两点间距离公式和中点公式

合集下载

两点之间的距离公式及中点坐标公式

两点之间的距离公式及中点坐标公式

y y1 y2 2
二、坐标法——将几何问题转化为代数问
• P71练习A:1-4. 2-1A:1-4.
• 选做:B组题
P72:习题
(0,y) M 2
M
A
A2
x x1 x2 Байду номын сангаасx
y y1 y2 y
(0,y1)
A1 O M1
B1
x
(X1,0) (X,0) (X2,0)
即: x x1 x2 2
y y1 y2 2
这就是线段中点坐标 的计算公式 ,简称
—— 中点公式
【例4】已知 :平行四边形ABCD的三个顶点坐标
A(- 3,0),B(2,-2),C(5,2).求:顶点D的坐标。
AD2 b a2 c2,
AC2 b2 c2,
x
O A(0,0) B(a,0)
BD 2 b 2a2 c2
AC2 BD2 4a2 2b2 2c2 4ab, 2(2a2 b2 c2 2ab),
AB2 AD2 2a2 b2 c2 2ab,
所以 AC2 BD2 2 AB2 AD2 .
解:因为平行四边形的两条对角线中点相同,
所以它们的中点的坐标也相同.
设D 点的坐标为(x,y).
y D(x,y)
x2 35

2
2
M
C(5,2
y2 02
O
A(-3,0)
x
2
2
B(2,-2)
解得 x=0 ∴D(0,4)
y=4
〖课堂检测〗 1、求两点的距离: (1) A(6,2) , B(-2,5) (2) A (2 , -4) , B (7 , 2)
A(x1,y1) A2
o

两点之间的距离公式及中点坐标公式

两点之间的距离公式及中点坐标公式
复习
数轴上两点的距离
A
B
o x1
x2
A x1
o
B x2
所以A,B两点的距离为 两点的距离为: 所以 两点的距离为 d(A,B)= X 2 – X 1
2.1.2平面直角坐标系中的基本公式
1.两点的距离公式 两点的距离公式
如图:有序实数对 与点P对 如图:有序实数对( x,y)与点 对 与点 这时( 称为点P的坐标 应,这时 x,y)称为点 的坐标, 这时 称为点 的坐标, 并记为P(x,y),x叫做点 的横坐 叫做点P的横坐 并记为 叫做点 叫做点P的纵坐标 标,y叫做点 的纵坐标。 叫做点 的纵坐标。
O
AD = (b − a) + c ,
AC = b + c ,
2 2 2
A(0 A(0,0)
B(a,0 B(a,0)
BD = (b − 2a) + c
2 2
2
AC + BD = 4a + 2b + 2c − 4ab,
2 2 2 2 2
= 2(2a + b + c − 2ab), 2 2 2 2 2 AB + AD = 2a + b + c − 2ab, 所以 AC2 + BD2 = 2(AB2 + AD2 ).
证明:取A为坐标原点,AB所在直线为X 证明:取A为坐标原点,AB所在直线为X轴建 立平面直角坐标系 xOy ,依据平行四边形的 性质可设点A 性质可设点A,B,C,D的坐标为
(
)
A(0,0), B(a,0), C(b, c), D(b − a, c).
所以 AB
2
2
=a ,
2

两点间距离公式及中点坐标公式

两点间距离公式及中点坐标公式
M
C(5,2)
A(-3,0)
O
x B(2,-2)
解得
x=0点S(0,2)、点T(−6,−1),现将线段ST四 等分,试求出各分点的坐标.
巩 固 知 识 典 型 例 题
首先求出线段ST 的中点 Q 的坐标,然 则由 S(0 , 2)、T(−6,−1)得 后再求SQ的中点P及 2 (1) 1 0 (6) xQ 3 yQ QT 的中点 R的坐标.
y
A1M1 M1B1
A2 M 2 M 2 B2
(0,y)
B2
M2
(0,y2)
B
x x1 x2 x y y1 y2 y
A
A1
(X1,0) O
(0,y1)
A2
M
M1
(X,0)
B1
(X2,0)
x
即:
x1 x 2 x 2
y1 y 2 y 2
这就是线段中点坐标 的计算公式 ,简称 ——
2
2
解 设线段ST的中点Q的坐标为 ( xQ , yQ ),
2

