中点坐标、两点距离、直线斜率公式
直线的方程知识点及题型归纳总结

直线的方程知识点及题型归纳总结知识点精讲一、基本概念 斜率与倾斜角我们把直线y kx b =+中k 的系数k (k R ∈)叫做这条直线的斜率,垂直于x 轴的直线,其斜率不存在。
x 轴正方向与直线向上的方向所成的角叫这条直线的倾斜角。
倾斜角[)0,απ∈,规定与x 轴平行或重合的直线的倾斜角为0,倾斜角不是2π的直线的倾斜角的正切值叫该直线的斜率,常用k 表示,即tan k α=。
当0k =时,直线平行于轴或与轴重合;当0k >时,直线的倾斜角为锐角,倾斜角随k 的增大而增大; 当0k <时,直线的倾斜角为钝角,倾斜角k 随的增大而减小; 二、基本公式1. 111222(,),(,)P x y P x y 两点间的距离公式12||PP =2. 111222(,),(,)P x y P x y 的直线斜率公式121212tan (,)2y y k x x x x παα-==≠≠-3.直线方程的几种形式(1)点斜式:直线的斜率k 存在且过00(,)x y ,00()y y k x x -=- 注:①当0k =时,0y y =;②当k 不存在时,0x x = (2)斜截式:直线的斜率k 存在且过(0,)b ,y kx b =+(3)两点式:112121y y x x y y x x --=--,不能表示垂直于坐标轴的直线。
注:211121()()()()x x y y x x y y --=--可表示经过两点1122(,),(,)P x y Q x y 的所有直线 (4)截距式:1x ya b+=不能表示垂直于坐标轴及过原点的直线。
(5)一般式:220(0)Ax By C A B ++=+≠,能表示平面上任何一条直线(其中,向量(,)n A B =是这条直线的一个法向量)题型归纳及思路提示题型1 倾斜角与斜率的计算 思路提示正确理解倾斜角的定义,明确倾斜角的取值范围,熟记斜率公式1212y y k x x -=-,根据该公式求出经过两点的直线斜率,当1212,x x y y =≠时,直线的斜率不存在,倾斜角为90求斜率可用tan (90)k αα=≠,其中α为倾斜角,由此可见倾斜角与斜率相互关联,不可分割。
点差法中点弦斜率公式双曲线

点差法中点弦斜率公式双曲线
点差法中点弦斜率公式是双曲线研究中的一个重要公式。
双曲线是一种非常特殊的图形,其方程形式为x^2/a^2 - y^2/b^2 = 1,其中a和b均为正实数。
为了研究双曲线,可以使用点差法,该方法可以计算出两个点之间的距离和斜率。
其基本思想是通过两个点之间的差值,计算出斜率。
在点差法中,可以使用点(x,y)和点(x+h,y+k)来计算中点弦的斜率,其中h和k分别表示两个点在x和y方向上的差值。
中点的坐标为(x+(x+h))/2,(y+(y+k))/2,即((2x+h)/2,(2y+k)/2),可以通过代入该坐标来计算出中点弦的斜率。
具体公式为:
k = (2ab^2)/(h√(a^2+b^2))
其中,k表示中点弦的斜率,a和b为双曲线的参数,h为两点在x方向上的差值。
通过这个公式,可以计算出双曲线上任意两点之间的中点弦斜率,从而研究双曲线的性质和特点。
- 1 -。
一轮复习:直线的倾斜角、斜率与直线的方程

授课主题直线的倾斜角、斜率与直线的方程教学目标1.在平面直角坐标系中,结合具体图形掌握确定直线位置的几何要素. 2.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.3.掌握确定直线的几何要素,掌握直线方程的三种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系. 4.掌握两点间的距离公式.教学内容1. 平面直角坐标系中的基本公式(1)两点间的距离公式:已知平面直角坐标系中的两点A (x 1,y 1),B (x 2,y 2),则d (A ,B )=x 2-x 12+y 2-y 12.(2)中点公式:已知平面直角坐标系中的两点A (x 1,y 1),B (x 2,y 2),点M (x ,y )是线段AB 的中点,则x =x 1+x 22,y =y 1+y 22.2. 直线的倾斜角(1)定义:x 轴正向与直线向上的方向所成的角叫做这条直线的倾斜角,规定与x 轴平行或重合的直线的倾斜角为零度角.(2)倾斜角的范围:[0°,180°). 3. 直线的斜率(1)定义:直线y =kx +b 中的系数k 叫做这条直线的斜率,垂直于x 轴的直线斜率不存在;(2)计算公式:若由A (x 1,y 1),B (x 2,y 2)确定的直线不垂直于x 轴,则k =y 2-y 1x 2-x 1 (x 1≠x 2).若直线的倾斜角为θ (θ≠π2),则k =tan_θ.4. 直线方程的形式及适用条件名称 几何条件 方程 局限性 点斜式过点(x 0,y 0),斜率为ky -y 0=k (x -x 0)不含垂直于x 轴的直线斜截式斜率为k ,纵截距为by =kx +b不含垂直于x 轴的直线两点式过两点(x 1,y 1),(x 2,y 2),(x 1≠x 2,y 1≠y 2) y -y 1y 2-y 1=x -x 1x 2-x 1 (x 2≠x 1,y 2≠y 1) 不包括垂直于坐标轴的直线 截距式在x 轴、y 轴上的截距分别为a ,b (a ,b ≠0)x a +y b =1 不包括垂直于坐标轴和过原点的直线 一般式Ax +By +C =0平面直角坐标系内的直线都适用题型一 直线的倾斜角与斜率例1、直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________.