1.2.2集合的基本运算2
集合及基本运算教案
集合及基本运算教案第一章:集合的概念1.1 集合的定义引入集合的概念,讲解集合的定义和性质。
举例说明集合的表示方法,如列举法和描述法。
1.2 集合的元素讲解集合中元素的特征,强调元素的唯一性和不可度量性。
通过实例解释集合中元素的关系,如属于和不属于。
1.3 集合的类型介绍常用集合的类型,如自然数集、整数集、实数集等。
讲解集合的分类方法,如无限集和有限集。
第二章:集合的运算2.1 集合的并集讲解集合的并集概念,即两个集合中所有元素的集合。
举例说明并集的表示方法和运算规则。
2.2 集合的交集讲解集合的交集概念,即两个集合中共有元素的集合。
举例说明交集的表示方法和运算规则。
2.3 集合的差集讲解集合的差集概念,即属于第一个集合但不属于第二个集合的元素的集合。
举例说明差集的表示方法和运算规则。
2.4 集合的补集讲解集合的补集概念,即在全集之外不属于给定集合的元素的集合。
举例说明补集的表示方法和运算规则。
第三章:集合的性质和运算规律3.1 集合的子集讲解集合的子集概念,即一个集合的所有元素都是另一个集合的元素。
举例说明子集的表示方法和运算规则。
3.2 集合的幂集讲解集合的幂集概念,即一个集合的所有可能的子集的集合。
举例说明幂集的表示方法和运算规则。
3.3 集合的德摩根定律讲解德摩根定律,包括德摩根第一定律和德摩根第二定律。
通过实例解释德摩根定律的应用和运算规律。
第四章:集合的排列和组合4.1 排列的概念讲解排列的概念,即从一组不同元素中取出几个元素按照一定的顺序排成一列。
举例说明排列的表示方法和运算规则。
4.2 组合的概念讲解组合的概念,即从一组不同元素中取出几个元素组成一个集合,不考虑元素的顺序。
举例说明组合的表示方法和运算规则。
4.3 排列和组合的公式讲解排列和组合的公式,如排列数公式和组合数公式。
通过实例解释排列和组合公式的应用和运算规律。
第五章:集合的应用5.1 集合在数学中的应用讲解集合在数学中的应用,如在代数、几何和概率论中的使用。
示范教案(集合的基本运算并集、交集)
示范教案(集合的基本运算-并集、交集)第一章:集合的基本概念1.1 集合的定义与表示方法引入集合的概念,讲解集合的定义介绍集合的表示方法,如列举法、描述法等举例说明集合的表示方法及其应用1.2 集合的基本运算介绍集合的基本运算,包括并集、交集、补集等讲解并集的定义及其运算规则讲解交集的定义及其运算规则第二章:集合的并集运算2.1 并集的定义与性质讲解并集的定义及其表示方法介绍并集的性质,如交换律、结合律等举例说明并集的性质及其应用2.2 并集的运算规则讲解并集的运算规则,如两个集合的并集等于它们的交集的补集等举例说明并集的运算规则及其应用2.3 并集的计算方法介绍并集的计算方法,如列举法、Venn图法等讲解并集计算方法的步骤及其应用第三章:集合的交集运算3.1 交集的定义与性质讲解交集的定义及其表示方法介绍交集的性质,如交换律、结合律等举例说明交集的性质及其应用3.2 交集的运算规则讲解交集的运算规则,如两个集合的交集等于它们的并集的补集等举例说明交集的运算规则及其应用3.3 交集的计算方法介绍交集的计算方法,如列举法、Venn图法等讲解交集计算方法的步骤及其应用第四章:集合的混合运算4.1 混合运算的定义与性质讲解混合运算的定义及其表示方法介绍混合运算的性质,如分配律等举例说明混合运算的性质及其应用4.2 混合运算的运算规则讲解混合运算的运算规则,如并集与交集的运算规则等举例说明混合运算的运算规则及其应用4.3 混合运算的计算方法介绍混合运算的计算方法,如列举法、Venn图法等讲解混合运算计算方法的步骤及其应用第五章:集合的应用举例5.1 集合在实际问题中的应用举例说明集合在实际问题中的应用,如统计数据处理、网络管理等讲解集合运算在实际问题中的重要性5.2 集合运算的综合应用举例说明集合运算在实际问题中的综合应用,如数据挖掘、图论等讲解集合运算的综合应用的方法及其步骤5.3 集合运算的拓展与应用介绍集合运算的拓展与应用,如模糊集合、多集等讲解集合运算的拓展与应用的方法及其步骤第六章:集合运算的练习题与解答6.1 集合运算的基础练习提供一些基础的集合运算练习题,如并集、交集的计算等引导学生通过列举法、Venn图法等方法解答练习题6.2 集合运算的进阶练习提供一些进阶的集合运算练习题,如混合运算、集合的应用等引导学生通过列举法、Venn图法等方法解答练习题6.3 集合运算练习题的解答与解析对练习题进行解答,解释解题思路和方法分析练习题的难度和考察点,帮助学生掌握集合运算的知识点第七章:集合运算的常见错误与注意事项7.1 集合运算的常见错误分析学生在集合运算中常见的错误,如概念混淆、运算规则错误等举例说明这些错误的产生原因和解题方法7.2 集合运算的注意事项提醒学生在进行集合运算时需要注意的事项,如符号使用、运算顺序等讲解注意事项的重要性及其在解题中的应用7.3 集合运算的解题技巧与策略介绍学生在解题时可以采用的集合运算技巧与策略,如化简、分解等讲解技巧与策略的运用方法和适用场景第八章:集合运算在实际问题中的应用案例分析8.1 集合运算在图论中的应用介绍集合运算在图论中的应用,如图的连通性、网络流等分析实际案例,讲解集合运算在图论问题中的作用和意义8.2 集合运算在数据挖掘中的应用介绍集合运算在数据挖掘中的应用,如数据预处理、特征选择等分析实际案例,讲解集合运算在数据挖掘问题中的作用和意义8.3 集合运算在其他领域的应用介绍集合运算在其他领域的应用,如计算机科学、经济学等分析实际案例,讲解集合运算在其他问题中的作用和意义第九章:集合运算的拓展与研究动态9.1 集合运算的拓展介绍集合运算的拓展方向,如模糊集合、多集、粗糙集等讲解拓展领域的研究动态和应用前景9.2 集合运算的研究方法与技术介绍集合运算的研究方法,如逻辑推理、数学建模等讲解研究技术在集合运算中的应用方法和实例9.3 集合运算的学术交流与资源共享介绍集合运算领域的学术交流与资源共享平台,如学术会议、期刊等鼓励学生积极参与学术交流,分享研究成果和经验第十章:总结与展望10.1 集合运算的教学总结总结本课程的教学内容和目标,强调集合运算的重要性和应用价值回顾学生在学习过程中的收获和不足,提出改进教学方法的建议10.2 集合运算的学习展望鼓励学生继续深入学习集合运算及相关领域知识,提高解决问题的能力展望集合运算在未来的发展趋势和应用前景,激发学生的学习兴趣和动力重点和难点解析1. 第一章至第五章的章节内容,主要涉及集合的基本概念、基本运算以及应用举例。
1.2集合间的基本关系及运算
集合间的基本关系及运算【知识要点】1、子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集, 记作A B 或B A.2、集合相等:如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么集合A等于集合B,记作A=B3、真子集:如果A B,且A B,那么集合A称为集合B的真子集,A B .4、设A S,由S中不属于A的所有元素组成的集合称为S的子集A的补集,记作C S A5 、元素与集合、集合与集合之间的关系6 、有限集合的子集个数1 )n 个元素的集合有2n个子集2) n 个元素的集合有2n-1 个真子集3) n 个元素的集合有2n-1 个非空子集4) n 个元素的集合有2n-2 个非空真子集7、交集:由属于集合A且属于集合B的所有元素组成的集合叫A与B的交集,记作A Bo8、并集:由所有属于集合A或属于B的元素构成的集合称为A与B的并集,记A B o9 、集合的运算性质及运用知识应用】1. 理解方法:看到一个集合A里的所有元素都包含在另一个集合里B,那么A就是B的子集,也就是说集合A中的任何一个元素都是集合B中的元素,即由任意x A能推出x Bo【J】例1.指出下列各组中集合A与集合B之间的关系(1)A={-1,1} ,B=Z (2)A={1,3,5,15} ,B={x|x 是15的正约数}【L】例 2.已知集合A={x|-2 x 5},B={x|m+1x 2m-1},若B A,求实数m取值范围。
