实验一、矩阵连乘问题
10计本算法实验矩阵连乘算法
实验报告4课程数据结构与算法实验名称动态规划(一) 第页班级10计本学号105032010111 姓名陈兴灶实验日期:2012年3月20日报告退发(订正、重做)一、实验目的掌握递归及分治策略的原理和应用。
二、实验环境1、微型计算机一台2、WINDOWS操作系统,Java SDK,Eclipse开发环境三、实验内容必做题:1、编程实现矩阵连乘算法,求出最优值及一个最优解。
附加题:1、开车从a到b会经过n个加油站,给定这n个加油站的距离和油价,及汽车耗油量,汽车油箱的容量为v,编程计算从a到b至少需要花费多少油费。
四、实验步骤和结果第一题:矩阵连乘算法package shiyan4;import java.util.Scanner;public class matrixChain {public static int [][]a;public static int [][]b;public static void matrixchain(int []p,int [][]m,int [][]s){int n=p.length-1;for(int i=1;i<n;i++)m[i][i]=0;for(int r=2;r<=n;r++)for(int i=1;i<=n-r+1;i++){int j=i+r-1;m[i][j]=m[i+1][j]+p[i-1]*p[i]*p[j];s[i][j]=i;for(int k=i+1;k<j;k++){int t=m[i][k]+m[k+1][j]+p[i-1]*p[k]*p[j];if(t<m[i][j]){m[i][j]=t;s[i][j]=k;}}}}public static void traceback(int [][]s,int i,int j){if(i==j)return ;traceback(s,i,s[i][j]);traceback(s,s[i][j]+1,j);System.out.println("Multiply A"+i+","+s[i][j]+" and A"+(s[i][j]+1)+","+j);}public static void main(String []args){Scanner sc=new Scanner(System.in);System.out.println("输入矩阵个数");int n=sc.nextInt();int []p=new int[n+1];a=new int [n+1][n+1];b=new int [n+1][n+1];System.out.println("输入各矩阵的行数和列数");for(int i=0;i<=n;i++)p[i]=sc.nextInt();matrixchain(p,a,b);System.out.println("最少次数为");System.out.println(a[1][a.length-1]+" ");System.out.println("最优解为");traceback(b,1,n);}}结果:第二题:计算从a到b至少需要花费多少油费package shiyan4;import java.util.Scanner;public class MinPertrolFee {public static float []fee;public static float []distance;public static float v;public static float vh;public static float vs;float money;MinPertrolFee(){Scanner sc=new Scanner(System.in);System.out.println("输入加油站个数");int n=sc.nextInt();fee=new float[n];System.out.println("输入每个加油站油的单价");distance=new float[n];for(int i=1;i<fee.length;i++)fee[i]=sc.nextFloat();System.out.println("输入两两相邻加油站间的距离");for(int i=1;i<distance.length;i++)distance[i]=sc.nextFloat();System.out.println("输入油箱容量");v=sc.nextFloat();System.out.println("输入每公里的耗油量");vh=sc.nextFloat();vs=0;money=0;}public static void minpertrolfee(MinPertrolFee e) {float s=e.v/e.vh,s2;int j,l,k;for(int i=1;i<e.fee.length;i++){float vj=e.distance[i]/e.vh-e.vs;if(vj>0){e.money+=addpertrol(vj,i);e.vs+=vj;}float s1=0;for( j=i;j<e.fee.length&&s>=s1;j++)s1+=e.distance[j];for( l=i,k=i;l<(e.fee.length-1)&&l<=j;l++) {if(e.fee[k]>=e.fee[l+1])break;else continue;}if(l==j&&j!