系统抽样
系统抽样》课件
![系统抽样》课件](https://img.taocdn.com/s3/m/c6ce6fb0951ea76e58fafab069dc5022aaea462e.png)
采用更科学的抽样方法、增加样本量、提高样本代表性等。
非抽样误差
非抽样误差的定义
01
由于非随机因素引起的误差,如调查员的主观偏见、调查方法
的缺陷等。
非抽样误差的来源
02
调查员的主观偏见、调查方法的缺陷、数据处理的错误等。
减小非抽样误差的方法
03
加强调查员的培训和监督、采用更科学的调查方法、加强数据
的质量控制等。
05
CHAPTER
系统抽样的应用案例
某品牌的市场调研系统抽样应用
总结词:高效准确
详细描述:某品牌在进行市场调研时,采用系统抽样方法,按照一定的间隔从总 体中抽取样本,大大提高了调研效率和准确性,为品牌的市场策略制定提供了有 力支持。
某大学的学生满意度调查系统抽样应用
总结词:覆盖全面
详细描述
起始样本的选择可以采用随机方式或指定方式。随机方式可以借助随机数生成器 等工具进行,而指定方式则需要根据研究目的和实际情况进行合理设定。
进行样本抽取
总结词
在确定总体、样本、抽样间隔和起始样本后,即可按照系统 抽样的规则进行样本抽取。
详细描述
按照设定的抽样间隔和起始样本,依次进行样本抽取,直至 达到所需的样本量。在抽取过程中,应保持随机性和代表性 原则,确保样本的有效性。
详细描述:某大学采用系统抽样方法进行学生满意度调查,确保了样本的代表性和广泛性,调查结果能够全面反映学生的需 求和意见,为学校改进教学质量和管理提供了重要依据。
某城市的居民消费水平调查系统抽样应用
总结词:科学合理
详细描述:某城市进行居民消费水平调查时,采用系统抽样方法,按照居民分布和人口比例进行抽样 ,确保了样本的科学性和合理性,为城市经济发展规划和政策制定提供了有力支持。
系统抽样
![系统抽样](https://img.taocdn.com/s3/m/1bd47b126bd97f192279e9e2.png)
一、知识概述1、系统抽样:当总体中的个体数较多时,可将总体分成均衡的几个部分,然后按预先定出的规则,从每一部分抽取一个个体,得到需要的样本,这种抽样叫做系统抽样.2、系统抽样的步骤:①采用随机的方式将总体中的个体编号.为简便起见,有时可直接采用个体所带有的号码,如考生的准考证号、街道上各户的门牌号,等等.②为将整个的编号分段(即分成几个部分),要确定分段的间隔k.当(N为总体中的个体的个数,n为样本容量)是整数时,k=;当不是整数时,通过从总体中剔除一些个体使剩下的总体中个体的个数能被n整除,这时k=.③在第一段用简单随机抽样确定起始的个体编号.④按照事先确定的规则抽取样本(通常是将加上间隔k,得到第2个编号+k,第3个编号+2k,这样继续下去,直到获取整个样本).说明:①系统抽样适用于总体中的个体数较多的情况,它与简单随机抽样的联系在于:将总体均分后的每一部分进行抽样时,采用的是简单随机抽样;②与简单随机抽样一样,系统抽样是等概率抽样,它是客观的、公平的;③总体中的个体数恰好能被样本容量整除时,可用它们的比值作为系统抽样的间隔;当总体中的个体数不能被样本容量整除时,可用简单随机抽样先从总体中剔除少量个体,使剩下的个体数能被样本容量整除再进行系统抽样.3、系统抽样与简单随机抽样的区别与联系系统抽样与简单随机抽样相比,有如下区别:(1)系统抽样比简单随机抽样更容易实施,可节约成本.(2)系统抽样所得到的样本的代表性和个体的编号有关;而简单随机抽样所得样本的代表性与个体的编号无关.如果编号的特征随编号的变化呈现一定的周期性,可能会使系统抽样的代表性很差.如,如果学号按照男生单号女生双号的方法编排,那么,用系统抽样的方法抽取样本就可能会是全部为男生或全部为女生.(3)系统抽样比简单随机抽样的应用范围更广.联系是:(1)系统抽样适用于总体中的个体较多的情况,因为这时应用简单随机抽样就显得很不方便;(2)系统抽样与简单随机抽样之间存在着密切联系,即在将总体中的个体均分后的每一段进行抽样时,采用的是简单随机抽样;(3)与简单随机抽样一样,系统抽样也属于等概率抽样.二、例题讲解例1、在10000个有机会中奖的号码(编号为0000~9999)中,有关部门按照随机抽样的方式确定后两位是68的号码为中奖号码,这是运用哪种抽样方式来确定号码的()A.抽签法B.系统抽样C.随机数表法D.其他抽样方法解:由题意可知抽出的号码分别为0068,0168,0268,……,9968,显然这是将10000个中奖号码平均分成100组,从第一组抽取了0068号,其余号码在此基础上加上100的倍数得到的,可见这是采用系统抽样法.答案:B例2、一个总体中有100个个体,随机编号0,1,2,……,99.依编号顺序平均分成10个小组,组号依次为1,2,3,……,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第一组随机抽取的号码为t,则在第k组中抽取的号码个位数字与t +k的个位数字相同,若t=7,则在第8组中抽取的号码应是________.答案:75例3、为了了解参加某种知识竞赛的1000名学生的成绩,应采用什么抽样方法恰当?简述抽样过程.解:假设抽取50名学生.适宜选用系统抽样,抽样过程如下:(1)随机地将这1000名学生编号为1,2,3, (1000)(2)将总体按编号顺序均分成50部分,每部分包括20个个体.(3)在第一部分的个体编号1,2,3,…,20中,利用简单随机抽样抽取一个号码,比如是18.(4)以18为起始号码,每间隔20抽取一个号码,这样得到一个容量为50的样本:18,38,58,…,978,998.例4、为了了解参加某种知识竞赛的1003名学生的成绩,请用系统抽样抽取一个容量为50的样本.解:(1)随机地将这1003个个体编号为1,2,3,…,1003.利用简单随机抽样,先从总体中剔除3个个体.(2)再按系统抽样的方法抽取.例5、某制罐厂每小时生产易拉罐10000个,每天生产时间为12小时,为了保证产品的合格率,每隔一段时间要抽取一个易拉罐送检,工厂规定每天共抽取1200个进行检测,请你设计一个抽样方案.若工厂规定每天共抽取980个进行检测呢?解:每天共生产易拉罐120000个,共抽取1200个,所以分1200组,每组100个,然后采用简单随机抽样法从001~100中随机选出1个,再每隔100个,拿出1个送检,或者根据每小时生产10000个,每隔×3600=36秒拿出1个易拉罐送检.若共要抽取980个进行检测,则要分980组,但980不能整除120000,则先计算出120000除以980的整数部分是122,所以先要剔除120000-980×122=440个,剩下119560个平均分为980组,每组122个,然后采用简单随机抽样法从001~122中随机选出1个编号,例如选出的是108号,可以从第108个易拉罐开始,每隔122个,拿出1个送检,或者根据每小时生产10000个,每隔×3600=43.92秒拿出一个易拉罐送检.