【C】例3.已知集合A {0,1,2,3},至少有一个奇数,这样的集合A的子集有几个,请一写出。
2. 解题方法:证明2个集合相等的方法:(1)若A 、B 两个集合是元素较少的有限集,可用【C 】例 3.集合 M={x|x=3k-2,k Z},P={y|y=3x+1,x Z},S={z|z=6m+1,m Z}之间的关列举法将元素一一列举出来,比较之或者看集合中的代表元素是否一致且代表元素满足 的条件是否一致,若均一致,则两集合相等。
第四章集合的基本概念和运算2
4。
5。
6。
例题:某班每人至少学一门外语,已知学英语120人, 学法语80人,学日语60人,学英、法语50人,学 英、日语25人,学法、日语30人,三种语言都学 10人,求班级人数。 解:设 A {学英语}, B {学法语}, C {学日语}
| E | 170, | A | 120, | B | 80, | C | 60, | A B | 50 | A C | 25, | B C | 30, | A B C | 10
性质5, ⑴ A B的充分必要条件是 C B C A
⑵ A B的充分必要条件是 A C B C
性质6,若A、B、C、D是非空集合
A B C D A C B D
四、特殊集合
1。空集:不包含任何元素的集合,记作φ 。 空集是任何集合的子集。 φ 与{φ}是不同的。 2。全集:研究对象的全体组成的集合,用E表示。 任何集合都是全集的子集。 3。幂集:一个集合的所有子集组成的集合,记作P(A) 如A={a,b},P(A)={φ,{a},{b},{a,b}} 说明:⑴幂集中所有的元素都是集合。 ⑵φ与P(φ)是不同的,φ中没有元素,P(φ)中有一 个元素φ ,P(φ)={φ}。 ⑶若A中有n个元素,则P(A)中有2n个元素。
二、集合的表示方法
1.列举法 列出集合中的所有元素,用大括号括起来。 例如,A={a,b,c,d},N={0,1,2,3,…}。 2。描述法 在大括号中,先说明元素怎样表示,再描述元素 具有的共同属性,例如,N={x|x是非负整数}。 x, y R x 0 y 0 3。图示法——文氏图 用一个简单的平面区域(通常用圆)表示一个集合, 不同的集合用不同的平面区域表示。区域内的点表 示集合中的元素。
1.2集合间的基本运算_交集和并集概要
A B {x | x A, 或x B} 思考4:如何用venn图表示 A B ?
A
B
思考5:集合A、B与集合 A B的关系如何? A B 与 B A的关系如何? A A B B A B A B B A
思考6:集合 A A, A 分别等于什么?
A A A, A A
2
B {x | x bx a 0} ,若 A B {1} ,求 A B
2
{-1,0,1}
例3 设集合 A {x |1 x 2},
B {x | 0 x a( } a 0 为常数),求
A B和A B.
知识小结
1.求集合的并、交、补是集合间的基本运算, 运算结果仍然还是集合. 2.区分交集与并集的关键是“且”与“或”, 在处理有关交集与并集的问题时,常常从这两个字 眼出发去揭示、挖掘题设条件. 3.注意结合Venn图或数轴进而用集合语言表 达,增强数形结合的思想方法.
A B
思考3:我们用符号“ A B”表示集合A与B 的并集,并读作“A交B”,那么如何用描 述法表示集合 A B ?
思考5:集合A、B与集合 A B的关系如何? A B 与 B A的关系如何? A A B B A B A B B A
思考6:集合 A A, A 分别等于什么?
A A A, A
思考1:上述两组集合中,集合A,B与集合C的 关系如何?
思考2:我们把上述集合C称为集合A与B的交集, 一般地,如何定义集合A与B的交集? 由属于集合A且属于集合B的所有元素组成的 集合,称为集合A与B的交集。
A B {x | x A, 且x B} 思考4:如何用venn图表示 A B ?
思考1:上述两组集合中,集合A,B与集合C的 关系如何? 思考2:我们把上述集合C称为集合A与B的并集, 一般地,如何定义集合A与B的并集? 由所有属于集合A或属于集合B的元素组成的 集合,称为集合A与B的并集
《集合的基本运算》(第2课时补集及应用)PPT
并集、补集运算,故考虑借助数轴求解.
解:将集合U,A,B分别表示在数轴上,如图所示,
则∁UA={x|-1≤x≤3};
∁UB={x|-5≤x<-1,或1≤x≤3};
(∁UA)∩(∁UB)={x|1≤x≤3}.
探究一
探究二
探究三
思维辨析
随堂演练
∴A∩B={x|-1<x<2},∁UB={x|x≤-1,或x>3}.
又 P= ≤ 0,或 ≥
5
2
,
5
∴(∁UB)∪P= ≤ 0,或 ≥ 2 .
5
又∁UP= 0 < < 2 ,∴(A∩B)∩(∁UP)={x|-1<x<2}∩ 0 < <
5
={x|0<x<2}.
2
解:(1)∵B∩(∁UA)={2},∴2∈B,但2∉A.
∵A∩(∁UB)={4},∴4∈A,但4∉B.
8
= 7,
2
4 + 4 + 12 = 0,
∴ 2
解得
12
2 -2 + = 0,
=- 7 .
8 12
∴a,b 的值分别为7,- 7 .
探究一
探究二
探究三
思维辨析
随堂演练
集合中的新定义问题
)
A.{1,3,5,6} B.{2,3,7}
C.{2,4,7}
D.{2,5,7}
(2)已知全集U为R,集合A={x|x<1,或x≥5},则∁UA=
.
解析:(1)由A={1,3,5,6},U={1,2,3,4,5,6,7},得∁UA={2,4,7}.故选C.
集合的基本运算第二课时
集合的基本运算
• 新知视界 • 1.全集 • 一般地,如果一个集合含有我们所研究问 题中所涉及的所有元素,我们就称这个集 合为全集,记作U.
2.补集 自然 语言 符号 语言 图形 语言 对于一个集合A,由全集U中不属于A的 所有元素组成的集合称为集合A相对于 全集U的补集,记作∁ UA ∁ UA={x|x∈U,x∉A}
• 3.设集合S={三角形},A={直角三角形}, 则∁SA=__________. • 解析:三角形中去掉直角三角形,∴∁SA= {斜三角形}. • 答案:{斜三角形}
• 4.设全集U=R,集合X={x|x≥0},Y= {y|y≥1},则 • ∁UY与∁UX包含关系∁UX__________∁UY. • 解析:∵X={x|x≥0},Y={y|y≥1}, • ∴∁UX={x|x<0},∁UY={y|y<1}, • ∴∁UX∁UY.
• 类型二 交、并、补的综合运算 • [例2] 已知全集U={x|x≤4},集合A={x|- 2<x<3},B={x|-3<x≤3}.求∁ UA,A∩B, ∁U(A∩B),(∁UA)∩B. • [分析] 由题目可获取以下主要信息:①全 集U,集合A、B均为无限集;②所求问题为 集合间交、并、补运算.解答此题可借助 数轴求解.
图3
• [解] 把全集U和集合A,B在数轴上表示如 图3: • 由图可知∁UA={x|x≤-2或3≤x≤4}, • A∩B={x|-2<x<3}, • ∁U(A∩B)={x|x≤-2或3≤x≤4}, • (∁UA)∩B={x|-3<x≤-2或x=3}. • [点评] 求解用不等式表示的数集间的集合 运算时,一般要借助于数轴求解,此法的 特点是简单直观,同时要注意各个端点的
集合的基本运算(全集与补集)
温故知新
(1)集合与集合之间的关系有几种?分别是什么? (2)交集与并集的定义分别是什么?
