支路电流法
《支路电流法》课件
03
解方程组,求出各支路 的电流。
04
根据求得的电流值,进 一步求解电路中的其他 物理量,如电压、功率 等。
支路电流法的解题实例
01
02
03
04
假设有一个简单的电路,包含 三个节点和三条支路,其中一
条支路为电流源。
根据基尔霍夫定律列出方程组 ,解得各支路的电流值。
根据求得的电流值,进一步求 解电路中的其他物理量,如电
人工智能与机器学习在电 力系统中的应用
人工智能和机器学习技术在电力系统中的应 用逐渐成为研究热点,可以与支路电流法结
合,实现更加智能化的电力系统分析。
THANKS
感谢观看
《支路电流法》 ppt课件
目录
• 支路电流法简介 • 支路电流法的原理 • 支路电流法的应用实例 • 支路电流法的扩展与提高 • 总结与展望
01
支路电流法简介
定义与特点
支路电流法是一种电路分析方 法,通过求解支路电流来分析 电路的电气特性。
该方法适用于具有多个支路的 复杂电路,能够方便地求解各 支路电流。
实际电路中的支路电流计算
总结词
实际应用价值高
详细描述
在实际的电路设计中,支路电流法具有重要的应用价值。通过计算各支路的电 流,可以更好地理解和分析电路的工作原理,为优化电路设计提供依据。
04
支路电流法的扩展与 提高
支路电流法在交流电路中的应用
总结词
适用性、计算精度、应用范围
详细描述
支路电流法在交流电路中具有良好的适用性,尤其适用于分析具有多个电源和复杂电路结构的交流系 统。通过引入复数表示和交流电的特性,可以精确计算各支路电流的大小和相位,从而为交流电路的 分析提供有力支持。
《支路电流法》课件
节点电压和支路电流的关系
根据支路电流法的基本原理,电路中的节点电压可以通过支路电流和电路元件的电阻值来计算。
支路电流表达式推导
支路电流表达式的推导过程可以通过套用基尔霍夫电流定律和欧姆定律来得 到。
电路求解步骤概述
使用支路电流法求解电路问题的基本步骤包括建立方程组、解方程组、计算支路电流和验证结果。
直流电路求解实例
通过具体的直流电路求解实例,展示支路电流法在实际问题中的应用和计算 方法。
交流电路求解的限制
支路电流法在交流电路中的应用受到一些限制,例如复杂的元件较
支路电流法与相量法和相位法是解决交流电路问题的其他方法,比较它们的 优缺点和适用场景。
《支路电流法》PPT课件
这个《支路电流法》的PPT课件将带你全面了解电路分析中的重要方法。通过 简洁明了的内容和精美的图片,让你轻松理解和掌握支路电流法的原理和应 用。
什么是支路电流法
支路电流法是一种电路分析方法,通过在电路中套用基尔霍夫电流定律,利用支路电流的关系来解决复杂电路 问题。
分析原理和基本假设
支路电流法基尔霍夫第一定律
R1
E1 E2
R2
R3
支路电流法
假定各支路电流的方向和回路方向。
R1
E1 E2
R2
R3
支路电流法
用基尔霍夫电流定律列出独立 节点方程
节点a:I1+I2=I3 R1 E1 E2 R2 R3 若节点有 n 个。那么节 点电流方程 的个数应该 为(n-1) 个。
节点b:I3=I1+I2
支路电流法
用基尔霍夫电压定律列出独立回路方程。
R1
E1 E2
R2
R3
-E1+I1R1-I2R2+E2=0 -E1+I1R1-I2R2+E2=0
I3R3-E2+I2R2=0
支路电流法
代入已知数,解联立方程式,求出各 支路的电流。
I1+I2=I3 -E1+I1R1-I2R2+E2=0 I3R3-E2+I2R2=0 I1+I2=I3
-130+I1-0.6I2+117=0
24I3-117+0.6I2=0
I1=10A I2=-5A I3=5A
确定各支路电流的实际方向。当支路电流计算结 果为正值时,其方向和假设方向相同;当支路电流计 算结果为负值时,其方向和假设方向相反。
支路电流法
用支路电流法解题的步骤:
1 2 3 4 5 6