方法点拨:数形结合,由斜率公式求得k P A ,k PB . 答案 (-∞,-3]∪[1,+∞) 解析 如图,∵k AP =1-02-1=1, k BP =3-00-1=-3,∴k ∈(-∞,-3]∪[1,+∞). 方法技巧求直线倾斜角与斜率问题的求解策略1.求直线倾斜角或斜率的取值范围时,常借助正切函数y =tan x 在[0,π)上的单调性求解,这里特别要注意,当α∈⎣⎡⎭⎫0,π2时,斜率k ∈[0,+∞);当α=π2时,斜率不存在;当α∈⎝⎛⎭⎫π2,π时,斜率k ∈(-∞,0). 2.先画出满足条件的图形,找到直线所过的点,然后求定点与端点决定的直线的斜率.见典例.【冲关针对训练】已知线段PQ 两端点的坐标分别为P (-1,1)和Q (2,2),若直线l :x +my +m =0与线段PQ 有交点,则实数m 的取值范围是________.答案 -23≤m ≤12解析 如图所示,直线l :x +my +m =0过定点A (0,-1),当m ≠0时,k QA =32,k P A =-2,k l =-1m ,∴-1m ≤-2或-1m ≥32,解得0<m ≤12或-23≤m <0;当m =0时,直线l 的方程为x =0,与线段PQ 有交点. ∴实数m 的取值范围为-23≤m ≤12.题型二 直线方程的求法又∵2a +1b ≥22ab ⇒12ab ≥4,当且仅当2a =1b =12,即a =4,b =2时,△AOB 面积S =12ab 有最小值为4. 此时,直线l 的方程是x 4+y2=1,即x +2y -4=0.(2)设所求直线l 的方程为y -1=k (x -2). 则可得A ⎝⎛⎭⎫2k -1k ,0,B (0,1-2k )(k <0),∴截距之和为2k -1k +1-2k =3-2k -1k ≥3+2(-2k )·⎝⎛⎭⎫-1k =3+2 2. 此时-2k =-1k ⇒k =-22.故截距之和最小值为3+22,此时l 的方程为y -1=-22(x -2),即x +2y -2-2=0. 方法技巧与直线方程有关问题的常见类型及解题策略1.求解与直线方程有关的最值问题,先设出直线方程,建立目标函数,再利用基本不等式求解最值或用函数的单调性解决.2.求参数值或范围.注意点在直线上,则点的坐标适合直线的方程,再结合函数的单调性或基本不等式求解. 【冲关针对训练】已知直线l 过点M (1,1),且与x 轴,y 轴的正半轴分别相交于A ,B 两点,O 为坐标原点.求:(1)当|OA |+|OB |取得最小值时,直线l 的方程; (2)当|MA |2+|MB |2取得最小值时,直线l 的方程. 解 (1)设A (a,0),B (0,b )(a >0,b >0). 设直线l 的方程为x a +y b =1,则1a +1b=1,所以|OA |+|OB |=a +b =(a +b )⎝⎛⎭⎫1a +1b =2+a b +ba≥2+2a b ·ba=4, 当且仅当“a =b =2”时取等号,此时直线l 的方程为x +y -2=0. (2)设直线l 的斜率为k ,则k <0, 直线l 的方程为y -1=k (x -1), 则A ⎝⎛⎭⎫1-1k ,0,B (0,1-k ), 所以|MA |2+|MB |2=⎝⎛⎭⎫1-1+1k 2+12+12+(1-1+k )2=2+k 2+1k2≥2+2k 2·1k2=4. 当且仅当k 2=1k2,即k =-1时取等号,此时直线l 的方程为y -1=-(x -1),即x +y -2=0.1.(2017·大庆模拟)两直线x m -y n =a 与x n -ym=a (其中a 是不为零的常数)的图象可能是( )答案 B解析 直线方程x m -y n =a 可化为y =n m x -na ,直线x n -y m =a 可化为y =mn x -ma ,由此可知两条直线的斜率同号.故选B.2.(2017·豫南九校联考)若θ是直线l 的倾斜角,且sin θ+cos θ=55,则l 的斜率为( ) A .-12B .-12或-2C.12或2 D .-2答案 D解析 ∵sin θ+cos θ=55,① ∴(sin θ+cos θ)2=1+sin2θ=15,∴2sin θcos θ=-45,∴(sin θ-cos θ)2=95,易知sin θ>0,cos θ<0, ∴sin θ-cos θ=355,②由①②解得⎩⎨⎧sin θ=255,cos θ=-55,∴tan θ=-2,即l 的斜率为-2,故选D.3.(2018·江西南昌模拟)已知过定点P (2,0)的直线l 与曲线y =2-x 2相交于A ,B 两点,O 为坐标原点,当△AOB 的面积取到最大值时,直线l 的倾斜角为( )A .150°B .135°C .120°D .105°答案 A解析 由y =2-x 2得x 2+y 2=2(y ≥0),它表示以原点O 为圆心,2为半径的圆的一部分,如图所示. 由题意知直线l 的斜率存在,设过点P (2,0)的直线l 的方程为y =k (x -2),则圆心到此直线的距离d =|2k |1+k 2,弦长|AB |=22-⎝ ⎛⎭⎪⎫|2k |1+k 22=22-2k 21+k 2,所以S △AOB=12×|2k |1+k 2×22-2k 21+k 2≤(2k )2+2-2k 22(1+k 2)=1,当且仅当(2k )2=2-2k 2,即k 2=13时等号成立,结合图可知k =-33⎝⎛⎭⎫k =33舍去,故所求直线l 的倾斜角为150°.