交集:给定两个集合 A,B,由既属于 A 又属 于B 的所有公共元素构 成的集合,叫做 A,B 的交集.记作:AnB
并集:给定两个集合 A ,B ,由属于 A 或属 于B 的所有元素构成的 集合,叫做 A,B 的并集. 记作:AUB
作业
1、教材19页A组2、3,B组1 2、练习册:题组一、题组二、题组三
冬瓜、虾、毛豆
一.全集
新知全解
全集U
冬瓜、 虾、毛豆、
黄瓜、 鲫鱼、 茄子 猪肉、 芹菜、 土豆
全集的定义
一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,
那么就称这个集合为全集,
通常记作U.
二.补集
冬瓜、虾、毛豆
A 在全集 U 中的补集
1、定义 如果 集合 A 是全集 U 的一个子集 ,由 U 中的所有不属于 A 的
U
.
补集的性质:
补集的性质
(1)A ∪ CU A= (2)A ∩ CU A = (3) CU(CUA)=
U; ; A.
U A
CUA
互动探究(交并补的混合运算)
例1:设全集为R,A={x|x<5},B={x|x>3}.求值:
(1)A∩B;
(2)A∪B;
(4)(CRA) ∩ (CRB);
(3) CRA, CRB; (5) CR(A ∪ B);
补集的综合应用(多维训练)
例2:已知集合A={x|x<a},B={x|1<x<3},若AUCRB=R,求实数a的取值范围; 解:CRB={x|x≤1或x≥3},结合数轴分析可得a≥3
教学设计1:1.2.2 集合的运算 第2课时-补集及综合应用
§1.2.2 集合的运算第2课时补集及综合应用一. 教学目标:1. 知识与技能(1)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(2)能使用Venn图表达集合的运算,体会直观图示对理解抽象概念的作用.2. 过程与方法学生通过观察和类比,借助Venn图理解集合的基本运算.3.情感.态度与价值观(1)进一步树立数形结合的思想.(2)进一步体会类比的作用.(3)感受集合作为一种语言,在表示数学内容时的简洁和准确.二.教学重点.难点重点:全集与补集的概念.难点:理解交集与并集的概念.符号之间的区别与联系.三.学法与教学用具1.学法:学生借助Venn图,通过观察.类比.思考.交流和讨论等,理解集合的基本运算.2.教学用具:投影仪.四. 教学过程导入新课-)=0,其结果会相同吗?问题:①分别在整数范围和实数范围内解方程(x-3)(x3②若集合A={x|0<x<2,x∈Z},B={x|0<x<2,x∈R},则集合A、B相等吗?学生回答后,教师指明:在不同的范围内集合中的元素会有所不同,这个“范围”问题就是本节学习的内容,引出课题.推进新课新知探究提出问题①用列举法表示下列集合:A ={x ∈Z |(x -2)(x +31)(x 2-)=0};B ={x ∈Q |(x -2)(x +31)(x 2-)=0}; C ={x ∈R |(x -2)(x +31)(x 2-)=0}. ②问题①中三个集合相等吗?为什么?③由此看,解方程时要注意什么?④问题①,集合Z ,Q ,R 分别含有所解方程时所涉及的全部元素,这样的集合称为全集,请给出全集的定义.⑤已知全集U ={1,2,3},A ={1},写出全集中不属于集合A 的所有元素组成的集合B. ⑥请给出补集的定义.⑦用Venn 图表示 A.活动:组织学生充分讨论、交流,使学生明确集合中的元素,提示学生注意集合中元素的范围.讨论结果:①A ={2},B ={2,31-},C ={2,31-,2}. ②不相等,因为三个集合中的元素不相同.③解方程时,要注意方程的根在什么范围内,同一个方程,在不同的范围其解会有所不同. ④一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记为U .⑤B ={2,3}.⑥对于一个集合A ,全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集.集合A 相对于全集U 的补集记为A ,即A ={x |x ∈U ,且x A }.⑦如图1-1-3-9所示,阴影表示补集.图1-1-3-9例题精讲1.设U={x|x是小于9的正整数},A={1,2,3},B={3,4,5,6},求A, B.活动:让学生明确全集U中的元素,回顾补集的定义,用列举法表示全集U,依据补集的定义写出A, B.解:根据题意,可知U={1,2,3,4,5,6,7,8},所以A={4,5,6,7,8};B={1,2,7,8}.点评:本题主要考查补集的概念和求法.用列举法表示的集合,依据补集的含义,直接观察写出集合运算的结果.常见结论:(A∩B)=(A)∪(B);(A∪B)=(A)∩(B).变式训练1.已知集合U={1,2,3,4,5,6,7},A={2,4,5,7},B={3,4,5},则(A)∩(B)等于( )A.{1,6}B.{4,5}C.{2,3,4,5,7}D.{1,2,3,6,7}分析:思路一:观察得(A)∩(B)={1,3,6}∩{1,2,6,7}={1,6}.思路二:A∪B={2,3,4,5,7},则(A)∩(B)=(A∪B)={1,6}.答案:A2设集合U={1,2,3,4,5},A={1,2,4},B={2},则A∩(B)等于( )A.{1,2,3,4,5}B.{1,4}C.{1,2,4}D.{3,5}答案:B3.设全集U={1,2,3,4,5,6,7},P={1,2,3,4,5},Q={3,4,5,6,7},则P∩( Q)等于( )A.{1,2}B.{3,4,5}C.{1,2,6,7}D.{1,2,3,4,5}答案:A4.设全集U={x|x是三角形},A={x|x是锐角三角形},B={x|x是钝角三角形}.求A∩B,(A ∪B).活动:学生思考三角形的分类和集合的交集、并集和补集的含义.结合交集、并集和补集的含义写出结果.A ∩B 是由集合A ,B 中公共元素组成的集合,(A ∪B )是全集中除去集合A ∪B 中剩下的元素组成的集合.解:根据三角形的分类可知A ∩B =∅,A ∪B ={x |x 是锐角三角形或钝角三角形},(A ∪B )={x |x 是直角三角形}. 变式训练1.已知集合A ={x |3≤x <8},求 A.解:A ={x |x <3或x ≥8}.2.设S ={x |x 是至少有一组对边平行的四边形},A ={x |x 是平行四边形},B ={x |x 是菱形},C ={x |x 是矩形},求B ∩C ,B , A.解:B ∩C ={x |正方形},B ={x |x 是邻边不相等的平行四边形},A ={x |x 是梯形}.3.已知全集I =R ,集合A ={x |x 2+ax +12b =0},B ={x |x 2-ax +b =0},满足(A )∩B ={2},(B )∩A ={4},求实数a 、b 的值.答案:a =78,b =712-. 4.设全集U =R ,A ={x |x ≤2+3},B ={3,4,5,6},则(A )∩B 等于…( ) A.{4} B.{4,5,6} C.{2,3,4} D.{1,2,3,4} 分析:∵U =R ,A ={x |x ≤2+3},∴A ={x |x >2+3}.而4,5,6都大于2+3,∴(A )∩B ={4,5,6}. 答案:B知能训练课本P 11练习4.【补充练习】1.设全集U =R ,A ={x |2x +1>0},试用文字语言表述A 的意义.解:A ={x |2x +1>0}即不等式2x +1>0的解集,A 中元素均不能使2x +1>0成立,即A 中元素应当满足2x+1≤0.∴A即不等式2x+1≤0的解集.2.如图1-1-3-14所示,U是全集,M,P,S是U的三个子集,则阴影部分表示的集合是_______.图1-1-3-14分析:观察图可以看出,阴影部分满足两个条件:一是不在集合S内;二是在集合M,P的公共部分内,因此阴影部分表示的集合是集合S的补集与集合M,P的交集的交集,即( S)∩(M∩P).答案:(S)∩(M∩P)3.设集合A、B都是U={1,2,3,4}的子集,已知(A)∩(B)={2},(A)∩B={1},则A 等于( )A.{1,2}B.{2,3}C.{3,4}D.