湘潭市市2019年初中学业水平考试数学试题卷及答案(已编辑)
2019年湖南省湘潭中考数学试卷含答案
x (1)求双曲线 y k 的解析式;
x (2)求直线 BC 的解析式.
24.(8 分)湘潭政府工作报告中强调,2019 年着重推进乡村振兴战略,做优做响湘莲等特色农产品品牌. 小亮调查了一家湘潭特产店 A、B 两种湘莲礼盒一个月的销售情况,A 种湘莲礼盒进价 72 元/盒,售 价 120 元/盒,B 种湘莲礼盒进价 40 元/盒,售价 80 元/盒,这两种湘莲礼盒这个月平均每天的销售 总额为 2 800 元,平均每天的总利润为 1 280 元. (1)求该店平均每天销售这两种湘莲礼盒各多少盒? (2)小亮调査发现,A 种湘莲礼盒售价每降 3 元可多卖 1 盒.若 B 种湘莲礼盒的售价和销量不变, 当 A 种湘莲礼盒降价多少元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是多少元?
在
绝密★启用前
湖南省湘潭市 2019 年初中学业水平考试
数学
此
一、选择题(本大题共 8 小题,每小题有且只有一个正确答案,每小题 3 分,满分 24 分)
1.下列各数中是负数的是
A. | 3 |
B. 3
C. 3
卷
2.下列立体图形中,俯视图是三角形的是
() D. 1
3 ()
上
A
B
C
D
3.今年湘潭市参加初中学业水平考试的九年级学生人数约 24 000 人,24 000 用科学记数法表示为
18.(6 分)阅读材料:运用公式法分解因式,除了常用的平方差公式和完全平方公式以外,还可以应用
其他公式,如立方和与立方差公式,其公式如下:
立方和公式: x3 y3 x y x2 xy y2 立方差公式: x3 y3 x y x2 xy y2
湖南省湘潭市2019年中考[数学]考试真题与答案解析
湖南省湘潭市2019年中考[数学]考试真题与答案解析一、选择题本大题共8小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分。
1.﹣6的绝对值是( )A.﹣6B.6C.﹣D.2.地摊经济一词最近彻底火了,发展地摊经济,进行室外经营与有序占道经营,能满足民众消费需求,在一定程度上缓解了就业压力,带动了第三产业发展,同时活跃市场,刺激经济发展,一经推出,相关微博话题阅读量就超过了600000000次,这个数据用科学记数法表示为( )A.0.6×108B.6×107C.6×108D.6×1093.已知2x n+1y3与x4y3是同类项,则n的值是( )A.2B.3C.4D.54.下列图形中,不是中心对称图形的是( )A.B.C.D.5.下列运算中正确的是( )A.(a2)3=a5B.()﹣1=﹣2C.(2﹣)0=1D.a3•a3=2a66.如图,∠ACD是△ABC的外角,若∠ACD=110°,∠B=50°,则∠A=( )A.40°B.50°C.55°D.60°7.为庆祝建党99周年,某校八年级(3)班团支部为了让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作:A、“北斗卫星”:B、“5G时代”;C、“智轨快运系统”;D、“东风快递”;E、“高铁”.统计同学们所选内容的频数,绘制如图所示的折线统计图,则选择“5G时代”的频率是( )A.0.25B.0.3C.25D.308.如图,直线y=kx+b(k<0)经过点P(1,1),当kx+b≥x时,则x的取值范围为( )A.x≤1B.x≥1C.x<1D.x>1二、填空题本大题共8小题,请将答案写在答题卡相应的位置上,每小题3分,满分24分。
9.计算:sin45°= .10.在数轴上到原点的距离小于4的整数可以为 .(任意写出一个即可)11.计算:= .12.走路被世卫组织认定为“世界上最好的运动”,每天走6000步是走路最健康的步数.手机下载微信运动,每天记录自己走路的步数,已经成了不少市民时下的习惯.张大爷连续记录了3天行走的步数为:6200步、5800步、7200步,这3天步数的平均数是 步.13.若,则= .14.如图,在半径为6的⊙O中,圆心角∠AOB=60°,则阴影部分面积为 .15.如图,点P是∠AOC的角平分线上一点,PD⊥OA,垂足为点D,且PD=3,点M是射线OC上一动点,则PM的最小值为 .16.算筹是在珠算发明以前我国独创并且有效的计算工具,为我国古代数学的发展做出了很大的贡献.在算筹计数法中,以“纵式”和“横式”两种方式来表示数字如图:数字形式123456789纵式|||||||||||||||横式表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空.示例如图:,则表示的数是 .三、解答题本大题共10小题,解答应写出文字说明、证明过程或演算步骤请将解答过程写在答题卡相应位置上,满分72分。
2019年湖南省湘潭市中考数学试题及参考答案(word解析版)
2019年湘潭市初中学业水平考试数学试题卷(考试时量:120分钟满分120分钟)一、选择题(本大题共8小题,每小题有且只有一个正确答案,每小题3分,满分24分)1.下列各数中是负数的是()A.|﹣3| B.﹣3 C.﹣(﹣3)D.2.下列立体图形中,俯视图是三角形的是()A.B.C.D.3.今年湘潭市参加初中学业水平考试的九年级学生人数约24000人,24000用科学记数法表示为()A.0.24×105B.2.4×104C.2.4×103D.24×1034.下列计算正确的是()A.a6÷a3=a2B.(a2)3=a5C.2a+3a=6a D.2a•3a=6a25.已知关于x的一元二次方程x2﹣4x+c=0有两个相等的实数根,则c=()A.4 B.2 C.1 D.﹣46.随着长株潭一体化进程不断推进,湘潭在交通方面越来越让人期待.将要实施的“两干一轨”项目中的“一轨”,是将长沙市地铁3号线南延至湘潭北站,往返长潭两地又将多“地铁”这一选择.为了解人们选择交通工具的意愿,随机抽取了部分市民进行调查,并根据调查结果绘制如下统计图,关于交通工具选择的人数数据,以下结论正确的是()A.平均数是8 B.众数是11 C.中位数是2 D.极差是107.如图,将△OAB绕点O逆时针旋转70°到△OCD的位置,若∠AOB=40°,则∠AOD=()A.45°B.40°C.35°D.30°8.现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,湘潭某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣x个物件,则可列方程为()A.=B.=C.=D.=二、填空题(本大题共8小题,每小题3分,满分24分)9.函数y=中,自变量x的取值范围是.10.若a+b=5,a﹣b=3,则a2﹣b2=.11.为庆祝新中国成立70周年,某校开展以“我和我亲爱的祖国”为主题的“快闪”活动,七年级准备从两名男生和三名女生中选出一名同学领唱,如果每一位同学被选中的机会均等,则选出的恰为女生的概率是.12.计算:()﹣1=.13.将一次函数y=3x的图象向上平移2个单位,所得图象的函数表达式为.14.四边形的内角和是.15.如图,在四边形ABCD中,若AB=CD,则添加一个条件,能得到平行四边形ABCD.(不添加辅助线,任意添加一个符合题意的条件即可)16.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积=(弦×矢+矢2).孤田是由圆弧和其所对的弦围成(如图中的阴影部分),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,运用垂径定理(当半径OC ⊥弦AB时,OC平分AB)可以求解.现已知弦AB=8米,半径等于5米的弧田,按照上述公式计算出弧田的面积为平方米.三、解答题(本大题共10小题,解答应写出文字说明、证明过程或演算步骤。
【名校名卷】湖南省湘潭市2019年数学七上期末学业水平测试试题
湖南省湘潭市2019年数学七上期末学业水平测试试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.如图是一个正方体的表面展开图,则这个正方体是()A. B. C. D.2.如图,是一个正方体纸盒的展开图,若在其中的三个正方形A.B.C分别填上适当的数,使它们折成正方体后相对的面上的两个数互为相反数,则填入正方形A.B.C的三个数依次为()A.1,﹣2,0B.0,﹣2,1C.﹣2,0,1D.﹣2,1,03.下列说法中:①一个有理数不是正数就是负数;②射线AB和射线BA是同一条射线;③0的相反数是它本身;④两点之间,线段最短,正确的有()A.1个B.2个C.3个D.4个4.某小组有m人,计划做n个“中国结”,若每人做5个,则可比计划多做9个;若每人做4个,则将比计划少做15个,现有下列四个方程:①5m+9=4m﹣15;②=③=;④5m﹣9=4m+15.其中正确的是()A.①②B.②④C.②③D.③④x-与-7互为相反数,则x的值为()5.如果式子32A.5B.-5C.3D.-36.下列结论错误的是( )A.若a=b,则a﹣c=b﹣c B.若a=b,则ax=bxC.若x=2,则x2=2x D.若ax=bx,则a=b7.已知a+b=4,c﹣d=3,则(b+c)﹣(d﹣a)的值等()A.1 B.﹣1 C.7 D.﹣78.多项式2x2+3x-2与下列一个多项式的和是一个一次二项式,则这个多项式可以是:A.-2x 2-3x+2B.-x 2-3x+1C.-x 2-2x+2D.-2x 2-2x+1 9.下列计算正确的是( )A.x 3·x 2=x 6B.(2x)2=2x 2C.()23x =x 6D.5x -x =410.208031精确到万位的近似数是( )A.2×105B.2.1×105C.20.8×104D.2.08万11.在+5,-4,-π,,,—(),, - ,, —(-5) ,,这几个数中,负数( )个. A.3. B.4 C.5 D.612.某商场对顾客实行优惠,规定:(1)如一次购物不超过200元,则不予折扣;(2)如一次购物超过200元但不超过500元的,按标价给予九折优惠;(3)如一次购物超过500元的,其中500元按第(2)条给予优惠,超过500元的部分则给予八折优惠.某人两次去购物,分别付款168元与423元,如果他只去一次购买同样的商品,则应付款是( )A .522.8元B .510.4元C .560.4元D .472.8元二、填空题13.如图,正方形ABCD 的边长为5 cm ,E 是AD 边上一点,3AE =cm.动点P 由点D 向点C 运动,速度为2 cm/s ,EP 的垂直平分线交AB 于M ,交CD 于N .设运动时间为t 秒,当//PM BC 时,t 的值为______.14.在同一平面内,两条直线相交时最多有1个交点,三条直线相交时最多有3个交点,四条直线相交时最多有6个交点,…,那么十条直线相交时最多有____个交点.15.某微信平台上一件商品标价为200元,按标价的八折销售,仍可获利20元,则这件商品的进价为_____.16.甲、乙两人在400 m 环形跑道上练习跑步,甲的速度是5m/s ,乙的速度是7m/s .两人站在同一起点,同时同向出发,那么当乙第一次恰好追上甲时,甲跑了________m .17.观察下列各式及其展开式:()2222a b a ab b -=-+ 33223()33a b a a b ab b -=-+-4432234()464a b a a b a b ab b -=-+-+554322345()510105a b a a b a b a b ab b -=-+-+-……请你猜想()6a b -的展开式共有____项,若按字母a 的降幂排列,第四项是______.18.如果-2a m b 2与3a 5b n+1是同类项,那么m+n 的值为______.19.计算:(-2)2÷12×(-2)-12=__________.20.填空(选填“>”“<”“=”).(1)0.02-_____1; (2)()--34_____[(0.75)]-+-.三、解答题21.(1)(观察思考):如图,线段AB 上有两个点C 、D ,图中共有 条线段;(2)(模型构建):如果线段上有m 个点(包括线段的两个端点),则该线段上共有 条线段.请简要说明结论的正确性;(3)(拓展应用):8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行 场比赛.类比(模型构建)简要说明.22.如图所示,是一列用若干根火柴棒摆成的由正方形组成的图案.(1)完成下表的填空:(2)某同学用若干根火柴棒按上图呈现的规律摆图案,摆完了第1个,第2个,…,第n 个图案后剩下了69根火柴棒,若要摆完第n+1个和第n+2个图案刚好差2根火柴棒.问最后能摆成的图案是哪二个图案?23.周末,小明陪爸爸去陶瓷商城购买一些茶壶和茶杯,甲、乙两家商店出售他们看中的同样品牌的茶壶和茶杯,茶壶每把定价都为30元,茶杯每只定价都为5元.这两家商店都有优惠,甲店买一把茶壶赠送茶杯一只;乙店全场九折优惠.小明爸爸需买茶壶5把,茶杯若干只(不少于5只).(1)设购买茶杯x (x≥5)只,如果在甲店购买,需付款 元;如果在乙店购买,需付款 元.(用含x 的代数式表示并化简).(2)当购买15只茶杯时,应在哪家商店购买?为什么?(3)当购买茶杯多少只时,在两家商店购买付款一样多?24.先化简,再求值()()()222222232322x y y x y x --+---,其中1x =-,2y =. 25.直线上有A ,B ,C 三点,点M 是线段AB 的中点,点N 是线段BC 的一个三等分点,如果AB=6,BC=12,求线段MN 的长度.26.计算与化简:(1)(-9)-(-7)+(-6)-(+4)-(-5)(2)42211(2)()1()0.25345-÷-+⨯-+(3)222221382(33)(3)3535x x xy y x xy y -+-+++ 27.﹣2﹣1+(﹣16)﹣(﹣13);28.计算:(1) 16÷(﹣2)3﹣(18-)×(﹣4) (2) 221211()[2(3)]233---÷⨯-+-【参考答案】***一、选择题1.C2.A3.B4.D5.C6.D7.C8.D9.C10.B11.C12.C二、填空题13.214.15.140元16.100017.SKIPIF 1 < 0 . 解析:3320a b-.18.619. SKIPIF 1 < 0解析:1 162 -20.< = 三、解答题21.(1)6;(2)(1)2m m-,理由见解析;(3)28,理由见解析.22.(1)13,16,19,3n+1;(2)这位同学最后摆的图案是第11个和第12个图案.23.(1)(5x+125);(4.5x+135);(2)在甲店购买便宜,理由见解析;(3)购买茶杯20只时,两种优惠办法付款一样.24.1325.1或5或7或11.26.(1)-7;(2)36;(3)y2;27.﹣628.(1)﹣212;(2)52.。
2019年湖南省湘潭市中考数学试卷
2019年湖南省湘潭市中考数学试卷青海一中 李清一、选择题(本大题共8小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分)1.(3分)(2019•湘潭)下列各数中是负数的是( )A .|3|-B .3-C .(3)--D .132.(3分)(2019•湘潭)下列立体图形中,俯视图是三角形的是( )A .B .C .D .3.(3分)(2019•湘潭)今年湘潭市参加初中学业水平考试的九年级学生人数约24000人,24000用科学记数法表示为( )A .50.2410⨯B .42.410⨯C .32.410⨯D .32410⨯4.(3分)(2019•湘潭)下列计算正确的是( )A .632a a a ÷=B .235()a a =C .236a a a +=D .2236a a a =5.(3分)(2019•湘潭)已知关于x 的一元二次方程240x x c -+=有两个相等的实数根,则(c = )A .4B .2C .1D .4-6.(3分)(2019•湘潭)随着长株潭一体化进程不断推进,湘潭在交通方面越来越让人期待.将要实施的“两干一轨”项目中的“一轨”,是将长沙市地铁3号线南延至湘潭北站,往返长潭两地又将多“地铁”这一选择.为了解人们选择交通工具的意愿,随机抽取了部分市民进行调查,并根据调查结果绘制如下统计图,关于交通工具选择的人数数据,以下结论正确的是( )A .平均数是8B .众数是11C .中位数是2D .极差是107.(3分)(2019•湘潭)如图,将OAB ∆绕点O 逆时针旋转70︒到OCD ∆的位置,若40AOB ∠=︒,则(AOD ∠=A .45︒B .40︒C .35︒D .30︒8.(3分)(201•湘潭)现代互联网技的广泛应用,催生了快递行业的高速发展.据调查,湘潭某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣x 个物件,则可列方程为(A .1209020x x =-B .1209020x x =+C .1209020x x =-D .1209020x x =+ 二、填空题(本大题共8小题,请将答案写在答题卡相应的位置上,每小题3分,满分24分)9.(3分)(2019•湘潭)函数16y x =-中,自变量x 的取值范围是 . 10.(3分)(2019•湘潭)若5a b +=,3a b -=,则22a b -= .11.(3分)(2019•湘潭)为庆祝新中国成立70周年,某校开展以“我和我亲爱的祖国”为主题的“快闪”活动,七年级准备从两名男生和三名女生中选出一名同学领唱,如果每一位同学被选中的机会均等,则选出的恰为女生的概率是 .12.(3分)(2019•湘潭)计算:11()4-= .13.(3分)(2019•湘潭)将一次函数3y x =的图象向上平移2个单位,所得图象的函数表达式为 .14.(3分)(2019•湘潭)四边形的内角和为 .15.(3分)(2019•湘潭)如图,在四边形ABCD 中,若AB CD =,则添加一个条件 ,能得到平行四边形ABCD .(不添加辅助线,任意添加一个符合题意的条件即可)16.(3分)(2019•湘潭)《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积12=(弦⨯矢+矢2).孤田是由圆弧和其所对的弦围成(如图中的阴影部分),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,运用垂径定理(当半径OC ⊥弦AB 时,OC 平分)AB 可以求解.现已知弦8AB =米,半径等于5米的弧田,按照上述公式计算出弧田的面积为 平方米.三、解答题(本大题共10小题,解答应写出文字说明、证明过程或演算步骤请将解答过程写在答题卡相应位置上,满分72分)17.(6分)(2019•湘潭)解不等式组26312x x x ⎧⎪⎨+>⎪⎩,并把它的解集在数轴上表示出来.18.