故选A.4.(2014·四川高考)设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |·|PB |的最大值是________.答案 5解析 易知A (0,0),B (1,3),且P A ⊥PB ,∴|P A |2+|PB |2=|AB |2=10,∴|P A |·|PB |≤|P A |2+|PB |22=5(当且仅当|P A |=|PB |=5时取“=”).一、选择题1.(2018·朝阳模拟)直线x +3y +1=0的倾斜角为( )A.π6 B.π3 C.2π3 D.5π6答案 D解析 直线斜率为-33,即tan α=-33,0≤α<π,∴α=5π6,故选D. 2.(2017·正定质检)直线x cos140°+y sin40°+1=0的倾斜角是( )A .40°B .50°C .130°D .140°答案 B解析 将直线x cos140°+y sin40°+1=0化成x cos40°-y sin40°-1=0,其斜率为k =cos40°sin40°=tan50°,倾斜角为50°.故选B.3.(2018·哈尔滨模拟)函数y =a sin x -b cos x 的一条对称轴为x =π4,则直线l :ax -by +c =0的倾斜角为( )A.π4B.π3 C.2π3 D.3π4答案 DA .1B .2C .4D .8答案 C解析 ∵直线ax +by =ab (a >0,b >0)过点(1,1),∴a +b =ab ,即1a +1b =1,∴a +b =(a +b )⎝⎛⎭⎫1a +1b =2+b a +ab ≥2+2b a ·ab=4,当且仅当a =b =2时上式等号成立.∴直线在x 轴,y 轴上的截距之和的最小值为4.故选C. 9.(2017·烟台期末)直线mx +n2y -1=0在y 轴上的截距是-1,且它的倾斜角是直线3x -y -33=0的倾斜角的2倍,则( )A .m =-3,n =-2B .m =3,n =2C .m =3,n =-2D .m =-3,n =2答案 A解析 根据题意,设直线mx +n2y -1=0为直线l ,另一直线的方程为3x -y -33=0, 变形可得y =3(x -3),其斜率k =3,则其倾斜角为60°,而直线l 的倾斜角是直线3x -y -33=0的倾斜角的2倍,则直线l 的倾斜角为120°,且斜率k =tan120°=-3,又由l 在y 轴上的截距是-1, 则其方程为y =-3x -1;又由其一般式方程为mx +n2y -1=0,分析可得m =-3,n =-2.故选A.10.若点(m ,n )在直线4x +3y -10=0上,则m 2+n 2的最小值是( )A .2B .2 2C .4D .2 3答案 C解析 因为点(m ,n )在直线4x +3y -10=0上,所以4m +3n -10=0. 欲求m 2+n 2的最小值可先求(m -0)2+(n -0)2的最小值.而(m -0)2+(n -0)2表示4m +3n -10=0上的点(m ,n )到原点的距离,如图.当过原点和点(m ,n )的直线与直线4m +3n -10=0垂直时,原点到点(m ,n )的距离最小,最小值为2. 故m 2+n 2的最小值为4.故选C. 二、填空题11.已知P (-3,2),Q (3,4)及直线ax +y +3=0.若沿PQ →的方向延长线段PQ 与直线有交点(不含Q 点),则a 的取值范围是________.答案 ⎝⎛⎭⎫-73,-13解析 直线l :ax +y +3=0是过点A (0,-3)的直线系,斜率为参变数-a ,易知PQ ,QA ,l 的斜率分别为:k PQ=13,k AQ =73,k l =-a .若l 与PQ 延长线相交,由图可知k PQ <k l <k AQ ,解得-73<a <-13. 12.(2018·石家庄期末)一直线过点A (-3,4),且在两轴上的截距之和为12,则此直线方程是________.答案 x +3y -9=0或y =4x +16解析 设横截距为a ,则纵截距为12-a ,直线方程为x a +y 12-a =1,把A (-3,4)代入,得-3a +412-a =1,解得a =-4,a =9.a =9时,直线方程为x 9+y3=1,整理可得x +3y -9=0.a =-4时,直线方程为x -4+y16=1,整理可得4x -y +16=0.综上所述,此直线方程是x +3y -9=0或4x -y +16=0.13.过直线l :y =x 上的点P (2,2)作直线m ,若直线l ,m 与x 轴围成的三角形的面积为2,则直线m 的方程为________.答案 x -2y +2=0或x =2解析 ①若直线m 的斜率不存在,则直线m 的方程为x =2,直线m ,直线l 和x 轴围成的三角形面积为2,符合题意;②若直线m 的斜率k =0,则直线m 与x 轴没有交点,不符合题意;③若直线m 的斜率k ≠0,设其方程为y -2=k (x -2),令y =0,得x =2-2k ,依题意有12×⎪⎪⎪⎪2-2k ×2=2,即⎪⎪⎪⎪1-1k =1,解得k =12,所以直线m 的方程为y -2=12(x -2),即x -2y +2=0.综上知,直线m 的方程为x -2y +2=0或x =2. 14.在下列叙述中:1112 ∴无论k 取何值,直线总经过定点(-2,1).