的性质和关系在解决数学问题中有很多应用,比如证明直角三角形的斜边长度等。

三、勾股定理1. 定理内容勾股定理指的是直角三角形中,两个直角边的平方和等于斜边的平方。

图形的相似知识点总结

图形的相似知识点总结

图形的相似知识点总结首先来看图形的定义。

图形的相似是指两个图形在形状上相同但大小不同的情况。

这里所说的大小不同是指两个图形的尺寸比不相等。

图形的相似包括平移、旋转、翻转等类似的变换。

当两个图形能够通过放缩、平移、旋转等等类似的变换来重合时,这两个图形就是相似的。

接下来是关于图形相似的性质。

相似图形有很多性质,其中最重要的性质之一就是它们的对应边成比例,而对应角相等。

具体来说,如果两个图形是相似的,那么它们的对应边的比值是相等的,而对应角也是相等的。

这一性质体现了相似图形的特点,也是判断两个图形是否相似的重要条件。

除了对应边成比例和对应角相等外,相似图形还有一个重要性质就是它们的面积成比例。

这一性质在实际生活中有很多应用,比如在测量地图的比例尺时就需要用到相似图形的面积成比例性质。

然后是图形相似的判定条件。

判断两个图形是否相似需要依据一些基本条件。

最常用的判定相似的条件有三组边成比例相等、三组角相等和两组边角对应成比例相等。

首先是三组边成比例相等。

这个条件是指如果两个三角形的边长成比例相等,那么这两个三角形就是相似的。

其中,边长成比例相等的两个三角形的对应边长之比称为边长比。

如果两个三角形的边长比相等,那么这两个三角形就是相似的。

其次是三组角相等。

这个条件是指如果两个三角形的对应角相等,那么这两个三角形就是相似的。

这个条件是很直观的,如果两个三角形的对应角相等,那么它们的形状是相似的。

最后是两组边角对应成比例相等。

这个条件是指如果两个三角形的一组对应边成比例相等,另一组对应角相等,那么这两个三角形就是相似的。

这个条件是判断三角形相似的常用条件之一。

最后来看图形相似的应用。

相似图形在数学和实际生活中有很多应用,其中最常见的就是利用相似三角形的性质来解决实际问题。

比如在地图测量中,我们可以利用相似三角形的边长和角度成比例的性质来测算地图上的距离和角度。

此外,在建筑施工中也经常用到相似图形的应用,比如在设计房屋结构和建筑物大小比例时就需要用到相似三角形的知识。

相似三角形知识点整理精选全文完整版

相似三角形知识点整理精选全文完整版

可编辑修改精选全文完整版相似三角形知识点整理重点、难点分析:1、相似三角形的判定性质是本节的重点也是难点.2、利用相似三角形性质判定解决实际应用的问题是难点。

☆内容提要☆ 一、本章的两套定理第一套(比例的有关性质):涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。

第二套:二、有关知识点: 1.相似三角形定义:对应角相等,对应边成比例的三角形,叫做相似三角形。

2.相似三角形的表示方法:用符号“∽”表示,读作“相似于”。

3.相似三角形的相似比:相似三角形的对应边的比叫做相似比。

4.相似三角形的预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三反比性质:cda b = 更比性质:dbc a a c bd ==或 合比性质:ddc b b a ±=± ⇒=⇔=bc ad d c b a (比例基本定理) ban d b m c a n d b n m d c b a =++++++⇒≠+++=== :)0(等比性质 相似基本定理 推论(骨干定理)平行线分线段成比例定理(基本定理)应用于△中 相似三角形定理1定理2 定理3 Rt △ 推论推论的逆定理推论角形相似。

5.相似三角形的判定定理:(1)三角形相似的判定方法与全等的判定方法的联系列表如下:类型斜三角形直角三角形全等三角形的判定SAS SSS AAS(ASA)HL相似三角形的判定两边对应成比例夹角相等三边对应成比例两角对应相等一条直角边与斜边对应成比例从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。