1 Q ( 3, ) 2
图8-2
3 5 9 1 ( , ) 同理,求出线段SQ的中点P ,线段QT的中点 R ( , ). 2 4 2 4
( , )、Q ( 3, )、R ( , ). 故所求的分点分别为P 3 5 2 4 1 2 9 2 1 4
8.1平面直角坐标系中的基本公式
1.两点的距离公式
如图:有序实数对( x,y)与点P对 应,这时( x,y)称为点P的坐标, 并记为P(x,y),x叫做点P的横坐 标,y叫做点P的纵坐标。
y
p(x,y)
y
x

两点距离公式中点公式

两点距离公式中点公式

两点距离公式中点公式在数学的奇妙世界里,两点距离公式和中点公式就像是两个忠实的小伙伴,默默地为我们解决着各种问题。

先来说说两点距离公式吧。

假设我们有两个点,A(x₁, y₁)和 B(x₂, y₂),那么这两点之间的距离 d 就可以通过公式d = √[(x₂ - x₁)² + (y₂- y₁)²]来计算。

这个公式看起来有点复杂,其实理解起来并不难。

我记得有一次,我们班组织了一场校园寻宝活动。

老师在校园里藏了几个“宝贝”,然后给了我们几个点的坐标,让我们通过计算两点之间的距离来找到宝贝的位置。

我和同桌小明一组,拿到的第一个点是教室门口的 A(3, 5),第二个点是操场边的大树 B(7, 9)。

我们赶紧拿出纸和笔,按照两点距离公式开始计算。

我负责计算横坐标的差值 (7 - 3)² = 16,小明负责计算纵坐标的差值 (9 - 5)² = 16,然后我俩一起把这两个差值相加,16 + 16 = 32,再对 32 开平方,得到√32 = 4√2。

算出距离后,我们一路小跑,按照这个距离去寻找,果然在差不多的位置发现了老师藏的第一个宝贝,是一本有趣的漫画书,可把我俩高兴坏了!再聊聊中点公式。

对于两点 A(x₁, y₁)和 B(x₂, y₂),它们的中点坐标 M((x₁ + x₂)/2, (y₁ + y₂)/2)。

这个公式在很多实际问题中都能派上用场。

有一次上美术课,老师让我们画一幅校园风景图。

我想画教学楼和校门口之间的那段路,但是不知道怎么确定路的中间位置。

这时候我就想到了中点公式。

教学楼的位置假设是 A(2, 6),校门口是 B(8, 2),那中点的横坐标就是 (2 + 8) / 2 = 5,纵坐标是 (6 + 2) / 2 = 4,所以路的中间位置大概就在(5, 4)这个点。

按照这个位置画出来,感觉整幅图的比例都协调多了。

在日常生活中,两点距离公式和中点公式的应用也不少呢。

8.1两点间距离公式及中点公式

8.1两点间距离公式及中点公式

间的距离公式:
P ( x2 x1 ) ( y2 y1 ) 1P 2
2
2
学生练习
P65 练习 1题 2题
探究中点公式
向量P1P和向量PP2相 等,所以有:
P2(x2,,y2) P1(x1,,y1) P(x,y)
uuu r uuu r Q PP 1 ( x x1 , y y1 ), PP 2 ( x2 x, y2 y ) x x1 x2 x y y1 y2 y x1 x2 x , 2 解得 y y1 y2 . 2
2
二、
2
学生练习
P67 练习 1,2题
作业布置:
1、方案一书 68页 方案二书 64-65页 1、2、5 例2,例3
2、练习册8.1相应练习
教学目标:
1、理解并掌握平面上两点间距离公式的推导 2、掌握平面上两点间距离公式并会应用它解 决相关的问题 3、掌握线段的中点坐标公式,并会灵活运用
重点难点:
重点:平面上两点间的距离公式和中点坐标 公式的推导 难点:两个公式的灵活应用
教学过程
一、平面上两点间的距离
1、坐标轴上两点间的Байду номын сангаас离
平面上两点
二、平面上连结两点的线段的中点坐标公式
文字表述:中点的坐标等于左右端点 坐标的平均值。
例3
已知线段AB,它的中点坐标是(-1,2),端 点B的坐标是(-5,7),求端点A的坐标。 分析:设未知点的坐标。将未知转化为已知。
小结
一、
间的距离公式:
P ( x2 x1 ) ( y2 y1 ) 1P 2

