勾股定理专题复习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理专题复习
1.如图,在边长为4的正三角形ABC中,AD BC于点D,以AD为一边向右作正三角形
ADE。
(1)求△ABC的面积S;
(2)判断AC、DE的位置关系,并给出证明。
2.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;
(2)求△ADB的面积.
3.如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=度.
4.在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为()
B C D
5、如图2,四边形ABCD 为矩形纸片.把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF .若CD =6,则AF 等于 ( )
(A )34 (B )33 (C )24 (D )8 解析:由折叠可知,AE=AB=DC=6,在Rt △ADE 中AD=6,
DE=3由勾股定理,得AD=33,设EF=x ,则FC=x -33, 在Rt △EFC 中由勾股定理求得x=32,则EF=32,在Rt △AEF 中,由勾股定理得AF=34。
故选A 。
6. 如图,把矩形纸片ABCD 沿对角线AC 折叠,点B 落在点E 处,EC 与AD 相交于点F.
(1)求证:△FAC 是等腰三角形;
(2)若AB=4,BC=6,求△FAC 的周长和面积.
7.如图,将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上F 点处,已知cm CE 6=,cm AB 16=,求BF 的长. 解:由题意可知△ADE ≌△AFE .
∴AF AD =,FE DE =.
在矩形ABCD 中,
16==AB CD ,CB AD =,︒=∠=∠=∠90D C B , ∵6=CE ,
∴10=-==CE CD DE EF . 在Rt △CEF 中,822=-=
CE EF FC .
A B
C
D
E F 图 2 F E D C B A。