6.直角三角形相似:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。

(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

九年级相似图形知识点归纳

九年级相似图形知识点归纳

九年级相似图形知识点归纳相似图形是几何学中的一个基本概念,它指的是形状相似但尺寸不同的两个或多个图形。

在九年级的数学学习中,相似图形是一个重要的知识点,涉及到比例、比例尺、相似比等概念。

本文将对九年级相似图形的相关知识进行归纳总结。

一、相似图形的定义相似图形是指在形状上相似但尺寸不同的两个或多个图形。

相似图形具有以下特点:1. 对应角相等:两个相似图形的对应角都相等;2. 对应边成比例:两个相似图形的对应边的长度成比例。

二、相似图形的判定方法1. AAA判定法:若两个图形的对应角分别相等,则它们是相似图形。

2. AA判定法:若两个图形的两组对应角分别相等,则它们是相似图形。

三、相似图形的性质和定理1. 三角形的相似定理:a. AA相似定理:如果两个三角形的两组对应角相等,则这两个三角形是相似的。

b. SSS相似定理:如果两个三角形的三组对边成比例,则这两个三角形是相似的。

c. SAS相似定理:如果两个三角形的一组对边成比例且对应角相等,则这两个三角形是相似的。

2. 相似三角形的性质:a. 对应边成比例:相似三角形的对应边的长度成比例。

b. 三角形内角对应:相似三角形的内角都对应相等。

四、相似图形的应用相似图形的知识在实际生活和实际问题中有广泛应用,例如:1. 测量:利用相似图形的知识可以进行测量,如通过测量一个三角形的边长和另一个相似三角形的边长,可以得到未知边长的长度。

2. 设计:在设计中,相似图形的概念可以应用于建筑、道路等方面,通过对已知图形进行放大或缩小,使其与实际需求相适应。

3. 地图测绘:地图上的比例尺就是利用相似图形的原理进行测绘的。

五、示例题目1. 已知两个三角形的对边成比例,但两个三角形的对应角不全等,是否可以判定这两个三角形是相似的?2. 若一个平面图形与一个已知的相似图形所对应的角相等,并且对应边成比例,能否判断这两个图形是相似的?六、总结九年级相似图形是一个重要的几何学知识点,它涵盖了相似图形的定义、判定方法、性质和应用等方面。

(完整版)相似三角形知识点归纳(全)

(完整版)相似三角形知识点归纳(全)
《相似三角形》知识点归纳
知识点 1 有关相似形的概念
(1) 形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形
.
(2) 如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多
边形.相似多边形对应边长度的比叫做相似比 ( 相似系数 ) .
知识点 2 比例线段的相关概念、比例的性质
.相似三角形对应边的比叫做相似比 ( 或相
(2)三角形相似的判定方法
1、平行法: (图上)平行于三角形一边的直线和其它两边
( 或两边的延长线 ) 相交,所构成的三角形与原三角形相似 .
2、判定定理 1:简述为: 两角对应相等,两三角形相似. AA
3、判定定理 2:简述为: 两边对应成比例且夹角相等,两三角形相似
( 1) 位似图形是相似图形的特例,位似图形不仅相似,而且对应顶点的连线相交于一点
.
( 2) 位似图形一定是相似图形,但相似图形不一定是位似图形
.
( 3) 位似图形的对应边互相平行或共线 .
( 4)位似图形具有相似图形的所有性质 .
位似图形的性质:
Байду номын сангаас
位似图形上任意一对对应点到位似中心的距离之比等于相似比
.SAS
4 、判定定理 3:简述为: 三边对应成比例,两三角形相似 .SSS
5、判定定理 4:直角三角形中, “ HL”
全等与相似的比较:
三角形全等
三角形相似
两角夹一边对应相等 (ASA) 两角一对边对应相等 (AAS) 两边及夹角对应相等 (SAS) 三边对应相等 (SSS) 、 (HL )
两角对应相等 两边对应成比例,且夹角相等
B
C
( 1)定义:对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∽”表示,读作“相似于” 似系数 ) .相似三角形对应角相等,对应边成比例.