=e.distance.length)s2=e.v/e.vh;else s2=e.distance[l]-e.distance[i];float vj1=s2/e.vh-e.vs;if(vj1>0){e.money+=addpertrol(vj1,i);e.vs+=vj1;}e.vs-=e.distance[i]/e.vh;}System.out.println("所须要最少的钱为"+e.money); }public static float addpertrol(float vj,int i) {return vj*fee[i];}public static void main(String []args){MinPertrolFee e=new MinPertrolFee();minpertrolfee(e);}}结果:五、实验总结1.第二题算法是错的。
矩阵连乘问题的算法
矩阵连乘问题的算法
一、矩阵连乘问题
矩阵连乘问题是指在矩阵计算中,给定n个矩阵,求这n个矩阵的连乘积的最优解问题。
矩阵连乘问题既可以用于组合优化,也可以用于信息处理系统中查找最优路径的搜索算法。
它是最基本的组合优化问题。
二、矩阵连乘问题的算法
1. 动态规划法:动态规划法是求解矩阵连乘问题的常用算法。
它采用递归方法,将原问题分解为若干个子问题,然后求出各子问题的最优解,最后组合出原问题的最优解。
2. 贪心算法:贪心算法是一种经典的最优化算法,也可以用于求解矩阵连乘问题,即通过某种启发式规则,在每一步中都使最优决策,最终得到最优解。
3. 分支定界法:分支定界法是一种由搜索算法和界定法相结合而成的最优化算法,也可以用于求解矩阵连乘问题。
该算法按照树状的层次结构,向下搜索一个在每一步骤都使得当前最优的路径,然后上溯形成最优解。
4. 模拟退火算法:模拟退火算法是一种搜索算法,它可以用于求解矩阵连乘问题。
它采用一种模拟物理过程的原理,通过不断地改变解的状态,以求出相对最优解。
- 1 -。
矩阵连乘实验报告
华北电力大学科技学院实验报告实验名称矩阵连乘问题课程名称计算机算法设计与分析专业班级:软件12K1 学生姓名:吴旭学号:************ 成绩:指导老师:刘老师实验日期:2014.11.14一、实验内容矩阵连乘问题,给定n个矩阵{A1,A2,…,A n},其中A i与A i+1是可乘的,i=1,2,3…,n-1。
考察这n个矩阵的连乘A1,A2,…,A n。
二、主要思想由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序。
这种计算次序可以用加括号的方式来确定。
若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已经完全加括号,则可依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。
完全加括号的矩阵连乘积可递归的定义为:(1)单个矩阵是完全加括号的;(2)矩阵连乘积A是完全加括号的,则A可表示为2个完全加括号的矩阵连乘积B和C的乘积并加括号,即A=(BC)。
运用动态规划法解矩阵连乘积的最优计算次序问题。
按以下几个步骤进行1、分析最优解的结构设计求解具体问题的动态规划算法的第1步是刻画该问题的最优解的结构特征。
为方便起见,将矩阵连乘积简记为A[i:j]。
考察计算A[1:n]的最优计算次序。
设这个计算次序矩阵在A k和A k+1之间将矩阵链断开,1≤k≤n,则其相应的完全加括号方式为((A1…A k)(A k+1…A n))。
依此次序,先计算A[1:k]和A[k+1:n],然后将计算结果相乘得到A[1:n]。
2、建立递归关系设计动态规划算法的第二步是递归定义最优值。
对于矩阵连乘积的最优计算次序问题,设计算A[i:j],1≤i≤j≤n,所需的最少数乘次数为m[i][j],原问题的最优值为m[1][n]。
当i=j时,A[i:j]=A i为单一矩阵,无需计算,因此m[i][i]=0,i=1,2,…n。
当i<j时,可利用最优子结构性质来计算m[i][j]。
m[i][j]=m[i][k]+m[k+1][j]+p i-1p k p j。
矩阵相乘问题实验报告
一、实验目的1. 理解矩阵相乘的基本原理。
2. 掌握矩阵相乘的算法实现。
3. 分析不同算法的效率差异。
4. 优化矩阵相乘算法,提高计算效率。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3. 库:NumPy三、实验原理矩阵相乘是线性代数中一个重要的运算,其基本原理如下:设矩阵A是一个m×n的矩阵,矩阵B是一个n×p的矩阵,则矩阵C=AB是一个m×p的矩阵。
矩阵C的第i行第j列的元素c_ij等于矩阵A的第i行与矩阵B的第j列对应元素的乘积之和。
即:c_ij = Σ(a_ij b_jk),其中i=1,2,...,m;j=1,2,...,p;k=1,2,...,n四、实验内容1. 实现矩阵相乘的基本算法。
2. 分析不同算法的效率差异。
3. 优化矩阵相乘算法,提高计算效率。
五、实验步骤1. 导入NumPy库。
```pythonimport numpy as np```2. 定义一个矩阵相乘的函数。
```pythondef matrix_multiply(A, B):m, n = A.shapep = B.shape[1]C = np.zeros((m, p))for i in range(m):for j in range(p):for k in range(n):C[i, j] += A[i, k] B[k, j] return C```3. 创建两个矩阵A和B。