(2)由方程知,当k ≠0时,直线在x 轴上的截距为-1+2k k,在y 轴上的截距为1+2k ,要使直线不经过第四象限,则必须有⎩⎪⎨⎪⎧ -1+2k k ≤-2,1+2k ≥1,解得k >0;当k =0时,直线为y =1,符合题意,故k 的取值范围为[0,+∞). (3)由题意可知k ≠0,再由l 的方程,得A ⎝⎛⎭⎫-1+2k k ,0,B (0,1+2k ). 依题意得⎩⎪⎨⎪⎧-1+2k k <0,1+2k >0,解得k >0. ∵S =12·|OA |·|OB |=12·⎪⎪⎪⎪1+2k k ·|1+2k |=12·(1+2k )2k =12⎝⎛⎭⎫4k +1k +4≥12×(2×2+4)=4, “=”成立的条件是k >0且4k =1k ,即k =12, ∴S min =4,此时直线l 的方程为x -2y +4=0.方法与技巧1. 要正确理解倾斜角的定义,明确倾斜角的取值范围,熟记斜率公式:k =y 2-y 1x 2-x 1,该公式与两点顺序无关,已知两点坐标(x 1≠x 2)时,根据该公式可求出经过两点的直线的斜率.当x 1=x 2,y 1≠y 2时,直线的斜率不存在,此时直线的倾斜角为90°.2. 求斜率可用k =tan α(α≠90°),其中α为倾斜角,由此可见倾斜角与斜率相互联系不可分割,牢记:“斜率变化分两段,90°是分界,遇到斜率要谨记,存在与否需讨论”.3. 求直线方程中一种重要的方法就是先设直线方程,再求直线方程中的系数,这种方法叫待定系数法. 失误与防范1. 求直线方程时要注意判断直线斜率是否存在;每条直线都有倾斜角,但不一定每条直线都存在斜率.2. 根据斜率求倾斜角,一是要注意倾斜角的范围;二是要考虑正切函数的单调性.3. 利用一般式方程Ax +By +C =0求它的方向向量为(-B ,A )不可记错,但同时注意方向向量是不唯一的.1. 如图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2 答案 D 解析 直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角,且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2,故选D.13。
坐标法、直线的倾斜角与斜率

何?
解
-1-2
(1)由题意知 +1-3 =1,解得
m=2.
即当 m=2 时,直线 l 的斜率是 1.
(2)由题意知 m+1=3m,解得
1
m= .即当
2
1
m= 时,直线
2
l 的倾斜角为 90°.
解题心得求斜率时要注意斜率公式的适用范围,若给出直线上两个点的坐
标,首先要观察横坐标是否相同,若相同,则斜率不存在;若不相同,则可使用
时,倾斜角为90°.②注意直线倾斜角的取值范围是0°≤α<180°.
对点训练3已知直线l1的倾斜角为α1=15°,直线
l1与l2的交点为A,直线l1和l2向上的方向之间所
成的角为120°,如图所示,则直线l2的倾斜角
为
.
答案 135°
解析 ∵直线l1与l2向上的方向之间所成的角为120°,l2与x轴交于点B,
1
1
2
2
线l的一个方向向量.
6.直线的法向量
一般地,如果表示非零向量v的有向线段所在直线与直线l垂直,则称向量v
为直线l的一个法向量,记作v⊥l.
【考点自诊】
1.判断下列结论是否正确,正确的画“√”,错误的画“×”.
(1)倾斜角是描述直线的倾斜程度的唯一方法.( × )
(2)任何一条直线有且只有一个斜率和它对应.( × )
.
4.直线的斜率
(1)一般地,如果直线l的倾斜角为θ,则当θ≠90°时,称
率;当
k=tan θ 为直线l的斜
时,称直线l的斜率不存在.
θ=90°
(2)若A(x1,y1),B(x2,y2)是直线l上两个不同的点,则当 x1≠x2
直线的点斜式方程、直线的两点式方程】

3.2 直线的方程 3.2.1 直线的点斜式方程 3.2.2 直线的两点式方程一、直线的点斜式方程 1.直线的点斜式方程的定义已知直线l 经过点000(,)P x y ,且斜率为k ,则直线l 的方程为这个方程是由直线上一定点及其斜率确定的,因此称为直线的 ,简称当直线l 的倾斜角为0°时(如图1),tan 00=,即k =0,这时直线l 与x 轴平行或重合,l 的方程就是00y y -=,或0y y =.当直线l 的倾斜角为90°时(如图2),直线没有斜率,这时直线l 与y 轴平行或重合,它的方程不能用点斜式表示.因为这时l 上每一点的横坐标都等于0x ,所以它的方程是00x x -=,或0x x =.深度剖析(1)当直线的斜率存在时,才能用直线的点斜式方程.(2)当k 取任意实数时,方程00()y y k x x -=-表示过定点00(,)x y 的无数条直线.2.直线的点斜式方程的推导如图,设点(,)P x y 是直线l 上不同于点000(,)P x y 的任意一点,根据经过两点的直线的斜率公式得y y k x x -=- (1),即00()y y k x x -=-(2).注意方程(1)与方程(2)的差异:点0P 的坐标不满足方程(1),但满足方程(2),因此,点0P 不在方程(1)表示的图形上,而在方程(2)表示的图形上,方程(1)不能称为直线l 的方程.上述过程可以证明直线上每个点的坐标都是方程(2)的解.对上面的过程逆推,可以证明以方程(2)的解为坐标的点都在直线l 上,所以这个方程就是过点0P ,斜率为k 的直线l 的方程. 二、直线的斜截式方程 1.