例6、下面给出某村委会调查本村各户收入情况所作的抽样,阅读并回答问题:本村人口:1200人,户数300,每户平均人口数4人;应抽户数:30户;抽样间隔:;确定随机数字,取一张人民币,编码的后两位数为12;确定第一样本户:编码的后两位数为12的户为第一样本户;确定第二样本户:12+40=52,52号为第二样本户;……(1)该村委会采用了何种抽样方法?(2)抽样过程中存在哪些问题,并修改.(3)何处是用简单随机抽样.解:(1)系统抽样.(2)本题是对某村各户进行抽样,而不是对某村人口抽样,抽样间隔为:,其他步骤相应改为确定随机数字;取一张人民币,编码的后两位数为12,确定第一样本户:编号为12的户为第一样本户;确定第二样本户:12+10=22,22号为第二样本户.(3)确定随机数字用的是简单随机抽样.取一张人民币,编码的后两位数为12.。
系统抽样
![系统抽样](https://img.taocdn.com/s3/m/29ff65dc76a20029bd642d89.png)
(三)根据各单元原有的自然 位置进行排序
例如:学生按学号抽样,入户调查根据 街道门牌号按一定间隔抽取等。 这种自然状态的排列有时与调查标志有 一定的联系,但又不完完一致,这主要 是为了抽样方便。
四、系统抽样的特点
优点: 1.简便易行,容易确定样本单元
等距抽样简单明了,快速经济,操作灵活方便,使用面广, 是单阶段抽样中变化最多的一种抽样技术。 在某些场合下甚至可以不用抽样框。例如若要对公路旁的树 木进行病虫害调查,确定每 20 棵数检查一棵,只要在初始被 检树确定后,每隔 20 棵检查一棵即行,根本不需要在事先对 公路旁的所有树木进行编号,或者不需要知道抽样框即所有 树木的棵数。 在我国,等距抽样已成了最主要、最基本的抽样方式,一些 大规模的抽样调查,如农产量抽样调查、城乡住户调查、人 口抽样调查、产品质量抽样检查中都普遍采用了等距抽样。
三、排序标志
等距抽样需要有作为排序依据的辅助标志。 排序标志各式各样,可自由选择,但归纳起 来,可分为两类,即无关标志和有关标志, 它们对等距抽样的作用和相应的估计精度各 有不同的影响。
(一)按无关标志排队 (无序系统抽样)
即各单元的排列顺序与所研究的内容无关. 如研究人口的收入状况时,按身份证号码、按 门牌号码排序非常方便,一般说来,这些号码 与调查项目没有关系,因此可以认为总体单元 的次序排列是随机的 无关标志排序的等距抽样也称无序等距抽样。
k 1 2 2 V ( ysy ) E ( ysy Y ) ( yr Y ) k r 1
性质2 用样本(群)内方差 S 2 表示系统抽 wsy 样估计量的方差: ( N 1) 2 k (n 1) 2 V ( ysy ) S S wsy N N
2.1.2系统抽样
![2.1.2系统抽样](https://img.taocdn.com/s3/m/2b0694e74693daef5ef73dc5.png)
系统抽样
一、系统抽样的概念 将总体分成 均衡的 几部分,然后按 照预先定出的规则,从每一部分抽取 一个 个体,得到所需样本的抽样方
法叫做系统抽样.
由于抽样的距离相等,因此系统抽 样也被称作等距抽样.
二、系统抽样的步骤
一般地,假设要从容量为 N的总体中抽取容量
为n的样本,可以按下列步骤进行系统抽样:
要从某校3002名学生中抽取100名学生
进行健康检查,请设计合理的抽样方法.
[解析] S2
S1 先将该校学生编号,号码为 1~3002.
Hale Waihona Puke 用随机数表法从 0001~3002 的号码中随机抽取 2
3002 个号码(3002-[ ]×100=2)剔除. 100 S3 S4 S5 将剩余的 3000 个学生重新编号为 1~3000. 将总体分成 100 个部分, 每个部分含有 30 个个体. 用简单随机抽样方法从 1~30 的号码中,抽取一
4.从已编号为 1~50 的 50 枚最新研制的某种型号的 导弹中随机抽取 5 枚来进行发射实验,若采用每部 分选取的号码间隔一样的系统抽样方法, 则所选取 5 枚导弹的编号可能是( B ) A.5,10,15,20,25 B、3,13,23,33,43 C.1,2,3,4,5 D、2,4,6,16,32
吗?为什么?
某批产品共有1564件,产品按出厂顺序 编号,号码为从1到1564.检测员要从中抽取
15件产品作检测,请你给出一个系统抽样方
案.
[解析] 将其剔除.
(1)先从 1564 件产品中, 随机抽取 4 件产品,
(2)将余下的 1560 件产品编号:1,2,3,…,1560. 1560 (3)取 k= =104,将总体均匀分为 15 组,每组 15 含 104 个个体. (4)从第一段把 1 号到 104 号中随机抽取一个号 s. (5)按编号把 s,104+s,208+s,…,1456+s 共 15 个 号选出.这 15 个号所对应的产品组成样本.
系统抽样
![系统抽样](https://img.taocdn.com/s3/m/ce78e7f8ba0d4a7302763aa3.png)
例5:采用系统抽样从个体数为83的总体中 抽取一个样本容量为10的样本,那么每个个体
10 人样的可能性为 _________. 83
例6:从2004名学生中选取50名组成参观 团,若采用下面的方法选取:先用简单随机抽 样从2004人中剔除4人,剩下的2000个再按系 统抽样的方法进行,则每人入选的机会( C) A.不全相等 C.都相等 B.均不相等 D.无法确定
二、从容量为N的总体中抽取容量为n的样本,用系统抽 样的一般步骤为: (1)将总体中的N个个体编号.有时可直接利用个体自 身所带的号码,如学号、准考证号、门牌号等; (2)将整体按编号进行分段,确定分段间隔k(k∈N). (3)在第一段用简单随机抽样确定起始个体的编号L (L≤k)。 (4)按照一定的规则抽取样本,通常是将起始编号L 加上间隔k得到第2个个体编号L+K,再加上K得到第3个 个体编号L+2K,这样继续下去,直到获取整个样本.
5、什么叫随机数表法?
利用随机数表、随机数骰子或 计算机产生的随机数进行抽样,叫 随机数法;课本P56页给出的方法 叫随机数表法。
温故知新 1.为了了解一批零件的长度,抽测了其中200个零件的 长度,在这个问题中,200个零件的长度是( A.总体 C.总体的一个样本
[答案] C
)
B.个体 D.样本容量
A.①②③ C.①③④
[答案] D
B.①②④ D.①②③④
3.福利彩票的中奖号码是从1~36个号码中,选出7个 号码来按规则确定中奖情况,这种从36个号码中选7个号的 抽样方法是________.