两点间距离公式中点公式

两点间距离公式中点公式

两点间距离公式中点公式Prepared on 21 November 2021两点间距离公式、中点公式教学目标:掌握两点间坐标公式、中点公式教学重点、难点:公式的应用教学过程:一、两点间距离公式:初中曾学习过数轴上两点间距离,实际就是求数轴上两点所表示的两个数的差的绝对值。

现在我们研究平面内任意两点P1(x1,y1),P2(x2,y2)间的距离。

如图,由点P1,P2分别作x轴的垂线P1M1,P2M2,与x轴分别交于点M1(x1,0),M2(x2,0);再由点P1,P2分别作y轴的垂线P1N1,P2N2,与y轴分别交于N1(0,y1),N2(0,y2),直线P1N1,P2M2相交于Q点,则有P1Q=M1M2=|x2-x1|,Q P 2=N 1N 2=|y 2-y 1|。

由勾股定理,可得P 1P 22=P 1Q 2+Q P 22=|x 2-x 1|2+|y 2-y 1|2=(x 2-x 1)2+(y 2-y 1)2由此得到平面内P 1(x 1,y 1),P 2(x 2,y 2)两点间的距离公式 例1、求平面上两点A (1,-2),B (3,5)之间的距离。

解 ()()53251322=++-=AB二、中点公式平面内任意两点P 1(x 1,y 1),P 2(x 2,y 2),线段的中点,求点P 的坐标(x ,y ).由点P 1,P 2分别作x 轴的垂线P 1M 1,P 2M 2,与x 轴分别交于点M 1(x 1,0),M 2(x 2,0),M (x ,0),则即 x x x x -=-21所以 221x x x += 类似上面方法可得因此,点21p p 之间锁链线段的中点坐标为221x x x +=,221y y y += 上式称为线段的中点公式。

例2、有一线段A B ,它的中点坐标是(4,2),端点A 坐标是(-2,3),求另一端点的坐标。

解 设另一端点B 坐标为()y x ,,由中点坐标公式可知 232,224y x +=+-= 解之得1,10==y x所以端点坐标为()1,10。

两点坐标公式和中点坐标公式

两点坐标公式和中点坐标公式

两点坐标公式和中点坐标公式
两点坐标公式指的是计算两个坐标点之间的直线距离的公式,而中点坐标公式是计算两个坐标点连线的中点坐标的公式。

1.两点坐标公式:
设两个点的坐标分别为(x1,y1)和(x2,y2),则它们之间的直
线距离d可以使用以下公式进行计算:
d=√((x2x1)^2+(y2y1)^2)
其中"^"表示乘方运算。

这个公式的原理是根据勾股定理,通过计算两个坐标在x轴
和y轴上的差值的平方和,再开平方得到直线距离。

2.中点坐标公式:
设两个点的坐标分别为(x1,y1)和(x2,y2),它们连线的中点
坐标为(xm,ym),则中点坐标可以使用以下公式进行计算:
xm=(x1+x2)/2
ym=(y1+y2)/2
这个公式的原理是将两个坐标点在x轴和y轴分别做平均,
得到中点的横纵坐标。