直线的斜截式方程的定义我们把直线l 与y 轴交点(0,)b 的纵坐标b 叫做直线l 在y 轴上的如果直线l 的斜率为k ,且在y 轴上的截距为b ,则方程为(0)y b k x -=-,即 叫做直线的 ,简称当b =0时,y kx =表示过原点的直线;当k =0且b ≠0时,y b =表示与x 轴平行的直线;当k =0且b =0时,0y =表示与x 轴重合的直线.深度剖析(1)纵截距不是距离,它是直线与y 轴交点的纵坐标,所以可取一切实数,即可为正数、零或负数. 纵截距也可能不存在,比如当直线与y 轴平行时.(2)由于有些直线没有斜率,即有些直线在y 轴上没有截距,所以并非所有直线都可以用斜截式表示.2.直线的斜截式方程的推导已知直线l 在y 轴上的截距为b ,斜率为k ,求直线l 的方程.这个问题相当于给出了直线上一点(0,)b及直线的斜率k ,求直线的方程,是点斜式方程的一种特殊情况,代入点斜式方程可得(0)y b k x -=-,即y kx b =+. 三、直线的两点式方程 1.直线的两点式方程的定义已知直线l 过两点111222(,),(,)P x y P x y ,当1212,x x y y ≠≠时,直线l 的方程为 .这个方程是由直线l 上的两点确定的,因此称为直线的两点式方程,简称两点式. 2.直线的两点式方程的推导已知直线l 过两点111222(,),(,)P x y P x y (其中1212,x x y y ≠≠),此时直线的位置是确定的,也就是直线的方程是可求的当12x x ≠时,所求直线的斜率2121y y k x x -=-任取12,P P 中的一点,例如取111(,)P x y ,由点斜式方程,得211121()y y y y x x x x --=--当12y y ≠时,可写为112121y y x x y y x x --=--.四、直线的截距式方程1.直线的截距式方程的定义已知直线l 过点(,0)A a ,(0,)B b (0,0a b ≠≠),则由直线的两点式方程可以得到直线l 的方程为 ___________.我们把直线l 与x 轴的交点的横坐标a 叫做直线在x 轴上的_____________,此时直线在y 轴上的截距是 ___________.这个方程由直线l 在两个坐标轴上的截距a 和b 确定,因此叫做直线的截距式方程,简称截距式. 2.直线的截距式方程的推导已知直线l 与x 轴的交点为(,0)A a ,与y 轴的交点为(0,)B b ,如图,其中0,0a b ≠≠.将两点(,0)A a ,(0,)B b 的坐标代入两点式,得000y x a b a --=--,即1x ya b+=. 五、中点坐标公式若点12,P P 的坐标分别为1122(,),(,)x y x y ,且线段12P P 的中点M 的坐标为(,)x y ,则____________________x y =⎧⎨=⎩.此公式为线段12P P 的中点坐标公式. 六、直线系方程 1.过定点的直线系方程当直线过定点000(,)P x y 时,我们可设直线方程为00()y y k x x -=-.由此方程可知,k 取不同的值时,它就表示不同的直线,且每一条直线都经过定点000(,)P x y ,当k 取遍所允许的每一个值后,这个方程就表示经过定点0P 的许多直线,所以把这个方程叫做过定点0P 的直线系方程由于过点000(,)P x y 与x 轴垂直的直线不能被00()y y k x x -=-表示,因此直线系00()y y k x x -=- (k ∈R )中没有直线0x x =. 2.平行直线系方程在斜截式方程(0)y kx b k =+≠中,若k 一定,而b 可变动,方程表示斜率为k 的一束平行线,这些直线构成的集合我们称之为平行直线系.K 知识参考答案:一、00()y y k x x -=- 点斜式方程 点斜式 二、截距 y kx b =+ 斜截式方程 斜截式三、112121y y x x y y x x --=--四、1x ya b+= 截距 b 五、122x x + 122y y +K —重点直线的点斜式、斜截式、两点式、截距式方程,根据直线方程判定两直线的平行与垂直K —难点直线系问题、直线方程的综合应用K —易错忽略直线重合的情形或直线方程成立的条件致错、忽略直线方程的局限性致错1.直线的点斜式方程用点斜式求直线的方程,确定直线的斜率和其上一个点的坐标后即可求解. 【例1】已知点(3,3)A 和直线l :3542y x =-.求: (1)过点A 且与直线l 平行的直线方程; (2)过点A 且与直线l 垂直的直线方程.【例2】已知在第一象限的△ABC 中,A (1,1),B (5,1),且∠CAB =60°,∠CBA =45°,求边AB ,AC 和BC 所在直线的点斜式方程.【解析】由A (1,1),B (5,1)可知边AB 所在直线的斜率为0,故边AB 所在直线的方程为y -1=0.由AB ∥x 轴,且△ABC 在第一象限,知边AC 所在直线的斜率k AC =tan 60°=,边BC 所在直线的斜率k BC =tan(180°-45°)=-1,所以,边AC 所在直线的方程为y -1=(x -1),边BC 所在直线的方程为y -1=-(x -5).2.直线的斜截式方程根据斜率和截距的几何意义判断k ,b 的正负时,(1)0k >直线呈上升趋势;0k <直线呈下降趋势;0k =直线呈水平状态.(2)0b >直线与y 轴的交点在x 轴上方;0b <直线与y 轴的交点在x 轴下方;0b =直线过原点. 