{1,4}分析:如图1-1-3-15所示.图1-1-3-15由于(A)∩(B)={2},(A)∩B={1},则有A={1,2}.∴A={3,4}.答案:C4.设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},则(S∪T)等于( )A. B.{2,4,7,8} C.{1,3,5,6} D.{2,4,6,8}分析:直接观察(或画出Venn图),得S∪T={1,3,5,6},则(S∪T)={2,4,7,8}.答案:B5.已知集合I={1,2,3,4},A={1},B={2,4},则A∪(B)等于( )A.{1}B.{1,3}C.{3}D.{1,2,3}分析:∵B={1,3},∴A∪(B)={1}∪{1,3}={1,3}.答案:B拓展提升问题:某班有学生50人,解甲、乙两道数学题,已知解对甲题者有34人,解对乙题者有28人,两题均解对者有20人,问:(1)至少解对其中一题者有多少人?(2)两题均未解对者有多少人?分析:先利用集合表示解对甲、乙两道数学题各种类型,然后根据题意写出它们的运算,问题便得到解决.解:设全集为U,A={只解对甲题的学生},B={只解对乙题的学生},C={甲、乙两题都解对的学生},则A∪C={解对甲题的学生},B∪C={解对乙题的学生},A∪B∪C={至少解对一题的学生},(A∪B∪C)={两题均未解对的学生}.由已知,A∪C有34个人,C有20个人,从而知A有14个人;B∪C有28个人,C有20个人,所以B有8个人.因此A∪B∪C有N1=14+8+20=42(人),(A∪B∪C)有N2=50-42=8(人).∴至少解对其中一题者有42个人,两题均未解对者有8个人.课堂小结本节课学习了:①全集和补集的概念和求法.②常借助于数轴或Venn图进行集合的补集运算.作业课本P12习题1.1A组9、10,B组4.设计。
集合的基本运算(2)课件-2022-2023学年高一上学期数学人教A版(2019)必修第一册
小结
用你喜欢的方式总结本节课的知识,并准备展示给大家
作业
作业: 课本P13 练习1、2题
习题1.3 第1,2,3题 第4,5,6题 (选做)
祝你学习进步
{x∈R|(x-2)(x2-3)=0}={2, 3, - 3}
回顾
从小学到初中,数的研究范围逐步地扩充,你能概括出数域
逐步扩大的范围吗?
在高中阶
段,数的研
究范围将
进一步扩
充.
定义
一般地,如果一个集合含有所研究问题中涉及的所 有元素,那么就称这个集合为全集(universe set),通常 记作U.
(7)(CUA) (CUB)= CU(A B);
(3) CUU= ;
当堂检测
1、已知U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7}, 求A (CUB),(CUB) (CUA).
2、设S={x|x是平行四边形或梯形},A={x|x是平行四边形},B= {x|x是菱形},C={x|x是矩形},求B C,CAB,CSA.
1.3 集合的基本运算(2)
补集
思考
在研究问题时,我们经常需要确定研究 对象的范围.
比如:在分解因式或解方程时,在不同 数域的范围内,得到的结果是不同的.
例如:方程(x-2)(x2-3)=0的解集,在有理数范围内只有一 个解2,即
{x∈Q|(x-2)(x2-3)=0}={2}
在实数范围内有三个解:2, 3, - 3,即
应用
例6 设全集U={x|x是三角形},A={x|x是锐角三角
形},B={x|x是钝角三角形},求 A B,CU( A B ).
应用、总结
练习3. 图中U是全集,A,B是U的两个子集,用阴影表示:
集合的运算
1.2.2 集合的运算一、学习目标1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.2.理解在给定集合中一个子集的补集的含义,会求给定子集的补集.3.能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.二、知识梳理问题1: (1)分别说明A B 与A=B 的意义;(2)说出集合{1,2,3}的子集、真子集个数及表示;问题2:观察下面五个图(投影1),它们与集合A,集合B 有什么关系?图1—5(1)给出了两个集合A 、B ;图1—5(2)阴影部分是A 与B 公共部分;图1—5(3)阴影部分是由A 、B 组成;图1—5(4)集合A 是集合B 的真子集;图1—5(5)集合B 是集合A 的真子集;1. 交集:一般地,由所有属于集合A 且属于集合B 的所有元素所组成的集合,叫做A 与B 的交集(intersection set ),即A 与B 的公共部分,记作A ∩B (读作“A 交B ”),即A ∩B={x|x ∈A 且x ∈B}.如上述图(2)中的阴影部分.说明:两个集合求交集,结果还是一个集合,是由集合A 与B 的公共元素组成的集合.2.并集:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为集合A 与集合B 的并集(union set),即A 与B 的所有部分,记作A ∪B (读作“A 并B ”),即A ∪B={x|x ∈A 或x ∈B}.如上述图(3)中的阴影部分.说明:两个集合求并集,结果还是一个集合,是由集合A 与B 的所有元素组成的集合(重复元素只看成一个元素).3.全集如果一个集合含有我们所要研究问题中所涉及的全部元素,那么就称这个集合为全集(uniwerse set ),记作U.如:解决某些数学问题时,就可以把实数集看作全集U ,那么有理数集Q 的补集C U Q 就是全体无理数的集合.4.补集一般地,设U 是一个集合,A 是U 的一个子集(即A ⊆U ),由U 中所有不属于A 的元素组成的集合,叫做U 中集合A 的补集,记作C U A ,即C U A={x|x ∈U ,且x ∉A}图1—5(6)阴影部分即表示A 在U 中补集C U A.拓展:求下列各图中集合A 与B 的并集与交集例1 设A={x|x>-2},B={x|x<3},求A B.A例2 设A={x|x是等腰三角形},B={x|x是直角三角形},求A B.例3 A={4,5,6,8},B={3,5,7,8},求A B.例4设A={x|x是锐角三角形},B={x|x是钝角三角形},求A B.A 例5已知全集U=R,集合A={x|1≤2x+1<9},求CU例6已知S={x|-1≤x+2<8},A={x|-2<1-x≤1},B的关系B={x|5<2x-1<11},讨论A与CS当堂训练A={5},求m的值;1、设全集U={2,3,m2+2m-3},A={|m+1|,2},CUA、m;2、已知全集U={1,2,3,4},A={x|x2-5x+m=0,x∈U},求CU3、.已知全集U=R,集合A={x|0<x-1 5},求C U A,C U(C U A).4、已知集合M ⊆{4,7,8},且M 中至多有一个偶数,则这样的集合共有( );A 3个B 4个C 6个 D5个5、设集合A={-1,1}, B={x|x 2-2ax+b=0}, 若B ∅≠, 且B A ⊆, 求a, b 的值.6.集合A={x|x 2+px-2=0},B={x|x 2-x+q=0},若A B={-2,0,1},求p 、q ;7.集合A={2,3,a 2+4a+2},B={0,7,a 2+4a-2,2-a},且A B ={3,7},求B小结:1.在并交问题求解过程中,充分利用数轴、文恩图.2.能熟练求解一个给定集合的补集;3.求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn 图或数轴进而用集合语言表达,增强数形结合的思想方法.4.集合基本运算的一些结论:A ∩B ⊆A ,A ∩B ⊆B ,A ∩A=A ,A ∩∅=∅,A ∩B=B ∩AA ⊆A ∪B ,B ⊆A ∪B ,A ∪A=A ,A ∪∅=A,A ∪B=B ∪A(C U A )∪A=U ,(C U A )∩A=∅若A ∩B=A ,则A ⊆B ,反之也成立若A ∪B=B ,则A ⊆B ,反之也成立若x ∈(A ∩B ),则x ∈A 且x ∈B若x ∈(A ∪B ),则x ∈A ,或x ∈B能力提升(一)选择题1.