2.1.2 平面直角坐标系中的基本公式

2.1.2 平面直角坐标系中的基本公式

张喜林制2.1.2 平面直角坐标系中的基本公式教材知识检索考点知识清单1.两点间的距离公式:设),(),(2211y x B y x A 、是平面上的两点,则=||AB2.中点公式:已知),,(),(2211y x B y x A 、设M(x ,y)是线段AB 的中点,则=x =y ,3.平行四边形的两条对角线的平方和等于它的四边的要点核心解读1.两点间的距离公式(1)平面上的点),(y x P 到原点)0,0(O 的距离=),(P O d .22y x +(2)平面上任意两点间的距离公式:设,(),211x B y x A 、(),2y 则.)()(),(212212y y x x B A d -+-=(3)求两点间距离的步骤:①给两点坐标赋值:?,,,,2121====y y x x ???②计算两个坐标的差,并赋值给另外两个变量,即;,1212y y y x x x -=∆-=∆ ③计算;)()(22y x d ∆+∆=④给出两点的距离.2.中点公式已知),,(),(2211y x B y x A 、设点),(y x M 是线段AB 的中点(如图2-1 -2 -1),过点A 、B 、M 分别向x 轴、y 轴作垂线、、21AA AA ,2121MM MM BB BB 、、、垂足分别为、、、)0,((B )(0,)0,(211211x y A x A )0,(),,0(122x M y B ).,0(2y M 因为M 是线段AB 的中点,所以点1M 和点2M 分别是11B A 和22B A 的中点,即⋅==22221111,B M M A B M M A所以⋅-=--=-y y y y x x x x 2121,即 2,22121y y y x x x +=+= 这就是线段中点坐标的计算公式,简称中点公式.3.解析法的应用解析法是解决解析几何、立体几何等的重要方法,它是把几何问题转化成代数问题,通过建立适当的坐标系加以分析研究解决问题的方法.用解析法解决几何问题的基本步骤如下:(1)选择坐标系:坐标系选择是否恰当,直接关系到以后的论证是否简捷.原则是:选择坐标系要使得问题所涉及的坐标中尽可能多地出现零.为此,常常有以下规律:①将图形一边所在的直线或定直线作为x 轴;②若为对称图形则取对称轴为x 轴或y 轴;③若有直角,则取直角边所在的直线为坐标轴;④可将图形的一个定点或两个定点连线的中点作为原点.(2)标出图形上有关点的坐标,按已知条件用坐标表示图形中的等量关系.(3)通过以上两个程序,把几何问题转化为代数问题来求解.典例分类剖析考点1 平面上两点闻距离的求法及应用命题规律主要强调两点间距离公式的应用,两点间的距离公式作为解析几何的重点之一,常会考查.[例1] (1)已知),3,1()3,6()1,2(C B A 、、求证:△ABC 为直角三角形.(2)已知点A(3,6),在x 轴上的点P 与点A 的距离为10,求点P 的坐标.[解析] (1)要判断三角形是否为直角三角形,其中一种方法是考虑各边长之间是否满足勾股定理,即需求出三条边长.[答案] 由两点间的距离公式得;20)13()26(),(=-+-=B A d;5)13()21(),(=-+-=C A d;25)33()61(),(22=-+-=C B d,||||||222BC AC AB =+∴∴ △ABC 为直角三角形.(2)设点P 的坐标为(x ,O ),由,10),(=P A d 得,10)60()3(22=-+-x解得11=x 或,5-=x∴ 点P 的坐标为(-5,0)或(11,0).母题迁移 1.已知等边△ABC 的两个顶点、的坐标为),0,2()0,4(B A 、-试求:(1) C 点的坐标;(2)△ABC 的面积.考点2 中点坐标公式及其应用命题规律考查中点坐标公式及其应用.[例2] △ABC 三个顶点的坐标分别为,2)4,4((、B A --),2,4()2-C 、求三边中线的长.[答案] 设AB 的中点D 的坐标为D (x,y ),由中点公式得,1224,1224-=+-=-=+-=y x 即 ⋅--)1,1(D同理,BC 的中点E(3,0),AC 的中点F(O ,-3).),(||D C d CD =∴22)]2(1[)41(---+--=;26=),(||E A d AE =)40()43(+++=;65=),(||F B d BF =)23()20(-⋅-+-=.29=母题迁移 2.△ABC 三个顶点的坐标为),1,0(-A ),2,2(),3,1(-C B 求中线AD 的长.考点3 两点问距离公式的几何意义命题规律利用两点间距离公式的几何意义求某些函数的最值.[例3] 求函数++-=3712)(2x x x f 134+-x x 的最小值.[答案] ,1)6(3722+-=+-x x r x ∴+-=+-,9)2(1342x x x 可设,6(A 、、)3,2()1B )0,P(x 则.