(6分)(2019•湘潭)阅读材料:运用公式法分解因式,除了常用的平方差公式和完全平方公式以外,还可以应用其他公式,如立方和与立方差公式,其公式如下:立方和公式:3322()()x y x y x xy y +=+-+立方差公式:3322()()x y x y x xy y -=-++ 根据材料和已学知识,先化简,再求值:22332428x x x x x x ++---,其中3x =. 19.(6分)(2019•湘潭)我国于2019年6月5日首次完成运载火箭海上发射,这标志着我国火箭发射技术达到了一个崭新的高度.如图,运载火箭从海面发射站点M 处垂直海面发射,当火箭到达点A 处时,海岸边N 处的雷达站测得点N 到点A 的距离为8千米,仰角为30︒.火箭继续直线上升到达点B 处,此时海岸边N 处的雷达测得B 处的仰角增加15︒,求此时火箭所在点B 处与发射站点M 处的距离.(结果精确到0.1千米)(参考数据:2 1.41≈,3 1.73)≈20.(6分)(2019•湘潭)每年5月份是心理健康宣传月,某中学开展以“关心他人,关爱自己”为主题的心理健康系列活动.为了解师生的心理健康状况,对全体2000名师生进行了心理测评,随机抽取20名师生的测评分数进行了以下数据的整理与分析:①数据收集:抽取的20名师生测评分数如下85,82,94,72,78,89,96,98,84,65,73,54,83,76,70,85,83,63,92,90.②数据整理:将收集的数据进行分组并评价等第: 分数x90100x < 8090x < 7080x < 6070x < 60x < 人数5 a 5 2 1 等第 A BC D E ③数据分析:绘制成不完整的扇形统计图:④依据统计信息回答问题(1)统计表中的a = .(2)心理测评等第C 等的师生人数所占扇形的圆心角度数为 .(3)学校决定对E 等的师生进行团队心理辅导,请你根据数据分析结果,估计有多少师生需要参加团队心理辅导?21.(6分)(2019•湘潭)如图,将ABC ∆沿着AC 边翻折,得到ADC ∆,且//AB CD .(1)判断四边形ABCD 的形状,并说明理由;(2)若16AC =,10BC =,求四边形ABCD 的面积.22.(6分)(2019•湘潭)2018年高一新生开始,湖南全面启动高考综合改革,实行“312++”的高考选考方案.“3”是指语文、数学、外语三科必考;“1”是指从物理、历史两科中任选一科参加选考,“2”是指从政治、化学、地理、生物四科中任选两科参加选考(1)“12+”的选考方案共有多少种?请直接写出所有可能的选法;(选法与顺序无关,例如:“物、政、化”与“物、化、政”属于同一种选法)(2)高一学生小明和小杰将参加新高考,他们酷爱历史和生物,两人约定必选历史和生物.他们还需要从政治、化学、地理三科中选一科参考,若这三科被选中的机会均等,请用列表或画树状图的方法,求出他们恰好都选中政治的概率.23.(8分)(2019•湘潭)如图,在平面直角坐标系中,M 与x 轴的正半轴交于A 、B 两点,与y 轴的正半轴相切于点C ,连接MA 、MC ,已知M 半径为2,60AMC ∠=︒,双曲线(0)k y x x=>经过圆心M . (1)求双曲线ky x=的解析式;(2)求直线BC 的解析式.24.(8分)湘潭政府工作报告中强调,2019年着重推进乡村振兴战略,做优做响湘莲等特色农产品品牌.小亮调查了一家湘潭特产店A 、B 两种湘莲礼盒一个月的销售情况,A 种湘莲礼盒进价72元/盒,售价120元/盒,B 种湘莲礼盒进价40元/盒,售价80元/盒,这两种湘莲礼盒这个月平均每天的销售总额为2800元,平均每天的总利润为1280元.(1)求该店平均每天销售这两种湘莲礼盒各多少盒?(2)小亮调査发现,A 种湘莲礼盒售价每降3元可多卖1盒.若B 种湘莲礼盒的售价和销量不变,当A 种湘莲礼盒降价多少元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是多少元?25.(10分)(2019•湘潭)如图一,抛物线2y ax bx c =++过(1A -,0)(3.0)B 、(0,3)C 三点(1)求该抛物线的解析式;(2)1(P x ,1)y 、2(4,)Q y 两点均在该抛物线上,若12y y ,求P 点横坐标1x 的取值范围;(3)如图二,过点C 作x 轴的平行线交抛物线于点E ,该抛物线的对称轴与x 轴交于点D ,连结CD 、CB ,点F 为线段CB 的中点,点M 、N 分别为直线CD 和CE 上的动点,求FMN ∆周长的最小值.26.(10分)(2019•湘潭)如图一,在射线DE 的一侧以AD 为一条边作矩形ABCD ,53AD=,5CD=,点M是线段AC上一动点(不与点A重合),连结BM,过点M作BM的垂线交射线DE于点N,连接BN.(1)求CAD∠的大小;(2)问题探究:动点M在运动的过程中,①是否能使AMN∆为等腰三角形,如果能,求出线段MC的长度;如果不能,请说明理由.②MBN∠的大小;若改变,请说明理∠的大小是否改变?若不改变,请求出MBN由.(3)问题解决:如图二,当动点M运动到AC的中点时,AM与BN的交点为F,MN的中点为H,求线段FH的长度.2019年湖南省湘潭市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分)1.(3分)(2019•湘潭)下列各数中是负数的是()A.|3|-B.3-C.(3)--D.1 3【分析】根据负数的定义可得B为答案.【解答】解:3-的绝对值30=>;30-<;(3)30--=>;13>.故选:B.2.(3分)(2019•湘潭)下列立体图形中,俯视图是三角形的是() A.B.C.D.【分析】俯视图是从物体上面看所得到的图形,据此判断得出物体的俯视图.【解答】解:A、立方体的俯视图是正方形,故此选项错误;B、圆柱体的俯视图是圆,故此选项错误;C、三棱柱的俯视图是三角形,故此选项正确;D、圆锥体的俯视图是圆,故此选项错误;故选:C.3.(3分)(2019•湘潭)今年湘潭市参加初中学业水平考试的九年级学生人数约24000人,24000用科学记数法表示为( )A .50.2410⨯B .42.410⨯C .32.410⨯D .32410⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10>时,n 是正数;当原数的绝对值1<时,n 是负数.【解答】解:将24000用科学记数法表示为:42.410⨯,故选:B .4.(3分)(2019•湘潭)下列计算正确的是( )A .632a a a ÷=B .235()a a =C .236a a a +=D .2236a a a =【分析】根据同底数幂的除法,幂的乘方,合并同类项法则和单项式乘以单项式分别求每个式子的值,再判断即可.【解答】解:A 、结果是3a ,故本选项不符合题意;B 、结果是6a ,故本选项不符合题意;C 、结果是5a ,故本选项不符合题意;D 、结果是26a ,故本选项符合题意;故选:D .5.(3分)(2019•湘潭)已知关于x 的一元二次方程240x x c -+=有两个相等的实数根,则(c = )A .4B .2C .1D .4-【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于c 的一元一次方程,解方程即可得出结论. 【解答】解:方程240x x c -+=有两个相等的实数根,∴△2(4)411640c c =--⨯⨯=-=,解得:4c =.故选:A .6.(3分)(2019•湘潭)随着长株潭一体化进程不断推进,湘潭在交通方面越来越让人期待.将要实施的“两干一轨”项目中的“一轨”,是将长沙市地铁3号线南延至湘潭北站,往返长潭两地又将多“地铁”这一选择.为了解人们选择交通工具的意愿,随机抽取了部分市民进行调查,并根据调查结果绘制如下统计图,关于交通工具选择的人数数据,以下结论正确的是( )A .平均数是8B .众数是11C .中位数是2D .极差是10【分析】从条形统计图中可以知道共调查40人,选择公交7人,火车2人,地铁13人,轻轨11人,其它7人,极差为13211-=,故D 不正确;出现次数最多的是13,即众数是13,故B 不正确,从小到大排列,第20、21个数都是13,即中位数是13,故C 是不正确的; (7213117)58++++÷=,即平均数是8,故A 事正确的.【解答】解:(7213117)58++++÷=,即平均数是8,故A 事正确的. 出现次数最多的是13,即众数是13,故B 不正确,从小到大排列,第20、21个数都是13,即中位数是13,故C 是不正确的; 极差为13211-=,故D 不正确;故选:A .7.(3分)(2019•湘潭)如图,将OAB ∆绕点O 逆时针旋转70︒到OCD ∆的位置,若40AOB ∠=︒,则(AOD ∠= )A .45︒B .40︒C .35︒D .30︒【分析】首先根据旋转角定义可以知道70BOD ∠=︒,而40AOB ∠=︒,然后根据图形即可求出AOD ∠.【解答】解:OAB ∆绕点O 逆时针旋转70︒到OCD ∆的位置,70BOD ∴∠=︒,而40AOB ∠=︒,704030AOD ∴∠=︒-︒=︒.故选:D .8.(3分)(2019•湘潭)现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,湘潭某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣x 个物件,则可列方程为( ) A .1209020x x=- B .1209020x x=+ C .1209020x x =- D .1209020x x =+ 【分析】根据题意,可以列出相应的分式方程,本题得以解决. 【解答】解:由题意可得,1209020x x=+, 故选:B .二、填空题(本大题共8小题,请将答案写在答题卡相应的位置上,每小题3分,满分24分)9.(3分)(2019•湘潭)函数16y x =-中,自变量x 的取值范围是 6x ≠ . 【分析】根据分母不等于0列式计算即可得解. 【解答】解:由题意得,60x -≠, 解得6x ≠. 故答案为:6x ≠.10.(3分)(2019•湘潭)若5a b +=,3a b -=,则22a b -= 15 . 【分析】先根据平方差公式分解因式,再代入求出即可. 【解答】解:5a b +=,3a b -=,22a b ∴- ()()a b a b =+-53=⨯15=,故答案为:15.11.(3分)(2019•湘潭)为庆祝新中国成立70周年,某校开展以“我和我亲爱的祖国”为主题的“快闪”活动,七年级准备从两名男生和三名女生中选出一名同学领唱,如果每一位同学被选中的机会均等,则选出的恰为女生的概率是35. 【分析】随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数.【解答】解:选出的恰为女生的概率为33325=+, 故答案为35.12.(3分)(2019•湘潭)计算:11()4-= 4 .【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案. 【解答】解:111()4144-==, 故答案为:4.13.(3分)(2019•湘潭)将一次函数3y x =的图象向上平移2个单位,所得图象的函数表达式为 32y x =+ .【分析】根据“上加下减”的平移规律进行解答即可.【解答】解:将正比例函数3y x =的图象向上平移2个单位后所得函数的解析式为32y x =+,故答案为:32y x =+.14.(3分)(2019•湘潭)四边形的内角和为 360︒ .【分析】根据n 边形的内角和是(2)180n -︒,代入公式就可以求出内角和. 【解答】解:(42)180360-⨯︒=︒. 故四边形的内角和为360︒.故答案为:360︒.15.(3分)(2019•湘潭)如图,在四边形ABCD 中,若AB CD =,则添加一个条件 AD BC = ,能得到平行四边形ABCD .(不添加辅助线,任意添加一个符合题意的条件即可)【分析】可再添加一个条件AD BC =,根据两组对边分别相等的四边形是平行四边形,四边形ABCD 是平行四边形.【解答】解:根据平行四边形的判定,可再添加一个条件:AD BC =. 故答案为:AD BC =(答案不唯一).16.(3分)(2019•湘潭)《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积12=(弦⨯矢+矢2).孤田是由圆弧和其所对的弦围成(如图中的阴影部分),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,运用垂径定理(当半径OC ⊥弦AB 时,OC 平分)AB 可以求解.现已知弦8AB =米,半径等于5米的弧田,按照上述公式计算出弧田的面积为 10 平方米.【分析】根据垂径定理得到4AD =,由勾股定理得到223OD OA AD =-=,求得2OA OD -=,根据弧田面积12=(弦⨯矢+矢2)即可得到结论. 【解答】解:弦8AB =米,半径OC ⊥弦AB ,4AD ∴=,223OD OA AD ∴=-=, 2OA OD ∴-=,∴弧田面积12=(弦⨯矢+矢221)(822)102=⨯⨯+=,故答案为:10.三、解答题(本大题共10小题,解答应写出文字说明、证明过程或演算步骤请将解答过程写在答题卡相应位置上,满分72分)17.(6分)(2019•湘潭)解不等式组26312xxx⎧⎪⎨+>⎪⎩,并把它的解集在数轴上表示出来.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:26312xxx⎧⎪⎨+>⎪⎩①②,解不等式①得,3x,解不等式②,1x>-,所以,原不等式组的解集为13x-<,在数轴上表示如下:.18.(6分)(2019•湘潭)阅读材料:运用公式法分解因式,除了常用的平方差公式和完全平方公式以外,还可以应用其他公式,如立方和与立方差公式,其公式如下:立方和公式:3322()()x y x y x xy y+=+-+立方差公式:3322()()x y x y x xy y-=-++根据材料和已学知识,先化简,再求值:22332428x x xx x x++---,其中3x=.【分析】根据题目中的公式可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:22332428x x xx x x++---22324(2)(2)(24)x x x x x x x x ++=---++ 3122x x =--- 22x =-, 当3x =时,原式2232==-. 19.(6分)(2019•湘潭)我国于2019年6月5日首次完成运载火箭海上发射,这标志着我国火箭发射技术达到了一个崭新的高度.如图,运载火箭从海面发射站点M 处垂直海面发射,当火箭到达点A 处时,海岸边N 处的雷达站测得点N 到点A 的距离为8千米,仰角为30︒.火箭继续直线上升到达点B 处,此时海岸边N 处的雷达测得B 处的仰角增加15︒,求此时火箭所在点B 处与发射站点M 处的距离.(结果精确到0.1千米)(参考数据:2 1.41≈,3 1.73)≈【分析】利用已知结合锐角三角函数关系得出BM 的长.【解答】解:如图所示:连接MN ,由题意可得:90AMN ∠=︒,30ANM ∠=︒,45BNM ∠=︒,8AN km =,在直角AMN ∆中,3cos30843()MN AN km =︒==. 在直角BMN ∆中,tan 4543 6.9BM MN km km =︒=≈.答:此时火箭所在点B 处与发射站点M 处的距离约为6.9km .20.(6分)(2019•湘潭)每年5月份是心理健康宣传月,某中学开展以“关心他人,关爱自己”为主题的心理健康系列活动.为了解师生的心理健康状况,对全体2000名师生进行了心理测评,随机抽取20名师生的测评分数进行了以下数据的整理与分析:①数据收集:抽取的20名师生测评分数如下 85,82,94,72,78,89,96,98,84,65, 73,54,83,76,70,85,83,63,92,90. ②数据整理:将收集的数据进行分组并评价等第: 分数x 90100x <8090x <7080x < 6070x < 60x <人数 5a521等第ABCDE③数据分析:绘制成不完整的扇形统计图: ④依据统计信息回答问题 (1)统计表中的a = 7 .(2)心理测评等第C 等的师生人数所占扇形的圆心角度数为 .(3)学校决定对E 等的师生进行团队心理辅导,请你根据数据分析结果,估计有多少师生需要参加团队心理辅导?【分析】(1)根据D 组人数以及百分比求出总人数,再求出a 即可.(2)根据圆心角360=︒⨯百分比计算即可. (3)利用样本估计总体的思想解决问题即可.【解答】解:(1)总人数210%20=÷=(人),2035%7a =⨯=, 故答案为7.(2)C 所占的圆心角53609020=︒⨯=︒, 故答案为90︒. (3)1200010020⨯=(人), 答:估计有100名师生需要参加团队心理辅导.21.(6分)(2019•湘潭)如图,将ABC ∆沿着AC 边翻折,得到ADC ∆,且//AB CD . (1)判断四边形ABCD 的形状,并说明理由; (2)若16AC =,10BC =,求四边形ABCD 的面积.【分析】(1)由折叠的性质得出AB AD =,BC CD =,BAC DAC ∠=∠,BCA DCA ∠=∠,由平行线的性质得出BAC DAC ∠=∠,得出BAC DAC BCA DCA ∠=∠=∠=∠,证出//AD BC ,AB AD BC CD ===,即可得出结论;(2)连接BD 交AC 于O ,由菱形的性质得出AC BD ⊥,182OA OB AC ===,OB OD =,由勾股定理求出226OB BC OC -=,得出212BD OB ==,由菱形面积公式即可得出答案.【解答】解:(1)四边形ABCD 是菱形;理由如下:ABC ∆沿着AC 边翻折,得到ADC ∆,AB AD ∴=,BC CD =,BAC DAC ∠=∠,BCA DCA ∠=∠,//AB CD , BAC DAC ∴∠=∠,BAC DAC BCA DCA ∴∠=∠=∠=∠, //AD BC ∴,AB AD BC CD ===,∴四边形ABCD是菱形;(2)连接BD交AC于O,如图所示:四边形ABCD是菱形,AC BD ∴⊥,182OA OC AC===,OB OD=,22221086 OB BC OC∴=-=-=,212BD OB∴==,∴四边形ABCD的面积11161296 22AC BD=⨯=⨯⨯=.22.(6分)(2019•湘潭)2018年高一新生开始,湖南全面启动高考综合改革,实行“312++”的高考选考方案.“3”是指语文、数学、外语三科必考;“1”是指从物理、历史两科中任选一科参加选考,“2”是指从政治、化学、地理、生物四科中任选两科参加选考(1)“12+”的选考方案共有多少种?