人教版相似知识点总结

人教版相似知识点总结

人教版相似知识点总结一、相似三角形在平面几何中,相似三角形是指有相同形状但不一定相同大小的三角形。

相似三角形的性质和判定方法是初中数学重要的知识点之一。

1. 相似三角形的性质a. 性质1:对应角相等两个相似三角形的对应角相等,即如果两个三角形ABC和A'B'C'相似,则∠A=∠A',∠B=∠B',∠C=∠C'。

b. 性质2:对应边成比例两个相似三角形的对应边成比例,即如果两个三角形ABC和A'B'C'相似,则AB/A'B'=BC/B'C'=AC/A'C'。

c. 性质3:相似三角形的面积成比例如果两个三角形ABC和A'B'C'相似,则它们的面积之比等于边长之比的平方,即S(ABC)/S(A'B'C')=(AB/A'B')^2=(BC/B'C')^2=(AC/A'C')^2。

2. 相似三角形的判定方法a. 直角三角形的判定方法:两个直角三角形如果有一个角相等,则它们相似;或者两个直角三角形的三条边分别成比例,则它们相似。

b. 三边成比例的判定方法:两个三角形的三条边分别成比例,则它们相似。

c. 边角边(或角边角)的判定方法:两个三角形的两个角分别相等,且夹在两边成比例,则它们相似。

d. 已知相似三角形内部某个角相等的判定方法:如果两个三角形相似且三角形内部有一个角相等,则其他两个角也相等。

相似三角形的性质和判定方法在初中数学中具有重要的理论和实际应用价值,对于几何图形的相似性质和相关计算都有重要的指导作用。

二、比例比例是数学中重要的概念,主要用来描述两个量之间的相对关系。

在人教版初中数学中,比例是一个重要的知识点,包括比例的性质、比例的计算、比例的应用等内容。

1. 比例的性质a. 比例的传递性:如果a:b=c:d,则a/c=b/d;如果a/c=b/d,则a:b=c:d。

数学相似知识点总结

数学相似知识点总结

数学相似知识点总结数学相似知识点总结总结是把一定阶段内的有关情况分析研究,做出有指导性的经验方法以及结论的书面材料,写总结有利于我们学习和工作能力的提高,是时候写一份总结了。

总结怎么写才不会流于形式呢?以下是店铺收集整理的数学相似知识点总结,希望对大家有所帮助。

数学相似知识点总结1相似三角形判定(1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。

(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。

(简叙为:两边对应成比例且夹角相等,两个三角形相似。

)(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。

(简叙为:三边对应成比例,两个三角形相似。

)(4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),那么这两个三角形相似。

直角三角形判定定理:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。

(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

相似三角形性质定理:(1)相似三角形的对应角相等。

(2)相似三角形的对应边成比例。

(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。

(4)相似三角形的周长比等于相似比。

(5)相似三角形的面积比等于相似比的平方。

判定定理推论推论一:顶角或底角相等的两个等腰三角形相似。

推论二:腰和底对应成比例的两个等腰三角形相似。

推论三:有一个锐角相等的两个直角三角形相似。

推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。

推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。

推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。

性质1.相似三角形对应角相等,对应边成比例。

相似三角形知识点归纳(全)

相似三角形知识点归纳(全)

相似三角形知识点归纳(全)相似三角形知识点归纳相似形的概念相似图形是指形状相同的图形,其中最简单的是相似三角形。

如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形就是相似多边形。

相似多边形对应边长度的比叫做相似比或相似系数。

比例线段的相关概念和性质比例线段是指四条线段a、b、c、d中,如果a和b的比等于c和d的比,那么这四条线段就是成比例线段。

比例线段是有顺序的,如果a是b、c、d的第四比例项,那么应得比例式为b/c=d/a。

比例线段有一些性质,例如黄金分割,其中线段AB被分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,即AC²=AB×BC,叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点,其中AC≈0.618AB。

还有合、分比性质和等比性质。

比例线段的有关定理平行线分线段成比例定理是指三条平行线截两条直线,所截得的对应线段成比例。

在三角形中,由DE∥BC可得AD/DB=AE/EC或者AD/AE=DB/EC,还有其他类似的定理。

注:本文已删除明显有问题的段落,并进行了小幅度的改写。

的三角形,尝试找出它们之间的相似关系。

3)利用相似性质:根据相似三角形的性质,利用对应角相等、对应边成比例等关系进行推导证明。

4)注意细节:在使用相似性质进行证明时,需要注意各个角度、边长的对应关系,以及相似比的顺序等细节问题。

相似三角形是指对应角相等,对应边成比例的三角形,用符号“∽”表示。

相似三角形对应边的比叫做相似比,对应角相等,对应边成比例。

相似三角形有对应性和顺序性,即把表示对应顶点的字母写在对应位置上,相似三角形的相似比是有顺序的。

需要注意的是,两个三角形形状一样,但大小不一定一样,全等三角形是相似比为1的相似三角形。

判定相似三角形的方法有平行法、AA、SAS、SSS、HL 等。

其中,平行法是指平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

第四章 相似图形

第四章 相似图形

第四章相似图形一、本章教材分析1、知识内容学习线段的比、成比例线段、形状相同的图形、相似三角形、相似多边形、位似等及其基本性质,探索并体验相似在现实生活中的应用。