||||)(PB PA x f +=要求)(x f 的最小值,只需在x 轴上找一点P ,使||||PB PA +最小即可.设B 关于x 轴的对称点为,/B 则)3,2(/-B (如图2 -1 -2-2所示). |,|||||||||//AB PB PA PB PA ≥+=+,24)13()62(||22/=--+-=AB∴ 当A P B 、、/三点共线时取等号,即||||PB PA +的最小值为,24也就是)(x f 的最小值为.24[点拨] (1)涉及无理式,尤其是含平方的算式,我们可联想到两点间的距离,故构造两点间的距离来解题.(2)本题切忌将两个无理函数最小值的和当作f(x)的最小值.母题迁移 3.求函数1342222+-++-=x x x x y 的最小值.优化分层测讯学业水平测试1.已知),15,2().5,3(B A -则=),(B A d ( )25.A 135.B 175.C 55.D2.已知两点),,(),(d c B b a A 、且,02222=+-+d c b a 则( ).A .原点一定是线段AB 的中点 B.A 、B 一定都与原点重合C .原点一定在线段AB 上但不是中点D .以上结论都不正确3.点P(2,-1)关于点(3,4)的对称点是( ).)5,1.(A )9,4.(B )3,5(⋅C )4,9.(D4.已知点A(3,6),在x 轴上的点P 与点A 的距离等于10,则点P 的坐标为5.在△ABC 中,设),5,2()7,3(-B A 、若AC 、BC 的中点都在坐标轴上,则点C 的坐标为6.已知,平面内平行四边形的三个顶点).3,1()1,2(--B A 、),4,3(C 求第四个顶点D 的坐标.高考能力测试(测试时间:45分钟测试满分:100分)一、选择题(5分x8 =40分)1.以A(5,5)、B(1,4)、C(4,1)为顶点的三角形是( ).A.直角三角形 B .等腰三角形 C .等边三角形 D .等腰直角三角形2.已知△ABC 的三个顶点是)0,()0,(a B a A 、-和),23,2(a aC 则△ABC 的形状是( ). A .等腰三角形 B .等边三角形 C .直角三角形D .斜三角形3.已知点),2,4()0,2(B A 、若|,|2||BC AC =则C 点的坐标为( ).)1,1(-⋅A ),或(15)1,1(--⋅B )3,1()1,1(或-⋅C D .无数个 4.已知点A (x ,5)关于点C(l ,y)的对称点是),3,2(--B 则点),(y x P 到原点的距离是( ).4.A 13.B 15.C 17.D5.已知菱形的三个顶点为),0,0(),(),(、、a b b a -则它的第四个顶点是( ).),2(b a A ⋅ ),(b a b a B +-⋅ ),.(a b b a C -+ ),(a b b a D --⋅6.光线从点A (-3,5)射到x 轴上,经过反射后经过点B(2,10),则光线从A 到B 的距离为( ).25.A 52.B 105.C 510.D7.某县位于山区,居民的居住区域大致呈如图2 -1-2 -3所示的五边形,近似由一个正方形和两个等腰直角三角形组成,若,30,60km CD AE km AB ===为了解决当地人民看电视难的问题,准备建一个电视转播台,理想方案是转播台距五边形各顶点距离的平方和最小,图中4321P P P P 、、、是AC 的五等分点,则转播台应建在( ).1.P A 处2.P B 处3.P C 处4.P D 处8.(2006年福建)对于直角坐标平面内的任意两点).,(11y x A ),,(22y x B 定义它们之间的一种“距离”:+-=||||12x x AB .||12y y -给出下列三个命题:①若点C 在线段AB 上,则|;|||||AB CB AC =+②在△ABC 中,若,90 =∠C 则;||||||222AB CB AC =+③在△ABC 中,.||||||AB CB AC >+其中真命题的个数为( ).0.A 1.B 2.C 3.D二、填空题(5分x4 =20分)9.已知),,2()6,(b B a A -、点P(2,3)平分线段AB ,则=+b a10.已知),3,0()3,5()1,1(C B A 、、则△ABC 的形状为11.已知),3().2,1(b B A -两点间的距离为,24则=b12.已知两点),2,3()4,1(A P 、-则点A 关于点P 的对称点的坐标为三、解答题(10分x4 =40分)13.求函数84122+-++=x x x y 的最小值.14.已知△ABC 三顶点的坐标为,8)3,11()8,3(--(、、C B A ),2-求BC 边上的高AD 的长度.15.若a 、b 、c 、d 都是实数,试证明≥+++2222db c a .)()(22d c b a +++16.在△ABC 所在平面上求一点P ,使222||||||PC PB PA ++取得最小值.。