已知集合M ={(x ,y )|x +y =2},N ={(x ,y )|x -y =4},那么集合M ∩N 为( )A .x =3,y =-1B .(3,-1)C .{3,-1}D .{(3,-1)} 2.已知集合A ={x ∈N |x ≤5},B ={x ∈N |x >1},那么A ∩B 等于( ) A .{1,2,3,4,5}B .{2,3,4,5}C .{2,3,4}D .{x |1<x ≤5,x ∈R }C .{x |x 是钝角三角形}D .{x |x 是锐角三角形或钝角三角形}4.设全集U ={(x ,y )|x ∈R ,y ∈R },集合{,(},123|),{(x P x y y x M ==--=y )|y ≠x +1},那么U (M ∪P )等于( ) A .∅B .{(2,3)}C .(2,3)D .{(x ,y )|y =x +1}(二)填空题5.已知全集U ={3,5,7},数集A ={3,|a -7|},如果U A ={7},则a 的值为______.6.集合A ={0,1,2,4,5,7},B ={1,3,6,8,9},C ={3,7,8},则集合(A ∩B )∪C =______.7.集合A 含有10个元素,集合B 含有8个元素,集合A ∩B 含有3个元素,则集合A ∪B 有______个元素.8.已知全集U =R ,集合A ={x |-1≤x -1≤2},B ={x |x -a ≥0,a ∈R }, 若U A ∩U B ={x |x <0},U A ∪U B ={x |x <1或x >3},则a ∈______.9.在相应的图中,按各小题的要求,用阴影部分表示各小题.(1) (2)(1)(A ∪B )∩U (A ∩B ) (2)B ∪C ∪U A(3)(3)B ∩U (A ∪C )(三)解答题10.集合A ={x 2,-4,2x -1},B ={1-x ,9,x -5},若A ∩B ={9},求x 的值.11.已知全集U ={不大于20的质数},M ,N 是U 的两个子集,且满足M ∩(U N )={3,5},(U M )∩N ={7,19},(U M )∩(U N )={2,17},求M ,N .12.设A ={x |x 2+px -12=0},B ={x |x 2+qx +r =0},且A ≠B ,A ∪B ={-3,4},A ∩B ={-3},求p ,q ,r 的值.1.2.2 集合的运算答案例1解:A B={x|x>-2} {x|x<3}={x|-2<x<3}.例2解:A B={x|x是等腰三角形} {x|x是直角三角形}={x|x是等腰直角三角形}.例3解:A B={3,4,5,6,7,8}.例4解:A B={x|x是锐角三角形} {x|x是钝角三角形}={x|x是斜三角形}.例5解:∵A={x|1≤2x+1<9}={x|0≤X<4},U=RA={x|x<0,或x≥4}∴CU例6解:∵S={x|-3≤x<6},A={x|0≤x<3},B={x|3≤x<6}∴CB={x|-3≤x<3}SB∴A⊆CS能力提升1.D2.B3.D 4.B 解析:集合M是由直线y=x+1上除去点(2,3)之后,其余点组成的集合.集合P是坐标平面上不在直线y=x+1上的点组成的集合,那么M∪P就是坐标平面上不含点(2,3)的所有点组成的集合.因此U(M∪P)就是点(2,3)的集合.即U(M∪P)={(2,3)}.故选B.5.2或12.提示:由U A={7}知,7∉A,故|a-7|=5,∴a=2或12.6.{1,3,7,8}.解:∵A∩B={1},∴(A∩B)∪C={1}∪{3,7,8}={1,3,7,8}.7.158.{1}提示:由(U A)∩(U B)=U(A∪B)={x|x<0},得A∪B={x|x≥0},由(U A)∪(U B)=U(A∩B)={x|x<1或x>3},得A∩B={x|1≤x≤3}又A={x|-1≤x-1≤2}={x|0≤x≤3},∴B={x|x≥a}={x|x≥1}.∴a=1.如图所示:9.解析:各小题的阴影部分分别为:(1) (2)(3)2当x=-3时,A={9,-4,-7},B={4,9,-8},符合题意,∴x=-3.当x=5时,A={-4,9,25},B={0,-4,9},与已知A∩B={9}相矛盾.∴x=5舍去.综上,x=-3为所求.11.解:用图示法表示集合U,M,N,将符合条件的元素依次填入图中相应的区域内,由图可知:∴M={3,5,11,13},N={7,11,13,19}12.解:∵A∩B={-3},∴-3∈A且-3∈B,将-3代入方程x2+px-12=0,得p=-1,从而A={-3,4},将-3代入方程x2+qx+r=0,得3q-r=9,①∵A∪B={-3,4},∴A∪B=A,即B⊆A,∵A≠B,∴B A,B为单元素集,∴B={-3},方程x2+qx+r=0的判别式∆=q2-4r=0,②由①,②解得q=6,r=9,故得p=-1,q=6,r=9.(或在推得B={-3}后,也可由(x+3)2=0,即x2+6x+9=0,得q=6,r=9.)。
1.2.2集合的基本运算练习
N 4,5,6,7,8,9,10 ,则M⊙N=__________.
三、解答题
2 11.已知全集 U x N |1 x 6 ,集合 A x | x 6 x 8 0 , B 3, 4,5,6
(1)求 A B, A B ,(2)写出集合 (CU A) B 的所有子集.
A 4.若集合A,B,C满足 A B A, B C C ,则A与C之间的关系一定是( A A C B C A C
a a, b
(
)
)
AC
C 7个
பைடு நூலகம்
D
CA
D8个
5.设全集 U x | x 4, x Z , S 2,1,3 ,若 Cu P S ,则这样的集合P共有( ) A 5个 B 6个 二、填空题 6.满足条件 1, 2,3 A 1, 2,3, 4,5 的所有集合A的个数是__________. 7.若集合 A x | x 2 , B x | x a ,满足 A B 2 则实数 a =_______. 8.集合 A 0,2,4,6, CU A 1, 3,1,3, CU B 1,0,2 ,则集合B=_____. 9.已知 U 1,2,3,4,5 , A 1,3,5 ,则 CUU ________________. 10.对于集合A,B,定义 A B x | x A且 B ,A⊙B= ( A B) ( B A) , 设集合 M 1, 2,3, 4,5,6 ,
【课堂练习】 1.已知全集 U 0,1,2,4,6,8,10, A 2,4,6, B 1 ,则 (CU A) B ( B 1,2,4,6 C 0,8,10 D 0,1,8,10 2 2.集合 A 1, 4, x , B x ,1 且A B B ,则满足条件的实数 x 的值为 A A 1或0 B 1,0,或2 C 0,2或-2 3.若 A 0,1,2 , B 1,2,3, C 2,3,4则(A B)(B C)= B 2,3 C 2,3,4 D 1, 2, 4 1, 2,3 4.设集合 A x | 9 x 1 , B x | 3 x 2则A B A x | 3 x 1 B x |1 x 2 C x | 9 x 2 A 【达标检测】 一、选择题 1.设集合 M x | x 2n, n Z , N x | x 2n 1, n N 则 M N 是 A B M C Z D ( ) )
集合间的基本运算