请直接写出所有可能的选法;(选法与顺序无关,例如:“物、政、化”与“物、化、政”属于同一种选法)(2)高一学生小明和小杰将参加新高考,他们酷爱历史和生物,两人约定必选历史和生物.他们还需要从政治、化学、地理三科中选一科参考,若这三科被选中的机会均等,请用列表或画树状图的方法,求出他们恰好都选中政治的概率.【分析】(1)利用树状图可得所有等可能结果;(2)画树状图展示所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解可得.【解答】解:(1)画树状图如下,由树状图知,共有12种等可能结果;(2)画树状图如下由树状图知,共有9种等可能结果,其中他们恰好都选中政治的只有1种结果, 所以他们恰好都选中政治的概率为19.23.(8分)(2019•湘潭)如图,在平面直角坐标系中,M 与x 轴的正半轴交于A 、B 两点,与y 轴的正半轴相切于点C ,连接MA 、MC ,已知M 半径为2,60AMC ∠=︒,双曲线(0)ky x x=>经过圆心M .(1)求双曲线k y x=的解析式; (2)求直线BC 的解析式.【分析】(1)先求出2CM =,再判断出四边形OCMN 是矩形,得出MN ,进而求出点M 的坐标,即可得出结论;(2)先求出点C 的坐标,再用三角函数求出AN ,进而求出点B 的坐标,即可得出结论.【解答】解:(1)如图,过点M 作MN x ⊥轴于N ,90MNO ∴∠=︒,M 切y 轴于C ,90OCM ∴∠=︒,90CON ∠=︒,90CON OCM ONM ∴∠=∠=∠=︒,∴四边形OCMN 是矩形,2AM CM ∴==,90CMN ∠=︒,60AMC ∠=︒,30AMN ∴∠=︒,在Rt ANM ∆中,cos 2MN AM AMN =∠=M ∴,双曲线(0)k y x x=>经过圆心M ,2k ∴==,∴双曲线的解析式为0)y x =>;(2)如图,过点B ,C 作直线, 由(1)知,四边形OCMN 是矩形,2CM ON ∴==,OC MN =C ∴,在Rt ANM ∆中,30AMN ∠=︒,2AM =,1AN ∴=, MN AB ⊥,1BN AN ∴==,3OB ON BN =+=,(3,0)B ∴,设直线BC 的解析式为y k x b '=+,∴30k b b '+=⎧⎪⎨=⎪⎩,∴k b ⎧'=⎪⎨⎪⎩, ∴直线BC的解析式为y =.24.(8分)湘潭政府工作报告中强调,2019年着重推进乡村振兴战略,做优做响湘莲等特色农产品品牌.小亮调查了一家湘潭特产店A 、B 两种湘莲礼盒一个月的销售情况,A 种湘莲礼盒进价72元/盒,售价120元/盒,B 种湘莲礼盒进价40元/盒,售价80元/盒,这两种湘莲礼盒这个月平均每天的销售总额为2800元,平均每天的总利润为1280元.(1)求该店平均每天销售这两种湘莲礼盒各多少盒?(2)小亮调査发现,A 种湘莲礼盒售价每降3元可多卖1盒.若B 种湘莲礼盒的售价和销量不变,当A 种湘莲礼盒降价多少元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是多少元?【分析】(1)根据题意,可设平均每天销售A 礼盒x 盒,B 种礼盒为y 盒,列二元一次方程组即可解题(2)根据题意,可设A 种礼盒降价m 元/盒,则A 种礼盒的销售量为:(10)3m+盒,再列出关系式即可.【解答】解:(1)根据题意,可设平均每天销售A 礼盒x 盒,B 种礼盒为y 盒, 则有(12072)(8040)1280120802800x y x y -+-=⎧⎨+=⎩,解得1020x y =⎧⎨=⎩故该店平均每天销售A 礼盒10盒,B 种礼盒为20盒.(2)设A 种湘莲礼盒降价m 元/盒,利润为W 元,依题意 总利润(12072)(10)8003m W m =--++化简得221161280(9)130733W m m m =-++=--+103a =-<∴当9m =时,取得最大值为1307,故当A 种湘莲礼盒降价9元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是1307元.25.(10分)(2019•湘潭)如图一,抛物线2y ax bx c =++过(1A -,0)(3.0)B 、(0,3)C 三点(1)求该抛物线的解析式;(2)1(P x ,1)y 、2(4,)Q y 两点均在该抛物线上,若12y y ,求P 点横坐标1x 的取值范围;(3)如图二,过点C 作x 轴的平行线交抛物线于点E ,该抛物线的对称轴与x 轴交于点D ,连结CD 、CB ,点F 为线段CB 的中点,点M 、N 分别为直线CD 和CE 上的动点,求FMN ∆周长的最小值.【分析】(1)将三个点的坐标代入,求出a 、b 、c ,即可求出关系式; (2)可以求出点2(4,)Q y 关于对称轴的对称点的横坐标为:2x =-,根据函数的增减性,可以求出当12y y 时P 点横坐标1x 的取值范围;(3)由于点F 是BC 的中点,可求出点F 的坐标,根据对称找出F 关于直线CD 、CE 的对称点,连接两个对称点的直线与CD 、CE 的交点M 、N ,此时三角形的周长最小,周长就等于这两个对称点之间的线段的长,根据坐标,和勾股定理可求.【解答】解:(1)抛物线2y ax bx c =++过(1A -,0)(3.0)B 、3)C 三点∴09303a b c a b c c ⎧-+=⎪++=⎨⎪=⎩ 解得:3a =,23b =,3c ;∴抛物线的解析式为:23233y =+(2)抛物线的对称轴为1x =,抛物线上与2(4,)Q y 相对称的点2(2,)Q y '-1(P x ,1y 在该抛物线上,12y y ,根据抛物线的增减性得: 12x ∴-或14x答:P 点横坐标1x 的取值范围:12x -或14x .(3)(0,3)C ,B ,(3,0),(1,0)D3OC ∴=,3OB =,OD ,1=F 是BC 的中点,3(2F ∴,3) 当点F 关于直线CE 的对称点为F ',关于直线CD 的对称点为F '',直线F F '''与CE 、CD 交点为M 、N ,此时FMN ∆的周长最小,周长为F F '''的长,由对称可得到:3(2F ',33),(0,0)F ''即点O , 22333()()322F F F O '''='=+=,即:FMN ∆的周长最小值为3,26.(10分)(2019•湘潭)如图一,在射线DE 的一侧以AD 为一条边作矩形ABCD ,53AD =5CD =,点M 是线段AC 上一动点(不与点A 重合),连结BM ,过点M 作BM 的垂线交射线DE 于点N ,连接BN .(1)求CAD∠的大小;(2)问题探究:动点M在运动的过程中,①是否能使AMN∆为等腰三角形,如果能,求出线段MC的长度;如果不能,请说明理由.②MBN∠的大小;若改变,请说明理∠的大小是否改变?若不改变,请求出MBN由.(3)问题解决:如图二,当动点M运动到AC的中点时,AM与BN的交点为F,MN的中点为H,求线段FH的长度.【分析】(1)在Rt ADC∆中,求出DAC∠的正切值即可解决问题.(2)①分两种情形:当NA NM=时,分别求解即可.=时,当AN AM②30∠=︒.利用四点共圆解决问题即可.MBN(3)首先证明ABM∆是等边三角形,再证明BN垂直平分线段AM,解直角三角形即可解决问题.【解答】解:(1)如图一(1)中,四边形ABCD是矩形,90ADC ∴∠=︒,3tan 53DC DAC AD ∠===, 30DAC ∴∠=︒.(2)①如图一(1)中,当AN NM =时,90BAN BMN ∠=∠=︒,BN BN =,AN NM =,Rt BNA Rt BNM(HL)∴∆≅∆,BA BM ∴=,在Rt ABC ∆中,30ACB DAC ∠=∠=︒,5AB CD ==,210AC AB ∴==,60BAM ∠=︒,BA BM =,ABM ∴∆是等边三角形,5AM AB ∴==, 5CM AC AM ∴=-=.如图一(2)中,当AN AM =时,易证15AMN ANM ∠=∠=︒,90BMN ∠=︒,75CMB ∴∠=︒,30MCB ∠=︒, 180753075CBM ∴∠=︒-︒-︒=︒, CMB CBM ∴∠=∠, 53CM CB ∴==综上所述,满足条件的CM 的值为5或3②结论:30∠=︒大小不变.MBN理由:如图一(1)中,180∠+∠=︒,BAN BMN∴,B,M,N四点共圆,A∴∠=∠=︒.30MBN MAN如图一(2)中,90∠=∠=︒,BMN BAN∴,N,B,M四点共圆,A∴∠+∠=︒,180MBN MAN∠+∠=︒,180DAC MAN∴∠=∠=︒,MBN DAC30综上所述,30∠=︒.MBN(3)如图二中,=,AM MC∴==,BM AM CM∴=,AC AB2∴==,AB BM AM∴∆是等边三角形,ABM∴∠=∠=︒,BAM BMA60BAN BMN∠=∠=︒,90NAM NMA∴∠=∠=︒,30∴=,NA NM=,BA BMBN ∴垂直平分线段AM , 52FM ∴=,cos30FM NM ∴=︒, 90NFM ∠=︒,NH HM =,12FH MN ∴==【素材积累】1、成都,是一个微笑的城市,宁静而美丽。
2019年湘潭市初中毕业学业考试数学模拟试卷(三)
2019年湘潭市初中毕业学业考试数学模拟试卷(三)一、选择题(每小题3分,共30分)1.﹣的相反数是()A.2 B.﹣2 C.D.﹣2.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.3.关于x的方程mx﹣1=2x的解为正实数,则m的取值范围是()A.m≥2 B.m≤2 C.m>2 D.m<24.下列四个几何体中,已知某个几何体的主视图、左视图、俯视图分别为长方形、长方形、圆,则该几何体是()A.球体B.长方体C.圆锥体D.圆柱体5.某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,则这组数据的中位数是()A.7 B.6 C.5 D.46.下列运算正确的是()A.5m+2m=7m2B.﹣2m2•m3=2m5C.(﹣a2b)3=﹣a6b3D.(b+2a)(2a﹣b)=b2﹣4a27.如图,△ABC内接于⊙O,∠ABC=71°,∠CAB=53°,点D在AC弧上,则∠ADB的大小为()A.46°B.53°C.56°D.71°8.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为()A.40海里 B.60海里 C.70海里 D.80海里9.反比例函数y=的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若A(﹣1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上.其中正确的是()A.①②B.②③C.③④D.①④10.如图,在直角坐标系中,直线AB经点P(3,4),与坐标轴正半轴相交于A,B两点,当△AOB的面积最小时,△AOB的内切圆的半径是()A.2 B.3.5 C.D.4二、填空题(每小题3分,共24分)11. +(y﹣2012)2=0,则x y=______.12.已知m2﹣m=6,则3﹣2m2+2m=______.13.一种花粉颗粒的直径约为0.0000065米,将0.0000065用科学记数法表示为______.14.一个不透明的袋子里装着质地、大小都相同的3个红球和1个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.则两次都摸到红球的概率是______.15.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象交矩形OABC的边AB于点D,交边BC于点E,且BE=2EC.若四边形ODBE的面积为6,则k=______.16.在Rt△ABC中,∠A=90°,有一个锐角为60°,BC=6.若点P在直线AC上(不与点A,C重合),且∠ABP=30°,则CP的长为______.17.抛物线y=x2+x﹣4与y轴的交点坐标为______.18.边长为6cm的等边三角形中,其一边上高的长度为______.三、解答题(本大题共7小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.计算:﹣12+4sin60°﹣+(﹣2015)0.20.化简求值:[﹣]•,其中x=+1.21.父亲节快到了,明明准备为爸爸煮四个大汤圆作早点:一个芝麻馅,一个水果馅,两个花生馅,四个汤圆除内部馅料不同外,其它一切均相同.(1)求爸爸吃前两个汤圆刚好都是花生馅的概率;(2)若给爸爸再增加一个花生馅的汤圆,则爸爸吃前两个汤圆都是花生馅的可能性是否会增大?请说明理由.22.为有效开展阳光体育活动,云洱中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?23.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.24.如图,甲船在港口P的南偏东60°方向,距港口30海里的A处,沿AP方向以每小时5海里的速度驶向港口P;乙船从港口P出发,沿南偏西45°方向驶离港口P.现两船同时出发,2小时后甲船到达B处,乙船到达C处,此时乙船恰好在甲船的正西方向,求乙船的航行距离(≈1.41,≈1.73,结果保留整数).25.如图,抛物线y=ax2﹣5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A 在x轴上,点C在y轴上,且AC=BC.(1)求抛物线的对称轴;(2)写出A,B,C三点的坐标并求抛物线的解析式;(3)探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在△PAB是等腰三角形?若存在,求出所有符合条件的点P坐标;不存在,请说明理由.2019年湘潭市初中毕业学业考试数学模拟试卷(三)参考答案与试题解析一、选择题(每小题3分,共30分)1.﹣的相反数是()A.2 B.﹣2 C.D.﹣【考点】相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣的相反数是.故选C.2.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.3.关于x的方程mx﹣1=2x的解为正实数,则m的取值范围是()A.m≥2 B.m≤2 C.m>2 D.m<2【考点】解一元一次不等式;一元一次方程的解.【分析】根据题意可得x>0,将x化成关于m的一元一次方程,然后根据x的取值范围即可求出m的取值范围.【解答】解:由mx﹣1=2x,移项、合并,得(m﹣2)x=1,∴x=.∵方程mx﹣1=2x的解为正实数,∴>0,解得m>2.故选C.4.下列四个几何体中,已知某个几何体的主视图、左视图、俯视图分别为长方形、长方形、圆,则该几何体是()A.球体B.长方体C.圆锥体D.圆柱体【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形.【解答】解:A、球体的三视图都是圆,不符合题意;B、长方体的三视图都是矩形,不符合题意;C、圆锥体的主视图,左视图都是等腰三角形,俯视图是圆和中间一点,不符合题意;D、圆柱体的主视图,左视图都是长方形,俯视图是圆,符合题意.故选D.5.某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,则这组数据的中位数是()A.7 B.6 C.5 D.4【考点】中位数;算术平均数.【分析】本题可先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【解答】解:∵某班七个兴趣小组人数分别为4,4,5,x,6,6,7.已知这组数据的平均数是5,∴x=5×7﹣4﹣4﹣5﹣6﹣6﹣7=3,∴这一组数从小到大排列为:3,4,4,5,6,6,7,∴这组数据的中位数是:5.故选C.6.下列运算正确的是()A.5m+2m=7m2B.﹣2m2•m3=2m5C.(﹣a2b)3=﹣a6b3D.(b+2a)(2a﹣b)=b2﹣4a2【考点】幂的乘方与积的乘方;合并同类项;单项式乘单项式;平方差公式.【分析】A、依据合并同类项法则计算即可;B、依据单项式乘单项式法则计算即可;C、依据积的乘方法则计算即可;D、依据平方差公式计算即可.【解答】解:A、5m+2m=(5+2)m=7m,故A错误;B、﹣2m2•m3=﹣2m5,故B错误;C、(﹣a2b)3=﹣a6b3,故C正确;D、(b+2a)(2a﹣b)=(2a+b)(2a﹣b)=4a2﹣b2,故D错误.故选:C.7.如图,△ABC内接于⊙O,∠ABC=71°,∠CAB=53°,点D在AC弧上,则∠ADB的大小为()A.46°B.53°C.56°D.71°【考点】圆周角定理.【分析】根据三角形内角和定理求出∠ACB,根据圆周角定理得出∠C,求出即可.【解答】解:∵∠ABC=71°,∠CAB=53°,∴∠ACB=180°﹣∠ABC﹣∠BAC=56°,∵弧AB对的圆周角是∠ADB和∠ACB,∴∠ADB=∠ACB=56°,故选C.8.如图,一艘海轮位于灯塔P的南偏东70°方向的M处,它以每小时40海里的速度向正北方向航行,2小时后到达位于灯塔P的北偏东40°的N处,则N处与灯塔P的距离为()A.40海里 B.60海里 C.70海里 D.80海里【考点】等腰三角形的判定与性质;方向角;平行线的性质.【分析】根据方向角的定义即可求得∠M=70°,∠N=40°,则在△MNP中利用内角和定理求得∠NPM的度数,证明三角形MNP是等腰三角形,即可求解.【解答】解:MN=2×40=80(海里),∵∠M=70°,∠N=40°,∴∠NPM=180°﹣∠M﹣∠N=180°﹣70°﹣40°=70°,∴∠NPM=∠M,∴NP=MN=80(海里).故选:D.9.反比例函数y=的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若A(﹣1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上.其中正确的是()A.①②B.②③C.③④D.①④【考点】反比例函数的性质.【分析】根据反比例函数的图象的位置确定其比例系数的符号,利用反比例函数的性质进行判断即可.【解答】解:∵反比例函数的图象位于一三象限,∴m>0故①错误;当反比例函数的图象位于一三象限时,在每一象限内,y随x的增大而减小,故②错误;将A(﹣1,h),B(2,k)代入y=得到h=﹣m,2k=m,∵m>0∴h<k故③正确;将P(x,y)代入y=得到m=xy,将P′(﹣x,﹣y)代入y=得到m=xy,故P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上故④正确,故选C10.