小学奥数“鸡兔同笼”例题13种讲解方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

鸡兔同笼问题?看到这个题目,大概有宝宝会不屑地说:“小学生都会!”可是今天的问题,不是要解出答案,而是你会用多少种解法解出答案?

不要小看这个“简单”的问题,早在1500年前,《孙子算经》中就记载了这个有趣的问题.WOW,还是个古董呢~

好啦,废话少说,请听题……

题目:现有一笼子,里面有鸡和兔子若干只,数一数,共有头14个,腿38条,球鸡和兔子各有多少只?(请用尽量多的方法解答)

『方法一:人见人爱的列表法』

如果二年级小朋友做这道题,可以用列表法!直观、易理解,还不容易出错~好啦,我们来看一下!

鸡 0 3 5 79...

兔1411 9 7 5...

腿5650464238...

根据上面的表格,我们可以看出,鸡为9只,兔子为5只.我们在列表的时候不要按顺序列,否则做题的速度会很慢,比如说列完鸡为0只,兔子为14只,发现腿的数量56条,和实际38条相差较大,那么下一个你可以跳过鸡的数量为2只这种情况,直接列鸡的数量为3只,这样做速度会快一些哦!

分析:让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是原来的一半,即19只脚.鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从19里减去头数14,剩下来的就是兔的头数19-14=5只,鸡有14-5=9只.

『方法四:最逗的吹哨法』

分析:假设鸡和兔接受过特种部队训练,吹一声哨,它们抬起一只脚,还有38-14=24只腿在站着,再吹一声哨,它们又抬起一只脚,这时鸡都一屁股坐地上了,兔子还有两只脚立着.这时还有24-14=10只腿在站着,而这10只腿全部是兔子的,所以兔子有10÷2=5只,鸡有14-5=9只.(惊现跑男中包贝尔的抬脚法有木有!)

『方法五:最常用的假设法』

分析:假设全部是鸡,则有14×2=28条腿,比实际少38-28=10只,一只鸡变成一只兔子腿增加2条,10÷2=5只,所以需要5只鸡变成兔子,即兔子为5只,鸡为14-5=9只.

『方法六:最常用的假设法』

分析:假设全部是兔子,则有14×4=56条腿,比实际多56-38=18只,一只兔子变成一只鸡腿减少2条,18÷2=9只,所以需要9只兔子变成鸡,即鸡为9只,兔子为14 - 9=5只.

『方法七:最牛的特异功能法』

分析:鸡有2条腿,比兔子少2条腿,这不公平,但是鸡有2只翅膀,兔子却没有.假设鸡有特级功能,把两只翅膀变成2条腿,那么鸡也有4条腿,此时腿的总数是14×4=56条,但实际上只有38条,为什么呢?因为我们把鸡的翅膀当作腿来算,所以鸡的翅膀有56-38=18只,鸡有18÷2=9只,兔就是14-9=5只.

『方法八:最牛的特异功能法2 』

分析:假设每只鸡兔都具有“特异功能”,鸡飞起来,兔立起来,这时立在地上的脚全是兔的,它的脚数就是38-14×2=10条,因此兔的只数有10÷2=5只,进而知道鸡有14-5=9只.鸡兔具有“特异功能”,这个方法想得太棒了!

『方法九:最牛的特异功能法3 』

假设孙悟空变成兔子,说“变”,每只兔子又长出一个头来,然后对妖精说“将它劈开”,变成“一头两脚”的两只“半兔”,半兔与鸡都是两只脚,因而共有28÷2=19只鸡兔,19-14=5只,这就是兔子的数目,当然鸡就有14-5=9只.呵呵,小朋友把兔“劈开”成“半兔”,想得奇吧!

『方法十:最古老的砍足法』

分析:假如把每只砍掉1只脚、每只兔砍掉2只脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由38只变成了19只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总数19与总头数14的差,就是兔子的只数,即19-14=5(只).所以,鸡的只数就是14-5=9(只)了. 呵呵,这个方法是古人想出来的,但有点残忍!

『方法十一:史上最坑的耍兔法』

分析:假如刘老师喊口令:“兔子,耍酷!”此时兔子们都把两只前脚高高抬起,两只后脚着地,呈酷酷的姿态,此时鸡兔都是两只脚着地.在地上脚的总数是14×2=28只,而原来有38只脚,多出38-28=10只.为什么会多呢?因为兔子们把它们的2只前脚抬了起来,所以兔的只数是10÷2=5只,鸡则是14-5=9只.

『方法十二:最万能的方程法』

分析:设鸡的数量为x只,则兔子有(14-x)只,有2x+4(14-x)=38,解出x=9,所以有鸡9只,兔子14-9=5只.

『方法十三:最万能的方程法』

分析:设兔子的数量为x只,则鸡有(14-x)只,有4x+2(14-x)=38.解得x=5,所以兔子有5只,鸡有14-5=9只.

鸡兔同笼的13种方法就给大家讲完了,最后我们来总结一下!

•十三种方法•

1、列表法

2、画图法

3、金鸡独立法

4、吹哨法

5、假设法

6、假设法

7、特异功能法8、特异功能法

9、特异功能法10、砍足法

11、耍兔法12、方程法

13、方程法

记忆方法:假设“列表”同学画完图以后,有了3大特异功能,摆了一个金鸡独立的pose,吹了一声哨,耍了一下兔,看足了,于是“方程”去了!

相关文档
最新文档