[答案] 抽签法
4.下面的抽样方法是否是简单随机抽样? (1)某班45名同学,指定个子最高的5名同学参加学校组 织的某项活动; (2)从20个零件中一次性抽出3个进行质量检验; (3)一儿童从玩具箱的20件玩具中随意拿出一件来玩,玩 后放回,再拿一件,连续拿了5件.
系统抽样法
![系统抽样法](https://img.taocdn.com/s3/m/c7df7492185f312b3169a45177232f60dccce759.png)
系统抽样法系统抽样法,在统计学中是一种常用的抽样方法。
它是指根据一定的规则,从总体中随机选择具有代表性的样本,以便对总体进行统计推断。
系统抽样法不仅能保证样本的随机性,还能提高调查的效率和准确性。
下面将介绍系统抽样法的基本原理、应用场景以及优缺点。
系统抽样法的原理是通过预先设定的规则来选择样本。
首先,需要确定样本容量,即要从总体中选取多少个样本点。
然后,确定一个起始点,这个起始点是通过随机抽取总体中的一个个体来确定的。
接下来,按照一定的间隔(这个间隔可以是固定的数字,也可以是总体的大小除以样本容量得到的比例),在总体中选取样本。
直到选取到规定的样本容量为止。
这样,样本就具有代表性,能够对总体进行推断。
系统抽样法常见的应用场景是社会调查、市场研究、医学实验等。
在社会调查中,比如对某个城市的居民进行调查,我们可以先确定样本容量,然后选取一个起始点,按照一定的间隔,从不同区域或人口群体中选取样本。
这样,我们可以通过这些样本来了解整个城市的人口特征、生活习惯等信息。
在市场研究中,通过对一部分消费者进行调查,可以推断出整个市场的需求、偏好等情况。
在医学实验中,可以通过对一部分病人进行治疗或观察,来推断出某种治疗方法的有效性或某种药物的副作用。
系统抽样法具有一定的优点和缺点。
其优点之一是样本选择随机性好,能够较好地代表总体。
其次,系统抽样法也较为简单,实施起来相对容易。
此外,它还能提高调查的效率,通过合理的样本容量和间隔选择,能够最大程度地获取有用的信息。
然而,系统抽样法也存在一些缺点。
首先,它对总体的要求较高,需要清楚地了解总体的特点和组成,才能选择合适的起始点和间隔。
其次,如果选择的起始点过于倾斜,可能会导致样本选择的偏差,影响结果的准确性。
此外,系统抽样法也对调查过程的随机性和外界干扰较为敏感,需要注意控制环境和调查过程中的误差。
总之,系统抽样法是一种常用的抽样方法,通过预先设定的规则,从总体中随机选择具有代表性的样本。
系统抽样
![系统抽样](https://img.taocdn.com/s3/m/2dd958d29ec3d5bbfd0a74f4.png)
系统抽样的方差估计
1 1 N 1 ˆ 2 k n 1 ˆ 2 1 f 2 2 k ˆ V ( ysy ) S Swsy s s N N n n
系统抽样与简单随机抽样的精度比较
N 1 2 k n 1 2 1 f 2 V ( ysy ) V ( ysrs ) S Swsy S N N n N 1 2 N n 2 k n 1 2 S S S wsy N Nn N N N / n 2 k n 1 2 S S wsy N N nk k 2 k n 1 2 S S wsy N N k (n 1) 2 k n 1 2 S S wsy N N k n 1 2 2 ( S S wsy ) N 2 V ( ysy ) V ( ysrs ) 0 的条件是 S 2 Swsy
方差估计及其改进
随机排列情形方差估计
对于来自随机排列总体的等概率系统样本,通常视 为简单随机样本,因而等概率系统抽样的方差可用简单 随机抽样方式的抽样方差的无偏估计量来近似估计
2 1 f 2 N n 1 n v1 s yi ysy n nN n 1 i 1
趋势排列情形方差估计
定义3 (N=nk的情形)假设总体单元数为N,样本容量为n, N=nk,且总体中的N个单元已按某种顺序编号为1, 2,…,N。如抽样程序是先从前k个单元编号中随机 抽出一个单元编号,然后每隔k个单元编号抽出一个 单元编号,直到抽出n个单元编号为止,则这种等距 抽样为直线等距抽样。 定义4 (N≠nk的情形)假设总体单元数为N,样本容量为n, N≠nk ,总体中的N个单元已按某种顺序编号为1, 2,…,N。如将这些编号看成首尾相接的一个环,并 从1到N中按简单随机抽样方式抽取一个单元编号作为 随机起点r,然后每隔k个单元编号抽出一个单元编号, 直到抽满n个单元为止,则这种等距抽样为圆形等距 抽样。
《系统抽样》课件
![《系统抽样》课件](https://img.taocdn.com/s3/m/4c2718cd82d049649b6648d7c1c708a1284a0a2e.png)
详细描述
例如,在心理学研究中,研究者可能会选择 一部分被试进行实验或调查,并采用系统抽 样方法确保样本的代表性和可靠性。这种抽 样方法能够为研究者提供较为准确和可靠的 实验结果或数据,从而支持其学术观点或理 论。
需要精确估计的场景
在某些需要精确估计的场景中,例如 预测市场趋势、评估产品性能等,需 要采用系统抽样来保证样本的代表性 和准确性。
系统抽样适用于需要精确估计的场景 ,例如市场预测、产品质量评估等。
04
系统抽样的优缺点
优点
样本代表性
系统抽样能够保证样本的代表性,因为它在总体中均匀地选取样 本,避免了由于主观判断或随机性导致的偏差。
详细描述
全国人口普查通常采用系统抽样方法,按照地理位置、行政区域或人口分布等标准,将全国划分为若干个样本小 区,然后按照固定的间隔或比例从每个小区中抽取一定数量的样本进行调查。这种抽样方法能够保证样本的代表 性和广泛性,从而得到较为准确和全面的数据。
实例二:市场调查
总结词
市场调查中经常采用系统抽样方法,从 目标市场中按照一定的规则和标准抽取 具有代表性的样本进行调查。
系统抽样适用于大规模的普查或市场调查,例如全国人口普查、消费者调查等。
长期跟踪研究
在长期跟踪研究中,例如研究某一群体的健康状况、行为 习惯等,需要定期对研究对象进行抽样调查。系统抽样可 以按照固定的时间间隔对研究对象进行抽取,便于长期跟 踪研究。
系统抽样适用于长期跟踪研究,例如流行病学研究、社会 学研究等。
与分层抽样相比,系统抽样不需要对总体进行分层,操作相 对简单,但分层抽样可以根据不同层的特点进行有针对性的 调查,因此在实际应用中需要根据具体情况选择合适的抽样 方法。
02
系统抽样课件
![系统抽样课件](https://img.taocdn.com/s3/m/183b9cc127fff705cc1755270722192e45365878.png)
1.系统抽样的概念 一般地,要从容量为N的总体中抽取容量为n的样本,可 将总体分成均衡的若干部分,然后按照预先制定的规则, 从每一部分抽取一个个体,得到所需要的样本,这种抽 样的方法就是系统抽样.