【例3】已知直线l 与直线y =-2x+3的斜率相同,且在y 轴上的截距为5,求直线l 的斜截式方程,并画出图形.【解析】因为直线l 与直线y =-2x+3的斜率相同,所以直线l 的斜率为-2. 又直线l 在y 轴上的截距为5,所以直线l 的斜截式方程为y =-2x+5. 在直线l 上取一点(1,3),作出图形如图所示.【名师点评】直线的斜截式方程是点斜式方程的特殊情形. 【例4】已知直线l 的斜率为16,且和两坐标轴围成的三角形的面积为3,求直线l 的方程.3.直线的两点式方程已知直线上两点的坐标求解直线方程,可直接将两点的坐标代入直线的两点式方程,化简即得.代入点的坐标时注意横纵坐标的对应关系.若点的坐标中含有参数,需注意当直线平行于坐标轴或与坐标轴重合时,不能用两点式求解.【例5】已知三角形的三个顶点Α(-4,0),B (0,-3),C (-2,1),求: (1)BC 边所在的直线的方程; (2)BC 边上中线所在的直线的方程.4.直线的截距式方程(1)由已知条件确定横、纵截距.(2)若两截距为零,则直线过原点,直接写出方程即可;若两截距不为零,则代入公式1x ya b+=中,可得所求的直线方程.(3)如果题目中出现直线在两坐标轴上的截距相等、截距互为相反数或在一坐标轴上的截距是另一坐标轴上的截距的多少倍等条件时,采用截距式求直线方程时一定要注意考虑“零截距”的情况. 【例6】已知直线过点,且在两坐标轴上的截距之和为12,求直线的方程.【解析】设直线的方程为1x ya b+=,则,①又直线过点,∴341a b-+=,② 由①②得93a b =⎧⎨=⎩或416a b =-⎧⎨=⎩. ∴直线的方程为193x y +=或1416x y+=-,即或.5.中点坐标公式的应用(1)利用中点坐标公式可求以任意已知两点为端点的线段的中点坐标.(2)从中点坐标公式可以看出线段12P P 中点的横坐标只与12,P P 的横坐标有关,中点的纵坐标只与12,P P 的纵坐标有关.【例7】已知7(3,),(1,2),(3,1)2M A B ,则过点M 和线段AB 的中点的直线方程为 A .425x y += B .425x y -= C .25x y += D .25x y -=【答案】B【解析】由题意可知线段AB 的中点坐标为1321(,)22++,即3(2,)2.故所求直线方程为732372322y x --=--,整理,得4250x y --=,故选B. 6.直线过定点问题本题考查了直线过定点的问题,实际上就是考查直线方程的点斜式,同时要利用数形结合的思想解题. 若直线存在斜率,则可以把直线方程化为点斜式00()y y k x x -=-的形式,无论直线的斜率k 取何值时,直线都过定点00(,)x y .【例8】已知直线:21l y kx k =++. (1)求证:直线l 过一个定点;(2)当33x -<<时,直线上的点都在x 轴上方,求实数k 的取值范围.【解析】(1)由21y kx k =++,得1(2)y k x -=+.由直线方程的点斜式可知,直线过定点(2,1)-. (2)设函数()21f x kx k =++,显然其图象是一条直线(如图),若使33x -<<时,直线上的点都在x 轴上方,需满足(3)0(3)0f f -≥⎧⎨≥⎩,即32103210k k k k -++≥⎧⎨++≥⎩,解得115k -≤≤. 所以实数k 的取值范围是115k -≤≤.7.直线的平移规律直线y kx b =+上下(或沿y 轴)平移(0)m m >个单位长度,得y kx b m =+±(上加下减);直线y kx b =+左右(或沿x 轴)平移(0)m m >个单位长度,得()y k x m b =±+(左加右减).【例9】已知直线1:23l y x =-,将直线1l 向上平移2个单位长度,再向左平移4个单位长度得到直线2l ,则直线2l 的方程为 . 【答案】27y x =+【解析】根据直线的平移规律,可得直线2l 的方程为2(4)32y x =+-+,即27y x =+. 8.点斜式和斜截式的实际应用由直线的斜截式方程与一次函数的表达式的关系,利用一次函数的图象和性质求出直线方程,可以解决实际问题.9.忽略了直线重合的情形致错【例11】已知直线12:60,:(2)320l x my l m x y m ++=-++=,当12l l ∥时,求m 的值【错解】∵2l 的斜率223m k -=-,12l l ∥,∴1l 的斜率1k 也一定存在, 由1l 的方程得11k m =-,由12k k =,得213m m--=-解得3m =或1m =-∴m 的值为3或1-【错因分析】忽略了直线重合的情况,从而导致错误.【误区警示】当两直线的斜率存在时,两直线平行的等价条件是斜率相等且纵截距不相等,做题时容易忽略纵截距不相等,从而导致错解10.忽略直线方程的局限性致错【例12】求经过点(2,3)P ,并且在两坐标轴上截距相等的直线l 的方程. 【错解】设直线方程为1x y a a +=,将2,3x y ==代入,得231a a+=,解得5a =. 故所求的直线方程为50x y +-=.【错因分析】截距相等包含两层含义,一是截距不为0时的相等,二是截距为0时的相等,而后者常常被忽略,导致漏解.【正解】(1)当截距为0时,直线l 过点(0,0),(2,3), ∵直线l 的斜率为303202k -==-, ∴直线l 的方程为32y x =,即320x y -=. (2)当截距不为0时,可设直线l 的方程为1x ya a+=,∵直线l 过点(2,3)P ,∴231a a+=,∴5a =, ∴直线l 的方程为50x y +-=.