2、地位和联系:本章相似图形与全等图形相比,形状相同的图形是全等形的一种运动变化的形式(全等图形其实就是它的一个特例)。

与全等三角形相比,相似三角形更体现了边的变化,这种变化由原先的相等到现在的成比例,这就给学生的直观判断带来了难度。

也是对图形全等内容的进一步深化和发展,而且是对图形研究方法的综合运用.学习本章有关内容,是密切数学与现实之间必然联系以及“图形与空间”各部分之间内在联系的重要桥梁.3、目标和重难点《课程标准》中的要求:(1)了解比例的基本性质,了解线段的比、成比例线段,通过建筑、艺术上的实例了解黄金分割.(2)通过具体实例认识图形的相似,探索相似图形的性质,知道相似多边形的对应角相等,对应边成比例,面积的比等于对应边比的平方.(3)了解两个三角形相似的概念,探索两个三角形相似的条件.(4)了解图形的位似,能够利用位似将一个图形放大或缩小.(5)通过典型实例观察和认识现实生活中物体的相似,利用图形的相似解决一些实际问题(如利用相似测量旗杆的高度).(08年考纲中的要求:①了解比例的基本性质,了解线段的比、成比例线段,了解黄金分割。

②通过具体实例认识图形的相似,探索相似图形的性质,知道相似多边形的对应角相等,对应边成比例,面积的比等于对应边比的平方。

③了解两个三角形相似的概念,探索两个三角形相似的条件。

④了解图形的位似,能够利用位似将一个图形放大或缩小。

⑤通过典型实例观察和认识现实生活中物体的相似,利用图形的相似解决一些实际问题(如利用相似测量旗杆的高度)。

)重点:相似三角形及其判别条件和性质.难点:比例的性质,相似三角形及其判别条件和性质,测量旗杆的高度和位似图形.4、本章中4.3形状相同的图形、4.4相似多边形两节内容可以根据学生情况进行适当的整合。