如图,在直角坐标系中,直线AB经点P(3,4),与坐标轴正半轴相交于A,B两点,当△AOB的面积最小时,△AOB的内切圆的半径是()A.2 B.3.5 C.D.4【考点】三角形的内切圆与内心;坐标与图形性质.【分析】设直线AB的解析式是y=kx+b,把P(3,4)代入求出直线AB的解析式是y=kx+4﹣3k,求出OA=4﹣3k,OB=,求出△AOB的面积是•OB•OA=12﹣=12﹣(9k+),根据﹣9k﹣≥2=24和当且仅当﹣9k=﹣时,取等号求出k=﹣,求出OA=4﹣3k=8,OB==6,设三角形AOB的内切圆的半径是R,由三角形面积公式得:×6×8=×6R+×8R+×10R,求出即可.【解答】解:设直线AB的解析式是y=kx+b,把P(3,4)代入得:4=3k+b,b=4﹣3k,即直线AB的解析式是y=kx+4﹣3k,当x=0时,y=4﹣3k,当y=0时,x=,即A(0,4﹣3k),B(,0),△AOB的面积是•OB•OA=••(4﹣3k)=12﹣=12﹣(9k+),∵要使△AOB的面积最小,∴必须最大,∵k<0,∴﹣k>0,∵﹣9k﹣≥2=2×12=24,当且仅当﹣9k=﹣时,取等号,解得:k=±,∵k<0,∴k=﹣,即OA=4﹣3k=8,OB==6,根据勾股定理得:AB=10,设三角形AOB的内切圆的半径是R,由三角形面积公式得:×6×8=×6R+×8R+×10R,R=2,故选A.二、填空题(每小题3分,共24分)11. +(y﹣2012)2=0,则x y=1.【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则x y=(﹣1)2012=1.故答案是:1.12.已知m2﹣m=6,则3﹣2m2+2m=﹣9.【考点】代数式求值.【分析】将m2﹣m=6代入3﹣2m2+2m中,即可得出结论.【解答】解:∵m2﹣m=6,∴3﹣2m2+2m=3﹣2(m2﹣m)=3﹣2×6=﹣9.故答案为:﹣9.13.一种花粉颗粒的直径约为0.0000065米,将0.0000065用科学记数法表示为6.5×10﹣6.【考点】科学记数法—表示较小的数.【分析】根据科学记数法和负整数指数的意义求解.【解答】解:0.0000065=6.5×10﹣6.故答案为6.5×10﹣6.14.一个不透明的袋子里装着质地、大小都相同的3个红球和1个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.则两次都摸到红球的概率是0.5.【考点】列表法与树状图法.【分析】列举出所有情况,看两个球颜色相同的情况数占总情况数的多少即可.∴两次都摸到红球的概率是0.5,故答案为:0.5.15.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象交矩形OABC的边AB于点D,交边BC于点E,且BE=2EC.若四边形ODBE的面积为6,则k=3.【考点】反比例函数系数k的几何意义.【分析】连接OB,由矩形的性质和已知条件得出△OBD的面积=△OBE的面积=四边形ODBE的面积=3,在求出△OCE的面积,即可得出k的值.【解答】解:连接OB,如图所示:∵四边形OABC是矩形,∴∠OAD=∠OCE=∠DBE=90°,△OAB的面积=△OBC的面积,∵D、E在反比例函数y=(x>0)的图象上,∴△OAD的面积=△OCE的面积,∴△OBD的面积=△OBE的面积=四边形ODBE的面积=3,∵BE=2EC,∴△OCE的面积=△OBE的面积=,∴k=3;故答案为:3.16.在Rt△ABC中,∠A=90°,有一个锐角为60°,BC=6.若点P在直线AC上(不与点A,C重合),且∠ABP=30°,则CP的长为6或2或4.【考点】解直角三角形.【分析】根据题意画出图形,分4种情况进行讨论,利用直角三角形的性质解答.【解答】解:如图1:当∠C=60°时,∠ABC=30°,与∠ABP=30°矛盾;如图2:当∠C=60°时,∠ABC=30°,∵∠ABP=30°,∴∠CBP=60°,∴△PBC是等边三角形,∴CP=BC=6;如图3:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°﹣30°=30°,∴PC=PB,∵BC=6,∴AB=3,∴PC=PB===2;如图4:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°+30°=90°,∴PC=BC÷cos30°=4.故答案为:6或2或4.17.抛物线y=x2+x﹣4与y轴的交点坐标为(0,﹣4).【考点】二次函数图象上点的坐标特征.【分析】y轴上点的坐标横坐标为0,纵坐标为y=﹣4,坐标为(0,﹣4).【解答】解:把x=0代入得,y=﹣4,即交点坐标为(0,﹣4).18.边长为6cm的等边三角形中,其一边上高的长度为3cm.【考点】等边三角形的性质;勾股定理.【分析】根据等边三角形三角都是60°利用三角函数可求得其高.【解答】解:∵△ABC是等边三角形,∴∠B=60°,∵AB=6cm,∴AD=3cm.故答案为:3cm.三、解答题(本大题共7小题,共66分.解答应写出必要的文字说明、证明过程或演算步骤)19.计算:﹣12+4sin60°﹣+(﹣2015)0.【考点】实数的运算.【分析】原式利用乘方的意义,特殊角的三角函数值,二次根式性质,以及零指数幂法则计算即可得到结果.【解答】解:原式=﹣1+2﹣2+1=0.20.化简求值:[﹣]•,其中x=+1.【考点】分式的化简求值.【分析】首先将中括号内的部分进行通分,然后按照同分母分式的减法法则进行计算,再按照分式的乘法法则计算、化简,最后再代数求值即可.【解答】解:原式===,将x=+1代入得:原式==.21.父亲节快到了,明明准备为爸爸煮四个大汤圆作早点:一个芝麻馅,一个水果馅,两个花生馅,四个汤圆除内部馅料不同外,其它一切均相同.(1)求爸爸吃前两个汤圆刚好都是花生馅的概率;(2)若给爸爸再增加一个花生馅的汤圆,则爸爸吃前两个汤圆都是花生馅的可能性是否会增大?请说明理由.【考点】列表法与树状图法.【分析】(1)首先分别用A,B,C表示芝麻馅、水果馅、花生馅的大汤圆,然后根据题意画树状图,再由树状图求得所有等可能的结果与爸爸吃前两个汤圆刚好都是花生馅的情况,然后利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与爸爸吃前两个汤圆都是花生的情况,再利用概率公式即可求得给爸爸再增加一个花生馅的汤圆,则爸爸吃前两个汤圆都是花生的概率,比较大小,即可知爸爸吃前两个汤圆都是花生的可能性是否会增大.【解答】解:(1)分别用A,B,C表示芝麻馅、水果馅、花生馅的大汤圆,画树状图得:∵共有12种等可能的结果,爸爸吃前两个汤圆刚好都是花生馅的有2种情况,∴爸爸吃前两个汤圆刚好都是花生馅的概率为:=;(2)会增大,理由:分别用A,B,C表示芝麻馅、水果馅、花生馅的大汤圆,画树状图得:∵共有20种等可能的结果,爸爸吃前两个汤圆都是花生的有6种情况,∴爸爸吃前两个汤圆都是花生的概率为:=>;∴给爸爸再增加一个花生馅的汤圆,则爸爸吃前两个汤圆都是花生的可能性会增大.22.为有效开展阳光体育活动,云洱中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?【考点】一元一次方程的应用.【分析】设胜了x场,那么负了(8﹣x)场,根据得分为13分可列方程求解.【解答】解:设胜了x场,那么负了(8﹣x)场,根据题意得:2x+1•(8﹣x)=13,x=5,8﹣5=3.答:九年级一班胜、负场数分别是5和3.23.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.【考点】旋转的性质;含30度角的直角三角形;直角三角形斜边上的中线;菱形的判定.【分析】(1)利用旋转的性质得出AC=CD,进而得出△ADC是等边三角形,即可得出∠ACD的度数;(2)利用直角三角形的性质得出FC=DF,进而得出AD=AC=FC=DF,即可得出答案.【解答】解:(1)∵在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C 按顺时针方向旋转n度后,得到△DEC,∴AC=DC,∠A=60°,∴△ADC是等边三角形,∴∠ACD=60°,∴n的值是60;(2)四边形ACFD是菱形;理由:∵∠DCE=∠ACB=90°,F是DE的中点,∴FC=DF=FE,∵∠CDF=∠A=60°,∴△DFC是等边三角形,∴DF=DC=FC,∵△ADC是等边三角形,∴AD=AC=DC,∴AD=AC=FC=DF,∴四边形ACFD是菱形.24.如图,甲船在港口P的南偏东60°方向,距港口30海里的A处,沿AP方向以每小时5海里的速度驶向港口P;乙船从港口P出发,沿南偏西45°方向驶离港口P.现两船同时出发,2小时后甲船到达B处,乙船到达C处,此时乙船恰好在甲船的正西方向,求乙船的航行距离(≈1.41,≈1.73,结果保留整数).【考点】解直角三角形的应用-方向角问题.【分析】作PD⊥BC于点D,求出PB的长,在Rt△BPD中,利用三角函数求出PD的长;再在Rt△CPD中,求出PC的长.【解答】解:如图,作PD⊥BC于点D.根据题意,得∠BPD=60°,∠CPD=45°,PB=AP﹣AB=20海里,在Rt△BPD中,∴PD=PB•cos60°=10海里,在Rt△CPD中,∴PC==10海里.∴PC=14答:乙船的航行距离约是14海里.25.如图,抛物线y=ax2﹣5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A 在x轴上,点C在y轴上,且AC=BC.(1)求抛物线的对称轴;(2)写出A,B,C三点的坐标并求抛物线的解析式;(3)探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在△PAB是等腰三角形?若存在,求出所有符合条件的点P坐标;不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据抛物线的解析式,利用对称轴公式,可直接求出其对称轴.(2)令x=0,可求出C点坐标,由BC∥x轴可知B,C关于抛物线的对称轴对称,可求出B点坐标,根据AC=BC可求出A点坐标.(3)分三种情况讨论:①以AB为腰且顶角为∠A,先求出AB的值,再利用等腰三角形的性质结合勾股定理求出P1N的长,即可求出P1的坐标;②以AB为腰且顶角为角B,根据MN的长和MP2的长,求出P2的纵坐标,已知其横坐标,可得其坐标;③以AB为底,顶角为角P时,依据Rt△P3CK∽Rt△BAQ即可求出OK和P3K 的长,可得P3坐标.【解答】解:(1)抛物线的对称轴x=﹣=;(2)由抛物线y=ax2﹣5ax+4可知C(0,4),对称轴x=﹣=,∴BC=5,B(5,4),又AC=BC=5,OC=4,在Rt△AOC中,由勾股定理,得AO=3,∴A(﹣3,0)B(5,4)C(0,4)把点A坐标代入y=ax2﹣5ax+4中,解得a=﹣,(6)∴y=x2+x+4.(3)存在符合条件的点P共有3个.以下分三类情形探索.设抛物线对称轴与x轴交于N,与CB交于M.过点B作BQ⊥x轴于Q,易得BQ=4,AQ=8,AN=5.5,BM=.①以AB为腰且顶角为角A的△PAB有1个:△P1AB.∴AB2=AQ2+BQ2=82+42=80在Rt△ANP1中,P1N====,∴P1(,﹣).②以AB为腰且顶角为角B的△PAB有1个:△P2AB.在Rt△BMP2中MP2====,∴P2=(,).③以AB为底,顶角为角P的△PAB有1个,即△P3AB.画AB的垂直平分线交抛物线对称轴于P3,此时平分线必过等腰△ABC的顶点C.过点P3作P3K垂直y轴,垂足为K,∵∠CJF=∠AOF,∠CFJ=∠AFO,∴∠P3CK=∠BAQ,∠CKP3=∠AQB,∴Rt△P3CK∽Rt△BAQ.∴==.∵P3K=2.5∴CK=5于是OK=1,∴P3(2.5,﹣1).。
2019年湖南省湘潭市中考数学复习试卷(附答案)(可编辑修改word版)
3 2019 年湖南省湘潭市中考数学复习试卷(附答案)副标题题号一二三四总分得分一、选择题(本大题共8 小题,共24.0 分)1.下列各数中是负数的是()A. |−3|B. −3C. −(−3)D. 12.下列立体图形中,俯视图是三角形的是()A. B. C. D.3.今年湘潭市参加初中学业水平考试的九年级学生人数约24000 人,24000 用科学记数法表示为()A. 0.24 × 105B. 2.4 × 104C. 2.4 × 103D. 24 × 1034.下列计算正确的是()A. a6÷ a3= a2B. (a2)3= a5C. 2a + 3a = 6aD. 2a⋅ 3a = 6a25.已知关于x 的一元二次方程x2-4x+c=0 有两个相等的实数根,则c=()A. 4B. 2C. 1D. −46.随着长株潭一体化进程不断推进,湘潭在交通方面越来越让人期待.将要实施的“两干一轨”项目中的“一轨”,是将长沙市地铁3 号线南延至湘潭北站,往返长潭两地又将多“地铁”这一选择.为了解人们选择交通工具的意愿,随机抽取了部分市民进行调查,并根据调查结果绘制如下统计图,关于交通工具选择的人数数据,以下结论正确的是()A.平均数是8B. 众数是11C. 中位数是2D. 极差是107.如图,将△OAB 绕点O 逆时针旋转70°到△OCD 的位置,若∠AOB=40°,则∠AOD=()A. 45 ∘B. 40 ∘C. 35 ∘D. 30 ∘8.现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,湘潭某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120 个物件所用的4{2A. =B. =C.=D.=时间与小江分拣 90 个物件所用的时间相同,已知小李每小时比小江多分拣 20 个物件.若设小江每小时分拣 x 个物件,则可列方程为( )120 90x−20 x120 90x + 20 x120 90xx−20120 90xx + 20二、填空题(本大题共 8 小题,共 24.0 分) 19. 函数y =x−6中,自变量 x 的取值范围是 .10. 若a +b =5,a -b =3,则 a 2-b 2= . 11. 为庆祝新中国成立 70 周年,某校开展以“我和我亲爱的祖国”为主题的“快闪”活动,七年级准备从两名男生和三名女生中选出一名同学领唱,如果每一位同学被选中的机会均等,则选出的恰为女生的概率是 .12. 计算:(1)-1= .13. 将一次函数y =3x 的图象向上平移 2 个单位,所得图象的函数表达式为 .14. 四边形的内角和是. 15. 如图,在四边形ABCD 中,若 AB =CD ,则添加一个条件 ,能得到平行四边形 ABCD .(不添加辅助线, 任意添加一个符合题意的条件即可)16. 《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面1 = × +2 积 2(弦 矢 矢 ).孤田是由圆弧和其所对的弦围成(如图中的阴影部分),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,运用垂径定理(当半径 OC ⊥弦 AB 时,OC 平分 AB )可以求解.现已知弦 AB =8 米,半径等于 5 米的弧田,按照上述公式计算出弧田的面积为 平方米.三、计算题(本大题共 1 小题,共 6.0 分)17. 阅读材料:运用公式法分解因式,除了常用的平方差公式和完全平方公式以外,还可以应用其他公式,如立方和与立方差公式,其公式如下:立方和公式:x 3+y 3=(x +y )(x 2-xy +y 2) 立方差公式:x 3-y 3=(x -y )(x 2+xy +y 2) 3x x 2 + 2x + 4 根据材料和已学知识,先化简,再求值: 2-3,其中 x =3.x −2xx −8四、解答题(本大题共 9 小题,共 66.0 分)2x ≤ 618. 解不等式组 3x + 1>x ,并把它的解集在数轴上表示出来.19.我国于2019 年6 月5 日首次完成运载火箭海上发射,这标志着我国火箭发射技术达到了一个崭新的高度.如图,运载火箭从海面发射站点M 处垂直海面发射,当火箭到达点A 处时,海岸边N 处的雷达站测得点N 到点A 的距离为8 千米,仰角为30°.火箭继续直线上升到达点B 处,此时海岸边N 处的雷达测得B 处的仰角增加15°,求此时火箭所在点B 处与发射站点M 处的距离.(结果精确到0.1 千米)(参考数据:2≈1.41,20.每年5 月份是心理健康宣传月,某中学开展以“关心他人,关爱自己”为主题的心理健康系列活动.为了解师生的心理健康状况,对全体2000名师生进行了心理测评,随机抽取20 名师生的测评分数进行了以下数据的整理与分析:①数据收集:抽取的20 名师生测评分数如下85,82,94,72,78,89,96,98,84,65,73,54,83,76,70,85,83,63,92,90.②数据整理:将收集的数据进行分组并评价等第:分数x 90≤x<100 80≤x<90 70≤x<80 60≤x<70 x<60人数 5 a 5 2 1等第 A B C D E③数据分析:绘制成不完整的扇形统计图:④依据统计信息回答问题(1)统计表中的a= .(2)心理测评等第C 等的师生人数所占扇形的圆心角度数为.(3)学校决定对E 等的师生进行团队心理辅导,请你根据数据分析结果,估计有多少师生需要参加团队心理辅导?3≈1.73)21.如图,将△ABC 沿着AC 边翻折,得到△ADC,且AB∥CD.(1)判断四边形ABCD 的形状,并说明理由;(2)若AC=16,BC=10,求四边形ABCD 的面积.22.2018 年高一新生开始,湖南全面启动高考综合改革,实行“3+1+2”的高考选考方案.“3”是指语文、数学、外语三科必考;“1”是指从物理、历史两科中任选一科参加选考,“2”是指从政治、化学、地理、生物四科中任选两科参加选考(1)“1+2”的选考方案共有多少种?请直接写出所有可能的选法;(选法与顺序无关,例如:“物、政、化”与“物、化、政”属于同一种选法)(2)高一学生小明和小杰将参加新高考,他们酷爱历史和生物,两人约定必选历史和生物.他们还需要从政治、化学、地理三科中选一科参考,若这三科被选中的机会均等,请用列表或画树状图的方法,求出他们恰好都选中政治的概率.23.如图,在平面直角坐标系中,⊙M 与x 轴的正半轴交于A、B 两点,与y 轴的正半轴相切于点C,连接MA、M C,已知⊙Mk(x>0)经过圆心M.半径为2,∠AMC=60°,双曲线y=xk(1)求双曲线y=x的解析式;(2)求直线BC 的解析式.24.湘潭政府工作报告中强调,2019 年着重推进乡村振兴战略,做优做响湘莲等特色农产品品牌.小亮调查了一家湘潭特产店A、B 两种湘莲礼盒一个月的销售情况,A 种湘莲礼盒进价72 元/盒,售价120 元/盒,B 种湘莲礼盒进价40 元/盒,售价80 元/盒,这两种湘莲礼盒这个月平均每天的销售总额为2800 元,平均每天的总利润为1280 元.