综上,直线l 的方程为320x y -=或50x y +-=.【误区警示】不同形式的方程均有其适用条件,在解题时应注意截距式方程的应用前提是截距均不为0且不垂直于坐标轴.1.经过点(-2,2),倾斜角是60°的直线方程是 A .y +2=33(x -2) B .y -2=3(x +2)C .y -2=33(x +2) D .y +2=3(x -2)2.直线的方程00()y y k x x --= A .可以表示任何直线 B .不能表示过原点的直线 C .不能表示与y 轴垂直的直线 D .不能表示与x 轴垂直的直线 3.直线1x ya b+=过一、二、三象限,则 A .a >0,b >0 B .a >0,b <0 C .a <0,b >0 D .a <0,b <04.直线1y ax a=-的图象可能是5.与直线21y x =+垂直,且在y 轴上的截距为4的直线的斜截式方程是 A .142y x =+ B .y =2x +4 C .y =−2x +4D .142y x =-+ 6.在y 轴上的截距是-3,且经过A (2,-1),B (6,1)中点的直线方程为 A .143x y+= B .143x y-= C .134x y+= D .136x y-= 7.已知直线l 1过点P (2,1)且与直线l 2:y =x +1垂直,则l 1的点斜式方程为 . 8.直线32()y ax a a =-+∈R 必过定点 . 9.斜率与直线32y x =的斜率相等,且过点(4,3)-的直线的斜截式方程是 . 10.已知△ABC 中,A (1,-4),B (6,6),C (-2,0),则△ABC 中平行于BC 边的中位线所在直线的两点式方程是 .11.写出下列直线的点斜式方程:(1)经过点A (2,5),且与直线y =2x+7平行; (2)经过点C (-1,-1),且与x 轴平行.12.已知直线l 的斜率与直线326x y -=的斜率相等,且直线l 在x 轴上的截距比在y 轴上的截距大1,求直线l 的斜截式方程. 13.已知的顶点是,,.直线平行于,且分别交边、于、,的面积是面积的14.(1)求点、的坐标; (2)求直线的方程.14.两直线1x y m n -=与1x yn m-=的图象可能是图中的A B C D15.若直线l 1:y =k (x-4)与直线l 2关于点(2,1)对称,则直线l 2过定点A .(0,4)B .(0,2)C .(-2,4)D .(4,-2)16.若三点()()()2,2,,,0)0,0(A B a C b ab ≠共线,则11a b+= . 17.已知直线l 过定点A (−2,3),且与两坐标轴围成的三角形面积为4,求直线l 的方程.1 2 3 4 5 6 14 15 BDCBDBBB1.【答案】B【解析】k =tan60°=3,则点斜式方程为y -2=3(x +2).5.【答案】D【解析】因为所求直线与y =2x +1垂直,所以设直线方程为12y x b =-+.又因为直线在y 轴上的截距为4,所以直线的方程为142y x =-+. 6.【答案】B【解析】易知A (2,-1),B (6,1)的中点坐标为(4,0),即直线在x 轴上的截距为4,则所求直线的方程为143x y-=. 7.【答案】y -1=-(x -2)【解析】根据题意可知直线l 1的斜率为−1,所以l 1的点斜式方程为y -1=-(x -2). 8.【答案】(3,2)【解析】将直线方程变形为y −2=a (x −3),由直线方程的点斜式可知,直线过定点(3,2).9.【答案】392y x =+ 【解析】因为所求直线的斜率与直线32y x =的斜率相等,所以所求直线的斜率32k =.又直线过点(4,3)-,所以直线方程为33(4)2y x -=+,所以直线的斜截式方程为392y x =+.11.【解析】(1)由题意知,直线的斜率为2,所以其点斜式方程为y-5=2(x-2).(2)由题意知,直线的斜率k =tan 0°=0,所以直线的点斜式方程为y-(-1)=0,即y =-1. 12.【解析】由题意知,直线l 的斜率为32,故可设直线l 的方程为32y x b =+,所以直线l 在x 轴上的截距为23b -,在y 轴上的截距为b ,所以213b b --=,35b =-,所以直线l 的方程为3325y x =-. 13.【解析】(1)因为,且的面积是面积的14,所以、分别是、的中点,由中点坐标公式可得点的坐标为502,⎛⎫ ⎪⎝⎭,点的坐标为722,⎛⎫ ⎪⎝⎭.(2)由两点式方程,可知直线的方程为502752022y x --=--,即.14.【答案】B【解析】由1x y m n -=,得y =n m x -n ;由1x y n m -=,得y =mnx -m ,即两条直线的斜率同号且互为倒数,故选B. 15.【答案】B【解析】因为直线l 1:y =k (x-4)过定点(4,0),所以原问题转化为求(4,0)关于(2,1)的对称点.设直线l 2过定点(x ,y ),则422012x y +⎧=⎪⎪⎨+⎪=⎪⎩,解得x =0,y =2.故直线l 2过定点(0,2).16.【答案】12【解析】易知直线BC 的方程为1x y a b +=,由点A 在直线BC 上,得221a b +=,故1112a b +=.。
平面直角坐标系八大公式

平面直角坐标系八大公式
在平面直角坐标系中,常用的八大公式如下:
1. 距离公式:两点P1(x1, y1)和P2(x2, y2)之间的距离为:d = √((x2 - x1)² + (y2