九年级相似图形的知识点

九年级相似图形的知识点

九年级相似图形的知识点相似图形是中学数学中的一个重要概念,它在几何学中占有重要地位。

掌握相似图形的知识点对于九年级的学生来说是至关重要的。

本文将介绍九年级相似图形的相关知识点,帮助学生更好地理解和掌握这一内容。

一、相似图形的定义相似图形指的是形状相似但尺寸不同的两个或多个图形。

在相似图形中,对应的角度相等,对应的边比例相同。

例如,两个三角形的对应角度相等且对应边的比例相同,那么它们就是相似的。

二、相似图形的判定条件判断两个图形是否相似,需要满足以下条件:1. 对应角度相等:两个图形的对应角度相等。

2. 对应边比例相同:两个图形的对应边的比例相同。

三、相似图形的性质相似图形具有以下重要性质:1. 相似图形的对应边比例相同。

2. 相似三角形的对应角度相等,且对应边比例相同。

3. 两个直角三角形若有一个角相等,则它们是相似的。

4. 相似图形的面积比等于边长比的平方。

四、相似图形的应用相似图形的概念在实际应用中有广泛的应用,例如:1. 使用相似三角形来计算高楼建筑物的高度。

2. 利用相似图形来测量远处物体的高度。

3. 在地图测量中利用相似图形来估计距离。

五、相似图形的解题方法在解题过程中,可以利用以下方法:1. 判断两个图形是否相似:根据对应角度相等和对应边比例相同的条件来判断。

2. 求取缺失边长:利用相似图形的对应边比例相同的性质,可以通过比例关系求取缺失的边长。

3. 计算面积比例:根据相似图形的面积比等于边长比的平方性质,可以计算两个相似图形的面积比。

六、相似图形的注意事项在处理相似图形时,需要注意以下几点:1. 在判断相似图形时,必须满足对应角度相等和对应边比例相同的条件。

2. 在计算面积比例时,需要注意保持一致的单位。

3. 求取缺失边长时,要注意比例关系的应用,避免计算错误。

4. 在实际应用中,要注意选择合适的比例尺。

通过对九年级相似图形的相关知识点的学习,我们可以更好地理解和应用相似图形的概念。

相似图形知识点总结文库

相似图形知识点总结文库

相似图形知识点总结文库一、相似图形的定义相似图形是指两个或多个图形之间的形状相同,但大小可能不同的情况。

在几何中,通常用符号∼表示两个相似图形之间的关系。

例如,若图形A和图形B是相似的,则可以表示为A∼B。

相似图形的定义可以用比例来表达,即如果两个三角形ABC和DEF是相似的,那么它们的对应边的比例是相等的,即AB/DE=BC/EF=AC/DF。

二、相似图形的判定1. AAA相似判定法:如果两个三角形的对应角相等,那么它们是相似的。

2. AA相似判定法:如果两个三角形的两个对应角相等,那么它们是相似的。

3. SSS相似判定法:如果两个三角形的对应边成比例,那么它们是相似的。

4. 直接判定法:如果两个四边形的对应边成比例,那么它们是相似的。

在判定相似图形时,可以根据题目条件选择不同的方法进行判定,以确定两个或多个图形之间是否是相似的关系。

三、相似图形的性质1. 相似三角形的性质:(1) 相似三角形的对应角相等;(2) 相似三角形的对应边成比例;(3) 相似三角形的高线成比例;(4) 相似三角形的中位线成比例。

2. 相似四边形的性质:(1) 相似四边形的对应角相等;(2) 相似四边形的对应边成比例。

3. 相似图形的周长、面积与比例关系:(1) 如果两个图形相似,那么它们的周长之比等于它们的任意一条边的比;(2) 如果两个图形相似,那么它们的面积之比等于它们的任意一条边的比的平方。

四、相似图形的应用1. 图形的放大与缩小:在工程设计、地图制作等领域,相似图形的概念经常被用来进行图形的放大与缩小,以便得到需要的大小。

2. 测量与估算:利用相似图形的性质,可以利用已知的尺寸进行图形的测量与估算,从而得到未知尺寸的大小。

3. 面积与体积的计算:利用相似图形的面积与比例关系,可以方便地计算出图形的面积与体积。

4. 几何问题的解决:在几何问题中,利用相似图形的性质,可以更快速地解决一些有关形状和比例的问题,如建筑设计、城市规划等。

相似图形知识结构

相似图形知识结构

相似三角形知识结构重点、难点分析:1、相似三角形的判定性质是本节的重点也是难点.2、利用相似三角形性质判定解决实际应用的问题是难点。

☆内容提要☆ 一、本章的两套定理第一套(比例的有关性质):涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。

二、有关知识点:1.相似三角形定义:对应角相等,对应边成比例的三角形,叫做相似三角形。

2.相似三角形的表示方法:用符号“∽”表示,读作“相似于”。

3.相似三角形的相似比:相似三角形的对应边的比叫做相似比。

4.相似三角形的预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。

5.相似三角形的判定定理:从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边 成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。

6.直角三角形相似:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。

(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

7.相似三角形的性质定理: (1)相似三角形的对应角相等。

cda b = dbc a a c bd ==或 合比性质:ddc b b a ±=± ⇒=⇔=bc ad d c b a (比例基本定理) ban d b m c a n d b n m d c b a =++++++⇒≠+++=== :)0(等比性质(2)相似三角形的对应边成比例。

(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。

(4)相似三角形的周长比等于相似比。

(5)相似三角形的面积比等于相似比的平方。

8. 相似三角形的传递性如果△ABC ∽△A 1B 1C 1,△A 1B 1C 1∽△A 2B 2C 2,那么△ABC ∽A 2B 2C 2 四、位似: 1、定义:如果两个图形不仅是 而且每组对应点所在直线都经过 那么这样的两个图形叫做位似图形,这个点叫做 这时相似比又称为 2、性质:位似图形上任意一点到位似中心的距离之比都等于3、位似图形一定是 图形,但反之不成立,利用位似变换可以将一个图形放大或4、在平面直角坐标系中,如果位似是以原点为位似中心,相似比位r ,那么位似图形对应点的坐标的比等于 或 】五、注意1、相似三角形的基本定理,它是相似三角形的一个判定定理,也是后面学习的相似三角形的判定定理的基础,这个定理确定了相似三角形的两个基本图形“A ”型和“ 8 ”型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形知识结构重点、难点分析:1、相似三角形的判定性质是本节的重点也是难点.2、利用相似三角形性质判定解决实际应用的问题是难点。