(1)求该店平均每天销售这两种湘莲礼盒各多少盒?(2)小亮调査发现,A 种湘莲礼盒售价每降3 元可多卖1 盒.若B 种湘莲礼盒的售价和销量不变,当A 种湘莲礼盒降价多少元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是多少元?25. 如图一,抛物线y=ax2+bx+c 过A(-1,0)B(3.0)、C(0,3)三点(1)求该抛物线的解析式;(2)P(x1,y1)、Q(4,y2)两点均在该抛物线上,若y1≤y2,求P 点横坐标x1的取值范围;(3)如图二,过点C 作x 轴的平行线交抛物线于点E,该抛物线的对称轴与x 轴交于点D,连结CD、CB,点F 为线段CB 的中点,点M、N 分别为直线CD 和CE 上的动点,求△FMN 周长的最小值.26.如图一,在射线DE 的一侧以AD 为一条边作矩形ABCD,AD=5 3,CD=5,点M是线段AC 上一动点(不与点A 重合),连结BM,过点M 作BM 的垂线交射线DE 于点N,连接BN.(1)求∠CAD 的大小;(2)问题探究:动点M 在运动的过程中,①是否能使△AMN 为等腰三角形,如果能,求出线段MC 的长度;如果不能,请说明理由.②∠MBN 的大小是否改变?若不改变,请求出∠MBN 的大小;若改变,请说明理由.(3)问题解决:如图二,当动点M 运动到AC 的中点时,AM 与BN 的交点为F,MN 的中点为H,求线段FH 的长度.答案和解析1.【答案】B【解析】解:-3 的绝对值=3>0;-3<0;-(-3)=3>0;>0.故选:B.根据负数的定义可得B 为答案.本题运用了负数的定义来解决问题,关键是要有数感.2.【答案】C【解析】解:A、立方体的俯视图是正方形,故此选项错误;B、圆柱体的俯视图是圆,故此选项错误;C、三棱柱的俯视图是三角形,故此选项正确;D、圆锥体的俯视图是圆,故此选项错误;故选:C.俯视图是从物体上面看所得到的图形,据此判断得出物体的俯视图.本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.【答案】B【解析】解:将24000 用科学记数法表示为:2.4×104,故选:B.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10 时,n 是正数;当原数的绝对值<1 时,n 是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.【答案】D【解析】解:A、结果是a3,故本选项不符合题意;B、结果是a6,故本选项不符合题意;C、结果是5a,故本选项不符合题意;D、结果是6a2,故本选项符合题意;故选:D.根据同底数幂的除法,幂的乘方,合并同类项法则和单项式乘以单项式分别求每个式子的值,再判断即可.本题考查了同底数幂的除法,幂的乘方,合并同类项法则和单项式乘以单项式等知识点,能够正确求出每个式子的值是解此题的关键.5.【答案】A【解析】解:∵方程x2-4x+c=0 有两个相等的实数根,∴△=(-4)2-4×1×c=16-4c=0,解得:c=4.故选:A.根据方程有两个相等的实数根结合根的判别式即可得出关于c 的一元一次方程,解方程即可得出结论.本题考查了根的判别式以及解一元一次方程,由方程有两个相等的实数根结合根的判别式得出关于c 的一元一次方程是解题的关键.6.【答案】A【解析】解:(7+2+13+11+7)÷5=8,即平均数是8,故A 事正确的.出现次数最多的是13,即众数是13,故B 不正确,从小到大排列,第20、21 个数都是13,即中位数是13,故C 是不正确的;极差为13-2=11,故D 不正确;故选:A.从条形统计图中可以知道共调查40 人,选择公交7 人,火车2 人,地铁13 人,轻轨11 人,其它7 人,极差为13-2=11,故D 不正确;出现次数最多的是13,即众数是13,故B 不正确,从小到大排列,第20、21 个数都是13,即中位数是13,故C 是不正确的;(7+2+13+11+7)÷5=8,即平均数是8,故A 事正确的.考查平均数、众数、中位数、极差的意义和求法,正确掌握这几个统计量的意义是解决问题的前提.7.【答案】D【解析】解:∵△OAB 绕点O 逆时针旋转70°到△OCD 的位置,∴∠BOD=70°,而∠AOB=40°,∴∠AOD=70°-40°=30°.故选:D.首先根据旋转角定义可以知道∠BOD=70°,而∠AOB=40°,然后根据图形即可求出∠AOD.此题主要考查了旋转的定义及性质,其中解题主要利用了旋转前后图形全等,对应角相等等知识.8.【答案】B【解析】解:由题意可得,,故选:B.根据题意,可以列出相应的分式方程,本题得以解决.本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程.9.【答案】x≠6【解析】解:由题意得,x-6≠0,解得x≠6.故答案为:x≠6.根据分母不等于0 列式计算即可得解.本题考查了函数自变量的取值范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.10.【答案】15【解析】解:∵a+b=5,a-b=3,∴a2-b2=(a+b)(a-b)=5×3=15,故答案为:15.先根据平方差公式分解因式,再代入求出即可.本题考查了平方差公式,能够正确分解因式是解此题的关键.311.【答案】5【解析】解:选出的恰为女生的概率为,故答案为.随机事件A 的概率P(A)=事件A 可能出现的结果数÷所有可能出现的结果数.本题考查了概率,熟练运用概率公式计算是解题的关键.12.【答案】4【解析】解:()-1= =4,故答案为:4.根据负整数指数幂与正整数指数幂互为倒数,可得答案.本题考查了负整数指数幂,利用了负整数指数幂与正整数指数幂互为倒数.13.【答案】y=3x+2【解析】解:将正比例函数y=3x 的图象向上平移2 个单位后所得函数的解析式为y=3x+2,故答案为:y=3x+2.根据“上加下减”的平移规律进行解答即可.本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.14.【答案】360°【解析】{2解:(4-2)×180°=360°. 故四边形的内角和为 360°. 故答案为:360°.根据 n 边形的内角和是(n-2)•180°,代入公式就可以求出内角和.本题主要考查了多边形的内角和公式,是需要识记的内容,比较简单.15. 【答案】AD =BC 【解析】解:根据平行四边形的判定,可再添加一个条件:AD=BC . 故答案为:AD=BC (答案不唯一).可再添加一个条件 AD=BC ,根据两组对边分别相等的四边形是平行四边形, 四边形 ABCD 是平行四边形.此题主要考查平行四边形的判定.是一个开放条件的题目,熟练掌握判定定理是解题的关键.16. 【答案】10 【解析】解:∵弦 AB=8 米,半径 OC ⊥弦 AB , ∴AD=4, ∴OD= =3,∴OA-OD=2,∴弧田面积= (弦×矢+矢 2)= ×(8×2+22)=10, 故答案为:10.根据垂径定理得到 AD=4,由勾股定理得到 OD==3,求得 OA-OD=2,根据弧田面积= (弦×矢+矢 2)即可得到结论.此题考查垂径定理的应用,关键是根据垂径定理和扇形面积解答.3x 17. 【答案】解: 2x 2 + 2x + 4 -3x −2x= 3x− x 2 + 2x + 4x −8x (x−2) (x−2)(x 2 + 2x + 4)= 3 − 1x−2 x−22=x−2,2当 x =3 时,原式=3−2=2. 【解析】根据题目中的公式可以化简题目中的式子,然后将 x 的值代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.2x ≤ 6①18.【答案】解: 3x + 1>x②,解不等式①得,x ≤3, 解不等式②,x >-1,,所以,原不等式组的解集为-1<x ≤3,在数轴上表示如下:.【解析】先求出两个不等式的解集,再求其公共解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求 解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).19. 【答案】解:如图所示:连接 OR ,由题意可得:∠AMN =90° ∠ANM =30°,∠BNM =45°A ,N =8km , 3 在直角△AMN 中,MN =AN •cos30°=8× 2 =4 3(km ).在直角△BMN 中,BM =MN •tan45°=4 3km ≈6.9km .答:此时火箭所在点 B 处与发射站点 M 处的距离约为 6.9km .【解析】利用已知结合锐角三角函数关系得出 BM 的长.本题考查解直角三角形的应用-仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.20. 【答案】7 90°【解析】解:(1)总人数=2÷10%=20(人),a=20×35%=7,故答案为 7.(2)C 所占的圆心角=360°× =90°,故答案为 90°.(3)2000× =100(人),答:估计有 100 名师生需要参加团队心理辅导.(1) 根据 D 组人数以及百分比求出总人数,再求出 a 即可.(2) 根据圆心角=360°×百分比计算即可.(3) 利用样本估计总体的思想解决问题即可.本题考查扇形统计图,样本估计总体的思想,频数分布表等知识,解题的关 键是熟练掌握基本知识,属于中考常考题型.21. 【答案】解:(1)四边形 ABCD 是菱形;理由如下:∵△ABC 沿着 AC 边翻折,得到△ADC ,∴AB =AD ,BC =CD ,∠BAC =∠DAC ,∠BCA =∠DCA ,∵AB ∥CD ,∴∠BAC =∠DAC ,∴∠BAC =∠DAC =∠BCA =∠DCA ,∴AD ∥BC ,AB =AD =BC =CD ,∴四边形 ABCD 是菱形;(2)连接BD 交AC 于O,如图所示:∵四边形ABCD 是菱形,1∴AC⊥BD,OA=OC=AC=8,OB=OD,2∴OB= BC2−OC2102−82=6,=∴BD=2OB=12,1 1∴四边形ABCD 的面积=AC×BD=2×16×12=96.2【解析】(1)由折叠的性质得出AB=AD,BC=CD,∠BAC=∠DAC,∠BCA=∠DCA,由平行线的性质得出∠BAC=∠DAC,得出∠BAC=∠DAC=∠BCA=∠DCA,证出AD∥BC,AB=AD=BC=CD,即可得出结论;(2)连➓BD 交AC 于O,由菱形的性质得出AC⊥BD,OA=OB= AC=8,OB=OD,由勾股定理求出OB= =6,得出BD=2OB=12,由菱形面积公式即可得出答案.本题考查了翻折变换的性质、菱形的判定与性质、平行线的性质、勾股定理等知识;熟练掌握翻折变换的性质,证明四边形ABCD 是菱形是解题的关键.22.【答案】解:(1)画树状图如下,由树状图知,共有12 种等可能结果;(2)画树状图如下由树状图知,共有9 种等可能结果,其中他们恰好都选中政治的只有 1 种结果,1.所以他们恰好都选中政治的概率为9【解析】(1)利用树状图可得所有等可能结果;(2)画树状图展示所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解可得.本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A 或B 的结果数目m,求出概率.23.【答案】解:(1)如图,过点M 作MN⊥x 轴于N,∴∠MNO=90°,∵⊙M 切y 轴于C,∴∠OCM=90°,∵∠CON=90°,∴∠CON=∠OCM=∠ONM=90°,∴{, 120x + 80y = 2800 y = 20 3 3 ∴四边形 OCMN 是矩形,∴AM =CM =2,∠CMN =90°,∵∠AMC =60°,∴∠AMN =30°, 在 Rt △ANM 中,MN =AM •cos ∠AMN 2 = ,∴M (2, 3),k ∵双曲线 y =x (x >0)经过圆心 M ,∴k =2× 3=2 3,2 3 ∴双曲线的解析式为 y = x (x >0);(2)如图,过点 B ,C 作直线,由(1)知,四边形 OCMN 是矩形,∴CM =ON =2,OC =MN = 3,∴C (0, 3),在 Rt △ANM 中,∠AMN =30°,AM =2,∴AN =1,∵MN ⊥AB ,∴BN =AN =1,OB =ON +BN =3,∴B (3,0),设直线 BC 的解析式为 y =k 'x +b,3b{ ∴ k′ = − 3 , b = 3∴直线 BC 的解析式为 y 3 + .【解析】(1) 先求出CM=2,再判断出四边形 OCMN 是矩形,得出 MN ,进而求出点 M 的坐标,即可得出结论;(2) 先求出点 C 的坐标,再用三角函数求出 AN ,进而求出点 B 的坐标,即可得出结论.此题是反比例函数综合题,主要考查了矩形的判定和性质,锐角三角函数,待定系数法,求出点 M 的坐标是解本题的关键.24. 【答案】解:(1)根据题意,可设平均每天销售 A 礼盒 x 盒,B 种礼盒为 y 盒,则有{(120−72)x + (80−40)y = 1280,解得{x = 10 故该店平均每天销售 A 礼盒 10 盒,B 种礼盒为 20 盒.(2)设 A 种湘莲礼盒降价 m 元/盒,利润为 W 元,依题意m 总利润 W =(120-m -72)(10+ 3 )+800化简得 W =−1 2 1(m -9)2+1307 3m +6m +1280=-33 2 2 2=3, ∴ 9a + 3b + c = 0 解得:a =− 3 c = 3∵a =−1<0 ∴当 m =9 时,取得最大值为 1307,故当 A 种湘莲礼盒降价 9 元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是1307 元.【解析】(1) 根据题意,可设平均每天销售 A 礼盒 x 盒,B 种礼盒为 y 盒,列二元一次方程组即可解题(2) 根据题意,可设 A 种礼盒降价 m 元/盒,则 A 种礼盒的销售量为:(10+ ) 盒,再列出关系式即可.本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.25.【答案】解:(1)∵抛物线 y =ax 2+bx +c 过 A (-1,0)B (3.0)、C (0, { a−b + c = 0 3)三点∴抛物线的解析式为:y =− 3x 2+2 3x + 3.3 3(2)抛物线的对称轴为 x =1,抛物线上与 Q (4,y 2)相对称的点 Q ′(-2,y 2) P (x 1,y 1 在该抛物线上,y 1≤y 2,根据抛物线的增减性得:∴x 1≤-2 或 x 1≥4答:P 点横坐标 x 1 的取值范围:x 1≤-2 或 x 1≥4.(3)∵C (0, 3),B ,(3,0),D (1,0)∴OC = 3,OB =3,OD ,=1∵F 是 BC 的中点,3 3∴F (2, 2) 当点 F 关于直线 CE 的对称点为 F ′关,于直线 CD 的对称点为F ″,直线 F ′F ″与 CE 、C D 交点为 M 、N ,此时△FMN 的周长最 F F F 3 3 3 F 0 小,周长为 ′ ″的长,由对称可得到:′( , ), ″( , 2 0)即点 O ,F ′F ″=F ′O = 3 3 3( ) + ( ) 2 2 即:△FMN 的周长最小值为 3,【解析】(1) 将三个点的坐标代入,求出 a 、b 、c ,即可求出关系式;(2) 可以求出点 Q (4,y 2)关于对称轴的对称点的横坐标为:x=-2,根据函数的 增减性,可以求出当 y 1≤y 2 时 P 点横坐标 x 1 的取值范围;(3) 由于点F 是BC 的中点,可求出点F 的坐标,根据对称找出F 关于直线CD 、CE 的对称点,连➓两个对称点的直线与CD 、CE 的交点M 、N ,此时三角形的 b =2 3,c = 3; 3 , 3周长最小,周长就等于这两个对称点之间的线段的长,根据坐标,和勾股定理可求.考查待定系数法求函数的关系式、二次函数的性质、对称性,勾股定理以及最小值的求法等知识,函数的对称性,点关于直线的对称点的求法是解决问题的基础和关键.26.【答案】解:(1)如图一(1)中,∵四边形 ABCD 是矩形,∴∠ADC =90°,DC 5 3 ∵tan ∠DAC =AD =5 3= 3 ,∴∠DAC =30°.(2) ①如图一(1)中,当 AN =NM 时,∵∠BAN =∠BMN =90°,BN =BN ,AN =NM ,∴Rt △BNA ≌Rt △BNM (HL ),∴BA =BM ,在 Rt △ABC 中,∵∠ACB =∠DAC =30°,AB =CD =5,∴AC =2AB =10,∵∠BAM =60°,BA =BM ,∴△ABM 是等边三角形,∴AM =AB =5,∴CM =AC -AM =5.如图一(2)中,当 AN =AM 时,易证∠AMN =∠ANM =15°,∵∠BMN =90°,∴∠CMB =75°,∵∠MCB =30°,∴∠CBM =180°-75°-30°=75°,∴∠CMB =∠CBM ,∴CM =CB =5 5,综上所述,满足条件的 CM 的值为 5 或 5 3.②结论:∠MBN =30°大小不变.=2 理由:如图一(1)中,∵∠BAN +∠BMN =180°,∴A ,B ,M ,N 四点共圆,∴∠MBN =∠MAN =30°.如图一(2)中,∵∠BMN =∠BAN =90°,∴A ,N ,B ,M 四点共圆,∴∠MBN +∠MAN =180°,∵∠DAC +∠MAN =180°,∴∠MBN =∠DAC =30°,综上所述,∠MBN =30°.(3) 如图二中,∵AM =MC ,∴BM =AM =CM ,∴AC =2AB ,∴AB =BM =AM ,∴△ABM 是等边三角形,∴∠BAM =∠BMA =60°,∵∠BAN =∠BMN =90°,∴∠NAM =∠NMA =30°,∴NA =NM ,∵BA =BM ,∴BN 垂直平分线段 AM ,5∴F M ,∴NM = F M cos 30 ∘ 5 3 = 3, ∵∠NFM =90°,NH =HM ,1 5 3∴FH =2MN = 6 .【解析】(1) 在 Rt △ADC 中,求出∠DAC 的正切值即可解决问题.(2) ①分两种情形:当 NA=NM 时,当 AN=AM 时,分别求解即可. ②∠MBN=30°.利用四点共圆解决问题即可.(3) 首先证明△ABM 是等边三角形,再证明 BN 垂直平分线段 AM ,解直角三角形即可解决问题.本题属于四边形综合题,考查了矩形的性质,全等三角形的判定和性质,解直角三角形,等边三角形的判定和性质,锐角三角函数,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