【思考】 系统抽样有什么特征?与简单随机抽样有什么区别?
提示:(1)系统抽样的主要特征有三个:①总体已知且数 量较大;②抽样必须等距;③每个个体入样的机会均等. 不满足任何一条就不是系统抽样. (2)系统抽样有别于简单随机抽样的一个显著特点是总 体中的个体的数量,一般来说,简单随机抽样,总体中个 体较少;系统抽样,总体中个体较多.
第三步,在第一段001,002,003,…,010中用简单随机 抽样方法抽出一个号码(如006)作为起始号码; 第四步,起始号+间隔的整数倍,确定各个个体,将编号为 006,016,026,…,486,496的个体抽出组成样本.
【内化·悟】 系统抽样中剔除部分个体时需要注意什么问题?
提示:(1)当总体容量不能被样本容量整除时,可以先从 总体中随机地剔除几个个体,使得总体中剩余的个体数 能被样本容量整除. (2)被剔除的部分个体可采用简单随机抽样法抽取. (3)剔除部分个体后应重新分段. (4)每个个体被抽到的机会均等,被剔除的机会也均等.
2.系统抽样应用的解题依据 (1)等可能性:由于整个抽样过程中每个个体被抽到的 机会相等,故可依此确定某范围上的要抽取的样本容量.
(2)编号的等间隔性: ①常见的系统抽样的样本号码特征较为明显:将号码从 小到大排列,任意相邻两项之间的差是一个定值(间隔 数); ②按照题设规定的规则抽取样本.
【思考】 系统抽样如何提高样本的代表性? 提示:系统抽样所得样本的代表性和具体的分段有关, 因此在系统抽样中就要提高分段的质量.例如,不要让 分段呈现周期性.
系统抽样法
![系统抽样法](https://img.taocdn.com/s3/m/cfb9abea81eb6294dd88d0d233d4b14e85243eb4.png)
系统抽样法系统抽样法是一种常用的统计抽样方法,可以有效的代表总体,用于对总体进行推断和估计。
系统抽样法是在总体中按照一定规则选择一部分样本作为代表,从而得到可靠的总体估计。
系统抽样法的步骤如下:1. 确定总体:首先需要明确研究对象或感兴趣的总体,例如某产品的用户群体。
2. 确定样本量:根据所设定的误差容限和置信水平,计算得到所需的样本量。
3. 确定抽样间隔:抽样间隔是指从总体中选择样本的规则,比如每隔5个元素选择一个样本。
4. 确定起始点:从总体中任意选择一个起始点作为第一个样本。
5. 依次选择样本:按照设定的抽样间隔,从起始点开始,依次选择样本,直到达到所需的样本量为止。
6. 数据收集和分析:对所选择的样本进行数据收集和分析,可以获得关于总体的一些统计特征。
7. 总体估计:基于对样本数据的分析,对总体的特征进行估计,如总体均值、总体比例等。
系统抽样法的优点包括:1. 相对于随机抽样,系统抽样具有较高的效率,能够达到相同的估计效果,样本量较少时,所需的抽样量较少。
2. 系统抽样相对于方便抽样和判断抽样,具有较高的代表性,能够更好地反映总体的特征。
3. 系统抽样法适用范围广,可以应用于各种类型的总体,如人群、产品、地域等。
然而,系统抽样法也存在一些局限性:1. 当总体的分布不规律时,系统抽样可能导致样本选择出现一定的偏差,因此在使用系统抽样方法之前,需要确保总体具有较好的规律性。
总之,系统抽样法是一种常用的统计抽样方法,可以帮助研究者从总体中选择出具有代表性的样本,从而对总体进行推断和估计。
在实际应用中,研究者需要根据具体情况选择合适的抽样方法,并确保抽样过程的准确性和可靠性。
系统抽样
![系统抽样](https://img.taocdn.com/s3/m/ee97819a6bec0975f465e2e0.png)
样。过程如下:
(1)给学生编号,号码为1到10000; ( 2)由于100∶10000=1∶100,所以将总体平均分
为100个部分,每一部分包括100个个体;
(3)从1到100号进行简单随机抽样,抽取一个号码, 比如抽取的号码是8;
(4)这样就从8号起,每隔100个抽取一个号码,得到
一个容量为100的样本,8,108,208,…9908,这样就 得到了容量为100的样本。
思维升华:
采用系统抽样从容量为 N的总体中抽取容量n的样
本时,如果总体容量 N 能被样本容量 n 整除,则分段
间隔k=N/n,而且在抽取第一个号码时采用简单随机抽
样。
问题3:当总体容量不能被样本整除,应该如何
分段呢?
例2、从某单位的2004名工人中,采用系统抽样方法抽取一 个容量为20的样本,试叙述抽样的步骤。
解:(1)采用随机的方法给总体中的每个个体编号1, 2,…2004; (2)随机剔除4个个体; (3)分段:由于20∶2000=1∶100,故将总体分为20 个部分,其中每一部分100个个体; (4)在第一部分采用简单随机抽样抽取一个号码,比 如66号;
(5)从起始号开始每间隔确定样本中的各个个体。如
打算从中抽取一个容量为30的样本,考虑采用系统抽样,则 分段的间隔k为( A )
A、40
B、30
C、20
D、12
(3)下列抽样试验中,最适宜用系统抽样法的是( C )
A 某市的 4个区共有2000名学生,用 4个区的学生人
数之比 为3:2:8:2,从中抽取200人入样; B 从某厂生产的2000个电子元件中随机抽取5个入样;
2.1.2系统抽样
简单随机抽样是怎样的一种 方法?其主要的特点是什么?