集合间的基本运算一、知识概述1、交集的定义一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x A,且x B}.2、并集的定义一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x A,或x B}.3、补集:一般地,设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集),记作,即=.性质:.全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用S,U表示4、运算性质:(1);(2);(3);(4);(5);(6);.二、例题讲解例1、设集合A={-4,2m-1,m2},B={9,m-5,1-m},又A B={9},求实数m的值.解:∵A B={9},∴2m-1=9或m2=9,解得m=5或m=3或m=-3.若m=5,则A={-4,9,25},B={9,0,-4}与A B={9}矛盾;若m=3,则B中元素m-5=1-m=-2,与B中元素互异矛盾;若m=-3,则A={-4,-7,9},B={9,-8,4}满足A B={9}.∴m=-3.例2、设A={x|x2+ax+b=0},B={x|x2+cx+15=0},又A B={3,5},A∩B={3},求实数a,b,c的值.解:∵A∩B={3},∴3∈B,∴32+3c+15=0,∴c=-8,由方程x2-8x+15=0解得x=3或x=5.∴B={3,5}.由A(A B)={3,5}知,3∈A,5A(否则5∈A∩B,与A∩B={3}矛盾).故必有A={3},∴方程x2+ax+b=0有两相同的根3.由韦达定理得3+3=-a,33=b,即a=-6,b=9,c=-8.例3、已知A={x|x3+3x2+2x>0},B={x|x2+ax+b≤0},且A∩B={x|0<x≤2},A∪B={x|x>-2},求a、b的值.解:A={x|-2<x<-1或x>0},设B=[x1,x2],由A∩B=(0,2]知x2=2,且-1≤x1≤0,①由A∪B=(-2,+∞)知-2≤x1≤-1. ②由①②知x1=-1,x2=2,∴a=-(x1+x2)=-1,b=x1x2=-2.例4、已知A={x|x2-ax+a2-19=0},B={x|x2-5x+8=2},C={x|x2+2x-8=0}.若A∩B,且A∩C=,求a的值.解:∵B={x|(x-3)(x-2)=0}={3,2},C={x|(x+4)(x-2)=0}={-4,2},又∵A∩B,∴A∩B≠.又∵A∩C=,∴可知-4A,2A,3∈A.∴由9-3a+a2-19=0,解得a=5或a=-2.①当a=5时,A={2,3},此时A∩C={2}≠,矛盾,∴a≠5;②当a=-2时,A={-5,3},此时A∩C=,A∩B={3}≠,符合条件.综上①②知a=-2.例5、已知全集U={不大于20的质数},M,N是U的两个子集,且满足M∩()={3,5},()∩N={7,19},()∩()={2,17},求M、N.解:用图示法表示集合U,M,N(如图),将符合条件的元素依次填入图中相应的区域内,由图可知:M={3,5,11,13},N={7,11,13,19}.点评:本题用填图的方法使问题轻松地解决,但要注意的是在填图时,应从已知区域填起,从已知区域推测未知区域的元素.特别提示:下列四个区域:对应的集合分别是:①—;②—;③—;④—.一、选择题1、下列命题中,正确的是()A.若U=R,A U,;B.若U为全集,Φ表示空集,则Φ=Φ;C.若A={1,Φ,{2}},则{2}A;D.若A={1,2,3},B={x|x A},则A∈B.2、设数集且M、N都是集合{x|0≤x≤1}的子集,如果把b-a叫做集合{x|a≤x≤b}的“长度”,那么集合M∩N 的“长度”的最小值是()A. B.C. D.3、设M、N是两个非空集合,定义M与N的差集为M-N={x|x∈M且x N},则M-(M-N)等于()A.N B.M∩NC.M∪N D.M4、已知全集,集合M和的关系的韦恩(Venn)图如下图所示,则阴影部分所示的集合的元素共有()A.3个 B.2个C.1个 D.无穷个1、Φ=U,{2}∈A,{2}单独看是一个集合,但它又是A中的一个元素.2、集合M的“长度”为,集合N的“长度”为,而集合{x|0≤x≤1}的“长度”为1,故M∩N的“长度”最小值为3、M-N={x|x∈M且x N}是指图(1)中的阴影部分.同样M-(M-N)是指图(2)中的阴影部分.4、∵图形中的阴影部分表示的是集合,由解得集合,而N是正奇数的集合,∴,故选B.二、填空题5、已知集合A={x|x2-3x+2=0},集合B={x|ax-2=0}(其中a为实数),且A ∪B=A,则集合C={a|a使得A∪B=A}=_____________.5、{0,1,2}解析:A={1,2},由A∪B=A,得B A.∵1∈A,即得a=2;或2∈A,即得a=1;或B=Φ,此时a=0.∴C={0,1,2}.6、非空集合S{1,2,3,4,5},且若a∈S,则6-a∈S,这样的S共有___________个.6、6解析:S={1,5}或{2,4}或{3},或{1,3,5},或{2,4,3},或{1,5,2,4}.三、解答题7、设集合.(1)若,求实数a的值.(2)若,求实数a的值.7、解:(1)∵9,∴9 A.则a2=9或.解得a=±3或5.当时,(舍);当时,(符合);当时,(符合).综上知或.(2)由(1)知.8、已知全集U=R,<0,<或x>,若,求实数的取值范围8、解:依题设可知全集且≥0≤≤5,≤≤,由题设可知.分类如下:①若,则m+1>2m-1m<2.②若,则m+1≤2m-1,且,解得2≤m≤3.由①②可得:m≤3.∴实数m的取值范围为{m|m≤3}.9、已知全集U={|a-1|,(a-2)(a-1),4,6}.(1)若求实数a的值;(2)若求实数a的值.9、解:(1)∵且B U,∴|a-1|=0,且(a-2)(a-1)=1,或|a-1|=1,且(a-2)(a-1)=0;第一种情况显然不成立,在第二种情况中由|a-1|=1得a=0或a=2,∴a=2.(2)依题意知|a-1|=3,或(a-2)(a-1)=3,若|a-1|=3,则a=4,或a=-2;若(a-2)(a-1)=3,则经检验知a=4时,(4-2)(4-1)=6,与元素的互异性矛盾.∴a=-2或.10、设集合A ={|},B ={|,},若A B=B,求实数的值.10、解:先化简集合A=. 由A B=B,则B A,可知集合B可为,或为{0},或{-4},或.(i)若B=,则,解得<;(ii)若B,代入得=0=1或=,当=1时,B=A,符合题意;当=时,B={0}A,也符合题意.(iii)若-4B,代入得=7或=1,当=1时,已经讨论,符合题意;当=7时,B={-12,-4},不符合题意.综上可得,=1或≤.11、已知集合A={x|x2-4mx+2m+6=0},B={x|x<0},若A∩B≠,求实数m 的取值范围.11、解:设全集.若方程x2-4mx+2m+6=0的两根x1,x2均非负,则解得.∵{m|}关于U的补集是{m|m≤-1},∴实数m的取值范围是{m|m≤-1}.1、(全国I,1)设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合中的元素共有()A.3个B.4个C.5个D.6个答案:A解析:2、(福建,2)已知全集U=R,集合A={x|x2-2x>0},则等于()A.{x|0≤x≤2} B.{x|0<x<2}C.{x|x<0或x>2} D.{x|x≤0或x≥2}答案:A解析:∵x2-2x>0,∴x(x-2)>0,得x<0或x>2,∴A={x|x<0或x>2},.3、(山东,1)集合A={0,2,a},B={1,a2}.若A∪B={0,1,2,4,16},则a的值为()A.0 B.1 C.2 D.4答案:D解析:∵A∪B={0,1,2,a,a2},又A∪B={0,1,2,4,16},∴{a,a2}={4,16},∴a=4,故选D.集合中的交、并、补等运算,可以借助图形进行思考。
《集合的基本运算(2)》示范公开课教学设计【高中数学人教版】