假定各支路电流的方向和回路方向。 用基尔霍夫电流定律列出独立节点方程。 用基尔霍夫电压定律列出独立回路方程 。 代入已知数,解联立方程式,求出各支路的电流。
作业
巩固复习本节课的
知识及内容。 预习下节课的内容,与 支路电流法比较有什么 异同。
支路电流法
支路电流法
例10 b
列3个独立KCL方程
I2
节点a: I3 I4 I1 0
I1
I6
节点b: I1 I6 I2 0
a
R6
c 节点c: I2 I5 I3 0
I3 I4
I5 列3个独立KVL方程(网孔)
d
I1R1 I6 R6 I4 R4 E4
+E3
R3
I2 R2 I5 R5 I6 R6 0 I3 R3 I4 R4 I5 R5 E3 E4
KVL方程:
KCL方程: b
节点a: I1 I2 I3 0 节点b: I1 I2 I3 0
#1: I1R1 I3R3 E1 #2:I2R2 I3R3 E2 #3:I1R1 I2R2 E1 E2
独立方程只有 1 个
独立方程只有 2 个
3
小结
设:电路中有N个节点,B个支路 则: 独立的节点电流方程有 (N -1) 个 独立的回路电压方程有 (B -N+1)个
缺点:电路中支路数多时,所需方程的个 数较多,求解不方便。
手算时,适用于支路数较少的电路。
8
a
N=2、B=3
+ R1
- E1
R2 + R3 E2 _
独立电流方程:1个 独立电压方程:2个
(一般为网孔个数)
b
4
用支路电流法解题步骤
设:电路中有N个节点,B个支路
1. 对每一支路假设一未知电流(I1~IB); 2. 列N-1个节点电流方程; 3. 列 B -(N-1)个回路(取网孔)电压方程; 4. 解联立方程组,得 I1~IB 。
节点数 N=4 支路数 B=6
电压、电流方程联立求得:I1~I6
6
阐述支路电流法解题步骤及注意事项
支路电流法是电路分析中常用的一种方法,它通过将电路中的各支路看作是由电流驱动的电阻网络,从而简化电路分析的过程。
本文将介绍支路电流法的解题步骤及注意事项。
一、支路电流法解题步骤1. 确定支路电流方向:首先需要确定每一条支路的电流方向,可以任意假设一个方向,然后按照这个方向逐个分析各支路。
2. 建立支路电流方程:根据支路电流的方向和电路的拓扑结构,可以建立支路电流方程。
对于每一个节点,应用基尔霍夫电流定律,列出该节点处的电流方程。
3. 解方程求解支路电流:将所有的电流方程组成联立方程组,然后利用线性方程组的解法求解支路电流。
4. 求解其他电路参数:得到每条支路的电流后,可以根据欧姆定律求解电路中的其他参数,如电压和功率等。
二、支路电流法解题注意事项1. 选取合适的支路电流方向:选择合适的支路电流方向至关重要,应尽量选择与被测电压极性一致的电流方向,这样可以简化电路分析的过程。
2. 选取合适的基尔霍夫电流定律方向:在建立支路电流方程时,需要注意选取合适的基尔霍夫电流定律方向,以确保得到正确的电流方程。
3. 注意节点电流的正负表示:在列出节点处的电流方程时,应注意节点电流的正负表示,根据实际电流方向来确定正负号,避免混淆和错误的计算。
4. 检查联立方程组的约束条件:在求解支路电流的联立方程组时,应注意检查联立方程组的约束条件,确保方程组不会出现矛盾或无解的情况。
5. 对结果进行合理性检验:得到支路电流后,应对结果进行合理性检验,可以通过欧姆定律和基尔霍夫电压定律来检查求解的支路电流是否符合电路的实际情况。
通过以上步骤和注意事项,可以有效地应用支路电流法进行电路分析,并得到准确的电路参数。
支路电流法在实际工程中具有广泛的应用价值,熟练掌握支路电流法的解题方法和注意事项,对于电路分析和设计工作都具有重要的意义。
支路电流法是电路分析中常用的一种方法,它通过将电路中的各支路看作是由电流驱动的电阻网络,从而简化电路分析的过程。
支路电流法
D
R2
+ US2
-
选取三个网孔作为独立网孔, 列写KVL方程式:
I1R1 + I4R4 + I5R5 = US1 I2R2 + I6R + I5R56 = US2 I4R4 I6R6 + I3R3 = US3
【例3】US1=130V, US2=117V, R1=1, R2=0.6, R3=24. 求各支路电流。
(2) 选定(n–1)个节点,列写其KCL方程; (3) 选定b–(n–1)个独立回路,列写其KVL方程;(结合元件 特性
代入,将KVL方程中支路电压用支路电流表示)
(4) 求解上述方程,得到b个支路电流;
(5)根据分析要求,以支路电流为基础求取其它电路变量。
四、应用举例Βιβλιοθήκη 【例1】写出支路电流方程。
解:列写独立的KCL方程
i6
R6
n1 : - i1 +i2 +i6 = 0 n2 : -i2 +i3 +i4 = 0
n1 i2 R2 l3
i1
n2
R4 i4
n3 : -i4 +i5 - i6 = 0
R1 l1
+
R3
l2 R 5
列写独立网孔的KVL方程 _ US1
i3
并将VCR代入整理得:
n4
n3 i5
–
并代入(1)中所列的方程,
消去中间变量。
c
解 KCL方程:
-i1- i2+ i3 + i4=0 (1) -i3- i4+ i5 – i6=0 (2)
R4 + u2 –
KVL方程:
i4
3.1 支路电流法
解 (1)求各支路电流 标定各支路电流参考方向如图所示,以节点b 为参考节点,对独立节点a列出KCL方程。选 取两个网孔,以顺时针绕行方向列出3-(2-1) =2个独立的KVL方程,得到
I1 I 2 I 3 0 2 I1 5 I 2 5 0 3 0 0 5 I 1 0I 5 0 0 2 3
3.网孔电流方程 在列写网孔方程时,原则上与支路电流法中列 写KVL方程一样,只是需要用网孔电流表示各 电阻上的电压,且当电阻中同时有几个网孔电 流流过时,应该把各网孔电流引起的电压都计 算进去。通常,选取网孔的绕行方向与网孔电 流的参考方向一致,然后列出网孔方程。
R11im1 R12im2 R13im3 uS11 R21im1 R22im2 R23im3 uS22 R i R i R i u 32 m2 33 m3 S33 31 m1
11 1 1 A 12 12 5 V 24
U 1 I
例2-20 电路如图2-39(a)所示,试用网孔电 流法求网孔电流Ia及Ib。
Ib
6 A 7
解 图2-39(a)所示电路,含有理想电流源和 电阻并联的支路,首先将其化为等效的电压源 和电阻串联的支路,如图2-39(b)所示。 对于1A的理想电流源支路,设支路的端电压 为U,引进辅助方程 Ia I b 1 按照网孔分电流的规则,分别列出网孔a、b 的方程为 3I 6 U
即
I1 I 2 I 3 0 2 I1 5 I 2 2 0 5 I 1 0I 5 0 2 3
解此方程组得பைடு நூலகம்
5 I A 1 8 15 A I2 4 I3 2 5 A 8
支路电流法的步骤
支路电流法的步骤支路电流法是一种电路分析方法,它可以用来计算电路中各个支路的电流。
在电路分析中,支路电流法是一种基本的方法,它可以帮助我们更好地理解电路的工作原理,从而更好地设计和维护电路。
下面,我们将介绍支路电流法的步骤和实现方法。
一、支路电流法的基本原理支路电流法是基于基尔霍夫电流定律和基尔霍夫电压定律的。
基尔霍夫电流定律规定,在任何一个电路中,进入某一节点的电流等于离开该节点的电流之和。
而基尔霍夫电压定律则规定,在任何一个电路中,沿着任意一条闭合回路的总电压等于该回路中各个电阻的电压之和。
基于这两个定律,我们可以得出支路电流法的基本原理:将电路中的各个支路看作一个独立的电路,然后通过基尔霍夫电流定律和基尔霍夫电压定律,求出各个支路的电流和电压,从而得到整个电路的工作情况。
二、支路电流法的步骤1、确定电路中的支路首先,需要将电路中的各个支路分离出来。
支路是电路中的一个分支,由电源、电阻、电容、电感等元器件组成。