```pythonA = np.array([[1, 2], [3, 4]])B = np.array([[5, 6], [7, 8]])```4. 调用矩阵相乘函数,计算C。
```pythonC = matrix_multiply(A, B)print("矩阵C:", C)```5. 分析不同算法的效率差异。
- 暴力算法:使用嵌套循环实现矩阵相乘,计算复杂度为O(mnp)。
编译原理实验 矩阵连乘
#include <stdio.h>
#include <stdlib.h>
#define MAX 20
#define N 4
int n=N;
int b[MAX],m[MAX][MAX],t[MAX][MAX];
void multiplymatrix(int b[MAX],int n,int m[MAX][MAX],int t[MAX][MAX]) //存放矩阵b,连乘矩阵个数n,矩阵i到j的计算最小值m,最佳断开位置 t
if(l<m[i][j]) //如果l比原来的次数少,则将l的值赋给m[i][j],将k的值赋给t[i][j]
{
m[i][j]=l;
t[i][j]=k;
}
}
}
}
int main()
{
int i,j,k,a;
printf("请输入矩阵的个数\n
}
printf("最佳断点为\n");
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
printf("%d ",t[i][j]);
printf("\n");
}
int j=i+r-1;
m[i][j]=m[i+1][j]+b[i-1]*b[i]*b[j];
t[i][j]=i; //连乘断开位置i
for(k=i+1;k<j;k++)
动态规划算法解矩阵连乘问题
动态规划算法解矩阵连乘问题一、实验目的通过上机实验,要求掌握动态规划算法的问题描述、算法设计思想、程序设计和算法复杂性分析等。
二、实验环境VC6.0 C++,vs2005三、实验内容1 用动态规划算法解矩阵连乘问题(1)问题的描述给定n个矩阵{A1,A2,…,A n},其中A i与A i+1是可乘的,i=1,2,…,n-1。
要算出这n个矩阵的连乘积A1A2…A n。
由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序。
这种计算次序可以用加括号的方式来确定。
若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已完全加括号,则可以依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。
完全加括号的矩阵连乘积可递归地定义为:(1)单个矩阵是完全加括号的(当然实际上可以不加);(2)矩阵连乘积A是完全加括号的,则A可表示为2个完全加括号的矩阵连乘积B和C的乘积并加括号,即A=(BC)。
例如,矩阵连乘积A1A2A3A4有5种不同的完全加括号的方式:(A1(A2(A3A4))),(A1((A2A3)A4)),((A1A2)(A3A4)),((A1(A2A3))A4),(((A1A2)A3)A4)。
每一种完全加括号的方式对应于一个矩阵连乘积的计算次序,这决定着作乘积所需要的计算量。
若A是一个p×q矩阵,B 是一个q×r矩阵,则计算其乘积C=AB的标准算法中,需要进行pqr次数乘。
(3)为了说明在计算矩阵连乘积时,加括号方式对整个计算量的影响,先考察3个矩阵{A1,A2,A3}连乘的情况。
设这三个矩阵的维数分别为10×100,100×5,5×50。
加括号的方式只有两种:((A1A2)A3),(A1(A2A3)),第一种方式需要的数乘次数为10×100×5+10×5×50=7500,第二种方式需要的数乘次数为100×5×50+10×100×50=75000。
矩阵连乘问题方程
矩阵连乘问题方程
矩阵连乘问题是一个经典的优化问题,涉及到多个矩阵的乘法操作。
为了提高计算效率,我们需要找到一种最优的矩阵乘法顺序,使得计算成本最低。
假设我们有一组矩阵A1, A2, ..., An,它们需要进行连乘操作,即C = A1 * A2 * ... * An。
我们需要找到一种最优的乘法顺序,使得计算矩阵C 的成本最低。
根据矩阵乘法的性质,我们可以知道以下规律:
1. 矩阵的乘法满足结合律,即(A * B) * C = A * (B * C)。
2. 矩阵的乘法不满足交换律,即A * B 不一定等于B * A。
因此,我们不能简单地将矩阵按照任意顺序进行连乘,而是需要寻找一种最优的乘法顺序。
一种常见的解决方法是使用动态规划算法。
我们可以定义一个二维数组dp[i][j],表示前i 个矩阵进行连乘,最终得到矩阵j 的最小计算成本。
然后我们遍历所有可能的矩阵乘法顺序,更新dp 数组的值。
最终,dp[n][j] 的值就是我们要求的最小计算成本。
下面是具体的算法步骤:
1. 初始化dp 数组为一个n 行j 列的全零数组。
2. 遍历所有可能的矩阵乘法顺序,对于每个顺序,计算当前乘法操作的成本,并更新dp 数组的值。
3. 最后,dp[n][j] 的值就是我们要求的最小计算成本。
需要注意的是,由于矩阵的维度可能很大,导致可能的矩阵乘法顺序非常多,因此这个问题的计算复杂度是非常高的。