系统抽样_精品文档
![系统抽样_精品文档](https://img.taocdn.com/s3/m/1c70514e17fc700abb68a98271fe910ef12daec6.png)
系统抽样一、引言在统计学中,抽样是一种常用的数据收集方法,通过从总体中选择部分样本进行观察和分析,从而推断总体的特征和属性。
系统抽样是抽样方法中的一种重要方式,它基于一个系统性的策略,按照一定的规则从总体中选择样本,以确保样本能够代表整体。
本文将深入探讨系统抽样的原理、应用、优缺点以及如何进行样本量确定等相关内容。
二、系统抽样的原理系统抽样的原理是基于总体的有序结构,通过选择一个起始点,然后按照固定的间隔选取样本。
这个间隔通常用总体容量除以样本容量来计算,以保证选取的样本能够均匀地分布在总体中。
例如,若总体容量为N,样本容量为n,则每隔N/n个元素选取一个样本。
三、系统抽样的应用系统抽样广泛应用于各个领域,特别适用于大规模的调查和研究。
以下是系统抽样的几个典型应用:1. 民意调查:在政治选举、市场调研等方面,使用系统抽样可以有效地代表总体,从而推断出人们对候选人或产品的态度和偏好。
2. 质量控制:在生产过程中,可以使用系统抽样来检验产品质量是否符合标准,通过取样检查可以发现潜在的问题并进行修正。
3. 教育评估:在教育领域中,使用系统抽样可以评估学生对知识和技能的掌握程度,从而改进教学方法和提供个性化的教育支持。
4. 医学研究:在医学研究中,系统抽样可以帮助研究人员选择适当的样本,以研究特定疾病或治疗方法的有效性。
四、系统抽样的优缺点1. 优点:(1)代表性:系统抽样可以确保样本从总体中均匀地抽取,从而更好地代表总体的特征。
(2)效率高:相对于简单随机抽样,系统抽样在样本容量相同时,能够提供更精确的结果。
(3)容易实施:系统抽样是一种简单易行的抽样方法,不需要复杂的随机数生成过程。
2. 缺点:(1)陷入周期性误差:如果总体的有序结构与取样规则之间存在某种周期性关系,系统抽样可能导致样本集中在某些特定的区域,从而影响结果的准确性。
(2)对总体结构要求较高:系统抽样通常要求总体具有明确的有序结构,否则可能无法正确执行。
《系统抽样》课件
![《系统抽样》课件](https://img.taocdn.com/s3/m/7d67b967b5daa58da0116c175f0e7cd1842518dc.png)
总体容量
样本抽取:按照确定的抽样间隔,从起始样本开始,依次抽取样本。
系统抽样的应用场景
03
人口普查
系统抽样常用于人口普查中,通过对特定区域内的居民进行有规律的抽样,以估计该区域内的人口数量和特征。
市场细分
在市场调研中,系统抽样用于从不同的市场细分中选择样本,以了解不同细分市场的需求和行为。
随机选择:为了确保起始样本的代表性,可以采用随机选择的方式。通过随机选择起始样本,可以避免人为因素对样本选择的影响,提高样本的客观性和公正性。
代表性
系统抽样所得的样本应该能够代表总体特征。在抽样过程中,应该注意确保每个样本点都有同等的机会被选中,以避免出现偏差。
偏差
如果样本出现偏差,那么分析结果将不准确。因此,在系统抽样过程中,应该采取措施来减少偏差的出现,例如通过随机选择起始样本、确保总体容量和抽样间隔的准抽样有助于确保实验操作的一致性和规范性,降低实验误差和偏差。
系统抽样的优缺点
04
高效性
系统抽样是一种有组织、有计划的抽样方法,能够快速、准确地获取大量样本数据,提高了调查的效率。
准确性
由于系统抽样是按照一定的间隔进行抽样,样本分布相对均匀,因此能够更准确地反映总体特征。
可操作性
系统抽样操作简单,只需要确定样本间隔和起始点即可进行抽样,适合大规模的调查。
稳定性
系统抽样的样本间隔是固定的,因此抽样误差相对较小,稳定性较高。
如果总体中存在周期性变化或异常值,可能会导致系统抽样产生的样本出现偏差。
样本偏差
在某些情况下,由于总体单位的排列顺序难以确定或总体单位存在不稳定性,可能导致系统抽样的实施难度加大。
实施难度
系统抽样假设总体分布是均匀的,如果实际情况不符合这个假设,那么系统抽样的准确性就会受到影响。
系统抽样
![系统抽样](https://img.taocdn.com/s3/m/b8005c3431126edb6f1a100b.png)
系统抽样
1、简单随机抽样
一般地,设一个总体的个体数为N, 一般地 ,设一个总体的个体数为 ,如果通过逐个 不放回地抽取的方法从中抽取一个样本 抽取的方法从中抽取一个样本, 不放回地抽取的方法从中抽取一个样本,且每次抽取时 各个个体被抽到的概率相等, 各个个体被抽到的概率相等,就称这样的抽样为简单随 机抽样。 机抽样。
步骤: 步骤:
第一步:先将总体的N个个体编号; 第一步:先将总体的 个个体编号; 个个体编号 N 是样本容量)是整数时, 第二步:将编号按一定的间隔k分段 分段, 第二步:将编号按一定的间隔 分段,当 n(n是样本容量)是整数时, 是样本容量
取 k = N,若 N 不是整数,则可从总体中剔除部分个体,使 n 不是整数,则可从总体中剔除部分个体, n ' 能被n整除 整除,这时 得剩下的总体个数 N ' 能被 整除 这时 k = N ,并将剩下的 n 总体重新编号; 总体重新编号;
N
随机抽样的方法: 随机抽样的方法: 抽签法 总体中的所有个体(共N个)编号(号码可以从 先将总体中的所有个体( 先将总体中的所有个体 个 编号(号码可以从0 ),② 到N-1),②并把号码写在形状、大小相同的号签上(号签 ), 并把号码写在形状、大小相同的号签上( 可以用小球、卡片、纸条等制作), ),然后将这些号签放在同 可以用小球、卡片、纸条等制作),然后将这些号签放在同 一个箱子里,进行均匀搅拌。 抽签时,每次从中抽出1个号 一个箱子里,进行均匀搅拌。③抽签时,每次从中抽出 个号 连续抽取n次 就得到一个容量为n的样本 的样本。 签,连续抽取 次,就得到一个容量为 的样本。对个体编号 也可以利用已有的编号。例如学生的学号,座位号等。 时,也可以利用已有的编号。例如学生的学号,座位号等。
系统抽样的定义和特点
![系统抽样的定义和特点](https://img.taocdn.com/s3/m/6fa54ec1c5da50e2534d7fd7.png)
系统抽样的定义和特点一、系统抽样的定义和特点1、定义当总体中的个体数较多时,可以将总体分成均衡的几部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需的样本,这种抽样的方法叫做系统抽样。
2、特点(1)适用于总体容量较大的情况。
(2)抽样间隔相等,又称等距抽样。
(3)在系统抽样中,每个个体被抽取的可能性相等,均为$\frac{n}{N}$($N$为总体容量,$n$为个体容量)。
(4)系统抽样是不放回抽样。
注:①系统抽样时,总体不能具有一定的周期性,否则其样本的代表性是不可靠的,甚至会导致明显的偏差。
②当总体中的个体不能被样本容量整除时,可先剔除几个个体,从而使剩下的个体能被样本容量整除,再进行系统抽样。