在实际的电路中,支路可能非常复杂,需要仔细分析。
2、列出基尔霍夫电流定律方程在支路电流法中,需要列出基尔霍夫电流定律方程。
这个方程是通过对电路中各个节点进行分析得出的。
在列出方程时,需要将电路中各个支路的电流表示出来,然后将它们加起来,得到进入该节点的电流。
3、列出基尔霍夫电压定律方程在列出基尔霍夫电压定律方程时,需要考虑电路中各个支路的电压。
将电路中的各个支路看作一个独立的电路,然后沿着闭合回路计算电压。
在计算电压时,需要考虑电阻、电容、电感等元器件的影响。
4、解方程组通过列出基尔霍夫电流定律方程和基尔霍夫电压定律方程,我们可以得到一个方程组。
这个方程组的解就是各个支路的电流和电压。
通过计算,我们可以得到整个电路的工作情况。
5、检验结果在得到电路的电流和电压后,需要进行检验,确保计算结果正确。
检验的方法包括检查电路中各个节点的电流是否满足基尔霍夫电流定律,以及检查电路中各个回路的电压是否满足基尔霍夫电压定律。
支路电流法
常见的电路分析讲解
常见的电路分析讲解电路中常用电路分析方法主要有支路电流法、回路电流法、节点电压法、电源等效变换法、叠加定理、戴维南定理和诺顿定理等,每种电路分析方法的原理及其适用范围是不同的,本文主要对几种常用电路分析方法的原理、解题步骤和适用范围进行总结与分析。
一支路电流法1、什么是支路电流法以支路电流为未知量、应用基尔霍夫定律(KCL、KVL)列方程组进行求解。
2、支路电流法的解题步骤(1)确定电路中支路、节点、网孔的数目。
其中,支路个数用b表示、节点个数用n表示、网孔个数用m表示;(2)在图中标出各支路电流的参考方向,对选定的回路标出回路循行方向;(3)应用KCL对结点列出(n-1)个独立的节点电流方程;(4)应用KVL对回路列出b-(n-1)个独立的回路电压方程(通常可取网孔列出);(5)联立求解b个方程,求出各支路电流。
3、支路电流法的适用范围如果用手工进行计算时,一般适用于支路个数不大于3的情况下,用手工计算方程组比较方便,如果支路个数大于3的情况下用手工计算就比较麻烦了。
支路个数较多的情况下可以用矩阵结合matlab进行计算。
二节点电压法采用回路电流法。
对于b个支路,n个节点的电路,只需列出[b-(n-1)]个方程,即网孔m个数方程,就可以解出各个支路电流,比支路电流法要方便的多。
但是有时存在这样的电路,即支路较多而节点较少的电路。
如下图电路中,有5条支路,2个节点,若用回路电流法求解,也需列出4个独立方程式,如果采用节点电压法则更加方便求解。
1、什么是节点电压法以基尔霍夫电流定律为基础,先求出各节点与参考点之间的电压,然后运用欧姆定律求出各支路电流的方法。
2、节点电压法计算步骤本文主要讨论两节点电路,节点电压法计算步骤如下。
(1)选定电路中一个节点为参考节点用接地符号表示,另一个节点的节点电位作为电路变量。
(2)列写关于节点电位的节点电压方程,如下式所示。
式中,分子表示电源的电流的代数和,电源电流有两部分构成,一部分是电压源的输出的电流等于电压源的数值除以其串联的电阻;另一部分电流源输出的电流。
电路分析第三章
3.1 支路电流法
支路电流法的一般步骤可归纳如下: (1) 在给定电路图中设定各支路电流的参考方向。 (2) 选择n-1个独立节点,写出n-1个KCL方程。 (3) 选网孔为独立回路,并设定其绕行方向,列写出各网 孔的KVL方程。 (4) 联立求解上述独立方程, 得出各支路电流。
3.1 支路电流法
-
假定各电阻和电源电压值均为已知,求各支路电流。该电路 共有四个节点,六条支路, 三个网孔,七个回路。
3.1 支路电流法
根据KCL,可对四个节点列出四个KCL方程:
I I I 0 2 3 6 节点b: I I I 0 5 6 节点c: 4 节点d: I1 I 3 I 4 0
设各支路电流的参考方向如图所示:
I1 I I