2019年湖南省湘潭市中考数学试卷及答案(word版)
湘潭市2019年初中毕业学业考试数 学 试 题 卷考试时量:120分钟 满分:120分考生注意:本试卷分试题卷和答题卡两部分,全卷共三道大题,26道小题.请考生将解答过程全部填(涂)写在答题卡上,写在试题卷上无效,考试结束后,将试题卷和答题卡一并上交.一.选择题(本大题共8个小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分) 1.下列等式成立是A. 22=-B. 1)1(-=--C.1÷31)3(=- D.632=⨯- 2.数据:1,3,5的平均数与极差分别是A.3,3B.3,4C.2,3D.2,4 3.不等式组⎩⎨⎧≤>21x x 的解集在数轴上表示为4.一个几何体的三视图如下图所示,这个几何体是A.球B. 圆柱C.长方体D.圆锥5.下列四边形中,对角线相等且互相垂直平分的是 A.平行四边形 B.正方形C.等腰梯形D.矩形6.在平面直角坐标系中,点A (2,3)与点B 关于x 轴对称,则点B 的坐标为 A.(3,2) B.(-2,-3) C.(-2,3) D.(2,-3)7.一元二次方程0)5)(3(=--x x 的两根分别为A. 3, -5B. -3,-5C. -3,5D.3,5 8. 在同一坐标系中,一次函数1+=ax y 与二次函数a x y +=2的图像可能是二.填空题(本大题共8个小题,请将答案写在答题卡的相应位置上,每小题3分,满分24分)9.因式分解:12-x =_____________.10.为改善湘潭河东地区路网结构,优化环境,增强城市功能,湘潭市河东风光带于2019年7月18日正式开工,总投资为880000000元,用科学计数法表示这一数字为_____________元.11.如右图,a ∥b ,若∠2=130°,则∠1=_______度.12.函数11-=x y 中,自变量x 的取值范围是_________.13.湘潭历史悠久,因盛产湘莲,被誉为“莲城”.李红买了8个莲蓬,付50元,找回38元,设每个莲蓬的价格为x 元,根据题意,列出方程为______________.14. 端午节吃粽子是中华民族的习惯.今年农历五月初五早餐时,小明妈妈端上一盘粽子,其中有3个肉馅粽子和7个豆沙馅粽子,小明从中任意拿出一个,恰好拿到肉馅粽子的概率是_____.15.如下图,已知:△ABC 中,DE ∥BC ,AD =3,DB =6,AE =2,则EC =_______.16.规定一种新的运算:ba b a 11+=⊗,则=⊗21____. A EBD2l1 ab三.解答题(本大题共10个小题,解答应写出文字说明、证明过程或演算步骤,请将解答过程写在答题卡相应的位置上,满分72分) 17.(本题满分6分)计算:o45cos 2)2011(201+---π.18.(本题满分6分) 先化简,再求值:)111(+-x x x ,其中15-=x .19.(本题满分6分)莲城中学九年级数学兴趣小组为测量校内旗杆高度,如图,在C 点测得旗杆 顶端A 的仰角为30°,向前走了6米到达D 点,在D 点测得旗杆顶端A 的仰角为60°(测角器的高度不计). ⑴ AD =_______米;⑵ 求旗杆AB 的高度(73.13≈).20.(本题满分6分)2019年我市体卫站对某校九年级学生体育测试情况进行调研,从该校360名九年级学生中抽取了部分学生的成绩(成绩分为A 、B 、C 三个层次)进行分析,绘制了频数分布表与频数分布直方图(如图),请根据图表信息解答下列问题:⑴ 补全频数分布表与频数分布直方图;⑵ 如果成绩为A 等级的同学属于优秀,请你估计该校九年级约有多少人达到优秀水平?21.(本题满分6分)某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边长为x 米,求x 的整数解.22.(本题满分6分)九年级某班组织班团活动,班委会准备买一些奖品.班长王倩拿15元钱去商店全部用来购买钢笔和笔记本两种奖品,已知钢笔2元/支,笔记本1元/本,且每样东西至少买一件. ⑴ 有多少种购买方案?请列举所有可能的结果;⑵ 从上述方案中任选一种方案购买,求买到的钢笔与笔记本数量相等的概率.23.(本题满分8分)如图,已知一次函数()0≠+=k b kx y 的图像与x 轴,y 轴分别交于A (1,0)、B (0,-1)两点,且又与反比例函数()0≠=m xmy 的图像在第一象限交于C 点,C 点的横坐标为2.⑴ 求一次函数的解析式;⑵ 求C 点坐标及反比例函数的解析式.24.(本题满分8分)两个全等的直角三角形重叠放在直线l 上,如图⑴,AB=6cm ,BC=8cm , ∠ABC=90°,将Rt △ABC 在直线l 上左右平移,如图⑵所示. ⑴ 求证:四边形ACFD 是平行四边形;⑵ 怎样移动Rt △ABC ,使得四边形ACFD 为菱形; ⑶ 将Rt △ABC 向左平移cm 4,求四边形DHCF 的面积.8米D l图(2)FEC B AH25.(本题满分10分)如图,直线33+=x y 交x 轴于A 点,交y 轴于B 点,过A 、B 两点的抛物线交x 轴于另一点C (3,0).⑴ 求抛物线的解析式;⑵ 在抛物线的对称轴上是否存在点Q ,使△ABQ 是等腰三角形?若存在,求出符合条件的Q 点坐标;若不存在,请说明理由.26.(本题满分10分)已知,AB 是⊙O 的直径,AB =8,点C 在⊙O上运动,PC⊥AB ,垂足为C ,PC =5,PT 为⊙O 的切线,切点为T . ⑴ 如图⑴,当C 点运动到O 点时,求PT 的长;⑵ 如图⑵,当C 点运动到A 点时,连结PO 、BT ,求证:PO ∥BT; ⑶ 如图⑶,设y PT =2,x AC =,求y 与x 的函数关系式及y 的最小值.湘潭初中毕业学业考试数学试卷参考答案及评分标准图(1)二.填空题(每小题3分,满分24分)9.(x +1)(x -1) 10. 8.8×108 11.50 12. x ≠1的一切实数 13. 8x +38=50 14. 103 15.4 16. 211 三.解答题(72分) 17.(本题满分6分) 解:原式=21﹣1+ 2×22(45cos °占2分)···········4分= 21﹣1+1 = 21.·····························6分 18. (本题满分6分)解:原式= x · ····················1分= x · ························2分= ······························4分当x = 5﹣1时,原式= =51= 55·············6分19.(本题满分6分)解:(1)设BD =x ,AB =3x ··················1分 ∴tan30° =63+x x························ 2分 33 = 63+x x解得:x =3····························3分 BD =3∴AD =6·····························4分 故答案为:6(2)∵BD =3,AD =6∴AB =2236-=33≈5.20米···················6分。
2019年湖南省湘潭市中考数学试题(WORD版)
2019年湘潭市初中学业水平考试数学试题卷考试时量:120分钟满分:120分考生注意:本试卷分试题卷和答题卡两部分,全卷共三道大题,26道小题.请考生将解答过程全部填(涂)写在答题卡上,写在试题卷上无效,考试结束后,将试题卷和答题卡一并上交.一、选择题(本大题共8小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分)1. 下列各数中是负数的是A. |一3|B. 一3C. —(一3)D.- 132. 下列立体图形中,俯视图是三角形的是3.今年湘潭市参加初中学业水平考试的九年级学生人数约24000人,24000用科学记数法表示为A. 0.24xl05B. 2.4xl04C. 2.4xl03D. 24xl034.下列计算正确的是A.0.24×105B. (a2)3 = a5C.2.4×103D. 2a-3a = 6a25.已知关于x的一元二次方程X2-4X + C =0有两个相等的实数根,则c =A.4B.2C.1D.- 46. 随着长株潭一体化进程不断推进,湘潭在交通方面越来越让人期待.将要实施的“两干一轨”项目中的“一轨”,是将长沙市地铁3号线南延至湘潭北站,往返长潭两地又将多“地铁”这一选择.为了解人们选择交通工具的意愿,随机抽取了部分市民进行调查,并根据调查结果绘制如下统计图,关于交通工具选择的人数数据,以下结论正确的是A.平均数是8B.众数是11C.中位数是2D.极差是10数学试题卷第4页(共8页)7. 如图,将△OAB 绕点O 逆时针旋转70°到△OCD 的位置,若∠AOB = 40°,则∠AOD= A. 45° B. 40° C. 35° D. 30°8. 现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,湘潭某家小型快 递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,己知小李每小时比小江多分拣20个物件,若设小江每小时分拣x 个物件,则可列方程为二、填空题(本大题共8小题,请将答案写在答题卡相应的位置上,每小题3分,满分24分) 9.函数y =1x −6中,自变量x 的取值范围是 。
DA2019年湖南省湘潭市中考数学
2019年湖南省湘潭市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分) 1.(3分)下列各数中是负数的是( ) A .|3|-B .3-C .(3)--D .13【分析】根据负数的定义可得B 为答案. 【解答】解:3-的绝对值30=>; 30-<;(3)30--=>;103>. 故选:B .【点评】本题运用了负数的定义来解决问题,关键是要有数感. 2.(3分)下列立体图形中,俯视图是三角形的是( )A .B .C .D .【分析】俯视图是从物体上面看所得到的图形,据此判断得出物体的俯视图. 【解答】解:A 、立方体的俯视图是正方形,故此选项错误;B 、圆柱体的俯视图是圆,故此选项错误;C 、三棱柱的俯视图是三角形,故此选项正确;D 、圆锥体的俯视图是圆,故此选项错误;故选:C .【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.(3分)今年湘潭市参加初中学业水平考试的九年级学生人数约24000人,24000用科学记数法表示为( ) A .50.2410⨯B .42.410⨯C .32.410⨯D .32410⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10>时,n 是正数;当原数的绝对值1<时,n 是负数. 【解答】解:将24000用科学记数法表示为:42.410⨯, 故选:B .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.(3分)下列计算正确的是( ) A .632a a a ÷=B .235()a a =C .236a a a +=D .2236a a a =【分析】根据同底数幂的除法,幂的乘方,合并同类项法则和单项式乘以单项式分别求每个式子的值,再判断即可.【解答】解:A 、结果是3a ,故本选项不符合题意;B 、结果是6a ,故本选项不符合题意;C 、结果是5a ,故本选项不符合题意;D 、结果是26a ,故本选项符合题意;故选:D .【点评】本题考查了同底数幂的除法,幂的乘方,合并同类项法则和单项式乘以单项式等知识点,能够正确求出每个式子的值是解此题的关键.5.(3分)已知关于x 的一元二次方程240x x c -+=有两个相等的实数根,则(c = ) A .4B .2C .1D .4-【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于c 的一元一次方程,解方程即可得出结论.【解答】解:方程240x x c -+=有两个相等的实数根,∴△2(4)411640c c =--⨯⨯=-=,解得:4c =.故选:A.【点评】本题考查了根的判别式以及解一元一次方程,由方程有两个相等的实数根结合根的判别式得出关于c的一元一次方程是解题的关键.6.(3分)随着长株潭一体化进程不断推进,湘潭在交通方面越来越让人期待.将要实施的“两干一轨”项目中的“一轨”,是将长沙市地铁3号线南延至湘潭北站,往返长潭两地又将多“地铁”这一选择.为了解人们选择交通工具的意愿,随机抽取了部分市民进行调查,并根据调查结果绘制如下统计图,关于交通工具选择的人数数据,以下结论正确的是( )A.平均数是8B.众数是11C.中位数是2D.极差是10【分析】从条形统计图中可以知道共调查40人,选择公交7人,火车2人,地铁13人,轻轨11人,其它7人,极差为13211-=,故D不正确;出现次数最多的是13,即众数是13,故B不正确,从小到大排列,第20、21个数都是13,即中位数是13,故C是不正确的;++++÷=,即平均数是8,故A事正确的.(7213117)58【解答】解:(7213117)58++++÷=,即平均数是8,故A事正确的.出现次数最多的是13,即众数是13,故B不正确,从小到大排列,第20、21个数都是13,即中位数是13,故C是不正确的;极差为13211-=,故D不正确;故选:A.【点评】考查平均数、众数、中位数、极差的意义和求法,正确掌握这几个统计量的意义是解决问题的前提.7.(3分)如图,将OAB∠=︒,则AOB∆的位置,若40∆绕点O逆时针旋转70︒到OCD∠=)(AODA .45︒B .40︒C .35︒D .30︒【分析】首先根据旋转角定义可以知道70BOD ∠=︒,而40AOB ∠=︒,然后根据图形即可求出AOD ∠.【解答】解:OAB ∆绕点O 逆时针旋转70︒到OCD ∆的位置, 70BOD ∴∠=︒,而40AOB ∠=︒,704030AOD ∴∠=︒-︒=︒.故选:D .【点评】此题主要考查了旋转的定义及性质,其中解题主要利用了旋转前后图形全等,对应角相等等知识.8.(3分)现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,湘潭某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣x 个物件,则可列方程为( ) A .1209020x x=- B .1209020x x=+ C .1209020x x =- D .1209020x x =+ 【分析】根据题意,可以列出相应的分式方程,本题得以解决. 【解答】解:由题意可得, 1209020x x=+, 故选:B .【点评】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程.二、填空题(本大题共8小题,请将答案写在答题卡相应的位置上,每小题3分,满分24分)9.(3分)函数16y x =-中,自变量x 的取值范围是 6x ≠ . 【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,60x -≠, 解得6x ≠. 故答案为:6x ≠.【点评】本题考查了函数自变量的取值范围,一般从三个方面考虑: (1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数非负. 10.(3分)若5a b +=,3a b -=,则22a b -= 15 . 【分析】先根据平方差公式分解因式,再代入求出即可. 【解答】解:5a b +=,3a b -=, 22a b ∴- ()()a b a b =+- 53=⨯15=,故答案为:15.【点评】本题考查了平方差公式,能够正确分解因式是解此题的关键.11.(3分)为庆祝新中国成立70周年,某校开展以“我和我亲爱的祖国”为主题的“快闪”活动,七年级准备从两名男生和三名女生中选出一名同学领唱,如果每一位同学被选中的机会均等,则选出的恰为女生的概率是35. 【分析】随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数. 【解答】解:选出的恰为女生的概率为33325=+, 故答案为35.【点评】本题考查了概率,熟练运用概率公式计算是解题的关键. 12.(3分)计算:11()4-= 4 .【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案. 【解答】解:111()4144-==,故答案为:4.【点评】本题考查了负整数指数幂,利用了负整数指数幂与正整数指数幂互为倒数.13.(3分)将一次函数3y x=的图象向上平移2个单位,所得图象的函数表达式为32y x=+.【分析】根据“上加下减”的平移规律进行解答即可.【解答】解:将正比例函数3y x=的图象向上平移2个单位后所得函数的解析式为32y x=+,故答案为:32y x=+.【点评】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.14.(3分)四边形的内角和为360︒.【分析】根据n边形的内角和是(2)180n-︒,代入公式就可以求出内角和.【解答】解:(42)180360-⨯︒=︒.故四边形的内角和为360︒.故答案为:360︒.【点评】本题主要考查了多边形的内角和公式,是需要识记的内容,比较简单.15.(3分)如图,在四边形ABCD中,若AB CD=,则添加一个条件AD BC=,能得到平行四边形ABCD.(不添加辅助线,任意添加一个符合题意的条件即可)【分析】可再添加一个条件AD BC=,根据两组对边分别相等的四边形是平行四边形,四边形ABCD是平行四边形.【解答】解:根据平行四边形的判定,可再添加一个条件:AD BC=.故答案为:AD BC=(答案不唯一).【点评】此题主要考查平行四边形的判定.是一个开放条件的题目,熟练掌握判定定理是解题的关键.16.(3分)《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积12=(弦⨯矢+矢2).孤田是由圆弧和其所对的弦围成(如图中的阴影部分),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,运用垂径定理(当半径OC⊥弦AB时,OC平分)AB可以求解.现已知弦8AB=米,半径等于5米的弧田,按照上述公式计算出弧田的面积为 10 平方米.【分析】根据垂径定理得到4AD =,由勾股定理得到3OD ==,求得2OA OD -=,根据弧田面积12=(弦⨯矢+矢2)即可得到结论. 【解答】解:弦8AB =米,半径OC ⊥弦AB ,4AD ∴=,3OD ∴==, 2OA OD ∴-=,∴弧田面积12=(弦⨯矢+矢221)(822)102=⨯⨯+=, 故答案为:10.