在实际应用中,我们通常会使用一些启发
式算法来近似最优解。
矩阵连乘问题实验报告
一、实验目的通过本次实验,加深对动态规划算法的理解和应用,掌握解决矩阵连乘问题的方法,提高算法分析和设计能力。
二、实验原理矩阵连乘问题是指给定n个矩阵,每个矩阵都与它的前一个矩阵可乘,求计算这些矩阵连乘积的最优计算次序,以使计算过程中所需的数乘次数最少。
由于矩阵乘法满足结合律,因此可以通过加括号的方式确定不同的计算次序。
三、实验步骤1. 问题描述:给定n个矩阵A1, A2, ..., An,其中Ai与Ai-1是可乘的。
求计算矩阵连乘积A1A2...An的最优计算次序,使得计算过程中所需的数乘次数最少。
2. 输入数据:矩阵个数n,每个矩阵的规模。
3. 输出结果:计算矩阵连乘积的最优计算次序和最少数乘次数。
4. 算法设计:- 定义一个二维数组m[i][j],其中m[i][j]表示计算矩阵AiAi-1...Aj的最少数乘次数。
- 初始化m[i][i] = 0,因为单个矩阵无需计算。
- 对于每个子问题A[i:j],计算m[i][j]的最小值:- 遍历k从i到j-1,将问题分解为A[i:k]和Ak+1:j,计算m[i][k]和m[k+1][j]的和,并加上k个矩阵的维度乘积。
- 取上述和的最小值作为m[i][j]的值。
5. 递归关系:- 当i = j时,m[i][j] = 0。
- 当i < j时,m[i][j] = min(m[i][k] + m[k+1][j] + p[i-1]p[k]p[j]),其中k从i到j-1,p[i-1]表示矩阵Ai-1的行数,p[j]表示矩阵Aj的列数。
6. 自底向上计算:- 从m[1][1]开始,按照递归关系计算m[1][2],m[1][3],...,m[1][n]。
- 然后计算m[2][3],m[2][4],...,m[2][n],以此类推,直到计算m[1][n]。
7. 输出最优计算次序:- 从m[1][n]开始,根据递归关系和子问题的最优解,逐步确定每个子问题的最优计算次序,直到得到整个问题的最优计算次序。
矩阵连乘实验报告总结
一、实验背景与目的矩阵连乘问题是一个经典的算法问题,它涉及给定一系列矩阵,确定这些矩阵的最佳乘积顺序,以最小化乘法操作的次数。
本实验旨在通过动态规划算法解决矩阵连乘问题,加深对动态规划方法的理解,并提高算法分析与设计的能力。
二、实验内容与步骤1. 问题描述与理解:- 给定n个矩阵A1, A2, ..., An,其中任意两个相邻矩阵都是可乘的。
- 目标是确定计算这些矩阵连乘积的最佳顺序,以最小化所需的乘法次数。
2. 算法分析:- 使用动态规划方法,通过将问题分解为子问题并存储子问题的解来求解。
- 设定m[i, j]表示矩阵Ai到Aj的最佳乘积顺序的乘法次数。
3. 动态规划过程:- 初始化m[i, i] = 0,因为单个矩阵不需要乘法。
- 对于长度为k的矩阵序列,通过遍历所有可能的分割点,计算m[i, j]的最小值。
- 具体步骤包括:- 对于每个可能的k(1 ≤ k ≤ n-1),- 对于每个起始矩阵i(1 ≤ i ≤ n-k),- 计算m[i, i+k-1]和m[i+k, j],- 更新m[i, j]为m[i, i+k-1] + m[i+k, j] + p[i-1] p[i] p[i+k]。
4. 代码实现:- 使用C或Java等编程语言实现动态规划算法。
- 编写辅助函数来计算矩阵的乘法次数。
三、实验结果与分析1. 实验结果:- 通过实验,成功实现了矩阵连乘问题的动态规划算法。
- 得到了计算给定矩阵序列连乘积所需的最小乘法次数。
2. 结果分析:- 动态规划方法有效地解决了矩阵连乘问题,避免了穷举法的指数级时间复杂度。
- 通过分析子问题的解,我们可以找到整个问题的最优解。
四、实验总结与反思1. 实验收获:- 加深了对动态规划方法的理解,特别是如何通过子问题的解来构建整个问题的解。
- 学会了如何将实际问题转化为动态规划问题,并使用代码实现算法。
2. 反思与展望:- 实验过程中遇到了一些挑战,如理解子问题的定义和计算最优子结构的策略。
矩阵连乘问题的算法
矩阵连乘问题的算法介绍矩阵连乘问题是一个经典的数学问题,它涉及到如何寻找一组矩阵相乘的最优顺序,使得计算所需的乘法操作总数最小化。
这个问题在计算机科学和算法设计中有着重要的应用。
本文将介绍矩阵连乘问题的算法及其相关概念和应用。
问题描述给定一组矩阵{A1, A2, A3, …, An},其中Ai的维度为pi-1 × pi(1 ≤ i ≤ n),我们希望找到一种矩阵相乘的顺序,使得计算这些矩阵相乘所需的乘法操作总数最小化。
动态规划算法动态规划算法是解决矩阵连乘问题的经典方法。
它通过存储中间结果来避免重复计算,从而提高计算效率。
下面将介绍动态规划算法的具体实现步骤。
定义子问题假设我们要计算矩阵Ai × Ai+1 × … × Aj的最优顺序和乘法操作总数,其中i ≤ j。
确定状态转移方程设m[i][j]表示计算矩阵Ai × Ai+1 × … × Aj的最优顺序和乘法操作总数。
根据定义,我们有以下状态转移方程: - 当i = j时,m[i][j] = 0,因为只有一个矩阵无需进行乘法操作; - 当i < j时,m[i][j] = min{m[i][k] + m[k+1][j] + pi-1 × pk × pj},其中i ≤ k < j。
填表计算最优值根据状态转移方程,我们可以使用动态规划的方法逐步填充表格m。