《1.3.2 集合的基本运算》教学设计1.能举例说明全集;对于具体的集合,能写出其补集;并会用符号语言、图形语言表教学重点:全集、补集的含义.教学难点:补集的含义,利用Venn图解决一些与集合运算有关的问题.PPT.一、问题导入问题1:上一节课学习了交集和并集,请你默写定义,并用符号语言和图形语言表示.集合的并集是类比了实数的加法运算,实数也有减法运算,那么集合是否也可以“相减”呢?如集合A={1,2,3},B={3},则集合A“减去”集合B应该是什么呢?请写出你的猜想.师生活动:学生先默写,之后互相检查,再写出猜想,以小组交流,教师适时引导.设计意图:通过回顾并集概念,寻找集合运算与实数运算之间的相似性,为类比引入补集做好铺垫.二、全集1.形成概念问题2:小学到初中,数的研究范围逐步地由自然数到整数,再到有理数,引进无理数后,数的研究范围扩充到实数.思考下面两个集合中元素是否相同?为什么?A={x∈Q|(x-1)(x2-2)=0};B={x∈R|(x-1)(x2-2)=0}.师生活动:学生独立完成,之后展示交流,教师补充.预设的答案:两个集合中的元素不相同.原因如下:A={x∈Q|(x-1)(x2-2)=0}={1};B={x∈R|(x-1)(x2-2)=0}={1,2,-2}.教师讲解:在不同范围研究同一个问题,可能有不同的结果,如上述方程(x-1)(x2-2)=0的根在不同数集范围下是不同的.因此,在研究问题时,经常要确定研究对象的范围.即:一般地,如果一个集合含有所研究问题中涉及的所有元素,那么就称这个集合为全集(universe set),通常记作U.设计意图:利用已有的知识类比学习新知识,学生容易接受,举例说明让学生体会到在研究对象时,确定研究范围的重要性.2.初步理解追问:你能再举出几个全集的例子吗?师生活动:学生举例,展示交流,教师补充.预设的答案:上操站队时,全校学生构成的集合是全集;班主任分配宿舍时,我班所有学生构成的集合就是全集;参加学校运动会按班级报参赛项目时,我班的运动员构成的集合就是全集.设计意图:通过举例,让学生初步理解全集的概念.三、补集3.形成概念问题3:阅读教科书第13页,什么是补集?默写定义.在问题1中,你的猜想正确吗?有哪些值得肯定之处?师生活动:学生阅读课本获得定义,并通过比较发现自己的猜想与教科书中定义的一致之处,以及不同之处.预设的答案:在学生默写的基础上教师修正,给出答案(如图1).设计意图:阅读获得定义,默写记忆定义,并通过比较,肯定学生猜想中的合理之处,激发学生的兴趣.4.精致定义问题4:学习了集合的三种运算,它们之间有哪些异同,你是如何区别的?师生活动:学生先独立梳理,再展示交流,教师设计表格帮助学生进行整理.预设的答案:语言并集交集补集自然语言由所有属于集合A或属于集合B的元素组成的集合由所有属于集合A且属于集合B的元素组成的集合由全集U中不属于集合A的所有元素组成的集合称为集合A在全集U中的补集记法A∪B A∩B AC U记法读作A并B A交B A在全集U中的补集符号语言A∪B={x|x∈A,或x∈B} A∩B={x|x∈A,且x∈B} AC U={x∈U,且x∉A}图形语言集合关系A、B可以是任意集合A、B可以是任意集合A⊆U图1自然语言符号语言图形语言对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作ACU(读作“集合A在全集U中的补集”)}{AxUxAC U∉∈=,且设计意图:集合的三种运算(并集、交集、补集)的定义相近,符号语言表示相似,易混淆,通过将三者放在一起对比,异同点一目了然,帮助学生进一步理解概念.四、概念应用问题5:自己独立完成教科书第13页的例5、例6,然后对比教材批改.每一个题目求解的依据是什么?师生活动:学生独立完成,教师巡视观察学生做的情况,有个别问题个别纠正,共性问题教师再针对性讲解.答案略.设计意图:练习补集运算,巩固集合运算.五、运算律问题6:定义了一种运算之后,为简便计算会研究其运算律.回忆一下并集、交集运算律有哪些?通过类比猜想补集运算有哪些运算律?师生活动:学生思考交流,教师给出如下提示:A∪(C U A)=________,A∩(C U A)=________,C U(C U A)=________.(其中U 为全集)预设的答案:A∪(C U A)=U,A∩(C U A)= ,C U(C U A)=A .(其中U为全集)设计意图:通过类比并集、交集的运算律,探索发现补集的运算律.六、巩固应用例1 (1)设集合U={1,2,3,4,5,6},M={1,2,4},则C U M=()A.U B.{1,3,5} C.{3,5,6} D.{2,4,6}(2)设全集U=R,集合A={x|2<x≤5},则C U A=________.(3)设集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},则(A∪B)∩C=()A.{2} B.{1,2,4}C.{1,2,4,6} D.{x∈R|-1≤x≤5}(4)设全集为R,A={x|3≤x<7},B={x|2<x<10},则C R(A∪B)=________,(C R A)∩B=________.师生活动:学生独立完成之后展示交流.预设的答案:(1)C;(2){x|x≤2,或x>5};(3)B;(4){x|x≤2,或x≥10},{x|2<x<3,或7≤x<10}解:把全集R和集合A,B在数轴上表示如下:图2由图2知,A∪B={x|2<x<10},∴C R(A∪B)={x|x≤2,或x≥10}.∵C R A={x|x<3,或x≥7},∴(C R A)∩B={x|2<x<3,或7≤x<10}.设计意图:巩固集合的基本运算.问题7:本题求解的依据是什么?每个题目中所给集合有什么特点?你获得了什么求解经验?师生活动:学生观察总结,展示交流,师生完善补充.预设的答案:求解的依据是定义.对于用列举法给出的集合,可直接观察或借助于Venn 图写出结果.对于用描述法给出的集合,首先明确集合中的元素,其次将两个集合化为最简形式;对于连续的数集常借助数轴表示结果,此时要注意数轴上方所有“线”下面的实数组成了并集,数轴上方“双线”(即公共部分)下面的实数组成了交集,要注意端点是否在集合中.设计意图:通过应用加深对概念的理解,并提升数学运算素养.例2 设U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0},若(C U A)∩B =∅,则m=__________.问题8:本题中两个集合可否化简?集合B化简之后有几种情况?待求解的问题是否可以化简?师生活动:学生根据问题7的引导,对题目进行化简,教师引导学生对集合B要分类讨论写出其化简后的情况.然后再对化简后的问题进行求解就比较容易了.解:A={-2,-1},由(∁U A)∩B=∅,得B⊆A,∵方程x2+(m+1)x+m=0的判别式Δ=(m+1)2-4m=(m-1)2≥0,∴B≠∅.∴B={-1}或B={-2}或B={-1,-2}.①若B={-1},则m=1;②若B={-2},则应有-(m+1)=(-2)+(-2)=-4,且m=(-2)·(-2)=4,这两式不能同时成立,∴B≠{-2};③若B={-1,-2},则应有-(m+1)=(-1)+(-2)=-3,且m=(-1)·(-2)=2,由这两式得m=2.经检验知m=1和m=2符合条件.∴m=1或2.设计意图:通过两个集合的运算,转化为两个集合间的关系,利用学生熟悉的一元二次方程根的情况,分类讨论求解,培养学生分析问题的能力,提升数学运算素养.七、归纳总结、布置作业问题9:本节课你有哪些收获?可以从以下几方面思考:(1)两个集合间的基本运算有哪些?(2)求解集合运算问题,你获得了哪些经验?师生活动:相互讨论、概括总结.预设的答案:(1)略;(2)①集合中的元素若是离散的,一般采用什么方法;集合中的元素若是连续的实数,则用什么方法,此时要注意端点的情况.②已知集合的运算结果求参数,要注意检验参数的值是否满足题意,或者是否满足集合中元素的互异性.设计意图:梳理总结,深化理解.布置作业:教科书习题1.3的第4,5,6题.八、目标检测设计1.设全集U={1,2,3,4,5,6},A={1,2,3,4},则C U A等于()A.{1,2,5,6} B.{5,6} C.{2} D.{1,2,3,4}2.如图所示,阴影部分表示的集合是______________,全集是_______________.3.已知集合A,B均为全集U={1,2,3,4}的子集,且C U(A∪B)={4},B={1,2},则A∩C U B等于()A.{3} B.{4} C.{3,4} D.4.设集合S={x|x>-2},T={x|-4≤x≤1},则(C R S)∪T等于()A.{x|-2<x≤1} B.{x|x≤-4}C.{x|x≤1} D.{x|x≥1}答案:1.B2.{7,9},U={1,2,3,4,5,6,7,8,9,10}或写成{n∈N|1≤n≤10}3.A4.C设计意图:1,2题考查集合的全集集和补集的概念,3,4题考查集合的运算的综合应用.。
示范教案(集合的基本运算并集、交集)