I 2 I II I I I 3 I III I I I 4 I II I 5 I III I 6 I II I III
3.2 网孔电流法
必须指出: (1)设想的网孔电流只是一种计算手段。实际上在一条支路中并 不能观察到两个网孔电流,客观存在的仍是一个合成的支路电 流。 (2) 设想的网孔电流并不违背KCL定律,因为网孔电流沿着闭 合路径流动,当它流经某一个节点时,必然是从该节点流入, 又从该节点流出。因此,它们能自动地服从KCL定律。 (3) 各网孔电流之间相互独立,不受KCL约束,也不能互求, 因此网孔电流变量具有独立性,可作为电路分析的变量。
3.2 网孔电流法
(1) 按图所示电路中设定的各回路电流方向, 则有
R22=1+2+1=4Ω
I2 1 + 10V IⅠ - 1 I3 IⅡ 1 1A I4 I6 2 IⅢ I5 2
电路第3章支路电流法
无并联电阻的电流源 称为无伴电流源
(因为此支路电压无法用支路电流表示)
例
电路
求各支路电流及各元件上的电压 解: (1) 选支路电流为变量(I1,I2,I3) (2)列独立的节点KCL方程
I1 I 2 I 3 0节点 a
(3)列独立的网孔KVL方程 (4)解支路电流
5I1 20 I 3 20网孔 1 10 I 2 20 I 3 10网孔 2
电路 2、支路电流法步骤
(1)确定变量 ik (b个),确定 ik 参考方向;
(2)列独立的结点KCL方程(n-1个); (3)列独立的回路KVL方程(b-n+1个); (4)求解方程,求出支路电流; (5)依据支路约束关系,求解支路电压; (6)求解其他变量。
3、支路电流法的局限性
不能解决无伴电流源的情况
1I1 0.5I 3 0.1I 2 1 网孔 1 0.5I 3 1I 5 2 网孔 2 0.1I 1I U 网孔 3 2 5 ad
电路
讨论
(a)对电流源,因其电流为 常数,与电压无关,在 列网孔3的KVL方程时, 无法用I4 表示Uad (b)对含无伴电流源的电路,列支路电流方程时,可增加一个变量: 该电流源上的电压。 (c)因该支路电流为已知,由此条件,应补充一个方程 I支路=Is, 使变量数与方程数一致。 (d)在实际例子中,由于I4已知,支路电流的实际变量少一个,所 以也可不列网孔3的KVL方程。这样就不会出现变量Uad,仍 可保证变量数与方程数一致。
电路 例
求:各支路电流及电压? 1
要点:电流源的处理
解: 3
2
(1) 选支路电流为变量 (I1,I2,I3,I4,I5,I6 其中I4=3A已知) (2)列独立的节点KCL方程 (3)列独立的网孔KVL方程
支路电流法
电路中存在两条电流源支路,选取支路1,3为树支,则连支5 的单连支回路电压方程为 I5×R5+I1×R1+I3×R3= US1 代入数据得: -I1-2+I3=0 -I3-4+I5=0 5×I5+I1+3×I3 =1 解得 I1=-3.89A I3=-1.89A I5=2.11A
R1
Us1
①
I3 R3 ② IS2
含受控源电路 例2 已知R1=R3=R4=R6=2 , US4=US6=2V,IS2=1A,g=0.5 , 用回路电流法,求电流I1。
R1
U s6 IS2 I5
R3
U6
R6
g U6
I1 Us4
I4
R4
解:1) 对于含受控源的电路,先把受控源当作独立电源来处理。 该电路包含两个电流源支路(一个独立源和一个受控源), 选择支路3、4、6为树支。
2-2
支路电流法
以支路电流作为未知量,根据KCL和KVL建立电路 方程组,然后求解所列的方程组解出各支路电流, 这种方法称为支路电流法。 电路节点数为n,支路数为b , 为求b个支路电流,必须有b个独立方程。 支路电流法求解的思路:
如图所示电路,设电源 和电阻的参数已知,用支路 电流法求各支路电流。 共有4个节点,6条支路, 1>. 对各支路、节点编号,并选 择各支路电流电压的参考方向。