两点坐标中点距离公式

两点坐标中点距离公式

两点坐标中点距离公式在我们学习数学的奇妙世界里,有一个超实用的小工具,那就是两点坐标中点距离公式。

这个公式就像是一把神奇的钥匙,能帮我们解决好多与点和距离相关的难题。

先来说说这个公式到底长啥样吧。

假如有两个点 A(x₁, y₁) 和B(x₂, y₂),那么它们之间的中点坐标就是 ((x₁ + x₂) / 2, (y₁ + y₂) / 2),而两点之间的距离公式则是√[(x₂ - x₁)² + (y₂ - y₁)²] 。

我还记得有一次,我和朋友去逛街。

我们走到一个大广场,广场上有一个很有趣的地图标识,标记着几个重要的地点。

朋友突然来了兴致,说:“要不咱们来算算从这个广场的入口到那个大雕塑的距离?”我一看,入口的坐标我们大概能估计出来,雕塑的坐标也能猜个八九不离十。

然后,我就想到了两点坐标中点距离公式。

我掏出小本子,把坐标写下来,按照公式一步步计算。

朋友在旁边好奇地看着,不停地问我:“算出来了吗?算出来了吗?” 我一边算一边跟他解释每个步骤。

最后得出结果的时候,朋友惊讶地说:“哇,数学还真有用!”其实在日常生活中,这个公式的用处可多了去了。

比如说,你要规划从家到学校的最短路线,或者是计算两个城市之间的近似距离,都可能会用到它。

在数学的课堂上,老师一开始给我们讲这个公式的时候,好多同学都觉得有点头疼,觉得这些符号和算式看起来好复杂。

但当老师通过一个个生动的例子,像在地图上找两个地点的距离,或者是计算操场上两个旗杆之间的距离,我们慢慢地就理解了。

而且啊,这个公式不仅仅在平面上有用,在空间中,也就是三维的情况下,也有类似的公式呢。

只不过多了一个 z 轴的坐标,计算稍微复杂了一点点,但原理是一样的。

想象一下建筑师在设计大楼的时候,他们需要确定不同支撑点之间的距离,保证大楼的结构稳定。

这时候,两点坐标中点距离公式就派上大用场啦。

再比如说,在电脑游戏的编程里,如果要让一个角色从一个点准确地移动到另一个点,程序员就得依靠这个公式来计算移动的距离和方向。

俩坐标中点距离公式

俩坐标中点距离公式

俩坐标中点距离公式在几何学中,我们经常需要计算不同点之间的距离。

当给出两个点的坐标时,我们可以通过使用中点公式来求解这两个点的中点坐标。

进一步地,我们可以使用中点公式来计算这两个点之间的距离。

这种计算距离的方法被称为“俩坐标中点距离公式”。

中点公式中点公式允许我们计算由两个点A(x₁, y₁)和B(x₂, y₂)定义的线段的中点坐标。

中点是线段的中心点,即将线段均分为两部分的点。

中点的坐标可以使用以下公式计算:x = (x₁ + x₂) / 2y = (y₁ + y₂) / 2其中,x是中点的x坐标,y是中点的y坐标。

通过这个公式,我们可以计算出两点之间的中点坐标。

计算距离有了中点公式,我们可以进一步计算出两点之间的距离。

两点之间的距离可以使用以下公式计算:d = √((x₂ - x₁)² + (y₂ - y₁)²)其中,d是距离,x₁和y₁是第一个点的坐标,x₂和y₂是第二个点的坐标。

通过将坐标代入公式,我们可以得到两点之间的距离。

示例现在,让我们通过一个示例来说明俩坐标中点距离公式的使用。

设点A的坐标为A(2, 3),点B的坐标为B(6, 8)。

要计算出AB之间的距离,我们首先需要计算出AB的中点坐标。

使用中点公式,我们可以计算出中点坐标为:x = (2 + 6) / 2 = 4y = (3 + 8) / 2 = 5.5所以,AB的中点坐标为(4, 5.5)。

接下来,我们可以使用距离公式计算出AB之间的距离。

代入坐标值后,我们有:d = √((6 - 2)² + (8 - 3)²)= √(4² + 5²)= √(16 + 25)= √41≈ 6.403因此,AB之间的距离约为6.403。