【点评】此题考查垂径定理的应用,关键是根据垂径定理和扇形面积解答.三、解答题(本大题共10小题,解答应写出文字说明、证明过程或演算步骤请将解答过程写在答题卡相应位置上,满分72分)17.(6分)解不等式组26312x x x ⎧⎪⎨+>⎪⎩…,并把它的解集在数轴上表示出来.【分析】先求出两个不等式的解集,再求其公共解. 【解答】解:26312x x x ⎧⎪⎨+>⎪⎩①②…,解不等式①得,3x …, 解不等式②,1x >-,所以,原不等式组的解集为13x -<…, 在数轴上表示如下:.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解). 18.(6分)阅读材料:运用公式法分解因式,除了常用的平方差公式和完全平方公式以外,还可以应用其他公式,如立方和与立方差公式,其公式如下: 立方和公式:3322()()x y x y x xy y +=+-+ 立方差公式:3322()()x y x y x xy y -=-++根据材料和已学知识,先化简,再求值:22332428x x x x x x ++---,其中3x =. 【分析】根据题目中的公式可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.【解答】解:22332428x x x x x x ++--- 22324(2)(2)(24)x x x x x x x x ++=---++ 3122x x =--- 22x =-, 当3x =时,原式2232==-. 【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法. 19.(6分)我国于2019年6月5日首次完成运载火箭海上发射,这标志着我国火箭发射技术达到了一个崭新的高度.如图,运载火箭从海面发射站点M 处垂直海面发射,当火箭到达点A 处时,海岸边N 处的雷达站测得点N 到点A 的距离为8千米,仰角为30︒.火箭继续直线上升到达点B 处,此时海岸边N 处的雷达测得B 处的仰角增加15︒,求此时火箭所在点B 处与发射站点M 处的距离.(结果精确到0.1千米) 1.41 1.73)≈【分析】利用已知结合锐角三角函数关系得出BM 的长.【解答】解:如图所示:连接MN ,由题意可得:90AMN ∠=︒,30ANM ∠=︒,45BNM ∠=︒,8AN km =,在直角AMN ∆中,cos308)MN AN km =︒==.在直角BMN ∆中,tan 45 6.9BM MN km =︒=≈. 答:此时火箭所在点B 处与发射站点M 处的距离约为6.9km .【点评】本题考查解直角三角形的应用-仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.20.(6分)每年5月份是心理健康宣传月,某中学开展以“关心他人,关爱自己”为主题的心理健康系列活动.为了解师生的心理健康状况,对全体2000名师生进行了心理测评,随机抽取20名师生的测评分数进行了以下数据的整理与分析: ①数据收集:抽取的20名师生测评分数如下 85,82,94,72,78,89,96,98,84,65, 73,54,83,76,70,85,83,63,92,90. ②数据整理:将收集的数据进行分组并评价等第:③数据分析:绘制成不完整的扇形统计图: ④依据统计信息回答问题 (1)统计表中的a = 7 .(2)心理测评等第C 等的师生人数所占扇形的圆心角度数为 .(3)学校决定对E 等的师生进行团队心理辅导,请你根据数据分析结果,估计有多少师生需要参加团队心理辅导?【分析】(1)根据D组人数以及百分比求出总人数,再求出a即可.(2)根据圆心角360=︒⨯百分比计算即可.(3)利用样本估计总体的思想解决问题即可.【解答】解:(1)总人数210%20=÷=(人),2035%7a=⨯=,故答案为7.(2)C所占的圆心角53609020=︒⨯=︒,故答案为90︒.(3)1200010020⨯=(人),答:估计有100名师生需要参加团队心理辅导.【点评】本题考查扇形统计图,样本估计总体的思想,频数分布表等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(6分)如图,将ABC∆沿着AC边翻折,得到ADC∆,且//AB CD.(1)判断四边形ABCD的形状,并说明理由;(2)若16AC=,10BC=,求四边形ABCD的面积.【分析】(1)由折叠的性质得出AB AD=,BC CD=,BAC DAC∠=∠,BCA DCA∠=∠,由平行线的性质得出BAC DAC∠=∠,得出B A C DA C B C A DC∠=∠=∠=∠,证出//AD BC,AB AD BC CD===,即可得出结论;(2)连接BD 交AC 于O ,由菱形的性质得出AC BD ⊥,182OA OB AC ===,OB OD =,由勾股定理求出6OB =,得出212BD OB ==,由菱形面积公式即可得出答案. 【解答】解:(1)四边形ABCD 是菱形;理由如下: ABC ∆沿着AC 边翻折,得到ADC ∆,AB AD ∴=,BC CD =,BAC DAC ∠=∠,BCA DCA ∠=∠,//AB CD , BAC DAC ∴∠=∠,BAC DAC BCA DCA ∴∠=∠=∠=∠, //AD BC ∴,AB AD BC CD ===,∴四边形ABCD 是菱形;(2)连接BD 交AC 于O ,如图所示: 四边形ABCD 是菱形, AC BD ∴⊥,182OA OC AC ===,OB OD =,6OB ∴===, 212BD OB ∴==,∴四边形ABCD 的面积1116129622AC BD =⨯=⨯⨯=.【点评】本题考查了翻折变换的性质、菱形的判定与性质、平行线的性质、勾股定理等知识;熟练掌握翻折变换的性质,证明四边形ABCD 是菱形是解题的关键.22.(6分)2018年高一新生开始,湖南全面启动高考综合改革,实行“312++”的高考选考方案.“3”是指语文、数学、外语三科必考;“1”是指从物理、历史两科中任选一科参加选考,“2”是指从政治、化学、地理、生物四科中任选两科参加选考(1)“12+”的选考方案共有多少种?请直接写出所有可能的选法;(选法与顺序无关,例如:“物、政、化”与“物、化、政”属于同一种选法)(2)高一学生小明和小杰将参加新高考,他们酷爱历史和生物,两人约定必选历史和生物.他们还需要从政治、化学、地理三科中选一科参考,若这三科被选中的机会均等,请用列表或画树状图的方法,求出他们恰好都选中政治的概率. 【分析】(1)利用树状图可得所有等可能结果;(2)画树状图展示所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解可得.【解答】解:(1)画树状图如下,由树状图知,共有12种等可能结果; (2)画树状图如下由树状图知,共有9种等可能结果,其中他们恰好都选中政治的只有1种结果, 所以他们恰好都选中政治的概率为19.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,求出概率.23.(8分)如图,在平面直角坐标系中,M 与x 轴的正半轴交于A 、B 两点,与y 轴的正半轴相切于点C ,连接MA 、MC ,已知M 半径为2,60AMC ∠=︒,双曲线(0)k y x x=>经过圆心M . (1)求双曲线ky x=的解析式; (2)求直线BC 的解析式.【分析】(1)先求出2CM =,再判断出四边形OCMN 是矩形,得出MN ,进而求出点M 的坐标,即可得出结论;(2)先求出点C 的坐标,再用三角函数求出AN ,进而求出点B 的坐标,即可得出结论. 【解答】解:(1)如图,过点M 作MN x ⊥轴于N , 90MNO ∴∠=︒,M 切y 轴于C ,90OCM ∴∠=︒, 90CON ∠=︒,90CON OCM ONM ∴∠=∠=∠=︒,∴四边形OCMN 是矩形,2AM CM ∴==,90CMN ∠=︒, 60AMC ∠=︒, 30AMN ∴∠=︒,在Rt ANM ∆中,cos 2MN AM AMN =∠==M ∴,双曲线(0)ky x x =>经过圆心M ,2k ∴==,∴双曲线的解析式为0)y x =>;(2)如图,过点B ,C 作直线, 由(1)知,四边形OCMN 是矩形,2CM ON ∴==,OC MN =C ∴,在Rt ANM ∆中,30AMN ∠=︒,2AM =, 1AN ∴=, MN AB ⊥,1BN AN ∴==,3OB ON BN =+=,(3,0)B ∴,设直线BC 的解析式为y k x b '=+,∴30k b b '+=⎧⎪⎨=⎪⎩,∴k b ⎧'=⎪⎨⎪=⎩, ∴直线BC的解析式为y =【点评】此题是反比例函数综合题,主要考查了矩形的判定和性质,锐角三角函数,待定系数法,求出点M 的坐标是解本题的关键.24.(8分)湘潭政府工作报告中强调,2019年着重推进乡村振兴战略,做优做响湘莲等特色农产品品牌.小亮调查了一家湘潭特产店A 、B 两种湘莲礼盒一个月的销售情况,A 种湘莲礼盒进价72元/盒,售价120元/盒,B 种湘莲礼盒进价40元/盒,售价80元/盒,这两种湘莲礼盒这个月平均每天的销售总额为2800元,平均每天的总利润为1280元. (1)求该店平均每天销售这两种湘莲礼盒各多少盒?(2)小亮调査发现,A 种湘莲礼盒售价每降3元可多卖1盒.若B 种湘莲礼盒的售价和销量不变,当A 种湘莲礼盒降价多少元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是多少元?【分析】(1)根据题意,可设平均每天销售A 礼盒x 盒,B 种礼盒为y 盒,列二元一次方程组即可解题(2)根据题意,可设A 种礼盒降价m 元/盒,则A 种礼盒的销售量为:(10)3m+盒,再列出关系式即可.【解答】解:(1)根据题意,可设平均每天销售A 礼盒x 盒,B 种礼盒为y 盒, 则有(12072)(8040)1280120802800x y x y -+-=⎧⎨+=⎩,解得1020x y =⎧⎨=⎩故该店平均每天销售A 礼盒10盒,B 种礼盒为20盒.(2)设A 种湘莲礼盒降价m 元/盒,利润为W 元,依题意 总利润(12072)(10)8003mW m =--++ 化简得221161280(9)130733W m m m =-++=--+103a =-<∴当9m =时,取得最大值为1307,故当A 种湘莲礼盒降价9元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是1307元.【点评】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.25.(10分)如图一,抛物线2y ax bx c =++过(1A -,0)(3.0)B 、C 三点(1)求该抛物线的解析式;(2)1(P x ,1)y 、2(4,)Q y 两点均在该抛物线上,若12y y …,求P 点横坐标1x 的取值范围; (3)如图二,过点C 作x 轴的平行线交抛物线于点E ,该抛物线的对称轴与x 轴交于点D ,连结CD 、CB ,点F 为线段CB 的中点,点M 、N 分别为直线CD 和CE 上的动点,求FMN ∆周长的最小值.【分析】(1)将三个点的坐标代入,求出a 、b 、c ,即可求出关系式;(2)可以求出点2(4,)Q y 关于对称轴的对称点的横坐标为:2x =-,根据函数的增减性,可以求出当12y y …时P 点横坐标1x 的取值范围;(3)由于点F 是BC 的中点,可求出点F 的坐标,根据对称找出F 关于直线CD 、CE 的对称点,连接两个对称点的直线与CD 、CE 的交点M 、N ,此时三角形的周长最小,周长就等于这两个对称点之间的线段的长,根据坐标,和勾股定理可求.【解答】解:(1)抛物线2y ax bx c =++过(1A -,0)(3.0)B、C 三点∴0930a b c a b c c ⎧-+=⎪++=⎨⎪=⎩解得:a =,b =,c =;∴抛物线的解析式为:2y =.(2)抛物线的对称轴为1x =,抛物线上与2(4,)Q y 相对称的点2(2,)Q y '- 1(P x ,1y 在该抛物线上,12y y …,根据抛物线的增减性得: 12x ∴-…或14x …答:P 点横坐标1x 的取值范围:12x -…或14x ….(3)(0,3)C ,B ,(3,0),(1,0)DOC ∴3OB =,OD ,1=F 是BC 的中点,3(2F ∴, 当点F 关于直线CE 的对称点为F ',关于直线CD 的对称点为F '',直线F F '''与CE 、CD 交点为M 、N ,此时FMN ∆的周长最小,周长为F F '''的长,由对称可得到:3(2F ',(0,0)F ''即点O ,3F F F O '''='=,即:FMN ∆的周长最小值为3,【点评】考查待定系数法求函数的关系式、二次函数的性质、对称性,勾股定理以及最小值的求法等知识,函数的对称性,点关于直线的对称点的求法是解决问题的基础和关键.26.(10分)如图一,在射线DE的一侧以AD为一条边作矩形ABCD,AD=5CD=,点M是线段AC上一动点(不与点A重合),连结BM,过点M作BM的垂线交射线DE于点N,连接BN.(1)求CAD∠的大小;(2)问题探究:动点M在运动的过程中,①是否能使AMN∆为等腰三角形,如果能,求出线段MC的长度;如果不能,请说明理由.②MBN∠的大小;若改变,请说明理由.∠的大小是否改变?若不改变,请求出MBN(3)问题解决:如图二,当动点M运动到AC的中点时,AM与BN的交点为F,MN的中点为H,求线段FH的长度.【分析】(1)在Rt ADC∆中,求出DAC∠的正切值即可解决问题.(2)①分两种情形:当NA NM=时,分别求解即可.=时,当AN AM②30∠=︒.利用四点共圆解决问题即可.MBN(3)首先证明ABM∆是等边三角形,再证明BN垂直平分线段AM,解直角三角形即可解决问题.【解答】解:(1)如图一(1)中,四边形ABCD 是矩形, 90ADC ∴∠=︒,tanDC DAC AD ∠===, 30DAC ∴∠=︒.(2)①如图一(1)中,当AN NM =时, 90BAN BMN ∠=∠=︒,BN BN =,AN NM =,Rt BNA Rt BNM(HL)∴∆≅∆,BA BM ∴=,在Rt ABC ∆中,30ACB DAC ∠=∠=︒,5AB CD ==, 210AC AB ∴==,60BAM ∠=︒,BA BM =,ABM ∴∆是等边三角形,5AM AB ∴==, 5CM AC AM ∴=-=.如图一(2)中,当AN AM =时,易证15AMN ANM ∠=∠=︒,90BMN ∠=︒,75CMB ∴∠=︒,30MCB ∠=︒, 180753075CBM ∴∠=︒-︒-︒=︒, CMB CBM ∴∠=∠,CM CB ∴==综上所述,满足条件的CM 的值为5或②结论:30MBN ∠=︒大小不变.理由:如图一(1)中,180BAN BMN ∠+∠=︒,A ∴,B ,M ,N 四点共圆,30MBN MAN ∴∠=∠=︒.如图一(2)中,90BMN BAN ∠=∠=︒,A ∴,N ,B ,M 四点共圆,180MBN MAN ∴∠+∠=︒, 180DAC MAN ∠+∠=︒, 30MBN DAC ∴∠=∠=︒,综上所述,30MBN ∠=︒.(3)如图二中,AM MC =, BM AM CM ∴==, 2AC AB ∴=,AB BM AM ∴==, ABM ∴∆是等边三角形,60BAM BMA ∴∠=∠=︒, 90BAN BMN ∠=∠=︒, 30NAM NMA ∴∠=∠=︒, NA NM ∴=,BA BM =,BN ∴垂直平分线段AM , 52FM ∴=,cos30FM NM ∴=︒, 90NFM ∠=︒,NH HM =,12FH MN ∴=【点评】本题属于四边形综合题,考查了矩形的性质,全等三角形的判定和性质,解直角三角形,等边三角形的判定和性质,锐角三角函数,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
2019年初中毕业升学考试(湖南湘潭卷)数学【含答案及解析】
2019年初中毕业升学考试(湖南湘潭卷)数学【含答
案及解析】
姓名___________ 班级____________ 分数__________题号一二三总分
得分
一、选择题
1. 在数轴上表示﹣2的点与表示3的点之间的距离是()
A.5 B.﹣5 C.1 D.﹣1
2. 下面四个立体图形中,三视图完全相同的是()
A. B. C. D.
3. 下列计算正确的是()
A. B. C. D.
的面积为4,那么△ABC的面积是4. 在△ABC中,D.E为边AB、AC的中点,已知△ADE
()
A.8 B.12 C.16 D.20
5. 下列四个命题中,真命题是()
A.“任意四边形内角和为360°”是不可能事件
B.“湘潭市明天会下雨”是必然事件
C.“预计本题的正确率是95%”表示100位考生中一定有95人做对
D.抛掷一枚质地均匀的硬币,正面朝上的概率是
6. 如图,已知直线AB∥CD,且直线EF分别交AB、CD于M、N两点,NH是∠MND的角平分。
【中考真题】2019年湖南省湘潭市中考数学真题试卷(附答案)
13.将一次函数 的图象向上平移2个单位,所得图象的函数表达式为_____.
14.四边形的内角和为.
15.如图,在四边形 中,若 ,则添加一个条件_____,能得到平行四边形 .(不添加辅助线,任意添加一个符合题意的条件即可)
16.《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积 (弦×矢+矢2).孤田是由圆弧和其所对的弦围成(如图中的阴影部分),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,运用垂径定理(当半径 ⊥弦 时, 平分 )可以求解.现已知弦 米,半径等于5米的弧田,按照上述公式计算出弧田的面积为_____平方米.
A. B. C. D.
4.下列计算正确的是( )
A. B. C. D.
5.已知关于 的一元二次方程 有两个相等的实数根,则 ( )
A.4B.2C.1D.﹣4
6.随着长株潭一体化进程不断推进,湘潭在交通方面越来越让人期待.将要实施的“两干一轨”项目中的“一轨”,是将长沙市地铁3号线南延至湘潭北站,往返长潭两地又将多“地铁”这一选择.为了解人们选择交通工具的意愿,随机抽取了部分市民进行调查,并根据调查结果绘制如下统计图,关于交通工具选择的人数数据,以下结论正确的是( )
1.B
【解析】
【分析】
根据负数的定义可得B为答案.
【详解】
解:因为﹣3的绝对值 ,所以A错误;
因为 ,所以B正确;
因为 ,所以C错误;
因为 ,所以D错误.
故选:B.
【点睛】
本题运用了负数的定义来解决问题,关键是掌握负数的定义.
2.C
【解析】
【分析】
俯视图是从物体上面看所得到的图形,据此判断得出物体的俯视图.