- y1)²)。
2. 中点公式:两点P1(x1, y1)和P2(x2, y2)的中点坐标为:M((x1 + x2)/2, (y1 +
y2)/2)。
3. 斜率公式:两点P1(x1, y1)和P2(x2, y2)之间的斜率为:m = (y2 - y1)/(x2 - x1),其中x2不等于x1。
4. 判别式公式:对于一次函数的方程y = ax + b,其判别式为:Δ = b² - 4ac,其中a、
b、c为方程的系数。
5. 点到直线的距离公式:对于一条直线的方程Ax + By + C = 0,点P(x0, y0)到该直线
的距离为:d = |Ax0 + By0 + C|/√(A² + B²)。
6. 直线的倾斜角公式:对于一条直线的斜率为m,则该直线与x轴的夹角θ满足:
tan(θ) = m。
7. 两条直线的夹角公式:设两条直线的斜率分别为m1和m2,则两条直线的夹角θ满足:tan(θ) = |(m2 - m1)/(1 + m1m2)|。
8. 直线的方程公式:已知一条直线通过点P(x1, y1)且斜率为m,则该直线的方程为:y
- y1 = m(x - x1)。
以上是平面直角坐标系中常用的八大公式,它们在求解点、直线、距离等问题时非常有用。
点到直线的距离公式

点与直线 直线方程. 教学容:点到直线的距离; 点关于点、关于直线的对称点; 直线关于点、关于直线的对称直线; 直线方程复习;. 知识点:1. 点到直线距离公式及证明关于证明:根据点斜式,直线 PQ 的方程为(不妨设y y 0B BA(xx 0),即 Bx Ay Bx 0 Ay 0 ,解方程组Ax By C 0Bx Ay Bx 0 Ay 0 ,这就是点 Q 的横坐标,又可得A(Ax 0 By 0 C)22ABd (x x 0) 2 (y y 0)2(Ax 0 By 0 C)2A2 B2| Ax 0 By 0 C|22A2B2 。
这就推导得到点 P (x 0,y 0)到直线 l :Ax+By+C=0 的距离公式。
如果 A=0 或B=0 ,上式的距离公式仍然成立。
下面再介绍一种直接用两点间距离公式的推导A ≠ 0)得xB 2x 0 ABy 0A 2B 2AC,x x 022 B x 0 ABy 0AC A x 0 B 2x 0y y 0所以,A(x x 0)B(Ax 0 By 0 A2 B2C)|Ax 0 By 0 C|方法。
设点 Q 的坐标为( x 1, y 1),则Ax 1 By 1 C 0, y 1 y 0 B 1 0B(A ≠0), x 1 x 0 A把方程组作变形,A( x 1 x 0) B(y 1 y 0) (Ax 0 By 0 C),①B(x 1 x 0) A( y 1 y 0) 0 ②把①,②两边分别平方后相加,得( A 2 B 2)(x 1 x 0)2 (B 2 A 2)( y 1 y 0)2 2( Ax 0 By 0 C) ,所以,2( Ax 0 By 0 C) 22 A2 B2所以,d (x 1 x 0 )2 (y 1 y 0)2 |Ax 0 By 0 C|A2 B2此公式还可以用向量的有关知识推导,介绍如下:设P 1(x 1,y 1)、P 2(x 2,y 2)是直线 l 上的任意两点,则Ax 1 By 1 C 0 ③Ax 2 By 2 C 0 ④ 把③、④两式左右两边分别相减,得 A(x 1 x 2) B( y 1 y 2) 0, 由向量的数量积的知识,知n · P 2 P 1 0,这里 n=(A , B )。
直角坐标系中两点之间中点坐标公式

直角坐标系中两点之间中点坐标公式在我们学习数学的过程中,直角坐标系可是个非常重要的“小伙伴”,而其中两点之间中点坐标公式更是我们解决众多数学问题的得力“小助手”。
咱们先来说说直角坐标系是啥。
想象一下,在一张大大的白纸上,画两条互相垂直的线,一条横着,像个安静躺着的“一”,这叫 x 轴;另一条竖着,像个站得笔直的“丨”,这叫 y 轴。
然后这两条线相交的那个点,就像是十字路口的中心,我们叫它原点,坐标就是 (0, 0)。
在这个神奇的直角坐标系里,随便点两个点,比如说 A(x₁, y₁) 和B(x₂, y₂) ,那这两点之间的中点坐标咋算呢?这就轮到我们的中点坐标公式登场啦!中点坐标公式是:((x₁ + x₂)/2, (y₁ + y₂)/2) 。
听起来好像有点抽象?那我给您举个例子。
有一次我去菜市场买菜,我在摊位 A 买了 5 斤苹果,坐标是 (3, 5) ,然后又走到摊位 B 买了 3斤香蕉,坐标是 (7, 9) 。
这时候我就想啊,要是我能找到这两个摊位的中点位置,下次我就可以直接站在那附近,不用来回跑啦。
按照中点坐标公式算一下,中点坐标就是 ((3 + 7)/2, (5 + 9)/2) ,也就是 (5, 7) 。
您看,这是不是一下子就清晰明了啦!再比如说,在我们的日常生活中,规划旅行路线的时候也能用到这个公式。
假设我们要从城市 A(坐标是 (10, 20) )出发去城市 B(坐标是 (40, 60) ),那我们可以先算出这两个城市之间路线的中点位置,提前找好休息站或者补给点。
这样能让我们的旅行更加轻松愉快,少走冤枉路。
回到学习中,很多同学一开始可能觉得这个公式不好记,或者不明白为啥要有这个公式。
其实啊,这就像是我们走路需要一双合脚的鞋子,解决数学问题也需要合适的工具,而中点坐标公式就是这样一个好用的工具。
在做数学题的时候,一旦涉及到求线段的中点,或者判断某个点是不是两个已知点的中点,这个公式就能派上大用场。