具体步骤如下:1. 初始化所有m[i][i]为0(0 ≤ i ≤ n); 2. 对于每个子问题(i, j),从i= 1递增到j = n-1,按照递增的长度进行计算: - 对于每个i和j,根据状态转移方程计算m[i][j]; 3. 最终,m[1][n-1]即为所求的计算矩阵Ai × Ai+1× … × An的最优顺序和乘法操作总数。
重构最优解为了得到最优顺序下的具体计算过程,我们可以使用一个辅助表格s来记录最优划分点。
矩阵连乘问题python
矩阵连乘问题python矩阵连乘问题是一个经典的动态规划问题,我们可以使用动态规划来解决。
假设有n个矩阵需要连乘,其中第i个矩阵的维度为d[i-1] * d[i],其中d是一个长度为n+1的数组,表示矩阵的维度。
我们可以定义一个二维数组dp,其中dp[i][j]表示从第i个矩阵到第j个矩阵的最小乘法次数。
初始化dp数组,对于i=j的情况,dp[i][j]=0;对于i>j的情况,dp[i][j]=无穷大。
接下来,我们可以使用动态规划的思想来填充dp数组。
假设我们要计算dp[i][j],我们可以枚举中间的分割点k,将问题分解为两个子问题:从i到k的矩阵连乘和从k+1到j的矩阵连乘。
则dp[i][j]的值可以通过以下方式计算:dp[i][j] = min(dp[i][k] + dp[k+1][j] + d[i-1]*d[k]*d[j]) 最后,dp[1][n]即为所求的最小乘法次数。
以下是一个使用动态规划解决矩阵连乘问题的Python代码示例: ```pythondef matrix_chain_order(d):n = len(d) - 1dp = [[float("inf")] * (n+1) for _ in range(n+1)]for i in range(1, n+1):dp[i][i] = 0for l in range(2, n+1):for i in range(1, n-l+2):j = i + l -1for k in range(i, j):cost = dp[i][k] + dp[k+1][j] + d[i-1] * d[k] * d[j]if cost < dp[i][j]:dp[i][j] = costreturn dp[1][n]```使用示例:```pythond = [10, 20, 30, 40, 30]result = matrix_chain_order(d)print(result) # 输出:30000```以上代码中,d是一个长度为n+1的数组,表示n个矩阵的维度。
矩阵连乘最优结合问题(一)
矩阵连乘最优结合问题(一)
矩阵连乘最优结合问题
简介
矩阵连乘最优结合问题是一个经典的动态规划问题,它的目标是找到一种最优的方式来计算一系列矩阵的乘积。
在实际应用中,这个问题往往涉及到优化计算时间和空间的需求。
相关问题及解释
1.矩阵连乘的计算顺序问题:给定一系列矩阵的维度,如何确定它
们的乘积计算顺序,使得总的计算次数最少。
2.最优连乘加括号问题:在确定计算顺序的基础上,如何添加括号
来改变计算的顺序,使得计算的效率更高。
问题1:矩阵连乘的计算顺序问题
•当只有两个矩阵相乘时,它们的乘积计算次数是确定的,并且只有一种可能的计算顺序。
•然而,当矩阵的数量增加时,不同的计算顺序会导致不同的计算次数。
•因此,需要通过动态规划的方法来确定最优的计算顺序。
问题2:最优连乘加括号问题
•在确定了矩阵乘法的计算顺序后,可以通过添加括号来改变计算的顺序。
•这样做的目的是为了减少矩阵乘法的计算次数,从而提高计算效率。
•通过动态规划的方法,可以找到一种最优的添加括号方式。
总结
矩阵连乘最优结合问题是一个经典的动态规划问题,涉及到确定最优的矩阵乘法计算顺序和添加最优的括号方式。
通过动态规划的方法,可以高效地解决这些问题,优化计算时间和空间的利用。
在实际应用中,矩阵连乘最优结合问题具有广泛的应用领域,如计算机图形学、数据分析等。
矩阵连乘问题(动态规划)
矩阵连乘问题(动态规划)一、实验目的与要求1、明确矩阵连乘的概念。
2、利用动态规划解决矩阵连乘问题。
二、实验题:问题描述:给定n个矩阵{A1,A2,...,An},其中Ai与Ai+1是可乘的,i=1,2...,n-1。
确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。
输入数据为矩阵个数和每个矩阵规模,输出结果为计算矩阵连乘积的计算次序和最少数乘次数。
三、实验代码#include<iostream>using namespace std;const int MAX = 100;//p用来记录矩阵的行列,main函数中有说明//m[i][j]用来记录第i个矩阵至第j个矩阵的最优解//s[][]用来记录从哪里断开的才可得到该最优解int p[MAX+1],m[MAX][MAX],s[MAX][MAX];int n;//矩阵个数int matrixChain(){for(int i=0;i<=n;i++)m[i][i]=0;for(int r=2;r<=n;r++)//对角线循环for(int i=0;i<=n-r;i++){//行循环int j = r+i-1;//列的控制//找m[i][j]的最小值,先初始化一下,令k=im[i][j]=m[i+1][j]+p[i+1]*p[i]*p[j +1];s[i][j]=i;//k从i+1到j-1循环找m[i][j]的最小值for(int k = i+1;k<j;k++){int