由上面的六个方程可解出六条支路电流变量,从而 可进一步求相应的电压、功率等。
例1、 图示电路,US1=10V, US3=13V,R1=1 ,R2=3 , R3=2,求各支路电流及电压源 的功率。 解:以支路电流为变量,选定各支 路电流参考方向如图示 节点1: -I1+I2-I3=0 网孔1: I1 ×R1+ I2 ×R2= US1 网孔2: I2 ×R2+ I3×R3=US3 - I1 + I2 - I3 =0 代入 I1 -10+3× I2 =0 3×I2 +2× I3-13=0 数据得:
支路电流法是利用欧姆定律求支路电流的方法
支路电流法是利用欧姆定律求支路电流的方法支路电流法可以说是电路分析的基础,它可以帮助我们把复杂的电路变成一个简单的模型,从而简单的求出电路的电流和电压。
它的基本原理是欧姆定律,即R*I=E,中R为电阻,I为电流,E为电势差。
根据欧姆定律,任意一段电路中,电流和电阻之间的乘积等于电势差。
支路电流法的基本概念有支路、总电路和电源,它们之间的联系可以用支路电流法来进行分析。
首先要选取一条支路,然后使用欧姆定律来计算该支路的电流,这里可以使用电阻的总值来计算。
之后根据总电路的电路结构来计算每个支路的电流,在这里需要分析电路的结构,可以把其中几个不同的支路合并成一个总电路,然后从这个总电路中把各个支路拆分开来。
最后,用电源定义每个支路上的电流和电压,然后把每个支路的电流和电压进行累加,就可以求出总的电流和电压。
支路电流法的优势可以从两个方面来讲。
首先,它可以有效的解决电路中复杂的特性,可以在有限的时间内给出准确的电流和电压结果。
其次,它也是一种迭代式的方法,可以从一个支路求出结果,然后进行下一步分析,有效求出最后的结果。
总而言之,支路电流法是一种可用欧姆定律求支路电流的方法,它可以有效的将复杂的电路分解为简单的电路,从而有效的求出电路的电流和电压。
它的优势在于它可以有效的解决电路中的复杂特性,并且时间短,有效的迭代求得最终结果。
支路电流法
§3.2支路电流法对于一个具有b 条支路和n 个节点的电路,当支路电压和支路电流为电路变量列写方程时,总计有b 2个未知量。
根据KCL 可以列写)1(-n 个独立方程、根据KVL 可以列写)1(+-n b 个独立方程,根据元件的VCR 又可列出b 个方程。
总计方程数为b 2,与未知量数相等。
为了减少求解的方程数,可以利用元件的VCR 将各支路电压以支路电流表示,然后代入KVL 方程,这样,就得到以b 个支路电流为未知量的KCL 方程和KVL 方程。
方程数从b 2减少至b 。
这种方法称为支路电流法。
现以图3-7(a )所示电路为例说明支路电流法。
把电压源1S u 和电阻1R 的串联组合作为一条支路;把电流源5S i 和电阻5R 的并联组合作为一条支路,这样电路的图就如同图(b ),其节点数4=n ,支路数为6=b ,各支路的方向和编号也示于图中。
求解变量为1i 、2i 、…、n i 。
先利用元件的VCR ,将支路电压1u 、2u 、…、n u 以支路1i 、2i 、…、n i 表示。
图3-7(c )(d )给出支路1和支路5的结构,有5SR(a ) (b )u - 5u +-(c ) (d )图3-7 支路电流源⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫=+====+-=666555554443332221111i R u i R i R u i R u i R u i R u i R u u S S (3-1) 对独立节点①、②、③列出KCL 方程,有⎪⎭⎪⎬⎫=-+-=++-=++-000654432621i i i i i i i i i (3-2)选择网孔作为独立回路,按图3-7(b )所示回路绕行方向列出KVL 方程⎪⎭⎪⎬⎫=+--=++-=++000642543321u u u u u u u u u (3-3)将式(3-1)代入(3-3),得03322111=+++-i R i R i R u S055554433=+++-S i R i R i R i R0664422=+--i R i R i R把上式中1S u 和55S i R 项移到方程的右边,有⎪⎭⎪⎬⎫=+---=++-=++0664422555544331332211i R i R i R i R i R i R i R u i R i R i R S S (3-4)式(3-2)和式(3-4)就是以支路电流1i 、2i 、…、n i 为未知量的支路电流法方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、现以图1为例说明支路电流法的解题步骤
任意设置各支路电流的参考方向(一条支路上只有一个电流)和网孔回路的绕行方向(如图1示)。
图1
1)、根据基尔霍夫电流定律(∑I=0)列独立的节点电流方程。
如果电路有2个节点,则只能列出1个独立的方程式。
如果电路有n个节点,则只能列出(n-1)个独立的方程式。
对于图中的节点B,其电流为I1+I2 =I3 (1)
2)、根据基尔霍夫第二定律(∑u=0)列不足的回路电压方程。
上图1中共有三个未知电流,但只能列出1个独立的节点电流方程式,还要再列出两个独立的回路电压方程式,电路才能求解。
为保证回路的独立,每次所取的回路须含有一个新支路(即其他方程式中没有利用过的支路),则此回路电压方程式就是独立的,因此,我们一般选择网孔来列方程。
在列回路电压方程式时,可先标出各元件电阻两端电压的正、负极极性(如图2示)。
在用式∑u=0时,各段电压的正、负号是这样规定的:如果在绕行过程中从元件的正极点到负极点,此项电压便是正的;反之从元件的负极点绕到正极点,此项电压则是负的(简言之,“先遇正得正,先遇负得负”)。
例如图2中的两个网孔,沿图示绕行方向,根据∑u=0,得
R1I1-I2R2+Us2-Us1=0 (2)
I2R2+I3R3=Us2 (3)
1、解联立方程组。
若已知E1,E2,R1,R2,R3,把这些已知数据代入(1)、(2)、(3)式中,得
I1+I2-I3=0 (1)
E1-E2=R1I1-I2R2 (2)
E2=R2I2+R3I3 (3)
I1= I2= I3=
若为正值,电流实际方向与标明的参考方向相同;若为负值,电流的实际方向与标明的参考方向相反。
[例题1] 图所示电路中,已知电阻R1=5Ω,R2=10 Ω,R3=15Ω,E1=180v,E2=80v,求各支路电流
解:
(1) 设各支路电流参考方向、回路绕行方向如上图。
(2)利用KCL对节点A列写电流方程式得:
I1+I2=I3(1)
(3)利用KVL对回路列写电压方程式:
(4)对回路ⅠE1= I1R1+I3R3 (2)
(5)对回路ⅡE2=I2R2+I3R3 (3)
(6)联立方程组,求出各支路电流
I1+I2=I3 (1)
E1=I1R1+I3R3 (2)
E2=I2R2+I3R3(3)
代入参数I1+I2-I3 =0
180=5I1+15I3
80=10I2+15I3
解联立方程可得:I1=12A,I2=-4A,I3=8A 求得结果中I1和I3是正值,说明电流的实际方向与参考方向是一致,I2为负值,说明电流的方向和实际方向是反向的。
课堂巩固:
* 1用支路电流法解复杂直流电路时,应先列出个节点电流方程,然后再列出个回路电压方程(假设电路有B条支路,n个节点,且b>n)。
* 2电路如图所示,(列出用支路电流法求解各支路电流的方程组)已知,电路R1,R2,R3,US1,US2,求根据KCl,KVL定律,列出方程组
课堂小结:1、了解支路电流法解题适用范围2、熟练掌握基尔霍夫定律分析电路的方法3、运用支路电流法来分析基本电路
布置作业
在图6所示的电路中,已知E1=18V,E2=9V,R1=R2=1Ω,R3=4Ω,试用支路电流法求各支
路的电流。