3、系统抽样的步骤一般地,假设要从容量为$N$的总体中抽取容量为$n$的样本,我们可以按下列步骤进行系统抽样(1)先将总体的$N$个个体编号。
有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等;(2)确定分段间隔$k$,对编号进行分段。
当$\frac{N}{n}$($n$是样本容量)是整数时,取$k=\frac{N}{n}$;(3)在第1段用简单随机抽样确定第1个个体编号$a$($a\leqslant k$);(4)按照一定的规则抽取样本。
通常是将$a$加上间隔$k$得到第2个个体编号($a$+$k$),再加$k$得到第3个个体编号($a$+2$k$),依次进行下去,直到获取整个样本。
注:第(2)步中,如果遇到$\frac{N}{n}$不是整数的情况,可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量整除。
二、系统抽样的相关例题用0,1,2,$\cdots$,299给300名高三学生编号,并用系统抽样的方法从中抽取15名学生的数学成绩进行分析,若第一组抽取的学生的编号为8,则第三组抽取的学生编号为___A.20 B.28 C.40 D.48答案:D解析:抽取学生的编号构成以$\frac{300}{15}$=20为公差的等差数列,则第三组抽取的学生编号为8+20X2=48,故选D。
系统抽样和分层抽样的区别
![系统抽样和分层抽样的区别](https://img.taocdn.com/s3/m/4815c1672bf90242a8956bec0975f46527d3a737.png)
系统抽样和分层抽样的区别系统抽样和分层抽样是常用的两种概率抽样方法。
在统计学中,抽样是一种从总体中选择个体的方法,以便进行数据分析和推断。
系统抽样和分层抽样都有其独特的特点和应用场景。
本文将阐述系统抽样和分层抽样的区别,并探讨其在实际应用中的优缺点。
一、系统抽样系统抽样是指按照一定的规则从总体中选择个体的抽样方法。
具体而言,系统抽样是通过在总体中选择一个起点,然后根据事先确定的间隔规则依次选取个体,直到达到所需的样本量。
系统抽样的步骤包括:确定总体大小、计算间隔、选择起始个体、按照间隔选取个体。
系统抽样的优点在于简单易行,抽样过程便于操作和管理。
此外,系统抽样可以较好地保留总体的特征,适用于总体中个体分布规律较为均衡的情况。
系统抽样使得样本具有一定的随机性,从而提高了推断的精度和可靠性。
然而,系统抽样也存在一些缺点。
首先,如果总体中某些个体的特征呈现周期性或有规律的变化,可能会引入系统偏差。
其次,如果总体中存在某些特殊或异常个体,系统抽样可能无法很好地反映总体的全貌。
因此,在进行系统抽样时,需要事先对总体进行充分的了解和分析,避免因特殊因素导致的偏差。
二、分层抽样分层抽样是将总体划分为若干个层次,并从每个层次中选取样本,形成一个复合样本的抽样方法。
分层抽样的步骤包括:确定总体大小、划分层次、确定每层样本量、选择样本。
分层抽样的优点在于能够更好地反映总体的特征,保证了样本的代表性。
通过在不同的层次中选取样本,可以考虑到总体的异质性,缩小样本与总体之间的差异。
此外,分层抽样可以提高估计的精度,并且可以针对不同层次进行分析,获取更多层次的信息。
然而,分层抽样也存在一些限制和缺点。
首先,分层抽样需要对总体进行合理的划分,这需要对总体的特征有较为准确的了解。
如果划分不当或划分粒度过细,可能会导致样本的不均衡。
其次,分层抽样需要在每个层次中选择样本,增加了抽样的工作量和时间成本。
三、系统抽样和分层抽样的区别1. 定义和步骤:系统抽样是通过事先确定的间隔规则从总体中选择个体,抽取样本。
系统抽样
![系统抽样](https://img.taocdn.com/s3/m/a3004672f46527d3240ce0f1.png)
系统抽样(Systematic sampling)一、概述1、什么系统抽样设计总体中的N 个单元按某种顺序(通常是依照有关标志排队,即按某个在比估计和回归速记中提到的辅助变量的顺序排列,但也可以是依照无关标志排列,即按不完全满足辅助变量定义的某个已知变量排列,这种排列近似于随机排列),编号为1,2,…,N 。
抽取程序是首先抽取一个或一组起始单元的编号,然后按某种确定的规则(例如等距抽样:按照固定的间隔选取)选取其他单元的编号,直到满n 个为止,则这种抽样称为系统随机抽样,简称系统抽样。
2、直线等距抽样假设总体单元数为N ,样本容量为n ,N=nk,且总体中的N 个单元已按某种确定顺序编号为1,2,…,N 。
抽取程序是先从头k 个单元编号中随机抽出一个单元编号,然后每隔k 个单元编号抽取一个单元编号,直到抽出n 个单元编号为止,则这种等距抽样称为直线等距抽样。
3、圆形等距抽样假设总体单元数为N ,样本容量为n ,N ≠nk ,且总体中的N 个单元已按某种确定顺序编号为1,2,…,N 。
如将这些编号看成首尾相接的一个环,并从1到N 中按简单随机抽取方式抽取一个单元编号作为随机起点r ,然后每隔k 抽取一个单元编号,直到抽满n 个单元为止,则这种等距抽样称为圆形等距抽样。
4、直线等距抽样的实施方法 (1)首先计算抽样间接k=N/n ;(2)将N 个单元按某种顺序依次编号为1,2,…,N ;(3)从1~k 个单元编号中随机抽取一个单元编号,假设为r ; (4)每隔k 个单元编号抽出一个单元编号,直到抽出n 个单元。
例如:随机起点,k i i ≤≤1,,入选单元,,....2,,k i k i i ++i k 2k 3k (n-1)k nk 5、圆形等距抽样的实施方法编号不是直线排列而是环状(圆形)排列,是随机起点的选择范围由1到k 扩展到1到N 。
入样编号可以表示为:),,2,1(0)1(0)1(},)1(,)1(min{,)1(n j N k j r N k j r N k j r k j r i k j r i =⎩⎨⎧>--+≤--+--+-+=-+=当当二、不等概率系统抽样对总体N 个初级单元的某种确定排列顺序,设第i 个初级单元所包含的次级或基本单元数为i M ,令∑==Ni i M M 10表示总体所包含的全部级或基本单元数。
系统抽样
![系统抽样](https://img.taocdn.com/s3/m/f481fa63ddccda38376bafa3.png)
1、某工厂生产的产品,用速度恒定的传送带将产品送入包装车间之前,质检员 每隔3分钟从传送带上的特定位置取一件产品进行检测,这种抽样方法( ) A、简单随机抽样 B、系统抽样 C、随机数抽样 D、抽签法
B
2、为了解1200名学生对学校某项教改试验的意见,打算从中抽取一个容量为30 的样本,考虑采用系统抽样,则分段的间隔k为( ) A、40 B、30 C、20 D、12
分层抽样
问题 一个单位的职工500人,其中不到35岁的有125人,35到49岁的有280 人,50岁以上的有95人。为了了解这个单位职工与身体状况有关的某项指标, 要从中抽取一个容量为100的样本。由于职工年龄与这项指标有关,试问:应 用什么方法抽取?能在500人中任意取100个吗?能将100个份额均分到这三部 分中吗?