temp=m[i][k]+m[k+1][j]+p[i]*p[k+1]*p[j+1];if(temp<m[i][j]){m[i][j]=temp;//s[][]用来记录在子序列i-j段中,在k位置处//断开能得到最优解s[i][j]=k;}}}return m[0][n-1];//最终结果}//根据s[][]记录的各个子段的最优解,将其输出void traceback(int i,int j){if(i==j){cout<<'A'<<i;return ;}if(i<s[i][j])cout<<'(';traceback(i,s[i][j]);if(i<s[i][j])cout<<')';if(s[i][j]+1<j)cout<<'(';traceback(s[i][j]+1,j);if(s[i][j]+1<j)cout<<')';}void traceback(){cout<<'(';traceback(0,n-1);cout<<')';cout<<endl;}int main(){cout<<"请输入矩阵的个数:"<<endl;cin>>n;cout<<"输入矩阵(形如a*b,中间用空格隔开):"<<endl;for(int i=0;i<=n;i++)cin>>p[i];//测试数据可以设为六个矩阵分别为//A1[30*35],A2[35*15],A3[15*5],A4[5*10],A5[10*20],A6[20*25] //则p[0-6]={30,35,15,5,10,20,25}cout<<"输出结果如下:"<<endl;matrixChain();traceback(0,n-1);//最终解值为m[0][n-1];cout<<endl;return 0;}四、实验结果。
矩阵连乘问题(内附动态规划算法代码)
矩阵连乘问题(内附动态规划算法代码)矩阵连乘问题若矩阵A是⼀个p*q的矩阵,B是⼀个q*r的矩阵,则C=AB,是⼀个p*r的矩阵,需进⾏pqr次数乘计算。
存在{A1,A2,A3}三个矩阵,维数分别为100*5,5*50,50*10。
若直接相乘,A1*A2*A3,则需要进⾏n=100*5*50+100*50*10=25000+50000=75000次数乘计算。
如果我们调整运算顺序,A1*(A2*A3),则需要进⾏n=5*50*10+100*5*10=2500+5000=7500次数乘计算。
由此可见,当进⾏矩阵连乘运算时,加括号的⽅式,即计算次序对计算量有很⼤的影响。
代码展⽰:1 #include<iostream>23using namespace std;4/*5⾃底向上的推出矩阵连乘的最优解6先从两个矩阵相乘开始,⽽后三个矩阵相乘,四个......直到推出⽬标长度的最优解,即假设⼀个矩阵链,初始长度为2,算出所有相邻矩阵相乘的计算次数,⽽后使其长度为3...4...直到⽬标长度 7状态转移⽅程:8 m[i][j]=min {m[i][k]+m[k+1][j]+p[i-1]*p[k]*p[j]} i<=k<j i<j9 m[i][j]=0 i==j;10*/11#define LEN 5 //矩阵个数12//矩阵连乘函数,找到最优解13void MatrixChain(int *p, int m[][LEN + 1], int s[][LEN + 1]) {14for (int i = 0; i < LEN + 1; i++) m[i][i] = 0; //初始化,对⾓线元素置零,即当矩阵链长度为1时(只有⼀个矩阵)不⽤乘,为零15for (int r = 2; r <= LEN; r++) { //r表⽰矩阵链的长度,从2开始,两个矩阵相乘,⽽后3...4...5...16for (int i = 1; i <= LEN - r + 1; i++) { //i是矩阵链的⾸个矩阵,⼩于矩阵个数减矩阵链长度加⼀17int j = i + r - 1; //j是矩阵链的最后⼀个元素18 m[i][j] = m[i][i] + m[i + 1][j] + p[i - 1] * p[i] * p[j]; //m[i][j]是⼦结构,从最左边开始推19 s[i][j] = i; //标记断开的位置20for (int k = i + 1; k < j; k++) { //k是i和j直接的断开点,是在i和j之间的⼦结构,通过k的循环找到最优的解21int t = m[i][k] + m[k + 1][j] + p[i - 1] * p[k] * p[j]; //状态转移⽅程22if (t < m[i][j]) {23 m[i][j] = t; //更新最优解24 s[i][j] = k; //更新断开点25 }26 }27 }28 }29 }3031//回溯函数,根据s[i][j]数组标记的位置,回溯找到断开的位置32void Traceback(int i, int j, int s[][LEN + 1]) {33if (i == j) { //当i与j相等说明回溯到该矩阵的位置了34 cout << "A" << i;35 }36else {37 cout << "(";38 Traceback(i, s[i][j], s); //从尾往头回溯39 Traceback(s[i][j] + 1, j, s); //从断点往后回溯40 cout << ")";41 }42 }43//输出函数44void output(int t[][LEN + 1]) {45for (int i = 1; i <= LEN; i++) {46for (int j = 1; j <= LEN; j++) {47 cout << "" << t[i][j] << "";48 }49 cout << endl;50 }51 }52int main(void) {53int p[LEN + 1] = { 6,8,9,3,4,10 }; //矩阵的维度分别是2*3,3*4,4*5,5*6,6*7,LEN+1个数表⽰LEN个矩阵54int m[LEN + 1][LEN + 1] = { 0 }; //记录最优⼦结构的⼆维数组55int s[LEN + 1][LEN + 1] = { 0 }; //记录最优解对应的括号的位置5657 MatrixChain(p, m, s);5859 cout << endl;60 output(m);61 cout << endl;62 output(s);63 cout << endl;64 cout << "outcome:" <<endl;65 Traceback(1, LEN, s);66 cout << endl;6768return0;69 }运⾏结果:与备忘录⽅法的区别:我们使⽤的动态规划⽅法中其实融⼊了备忘录的⼀些东西,我们的m和s数组都是⽤来记录的,所以备忘录⽅法与我们使⽤的⽅法类似,不同在于,我们是⾃底向上的,⽽备忘录⽅法是⾃顶向下的进⾏。
矩阵连乘实验报告
程序设计报告、 我保证没有抄袭别人作业!1. 题目内容问题:n 个矩阵<A1, A2, ..., An>相乘,称为‘矩阵连乘’,如何求积?如何确定运算顺序,可以使计算量达到最小化。
2. 算法分析枚举显然不可,如果枚举的话,相当于一个“完全加括号问题”,次数为卡特兰数,卡特兰数指数增长,必然不行。
于是进过分析,采用动态规划算法: 1 找出最优解的性质,并刻划其结构特征。
2 递归地定义最优值。
3 以自底向上的方式计算出最优值。
4 根据计算最优值时得到的信息,构造最优解。
于是动态规划的思想可以描述如下:将矩阵连乘积j i i A A A ...1+,简记为[]j i :A ,这里j i <, i A 是i i p p 1⨯-的矩阵。
1、考察计算[]j i :A 的最优计算次序。
设这个计算次序在矩阵k A 和1+k A 之间将矩阵链断开,j k <<i ,则其相应完全加括号方式为()()j k k k i i A A A A A ......A 211+++。
2、计算量:[]k i :A 的计算量加上[]j k A :1+的计算量。
再加上[]k i :A 和[]j k A :1+相乘的计算量[][]j k i p p p j k m k i m j i 1],1[,,m -+++=。
3、问题:找到一个k ,使得],[m j i 最优。
4、矩阵连乘积计算次序问题的最优解包含着其子问题的最优解。
5、基于最优子结构,可以从子问题的最优解构造原问题的最优解矩阵连乘问题的任何最优解必包含其子问题的最优解。
于是将问题分为两个子问题AiAi+1… Ak and Ak+1Ak+2…Aj);求子问题的最优解;合并子问题的最优解。
6、根据子问题的最优解可以递归地定义原问题的最优解a. 子问题:确定矩阵连乘问题的子问题的形式为j i i A A ...A 1+,for 1≤i ≤j ≤n.b.设计算[]j i :A , 1≤i ≤n ,所需要的最少数乘数 ,乘次数],[m j i ,则原问题(计算A1..n )的最优值为]n ,[m i 。
矩阵连乘java实验报告
矩阵连乘java实验报告1. 实验目的本实验通过使用Java编程实现矩阵的连乘运算,旨在让学生理解矩阵的乘法规则以及动态规划的思想,并掌握使用动态规划算法解决问题的方法。
2. 实验原理2.1 矩阵乘法规则两个矩阵相乘的规则如下:设A为m行n列的矩阵,B为n行p列的矩阵,其乘积C为m行p列的矩阵。
C的第i行第j列元素可以通过以下公式计算得到:C\[i][j] = A\[i]\[1] \* B\[1]\[j] + A\[i]\[2] \* B\[2]\[j] + ... + A\[i]\[n] \*B\[n]\[j]2.2 动态规划算法对于矩阵乘法问题,使用动态规划算法可以有效地解决。
动态规划算法的基本思想是将一个大问题划分为多个子问题,并记忆子问题的解,以避免重复计算。
在矩阵连乘问题中,我们可以定义一个二维数组dp,其中dp\[i]\[j]表示从第i 个矩阵乘到第j个矩阵的最小乘法次数。
通过不断更新dp数组的值,最终可以得到整个矩阵连乘的最小乘法次数。
3. 实验步骤3.1 构建矩阵类首先,我们需要构建一个矩阵类Matrix,用于表示和操作矩阵。
Matrix类应包含以下成员变量和方法:- 成员变量:- int rows:矩阵的行数- int cols:矩阵的列数- int[][] data:矩阵的数据存储- 方法:- Matrix(int rows, int cols):构造函数,创建一个指定行数和列数的空矩阵- void setValue(int row, int col, int value):设置矩阵指定位置的值- int getValue(int row, int col):获取矩阵指定位置的值- int getRows():获取矩阵的行数- int getCols():获取矩阵的列数- static Matrix multiply(Matrix a, Matrix b):静态方法,用于计算两个矩阵的乘积3.2 实现矩阵连乘算法在主程序中,我们先创建一个Matrix类型的数组来保存需要连乘的矩阵。