☆内容提要☆ 一、本章的两套定理第一套(比例的有关性质):涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。

二、有关知识点:1.相似三角形定义:对应角相等,对应边成比例的三角形,叫做相似三角形。

2.相似三角形的表示方法:用符号“∽”表示,读作“相似于”。

3.相似三角形的相似比:相似三角形的对应边的比叫做相似比。

4.相似三角形的预备定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。

5.相似三角形的判定定理:从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边 成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。

6.直角三角形相似:(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。

(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

7.相似三角形的性质定理: (1)相似三角形的对应角相等。

cda b = dbc a a c bd ==或 合比性质:ddc b b a ±=± ⇒=⇔=bc ad d c b a (比例基本定理) ban d b m c a n d b n m d c b a =++++++⇒≠+++=== :)0(等比性质(2)相似三角形的对应边成比例。

(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。

(4)相似三角形的周长比等于相似比。

(5)相似三角形的面积比等于相似比的平方。

8. 相似三角形的传递性如果△ABC ∽△A 1B 1C 1,△A 1B 1C 1∽△A 2B 2C 2,那么△ABC ∽A 2B 2C 2 四、位似: 1、定义:如果两个图形不仅是 而且每组对应点所在直线都经过 那么这样的两个图形叫做位似图形,这个点叫做 这时相似比又称为 2、性质:位似图形上任意一点到位似中心的距离之比都等于3、位似图形一定是 图形,但反之不成立,利用位似变换可以将一个图形放大或4、在平面直角坐标系中,如果位似是以原点为位似中心,相似比位r ,那么位似图形对应点的坐标的比等于 或 】五、注意1、相似三角形的基本定理,它是相似三角形的一个判定定理,也是后面学习的相似三角形的判定定理的基础,这个定理确定了相似三角形的两个基本图形“A ”型和“ 8 ”型。

在利用定理证明时要注意A 型图的比例AD AB DE BC AEAC==,每个比的前项是同一个三 角形的三条边,而比的后项是另一个三角形的三条对应边,它们的位置不能写错,尤其是要防止写成AD DB DE BC AEEC==的错误。

2、 相似三角形的基本图形Ⅰ.平行线型:即A 型和X 型。

Ⅰ.相交线型3、掌握相似三角形的判定定理并且运用相似三角形定理证明 三角形相似及比例式或等积式。

4、添加辅助平行线是获得成比例线段和相似三角形的重要途径。

5、对比例问题,常用处理方法是将“一份”看着k;对于等比问题,常用处理办法是设“公比”为k 。

6、对于复杂的几何图形,采用将部分需要的图形(或基本图形)“抽”出来的办法处理。

六、练习题 一、填空题 1、 如果,则,。

CEDB ACADB.CBEAMADBC2、 已知 ,则3、已知:x:y:z=3:4:5,且x+y-z=6,则:2x-3y+2z=4、已知线段c 是线段a 和x 的比例中项,则x= ;如果线段b 是线段a 、x 、x 的第四比例项,a=2,b=8,则x 。

5、梯形ABCD 中,AD ∥BC ,AC 、BD 交于M ,若1ADM S ∆= ,9=∆BMC S ,梯形的面积 .6、如图5中,在等边△ABC 中,D 为BC 边上一点,E 为AC 边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC 的边长为______________7、如图6,以点O 为位似中心,将五边形ABCDE 放大后得到五边形A′B′C′D′E′,已知OA =10cm ,OA ′=20cm ,则五边形ABCDE 的周长与五边形A′B′C′D′E′的周长的比值是 .8、如图,n +1个边长为2的等边三角形有一条边在同一直线上,设△211B D C 的面积为1S ,△322B D C 的面积为2S ,…,△1n n n B D C +的面积为n S ,则2S = ;n S =____ (用含n 的式子表示)9、已知正方形ABCD 的边长为1,P 为CD 的中点,点Q 在线段BC 上,若△ABC 与△QCP 相似(不包括全等情形),则 PQ 的长为10、如图,在钝角三角形ABC 中,AB=6,AC=12,动点D 从A 点出发到B 点止,动点E 从C 点出发到A 点止。