示范教案(集合的基本运算-并集、交集)一、教学目标:1. 让学生理解并集和交集的定义。
2. 让学生掌握并集和交集的基本运算方法。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学内容:1. 并集的定义和运算方法。
2. 交集的定义和运算方法。
3. 并集和交集的性质。
三、教学重点与难点:1. 教学重点:并集和交集的定义及其运算方法。
2. 教学难点:并集和交集的性质。
四、教学方法:1. 采用问题驱动法,引导学生思考并探索并集和交集的概念及运算方法。
2. 通过例题讲解,让学生掌握并集和交集的基本运算技巧。
3. 利用小组讨论,培养学生的合作能力和解决问题的能力。
五、教学准备:1. 教案、PPT、黑板。
2. 练习题及答案。
3. 学生分组合作的材料。
教案内容请稍等,我需要更多时间来为您编写。
六、教学过程:1. 导入:通过复习集合的基本概念,引导学生进入并集和交集的学习。
2. 新课讲解:讲解并集和交集的定义,通过示例演示并集和交集的运算方法。
3. 练习巩固:让学生独立完成练习题,检验对并集和交集的理解和掌握程度。
七、课堂练习:1.1 集合A = {1, 2, 3}, 集合B = {3, 4, 5},求A∪B和A∩B。
1.2 集合C = {2, 4, 6}, 集合D = {4, 5, 6},求C∪D和C∩D。
八、小组讨论:1. 让学生分组讨论并集和交集的性质,如:1.1 集合A∪B = 集合B∪A。
1.2 集合A∩B = 集合B∩A。
1.3 集合A∪B = 集合A + 集合B 集合A∩B。
九、总结与拓展:1. 总结并集和交集的概念及运算方法。
2. 引导学生思考并集和交集在实际生活中的应用。
3. 提出拓展问题,激发学生的学习兴趣:如何求两个无限集合的并集和交集?十、布置作业:1.1 集合E = {1, 2, 3, 4}, 集合F = {3, 4, 5, 6},求E∪F和E∩F。
1.2 集合G = {x | x 是正整数}, 集合H = {x | x 是偶数},求G∪H和G∩H。
集合的基本运算(并集、交集)+课件-2024-2025学年高一上学期数学人教A版必修第一册
追 问 :已 知 A ∩ B = B , A ∩ B = ∅ , 请 用 Ve n n 图 表 示 集 合 A 与 集 合
B的关系.
A
B
AB B
A
B
AB ∅
9
新知巩固
【例3】A {x |1 x 2} , B {x | x a} ,若 A B B,则实数a的
1.2 集合的基本运算
第一课时(并集、交集)
1
课前引入 思 考 1 :观 察 下 面 的 集 合 , 类 比 实 数 的 加 法 运 算 , 你 能 说 出 集 合 C 与
集合A,B之间的关系吗? (1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6}; (2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数}
A B {x | 2 x 1}
4
新知讲授 思 考 2 :下 列 关 系 式 成 立 吗 ?
( 1 ) A ∪ A = A ; ( 2 ) A ∪ ∅= A ;
追 问 : 已 知 A ∪ B = A , 请 用 Ve n n 图 表 示 集 合 A 与 集 合 B 的 关 系 .
A
B
5
新知讲授
6
新知讲授
2、交集: 一般地,由所有属于集合A且属于集合B的元素组成的集合, 称为集合A与B的交集,记作A∩B(读作“A交B”),即:
A B {x | x A, 且x B}
B
AB A
7
新知讲授 【例2】交集的运算.
(1) A {1,0,1,6} ,B {x | x 0, x R} ,则 A B {1,6}
思 考 3 :观 察 下 面 的 集 合 , 集 合 C 与 集 合 A , B 之 间 有 什 么 关 系 ? (1)A={2,4,6,8,10},B={3,5,8,12},C={8}; (2)A={x|x是立德中学今年在校的女同学},B={x|x是立德中 学今年在校的高一年级同学},C={x|x是今年在校的高一年级 女同学} 例(1)(2)中,都具有这样一种关系: 集合C是由所有既属于集合A又属于集合B的元素组成的.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
; ;M—N= 、 Cu B = 。
。
新疆部高中 2014 级数学教学案
§1.2.2 集合的基本运算(2)-----全集、补集
3
新疆部高中 2014 级数学教学案
§1.2.2 集合的基本运算(2)-----全集、补集
4
新疆部高中 2014 级数学教学案
§1.2.2 集合的基本运算(2)-----全集、补集
新疆部高中 2014 级数学教学案
§1.2.2 集合的基本运算(2)-----全集、补集
新疆部高中 2014 级数学教学案
学科 课型 数 学 新授课 编制人 课 题 于培勇 教学案编号 4
§1.2.2 集合的基本运算(2)全集、补集
教 学 过 程 设 计
一、学习目标:了解全集的意义,理解补集的概念. 二、知识梳理: 1.全集:如果集合 S 包含有我们所要研究的各个集合,这时 S 可以看作一个全集,全集通常记作 U. 2.补集:设 A S ,由 S 中不属于 A 的所有元素组成的集合称为 S 的子集 A 的补集, 记作: C S A (读作 A 在 S 中的 补集),即 CS A {x x S , 且x A},补集的 Venn 图表示:
5
新疆部高中 2014 级数学教学案
§1.2.2 集合的基本运算(2)-----全集、补集
6
新疆部高中 2014 级数学教学案
§1.2.2 集合的基本运算(2)-----全集、补集
7
新疆部高中 2014 级数学教学案
§1.2.2 集合的基本运算(2)-----全集、补集
8
S
U
A
A CUA
ðS A
三、例题: 例 1. 若 U={x∣x 是三角形},P={ x∣x 是直角三角形},则 A.{x∣x 是直角三角形} C.{x∣x 是钝角三角形}
C
U
P -----------[
]
B.{x∣x 是锐角三角形} D.{x∣x 是锐角三角形或钝角三角形}
2 例 2 设全集 U 2,3, a 2a 3 , A 2a 1 , 2 , CU A 5 ,求实数 a 的值.
4.已知 U=﹛(x,y)︱x∈﹛1,2﹜,y∈﹛1,2﹜﹜,A=﹛(x,y)︱x-y=0﹜, A U 求
U
A
王新敞
奎屯
新疆
六、课后作业: 1.设全集 U=﹛1,2,3,4,5﹜,A=﹛2,5﹜,求
U
A 的真子集的个数
王新敞
奎屯
新疆
2. 设 U={x|x<8,且 x∈N},A={x|(x-2)(x-4)(x-5)=0},则 Cu A = 3. 定义 A—B={x|x∈A,且 x B},若 M={1,2,3,4,5},N={2,4,8},则 N—M= 4.已知 U={x∈N|x≦10}, A={小于 10 的正奇数}, B={小于 11 的质数}, 则 Cu A =
例 3.已知 A x x 3 , B x x a . ⑴ B A ,求 a 的取值范围; ⑵若 A B ,求 a 的取值范围; ⑶若 CR A
CR B ,求 a 的取值范围.
四、课堂练习: 1.设 A= x x 5, x N ,B={x∣1< x <6,x N } ,则
五、拓展巩固:
1.设全集 U={2,3,m2+2m-3},B={|m+1|,2}, Cu B ={5},求 m.
2.设全集 U={1,2,3,4},A={x|x2-5x+m=0,x∈U},求 Cu A 、m.
3.不等式组
2 x 1 0 的解集为 3x 6 0
A, U R ,试求 A 和 CSA ,并把他们分别表示在数轴上。
C
A
B
2.已知 M={x∣x 0, x R },N={x∣x a, x R } (1)若 M N ,求 a 得取值范围; (2)若 M N ,求 a 得取值Βιβλιοθήκη 围; (3)若CR
M
C
R
N ,求 a 得取值范围.
1
新疆部高中 2014 级数学教学案
§1.2.2 集合的基本运算(2)-----全集、补集