动态规划课程设计(矩阵链乘问题)
动态规划程序设计实验目的:掌握并实现动态规划算法。
实验内容:对维数为序列(5,10,3,12,5,50,6)的各矩阵。
找出其矩阵链乘的一个最优加全括号。
实验要求:利用动态规划思想写出算法的伪代码和C程序代码(一)算法思想穷举所有的计算次序,且对每一计算次序确定其乘法次数。
由此可找出n个矩阵进行连乘积A1A2…An的最小乘法次数。
将矩阵链乘积简记为A[i:j] ,这里i≤j考察计算A[i:j]的最优计算次序。
设这个计算次序在矩阵Ak和Ak+1之间将矩阵链断开,i≤k<j,则其相应完全加括号方式为计算量:A[i:k]的计算量加上A[k+1:j]的计算量,再加上A[i:k]和A[k+1:j]相乘的计算量设计算A[i:j],1≤i≤j≤n,所需要的最少数乘次数m[i,j],则原问题的最优值为m[1,n]当i=j时,A[i:j]=Ai,因此,m[i,i]=0,i=1,2,…,n当i<j时,可以递归地定义m[i,j]为:k位置只有j-i种可能(二)程序代码//动态规划import java.io.*;public class Testsuanfa {public final int len = this.GetN()+1;public int[] A = new int[len];public double[][] M = new double[len][len];public double[][] S = new double[len][len];//取得用户需要规划的矩阵连乘的个数。
public int GetN(){int dvalue = 0;String value;System.out.println("请输入连乘矩阵个数:");BufferedReader bfr = new BufferedReader(new InputStreamReader(System.in));try {value = bfr.readLine();dvalue =Integer.parseInt(value);//捕捉输入异常} catch (IOException e) {System.out.println("输入出错了,请重新输入:");System.exit(0);}catch (NumberFormatException e2) {System.out.println("请输入正确的数字!!");System.exit(0);}return dvalue;}//输入矩阵的序列public int GetA(){int dvalue = 0;String value;System.out.println("请输入分别矩阵维数序列:");BufferedReader bfr = new BufferedReader(new InputStreamReader(System.in));try {value = bfr.readLine();dvalue =Integer.parseInt(value);//捕捉输入异常} catch (IOException e) {System.out.println("输入出错了,请重新输入:");System.exit(0);}catch (NumberFormatException e2) {System.out.println("请输入正确的数字!!");System.exit(0);}return dvalue;}public void f(){//调用GetA方法,拿到每个序列值for(int i=0;i<len;i++){A[i] = this.GetA();}for(int i=0;i<len;i++){M[i][i] = 0;}//依次从长度为2到len,求解每一个长度的最有加全括号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一、矩阵连乘问题
问题描述与实验目的:
给定n个矩阵A1,A2,…,A n,其中,A i与A j+1是可乘的,i=1,2,…,n-l。
你的任务是要确定矩阵连乘的运算次序,使计算这n个矩阵的连乘积
A1A2…A n时总的元素乘法次数达到最少。
例如:3个矩阵A1,A2,A3,阶分别为10×100、100×5、5×50,计算连乘积A1A2A3时按(A1A2)A3所需的元素乘法次数达到最少,为7500次。
输入
测试数据有若干组,每组测试数据有2行。
每组测试数据的第1行是一个整数n,(0<n<20),第2行是n+1个正整数p
、
p 1、p
2
、…、p
n
,这些整数不超过100,相邻两个整数之间空一格,他们表示n
个矩阵A1,A2,…,A n,的阶p
i-1 p
i
,i=1,2,…,n。
输入直到文件结束。
输出
对输入中的每组测试数据,输出2行。
先在一行上输出“Case #”,其中“#”是测试数据的组号(从1开始),再在第2行上输出计算这n个矩阵的连乘积
A1A2…An时最少的总的元素乘法次数,再空一格,接着在同一行上输出矩阵连乘的添括号形式。
注意:最外层括号应去掉。
实验结果:
输入样例
3
10 100 5 50
4
50 10 40 30 5
输出样例
Case 1
7500 (A1A2)A3
Case 2
10500 A1(A2(A3A4))
实验报告要求:
1.先分析要点、写出动态方程
2.提供能正确运行的程序。
要有一般性,即可同时处理若干组数据,每组2行。
3.设计、调试中的问题及实验体会。