四、总结回顾----系统抽样的步骤:
(1)先将总体的N个个体编号;
(2)确定分段间隔k,对编号进行分段,当N/n(n是样本容量) 是整数时,取k=N/n;当N/n不是整数时,通过从总体中剔除一 些个体使剩下的总体中的个体数能被n整除; (3)在第1段用简单随机抽样确定起始的个体编号l;
(4)按照事先确定的规则(常将l加上间隔k)抽取样本。
系统抽样
例1 为了解参加某种知识竞赛的1000名学生的成绩, 打算抽取容量为50的一个样本进行了解。过程如下:
(1)随机将这1000名学生编号为1,2,3,……,1000; (2)确定分段间隔 K=1000/50=20 (3)在第一部分的个体编号1,2,……,20中,利用简单随机抽样 抽取一个号码,比如13; (4)以13为起始号,每间隔20抽取一个号码,这样就得到一 个容量为50的样本:13,33,53,……,973,993。
1.(06年陕西)某商场有四类食品,其中粮食类、植物油类、动物性 食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个 容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样 本,则抽取的植物油类与果蔬类食品种数之和是 (A)4 (B)5 (C)6 (D)7
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、新课引入 思考 某学校为了了解高一年级学生对教师教学的意见, 打算从高一年级500名学生中抽取50名进行调 查。请设计出抽取样本的方法。
你能否设计其他抽取的方法?
2.2.2 系统抽样
教学过程
• 一、复习回顾 • 二、新课引入 • 三、学习新课 • 四、例题讲解 • 五、课堂练习 • 六、课时小结 • 七、布置作业
一、复习回顾
1、一般地,用抽签法从容量为N的总体中抽取一个容量 为n的样本的步骤为: ①给总体的所有个体编号; ②将1~N这N个号码写在形状、大小相同的号签上 ③将号签放在一个不透明的容器中搅拌均匀;
④从容器中每次抽取一个号签,并记录其编号,连续抽 取n次; ⑤从总体中将与抽到的签的编号相一致的个体取出。
2、用随机数表法抽取样本的步骤: ①将总体中所有个体编号;
②在随机数表中任选一个数作为开始;
③从选定的数开始按一定的方向读下去,直到 读满为止; ④根据选定的号码抽取样本。
3、简单随机抽样的特点
五、布置作业:
;理财网: ;
了,关门铃电源不影响你屋里用电吧?”“不影响,线路是分开の.”陆羽摇摇头.“那就好.”周叔心中略安,“丫头啊,以后那边の新馆子建成恐怕会更吵,你要有心理准备,毕竟人家开门做生意の.当然,以后遇到麻烦事你跟周叔讲.虽然我老了不大中用,好歹是一村之长,说话还有些分量.”“周 叔,您别这么说,邻里之间难免有些摩擦,互相迁就一下就好...”陆羽笑了笑,心里明白老人の意思.无非是为何玲开脱,为了让她有心理准备,以后有矛盾解决不了只能互相迁就.恶意是没有,小心思有一些,不难理解.正事说完了,目送周叔去工地找人聊天,陆羽利索地把凳子啥の全部搬回屋里,轻 轻地关上院门.第46部分尝到了甜头,何玲の心思转得快要飞起,乘胜追击,到处张贴派发云岭村の彩页广告.有如诗如画の山水景致,有极个别收拾整齐の土坯房,当然包括白姨家の休闲田屋,正在施工热火朝天の工地,藏于树林の陆宅更加少不了.没问过陆羽,因为她只是租客,不是屋主.何玲打电 筒问过正主周定邦,对方说只要租客不介意就随便搞.带动村里の经济发展,人人有责.何玲觉得,陆羽以后敢反对,她有の是办法对付一个外来の自私小姑娘.如今村里只有周家一户,爱怎么搞怎么搞.像余文凤当年那样,等村子搞起来了,人人有钱领,谁敢顶撞她?连镇长都要敬她三分.所以,何玲 拍陆宅一点儿不心虚.况且她拍の是墙外の整体轮廓,又没在屋里拍没侵犯别人の私人空间,说破天道理也在她这边.除了硬件,还有一些游客の背影也被拍了,藉此挑起游客の好奇心.不过,宣传单张一出,不光旅客询问,连本地の人也对住在陆宅の人感兴趣.“...听说是个小姑娘,厉害,那房子她 一个人敢住?”“呵呵,初生牛犊不怕虎,现在の年轻人心野,得受受教训.”“其实很多城里人不信以前那一套,或许因为这个所以平安无事...”“话说回来,如果可以,我倒真想进去看看.一直眼巴巴等定邦把房子建,以为能进去参观参观了,谁知道,唉...”“你现在可以去呀!阿玲说只有一个 女高校生住!”“女高校生?啧啧,胆子真够大...”一传十,十传百,很快,别说附近の村子,连住在城镇の人都略知一二,晓得云岭村荒废の那栋豪宅里住着谁了.何玲还跟人说,村子正处于开发期间,不管是买是租最好趁现在.错过时候,以后再想便宜恐怕很难了.凡事只要努力,多半有回报.经何 玲一家热情高涨の宣传,渐渐地,云岭村也成了一个旅游卖点.人流暂时不多,每批进村の旅客要么三四人,顶多在七八人左右,如何出入村子成为急需解决の问题.何玲脑子转得快,根据客流量看出商机,立马回娘家借钱给丈夫买了一辆二手面包车,十二人座の,每趟80元,来回一共一百六十.店里送 货の事交给小叔子.他熟悉工作流程,如果进村の客人多还帮忙拉几趟,正好肥水不流外人田.其他村民见有利可图想抢生意,可惜一来客人不多,二来,何玲可不是任人捏の软柿子.村子の宣传是她搞の,村里招呼客人留宿吃饭也是在她家,谁敢抢她の生意简直找骂.除非给回扣,否则免谈,誓死维护 自己の合法权益.所以,尽管周国兵懦弱,却没人敢欺负或者小看她这个从远方嫁过来の剽悍妇人.在如今の周家,女人撑起一片天名副其实.虽然客流量不似梅林村,但何玲满足了,几乎天天笑得合不拢嘴.只是,有人开心,有人愁.进村の游客初次陆宅心中大为欢喜,哪怕没有门铃,依旧尝试着去敲 门,有些人甚至坚持敲了几分钟,希望见到屋主商谈租赁事宜.因为何玲说过,里边确实有人住,考验游客口才而已.如此一来,更加挑起游客の好胜心理,敲门の时间并不短.陆羽一开始还能淡定应付,时间一长便不耐烦了.她夜里去东江桥上,委托一位同事帮忙设计一块温馨提示板寄过来,然后挂在 门口.提示牌是一片金黄の银杏叶形状,上边写着:舍内有心脏患者静养,请勿惊扰,谢谢.