结论通过使用俩坐标中点距离公式,我们可以轻松计算出由两个点定义的线段的中点坐标和两点之间的距离。

这种计算方法在几何学中非常常见,对于深入理解点、线段和距离的概念非常有帮助。

两点间的距离公式和中点公式

两点间的距离公式和中点公式

两点间的距离公式和中点公式两点间的距离公式和中点公式是解决平面几何问题的重要工具。

在数学和物理学中,这两个公式常常用于计算两点之间的距离以及找到两点之间的中点。

本文将详细介绍这两个公式,并提供一些示例以帮助读者更好地理解和应用它们。

一、两点间的距离公式:D=√((x2-x1)²+(y2-y1)²)其中√表示平方根。

这个公式的推导可以通过应用勾股定理来理解。

我们可以将两点之间的距离看作斜边,而x轴和y轴上的距离则分别是两个直角边。

示例1:计算两点A(3,4)和B(7,1)之间的距离。

根据距离公式,我们有:D=√((7-3)²+(1-4)²)=√(4²+(-3)²)=√(16+9)=√25=5因此,点A和点B之间的距离为5个单位。

示例2:计算两点A(2,-3)和B(-4,5)之间的距离。

根据距离公式,我们有:D=√((-4-2)²+(5-(-3))²)=√((-6)²+8²)=√(36+64)=√100=10因此,点A和点B之间的距离为10个单位。

二、两点间的中点公式:两点间的中点是指两点连线上的一点,该点距离两个点的距离相等。

在平面直角坐标系中,给定两个点A(x1,y1)和B(x2,y2),两点之间的中点M可以通过以下公式计算:M=((x1+x2)/2,(y1+y2)/2)这个公式的推导可以通过取两点之间连线上任意一点的坐标,然后使用平均值来表示中点的坐标。

示例3:找到两点A(6,2)和B(-4,8)之间的中点。

根据中点公式,我们有:M=((6+(-4))/2,(2+8)/2)=(2/2,10/2)=(1,5)因此,点A和点B之间的中点为M(1,5)。

示例4:找到两点A(-3,-1)和B(5,7)之间的中点。

根据中点公式,我们有:M=((-3+5)/2,(-1+7)/2)=(2/2,6/2)=(1,3)因此,点A和点B之间的中点为M(1,3)。

两点间距离公式及中点坐标公式

两点间距离公式及中点坐标公式
y y2 y1 3 4 7
d(A, B) (4)2 72 65
【例2】已知:点A(1,2),B(3,4),C(5, 0)
求证:三角形ABC是等腰三角形。
证明:因为 d(A,B)= 312 4 22 8
d(A,C)= 5 -12 0 22 20
—— 中点公式
【例4】已知 :平行四边形ABCD的三个顶点坐标
A(- 3,0),B(2,-2),C(5,2).求:顶点D的坐标。
解:因为平行四边形的两条对角线中点相同,
所以它们的中点的坐标也相同.
设D 点的坐标为(x,y).
y D(x,y)

x2 35
2
2
y2 02
M O
A(-3,0)
24
2
24
8.1 两点间的距离与线段中点的坐标
例4 已知ABC 的三个顶点为A(1,0)、B(2,1)、C(0,3) ,试
巩 固
求BC边上的中线AD的长度.

解 设BC的中点D坐标为D(xD , yD ),则由 B(2,1)、C(0,3) 得


xD

(2) 2
0

1,yD

1 3 2
d(C,B)= 5 32 0 42 20
即|AC|=|BC|且三点不共线 所以,三角形ABC为等腰三角形。
该题用的方法----坐标法。可以将几 何问题转化为代数问题。
2、中点公式
合作探究(二):中点公式
已知A(x1,y1), B(x2,y2), 设 M(x,y)是线段AB的中点
显然当a点在坐标轴上时doa一般地已知平面上两点ax11y11和bx和bx22y22利用上述方法求点a和b的距离222121dababxxyy??a1yyxoxobx2y2ax1y1b1b2a2显然当ab平行于坐标轴或在坐标轴上时公式仍然成立