点D 的运动速度是1cm/秒,点E 的运动速度是2cm/秒。

如果两点同时运动,那么当以点A 、D 、E 为顶点的三角形与△ABC 相似时,运动是时间 .二、选择题1、已知线段AB=1,C 是线段AB 的黄金分割点,则AC 的长度为 ( )DAECBA 512-B352-C512-或352-D以上结论都不对2、若34xy=,则下列各式不正确的是()A74X YY+= Byy x=-4 C2113x yx+= D14x yy-=3、如果a b cb c a c a b==+++=k,则k的值为()A 13B12C12或﹣1 D ﹣14、如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC= 14BC.图中相似三角形共有()A.1对B.2对C.3对D.4对此题考查了相似三角形的判定与性质,以及正方形的性质.此题难度适中,解题的关键是证明△ECF∽△ADE,在此基础上可证△AEF∽△ADE.5、如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:2,点A的坐标为(1,0),则E点的坐标为()A.(2,0)B.(33,)22C.(2,2)D.(2,2)6、已知矩形ABCD中,AB=1,在BC上取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,则AD=()A.512-B.512+C.3D.27题图7、如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA′B′C′与矩形OABC 关于点O 位似,且矩形OA′B′C′的面积等于矩形OABC 面积的14,那么点B′的坐标是( ) A .(-2,3)B .(2,-3)C .(3,-2)或(-2,3)D .(-2,3)或(2,-3)8、在菱形ABCD 中,E 是BC 边上的点,连接AE 交BD 于点F ,若EC=2BE ,则 BFFD的值是( ) A .12 B .13 C .14 D . 159、如图,点D 在△ABC 的边AC 上,要判定△ADB 与△ABC 相似,添加一个条件,不正确的是( )A .∠ABD=∠CB .∠ADB=∠ABC C .AB CB BD CD = D .AD ABAB AC=10、如图,在四边形ABCD 中,DC ∥AB ,CB ⊥AB ,AB=AD ,CD= 12AB ,点E 、F 分别为AB 、AD 的中点,则△AEF 与多边形BCDFE 的面积之比为( ) A .17 B .16 C .15 D .1411、如图,已知△ABC ,AB=AC=1,∠A=36°,∠ABC 的平分线BD 交AC 于点D ,则AD 的长是 ,cosA 的值是 .(结果保留根号)考点:黄金分割;相似三角形的判定与性质;锐角三角函数的定义.分析:可以证明△ABC ∽△BDC ,设AD=x ,根据相似三角形的对应边的比相等,即可列出方程,求得x 的值;过点D 作DE ⊥AB 于点E ,则E 为AB 中点,由余弦定义可求出cosA 的值8题图9题三、解答题1、正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直.(1)证明:Rt △ABM ∽Rt △MCN ;(2)设BM=x ,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 的面积最大,并求出最大面积;(3)当M 点运动到什么位置时Rt △ABM ∽Rt △AMN ,求此时x 的值.2、如图,在矩形ABCD 中,AB=6,BC=8,沿直线MN 对折,使A 、C 重合,直线MN 交AC 于O .(1)求证:△COM ∽△CBA ; (2)求线段OM 的长度.3、如图,在△ABC 中,∠C=90°,BC=5米,AC=12米.M 点在线段CA 上,从C 向A 运动,速度为1米/秒;同时N 点在线段AB 上,从A 向B 运动,速度为2米/秒.运动时间为t 秒.(1)当t 为何值时,∠AMN=∠ANM ?(2)当t 为何值时,△AMN 的面积最大?并求出这个最大值.NB D AC M4、如图,正三角形ABC的边长为3+ 3.(1)如图①,正方形EFPN的顶点E、F在边AB上,顶点N在边AC上,在正三角形ABC 及其内部,以点A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);(2)求(1)中作出的正方形E′F′P′N′的边长;(3)如图②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在边AB上,点P、N分别在边CB、CA上,求这两个正方形面积和的最大值和最小值,并说明理由.5、如图,在Rt△ABC中,∠C=90°,AB=10cm,AC∶BC=4∶3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动.(1)求AC、BC的长;(2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y 与x的函数关系式;(3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为顶点的三角形与△ABC是否相似,请说明理由;ACB PQ。

相关文档
最新文档