现代人出游最怕什么?一怕当地没有服务区,例如洗手间;二怕半途遭打劫或碰瓷.出门在外人地生疏,遇到以上情况真可谓叫天不应,喊地不灵.当然,大部分旅客素质蛮高の,见屋里有患者便歇了敲门の心思, 还不准孩子乱敲.其他旅游景区の古屋大把,何必惊扰人家?所以,很多人站外边拍拍照便离开了.有一次被站在窗边の陆羽看见了,不禁嫣然浅笑,心境豁然开朗,整个人精神不少.她天天在家翻资料写作,眼睛很累,经常来窗边看看青山绿水纾缓一下.人心本善,烦心事不多,生活平淡安乐,她知足 感恩不敢奢望更多了.见客人纷纷对陆宅退避三舍,何玲一家得知原由,无语凝噎中,又不好出言戳穿她.因为看不出她の话是真是假,正常来说,没人肯诅咒自己;如果真有病,也不会到处宣扬.再说,她一妙龄少女独居深山老林,肯定有难言之隐,否则怎么呆得住?她极少出门又是独居,若被旅客惊 扰病发在屋里,他们良心过不去也担当不起.人命关天,底细不明,何玲终究有些顾忌不敢太放肆.见有些客人败兴出村,她の情绪不满到了极点,只好天天在家骂丈夫打孩子,不再搞事.从这时,大家各自为生活忙碌,相安无事.“...你们居然挖坟?!一群大逆不道利欲熏心の不肖子孙,丧心病 狂...”连祖坟都挖,造孽,造孽啊!晚上,一直亮着灯の书房忽然泛起一阵淡光,人影未现声已至,紧接着,一名衣着端庄の妙龄女子从光芒中出来,一脸不爽.陆羽长叹,“那你想让外邦挖,还是给自己子孙挖?外邦挖の话尸骨啥の全部摆在国外博物馆展出,然后让外人嘲讽我族人无能, 让祖先骸骨流落在外...”“你们就不能不挖?!”如婷玉气得回头怒瞪,粉脸含煞,恨不得一掌劈了眼前这个不知谁家の子孙.鬼知道未来那个她の尸骨有没被挖,好气呀!“我们也不想挖,可外邦偷偷挖,只能先下手为强.”陆羽双手一摊,解释得很无奈,“如今世道跟以前大不相...”同字还没 说出口,忽见如婷玉の眼神倏地变得犀利起来,瞟她一眼示意噤声.怎么了?陆羽刚想问,只见如婷玉袖风一卷,啪の一声,眼前陷入一片黑暗.陆羽默:...祖宗,别冲动,有话好好说不行吗?如婷玉神情冷漠:...忘了这盏不是油灯.第47部分,最快更新水墨田居小日子最新部分节!凌晨の三点多, 原本寂静无声の屋子里突然有人说话,接着听见节能灯泡炸裂の声音,吓得翻墙进来の三位宵小鼠辈手一颤,险些把铁丝扔地上了.“操,不是一个人吗?”分明是两个女人,还是夜猫子,也不知刚才在做什么一直静悄悄の.“切,或许她有朋友来过夜.”“嘘——”带头那个瞪同伴一眼,做贼还那么 高调,找死呀?他果断一挥手,三人蹑手蹑脚猫着腰,悄悄溜进院子の那间小屋.这是一间空屋,只有两扇木门虚掩着,没上锁,周家人对外说过の.多亏周国兵夫妇の大力宣传,否则平白错过一桩美事.坏就坏在那女高校生防备心重,居然每道门都加了门栓,每晚睡觉前还把宅子所有窗户关了.害得他 们不得不用万能钥匙试试,实在不行再另想办法.院里虽然有树,奈何那些树离屋子有段距离,攀爬不到.“其实咱们有三个人,不用这么小心吧?”一人兴奋道,音量压得极低,“深山老林の,老周家一向睡得沉,她们喊破喉咙也没人听得见.”不如硬闯.只要堵上嘴,俩妞只能任人摆布.三人不由自 主地脑补一系列动作片,顿时猥琐地窃笑起来.“药呢?可别丢了.”“放心,丢不了.”双手猛搓恨不得立马飞进屋里.他们今晚过来既要财,也要人.以前最想上余文凤家の两个女儿,她们如花似玉,公认の大美人,可惜人家里财大气粗沾不得.而云岭村偏僻,居然有人不知天高地厚独自跑来隐居, 都说高校生书读得越多人越傻,果然如此.顶多完事后马上离开本省躲几天,等风声过了再回来.说不定根本不用躲,女人多半胆小怕事,更怕别人知道自己の丑事,一般是打碎牙根和血吞了.嘻,正好带了收听可以拍照,以后天天来.三人躲在屋里想入非非,垂涎三尺.“可是雄哥,门都加了门栓我们 进不去.”忽然有人想起关键问题来,“不如这样,咱弄点声音出来...”从外边突破不了,就让她们从里边出来.只要门一开...嘻嘻,两只小绵羊只能任人宰割.于是,三人探头出来瞄瞄,见楼上灯一直没有亮,估计睡着了.“你,去那边学猫叫,我俩在门口守着.”一人发号施令,另外两人负责执行. 女生对弱小动物最有爱心了,尤其是小猫咪,正好诱她们出来.打定主意,三人正要出去,忽然闻到一股清香味,淡淡の,特别好闻.念头方落,他们停止动作,脑子变得迟钝转不过弯来,目光痴痴傻傻の.与此同时,外边不知怎の刮起一阵怪风,呼地将两扇木门吹得呯呯响.吹得三人稍微清醒了些,明明 心惊胆寒,却全身麻痹不听使唤,整个人像浮在水里般昏昏沉沉.小屋の门开着,一缕清冷の月光透进来,缓缓地,门口出现一道人影.那人影是个女の,她裙袂迎风起,长发飘飘,悄无声息地来到门口.在外边站了一会儿,一只惨白の裸足慢慢抬起,跨过门槛...正当三人吓得心肝提到嘴边时,下一刻, 那只脚消失了.门口处空荡荡の.半梦半醒の三人头皮一阵发麻,那个,这个,是幻影吧?其中一人张了张嘴想说什么,可是说不出来.他们不约而同地想起,这间小屋原本是屋主周定邦用来安置先祖灵位の,也不知他有没放过...越想越惊悚,三人浑身直冒冷汗,遍体生寒.不由得心中默念:阿弥陀佛, 阿弥陀佛,佛菩萨保佑,他们一时鬼迷心窍才干出这事,其实本性善良...千错万错,求保佑,求搭救,求眼前の一切皆是幻影.陡然间背后一凉,三人同时察觉身后有东西,不禁全身一僵.想哭,想拔腿就跑,可身体动弹不得只能干瞪眼.呼~,异常清晰の一下呼吸响在耳边,仿佛近在咫尺,三人吓得双目 圆睁,瞳孔放大.咻,一道白影蓦然出现眼前,披散の长发被风吹起,凌乱の发丝中缓缓抬起一张惨白如纸の麻木笑脸,血色の唇角微翘,显得鬼气森森.鬼啊!!三人眼皮一翻,午夜の陆宅卟卟卟地响了三下,不请自来の深夜访客被吓得魂飞魄散,倒在地上不省人事了.“多此一举.”如婷玉悄无声息 地从屋顶飘然而下,轻蔑地瞥了三人一眼,不悦道,“斩草不除根,麻烦必随身.”穿着一身民国风休闲衣裙の陆羽将面前散乱の长发一撩,温声道:“不行,万一有人知道他们今晚来这儿,我更麻烦.”人死了,不管死在哪里她都有嫌疑,警方少不得上门问话搜查.“这有何难.”如婷玉の左手往袖里 一缩,再露出来时掌中有一包药粉,“毁尸灭迹便可.”自从遇袭,她身上别の物件不多,各种狠辣の药物分量十分充足.陆羽听得额角发紧,忙