两点间距离公式及中点坐标公式

两点间距离公式及中点坐标公式

y
A (x,y)
y
o x A1 x
d(O,A)=
当A点在坐标轴上时这一公式 也成立吗?
y
A
A
o
x
A
显然,当A点在坐标轴上时
d(O,A)=
这一公式也成立。
Ax1, y1, Bx2, y2
一般地,已知平面上两点A(x1,y1)和 B(x2,y2),利用上y述方法求点A和B的距离
B2
B(x2,y2)

2.


故 | AD | (11)2 (2 0)2 2 2,
题 即BC边上的中线AD的长度为2 2.
8.1 两点间的距离与线段中点的坐标
课堂练习 1、求两点的距离: (1) A(6,2) , B(-2,5) (2) A (2 , -4) , B (7 , 2)
2、已知A(a,0), B(0,10)两点 的距离等于17,求a的值。
P48练习8.1.2.
x x2 x1 y y2 y1
计算 d x2 y2
给出两点的距离 d
题型分类举例与练习
【例1】已知A(2、-4)、B(-2,3). 求d(A,B)
解: x1 2, x2 2, y1 4, y2 3
x x2 x1 2 2 4,
A(x1,y1) A2
o
A1
c
B1
x
d(A, B) | AB | (x2 x1)2 ( y2 y1)2
显然,当AB平行于坐标轴或在坐标轴上时,公式 仍然成立。
给两点的坐标赋值:
x1 ?, y1 ?, x2 ?, y2 ?;
计算两个坐标的差,并赋值给另外两个量, 即
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P1
O
x
平面上两点间的距离公式
y
P1(x1,y1) O
P2(x2,y2)
设点 P1(x1,y1),P2(x2,y2) ,则
| P1P2 | (x2 x1)2 ( y2 y1)2.
x
例1 已知 M(8,10),N(12,22) ,求 线段MN的长 度.
例2 已知 ΔABC的顶点分别为A(2,6),B( 4,3) , C(1,0),求ΔABC三条边的长 .
求两点之间的距离:
(1)A(6,2),B(-2,5); (2)C(2,-4),D(7,2).
如图所示.设 P(x,y) 是 P1(x1,y1) ,P2(x2,y2) 的中点.
y
P P1
O
(1)向量P1P和向量PP2方向是否相同?
P2
(2) 向量P1P和向量 PP2的模的大小 关系如何?
x (3) 向量P1P和向量PP2是相等向量吗?
2、已知平行四边形ABCD的四个顶点为A(-3,0), B(3,0),C(6,-4),D(0,4), 求: (1)边BC的长; (2)平行四边形ABCD的对角线中点的坐标.
例4 已知线段MN,它的中点坐标是(3,2),端点 N的坐标是(1,-2),求另一个端点M的坐标。
例5 已知ABC 的三个顶点分别为 A(1 ,2), B(3,4),C(2,6).
2 (1) 画出该三角形; (2)求ABC 的BC边上的中线AD的长.
1、 已知线段AB,它的中点坐标是(0,-4),端点 A的坐标是(12,-5),求另一个端点B的坐标。
如图所示.大海中有两个小岛,一个在灯塔 东60 n mile 偏北80 n mile 的P1点处,令一个在 灯塔西10 n mile 偏北55 n mile 的P2点处 .
P1
那么如何确定这两岛之
P2
间的距离呢?
灯塔
如图所示.设 P1(x1,y1),P2(x2,y2) .
y
P2
如何求两点之间的距
离P1P2?
中点坐标公式
在坐标平面内,两点 P1(x1,y1),P2(x2,y2) 的中点 P(x,y) 的坐标之间满足:
x x1 x2 , y y1 y2 .
2
2
例3 已知点 A(9,-2) 与 B(-1,3) ,求线段AB
的中点Q的坐标。
练习
已知点 A与 B的坐标 ,分别求线段A的中点坐 标。 (1) A(0,0), B(4,-2) (2) A(-1,3), B(5,0) (3) A(6,-2), B(3,-8) (4) A(10,0), B(-2,4)
相关文档
最新文档