2019年湖南省湘潭市中考数学试题(原卷+解析)
2019年湖南省湘潭市中考数学试卷含答案【精品】一、选择题(本大题共8小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分)1.(3分)下列各数中是负数的是()A.|﹣3| B.﹣3 C.﹣(﹣3)D.2.(3分)下列立体图形中,俯视图是三角形的是()A.B.C.D.3.(3分)今年湘潭市参加初中学业水平考试的九年级学生人数约24000人,24000用科学记数法表示为()A.0.24×105B.2.4×104C.2.4×103D.24×1034.(3分)下列计算正确的是()A.a6÷a3=a2B.(a2)3=a5C.2a+3a=6a D.2a•3a=6a2 5.(3分)已知关于x的一元二次方程x2﹣4x+c=0有两个相等的实数根,则c=()A.4 B.2 C.1 D.﹣46.(3分)随着长株潭一体化进程不断推进,湘潭在交通方面越来越让人期待.将要实施的“两干一轨”项目中的“一轨”,是将长沙市地铁3号线南延至湘潭北站,往返长潭两地又将多“地铁”这一选择.为了解人们选择交通工具的意愿,随机抽取了部分市民进行调查,并根据调查结果绘制如下统计图,关于交通工具选择的人数数据,以下结论正确的是()A.平均数是8 B.众数是11 C.中位数是2 D.极差是10 7.(3分)如图,将△OAB绕点O逆时针旋转70°到△OCD的位置,若∠AOB=40°,则∠AOD =()A.45°B.40°C.35°D.30°8.(3分)现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,湘潭某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣x个物件,则可列方程为()A.=B.=C.=D.=二、填空题(本大题共8小题,请将答案写在答题卡相应的位置上,每小题3分,满分24分)9.(3分)函数y=中,自变量x的取值范围是.10.(3分)若a+b=5,a﹣b=3,则a2﹣b2=.11.(3分)为庆祝新中国成立70周年,某校开展以“我和我亲爱的祖国”为主题的“快闪”活动,七年级准备从两名男生和三名女生中选出一名同学领唱,如果每一位同学被选中的机会均等,则选出的恰为女生的概率是.12.(3分)计算:()﹣1=.13.(3分)将一次函数y=3x的图象向上平移2个单位,所得图象的函数表达式为.14.(3分)四边形的内角和是.15.(3分)如图,在四边形ABCD中,若AB=CD,则添加一个条件,能得到平行四边形ABCD.(不添加辅助线,任意添加一个符合题意的条件即可)16.(3分)《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积=(弦×矢+矢2).孤田是由圆弧和其所对的弦围成(如图中的阴影部分),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,运用垂径定理(当半径OC⊥弦AB时,OC平分AB)可以求解.现已知弦AB=8米,半径等于5米的弧田,按照上述公式计算出弧田的面积为平方米.三、解答题(本大题共10小题,解答应写出文字说明、证明过程或演算步骤请将解答过程写在答题卡相应位置上,满分72分)17.(6分)解不等式组,并把它的解集在数轴上表示出来.18.(6分)阅读材料:运用公式法分解因式,除了常用的平方差公式和完全平方公式以外,还可以应用其他公式,如立方和与立方差公式,其公式如下:立方和公式:x3+y3=(x+y)(x2﹣xy+y2)立方差公式:x3﹣y3=(x﹣y)(x2+xy+y2)根据材料和已学知识,先化简,再求值:﹣,其中x=3.19.(6分)我国于2019年6月5日首次完成运载火箭海上发射,这标志着我国火箭发射技术达到了一个崭新的高度.如图,运载火箭从海面发射站点M处垂直海面发射,当火箭到达点A处时,海岸边N处的雷达站测得点N到点A的距离为8千米,仰角为30°.火箭继续直线上升到达点B处,此时海岸边N处的雷达测得B处的仰角增加15°,求此时火箭所在点B处与发射站点M处的距离.(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)20.(6分)每年5月份是心理健康宣传月,某中学开展以“关心他人,关爱自己”为主题的心理健康系列活动.为了解师生的心理健康状况,对全体2000名师生进行了心理测评,随机抽取20名师生的测评分数进行了以下数据的整理与分析:①数据收集:抽取的20名师生测评分数如下85,82,94,72,78,89,96,98,84,65,73,54,83,76,70,85,83,63,92,90.②数据整理:将收集的数据进行分组并评价等第:分数x90≤x<100 80≤x<90 70≤x<80 60≤x<70 x<60人数 5 a 5 2 1等第A B C D E③数据分析:绘制成不完整的扇形统计图:④依据统计信息回答问题(1)统计表中的a=.(2)心理测评等第C等的师生人数所占扇形的圆心角度数为.(3)学校决定对E等的师生进行团队心理辅导,请你根据数据分析结果,估计有多少师生需要参加团队心理辅导?21.(6分)如图,将△ABC沿着AC边翻折,得到△ADC,且AB∥CD.(1)判断四边形ABCD的形状,并说明理由;(2)若AC=16,BC=10,求四边形ABCD的面积.22.(6分)2018年高一新生开始,湖南全面启动高考综合改革,实行“3+1+2”的高考选考方案.“3”是指语文、数学、外语三科必考;“1”是指从物理、历史两科中任选一科参加选考,“2”是指从政治、化学、地理、生物四科中任选两科参加选考(1)“1+2”的选考方案共有多少种?请直接写出所有可能的选法;(选法与顺序无关,例如:“物、政、化”与“物、化、政”属于同一种选法)(2)高一学生小明和小杰将参加新高考,他们酷爱历史和生物,两人约定必选历史和生物.他们还需要从政治、化学、地理三科中选一科参考,若这三科被选中的机会均等,请用列表或画树状图的方法,求出他们恰好都选中政治的概率.23.(8分)如图,在平面直角坐标系中,⊙M与x轴的正半轴交于A、B两点,与y轴的正半轴相切于点C,连接MA、MC,已知⊙M半径为2,∠AMC=60°,双曲线y=(x>0)经过圆心M.(1)求双曲线y=的解析式;(2)求直线BC的解析式.24.(8分)湘潭政府工作报告中强调,2019年着重推进乡村振兴战略,做优做响湘莲等特色农产品品牌.小亮调查了一家湘潭特产店A、B两种湘莲礼盒一个月的销售情况,A种湘莲礼盒进价72元/盒,售价120元/盒,B种湘莲礼盒进价40元/盒,售价80元/盒,这两种湘莲礼盒这个月平均每天的销售总额为2800元,平均每天的总利润为1280元.(1)求该店平均每天销售这两种湘莲礼盒各多少盒?(2)小亮调査发现,A种湘莲礼盒售价每降3元可多卖1盒.若B种湘莲礼盒的售价和销量不变,当A种湘莲礼盒降价多少元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是多少元?25.(10分)如图一,抛物线y=ax2+bx+c过A(﹣1,0)B(3.0)、C(0,)三点(1)求该抛物线的解析式;(2)P(x1,y1)、Q(4,y2)两点均在该抛物线上,若y1≤y2,求P点横坐标x1的取值范围;(3)如图二,过点C作x轴的平行线交抛物线于点E,该抛物线的对称轴与x轴交于点D,连结CD、CB,点F为线段CB的中点,点M、N分别为直线CD和CE上的动点,求△FMN 周长的最小值.26.(10分)如图一,在射线DE的一侧以AD为一条边作矩形ABCD,AD=5,CD=5,点M是线段AC上一动点(不与点A重合),连结BM,过点M作BM的垂线交射线DE于点N,连接BN.(1)求∠CAD的大小;(2)问题探究:动点M在运动的过程中,①是否能使△AMN为等腰三角形,如果能,求出线段MC的长度;如果不能,请说明理由.②∠MBN的大小是否改变?若不改变,请求出∠MBN的大小;若改变,请说明理由.(3)问题解决:如图二,当动点M运动到AC的中点时,AM与BN的交点为F,MN的中点为H,求线段FH 的长度.2019年湖南省湘潭市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分)1.(3分)下列各数中是负数的是()A.|﹣3| B.﹣3 C.﹣(﹣3)D.【分析】根据负数的定义可得B为答案.【解答】解:﹣3的绝对值=3>0;﹣3<0;﹣(﹣3)=3>0;>0.故选:B.【点评】本题运用了负数的定义来解决问题,关键是要有数感.2.(3分)下列立体图形中,俯视图是三角形的是()A.B.C.D.【分析】俯视图是从物体上面看所得到的图形,据此判断得出物体的俯视图.【解答】解:A、立方体的俯视图是正方形,故此选项错误;B、圆柱体的俯视图是圆,故此选项错误;C、三棱柱的俯视图是三角形,故此选项正确;D、圆锥体的俯视图是圆,故此选项错误;故选:C.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.(3分)今年湘潭市参加初中学业水平考试的九年级学生人数约24000人,24000用科学记数法表示为()A.0.24×105B.2.4×104C.2.4×103D.24×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将24000用科学记数法表示为:2.4×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)下列计算正确的是()A.a6÷a3=a2B.(a2)3=a5C.2a+3a=6a D.2a•3a=6a2【分析】根据同底数幂的除法,幂的乘方,合并同类项法则和单项式乘以单项式分别求每个式子的值,再判断即可.【解答】解:A、结果是a3,故本选项不符合题意;B、结果是a6,故本选项不符合题意;C、结果是5a,故本选项不符合题意;D、结果是6a2,故本选项符合题意;故选:D.【点评】本题考查了同底数幂的除法,幂的乘方,合并同类项法则和单项式乘以单项式等知识点,能够正确求出每个式子的值是解此题的关键.5.(3分)已知关于x的一元二次方程x2﹣4x+c=0有两个相等的实数根,则c=()A.4 B.2 C.1 D.﹣4【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于c的一元一次方程,解方程即可得出结论.【解答】解:∵方程x2﹣4x+c=0有两个相等的实数根,∴△=(﹣4)2﹣4×1×c=16﹣4c=0,解得:c=4.故选:A.【点评】本题考查了根的判别式以及解一元一次方程,由方程有两个相等的实数根结合根的判别式得出关于c的一元一次方程是解题的关键.6.(3分)随着长株潭一体化进程不断推进,湘潭在交通方面越来越让人期待.将要实施的“两干一轨”项目中的“一轨”,是将长沙市地铁3号线南延至湘潭北站,往返长潭两地又将多“地铁”这一选择.为了解人们选择交通工具的意愿,随机抽取了部分市民进行调查,并根据调查结果绘制如下统计图,关于交通工具选择的人数数据,以下结论正确的是()A.平均数是8 B.众数是11 C.中位数是2 D.极差是10【分析】从条形统计图中可以知道共调查40人,选择公交7人,火车2人,地铁13人,轻轨11人,其它7人,极差为13﹣2=11,故D不正确;出现次数最多的是13,即众数是13,故B不正确,从小到大排列,第20、21个数都是13,即中位数是13,故C是不正确的;(7+2+13+11+7)÷5=8,即平均数是8,故A事正确的.【解答】解:(7+2+13+11+7)÷5=8,即平均数是8,故A事正确的.出现次数最多的是13,即众数是13,故B不正确,从小到大排列,第20、21个数都是13,即中位数是13,故C是不正确的;极差为13﹣2=11,故D不正确;故选:A.【点评】考查平均数、众数、中位数、极差的意义和求法,正确掌握这几个统计量的意义是解决问题的前提.7.(3分)如图,将△OAB绕点O逆时针旋转70°到△OCD的位置,若∠AOB=40°,则∠AOD =()A.45°B.40°C.35°D.30°【分析】首先根据旋转角定义可以知道∠BOD=70°,而∠AOB=40°,然后根据图形即可求出∠AOD.【解答】解:∵△OAB绕点O逆时针旋转70°到△OCD的位置,∴∠BOD=70°,而∠AOB=40°,∴∠AOD=70°﹣40°=30°.故选:D.【点评】此题主要考查了旋转的定义及性质,其中解题主要利用了旋转前后图形全等,对应角相等等知识.8.(3分)现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,湘潭某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣x个物件,则可列方程为()A.=B.=C.=D.=【分析】根据题意,可以列出相应的分式方程,本题得以解决.【解答】解:由题意可得,,故选:B.【点评】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程.二、填空题(本大题共8小题,请将答案写在答题卡相应的位置上,每小题3分,满分24分)9.(3分)函数y=中,自变量x的取值范围是x≠6 .【分析】根据分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣6≠0,解得x≠6.故答案为:x≠6.【点评】本题考查了函数自变量的取值范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.10.(3分)若a+b=5,a﹣b=3,则a2﹣b2=15 .【分析】先根据平方差公式分解因式,再代入求出即可.【解答】解:∵a+b=5,a﹣b=3,∴a2﹣b2=(a+b)(a﹣b)=5×3=15,故答案为:15.【点评】本题考查了平方差公式,能够正确分解因式是解此题的关键.11.(3分)为庆祝新中国成立70周年,某校开展以“我和我亲爱的祖国”为主题的“快闪”活动,七年级准备从两名男生和三名女生中选出一名同学领唱,如果每一位同学被选中的机会均等,则选出的恰为女生的概率是.【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.【解答】解:选出的恰为女生的概率为,故答案为.【点评】本题考查了概率,熟练运用概率公式计算是解题的关键.12.(3分)计算:()﹣1= 4 .【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【解答】解:()﹣1==4,故答案为:4.【点评】本题考查了负整数指数幂,利用了负整数指数幂与正整数指数幂互为倒数.13.(3分)将一次函数y=3x的图象向上平移2个单位,所得图象的函数表达式为y=3x+2 .【分析】根据“上加下减”的平移规律进行解答即可.【解答】解:将正比例函数y=3x的图象向上平移2个单位后所得函数的解析式为y=3x+2,故答案为:y=3x+2.【点评】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.14.(3分)四边形的内角和是360°.【分析】根据n边形的内角和是(n﹣2)•180°,代入公式就可以求出内角和.【解答】解:(4﹣2)×180°=360°.故四边形的内角和为360°.故答案为:360°.【点评】本题主要考查了多边形的内角和公式,是需要识记的内容,比较简单.15.(3分)如图,在四边形ABCD中,若AB=CD,则添加一个条件AD=BC,能得到平行四边形ABCD.(不添加辅助线,任意添加一个符合题意的条件即可)【分析】可再添加一个条件AD=BC,根据两组对边分别相等的四边形是平行四边形,四边形ABCD是平行四边形.【解答】解:根据平行四边形的判定,可再添加一个条件:AD=BC.故答案为:AD=BC(答案不唯一).【点评】此题主要考查平行四边形的判定.是一个开放条件的题目,熟练掌握判定定理是解题的关键.16.(3分)《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积=(弦×矢+矢2).孤田是由圆弧和其所对的弦围成(如图中的阴影部分),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,运用垂径定理(当半径OC⊥弦AB时,OC平分AB)可以求解.现已知弦AB=8米,半径等于5米的弧田,按照上述公式计算出弧田的面积为10 平方米.【分析】根据垂径定理得到AD=4,由勾股定理得到OD==3,求得OA﹣OD =2,根据弧田面积=(弦×矢+矢2)即可得到结论.【解答】解:∵弦AB=8米,半径OC⊥弦AB,∴AD=4,∴OD==3,∴OA﹣OD=2,∴弧田面积=(弦×矢+矢2)=×(8×2+22)=10,故答案为:10.【点评】此题考查垂径定理的应用,关键是根据垂径定理和扇形面积解答.三、解答题(本大题共10小题,解答应写出文字说明、证明过程或演算步骤请将解答过程写在答题卡相应位置上,满分72分)17.(6分)解不等式组,并把它的解集在数轴上表示出来.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,解不等式①得,x≤3,解不等式②,x>﹣1,所以,原不等式组的解集为﹣1<x≤3,在数轴上表示如下:.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).18.(6分)阅读材料:运用公式法分解因式,除了常用的平方差公式和完全平方公式以外,还可以应用其他公式,如立方和与立方差公式,其公式如下:立方和公式:x3+y3=(x+y)(x2﹣xy+y2)立方差公式:x3﹣y3=(x﹣y)(x2+xy+y2)根据材料和已学知识,先化简,再求值:﹣,其中x=3.【分析】根据题目中的公式可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:﹣===,当x=3时,原式==2.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.19.(6分)我国于2019年6月5日首次完成运载火箭海上发射,这标志着我国火箭发射技术达到了一个崭新的高度.如图,运载火箭从海面发射站点M处垂直海面发射,当火箭到达点A处时,海岸边N处的雷达站测得点N到点A的距离为8千米,仰角为30°.火箭继续直线上升到达点B处,此时海岸边N处的雷达测得B处的仰角增加15°,求此时火箭所在点B处与发射站点M处的距离.(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)【分析】利用已知结合锐角三角函数关系得出BM的长.【解答】解:如图所示:连接OR,由题意可得:∠AMN=90°,∠ANM=30°,∠BNM=45°,AN=8km,在直角△AMN中,MN=AN•cos30°=8×=4(km).在直角△BMN中,BM=MN•tan45°=4km≈6.9km.答:此时火箭所在点B处与发射站点M处的距离约为6.9km.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.20.(6分)每年5月份是心理健康宣传月,某中学开展以“关心他人,关爱自己”为主题的心理健康系列活动.为了解师生的心理健康状况,对全体2000名师生进行了心理测评,随机抽取20名师生的测评分数进行了以下数据的整理与分析:①数据收集:抽取的20名师生测评分数如下85,82,94,72,78,89,96,98,84,65,73,54,83,76,70,85,83,63,92,90.②数据整理:将收集的数据进行分组并评价等第:分数x90≤x<100 80≤x<90 70≤x<80 60≤x<70 x<60人数 5 a 5 2 1等第A B C D E③数据分析:绘制成不完整的扇形统计图:④依据统计信息回答问题(1)统计表中的a=7 .(2)心理测评等第C等的师生人数所占扇形的圆心角度数为90°.(3)学校决定对E等的师生进行团队心理辅导,请你根据数据分析结果,估计有多少师生需要参加团队心理辅导?【分析】(1)根据D组人数以及百分比求出总人数,再求出a即可.(2)根据圆心角=360°×百分比计算即可.(3)利用样本估计总体的思想解决问题即可.【解答】解:(1)总人数=2÷10%=20(人),a=20×35%=7,故答案为7.(2)C所占的圆心角=360°×=90°,故答案为90°.(3)2000×=100(人),答:估计有100名师生需要参加团队心理辅导.【点评】本题考查扇形统计图,样本估计总体的思想,频数分布表等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(6分)如图,将△ABC沿着AC边翻折,得到△ADC,且AB∥CD.(1)判断四边形ABCD的形状,并说明理由;(2)若AC=16,BC=10,求四边形ABCD的面积.【分析】(1)由折叠的性质得出AB=AD,BC=CD,∠BAC=∠DAC,∠BCA=∠DCA,由平行线的性质得出∠BAC=∠DAC,得出∠BAC=∠DAC=∠BCA=∠DCA,证出AD∥BC,AB=AD=BC=CD,即可得出结论;(2)连接BD交AC于O,由菱形的性质得出AC⊥BD,OA=OB=AC=8,OB=OD,由勾股定理求出OB==6,得出BD=2OB=12,由菱形面积公式即可得出答案.【解答】解:(1)四边形ABCD是菱形;理由如下:∵△ABC沿着AC边翻折,得到△ADC,∴AB=AD,BC=CD,∠BAC=∠DAC,∠BCA=∠DCA,∵AB∥CD,∴∠BAC=∠DAC,∴∠BAC=∠DAC=∠BCA=∠DCA,∴AD∥BC,AB=AD=BC=CD,∴四边形ABCD是菱形;(2)连接BD交AC于O,如图所示:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=8,OB=OD,∴OB===6,∴BD=2OB=12,∴四边形ABCD的面积=AC×BD=×16×12=96.【点评】本题考查了翻折变换的性质、菱形的判定与性质、平行线的性质、勾股定理等知识;熟练掌握翻折变换的性质,证明四边形ABCD是菱形是解题的关键.22.(6分)2018年高一新生开始,湖南全面启动高考综合改革,实行“3+1+2”的高考选考方案.“3”是指语文、数学、外语三科必考;“1”是指从物理、历史两科中任选一科参加选考,“2”是指从政治、化学、地理、生物四科中任选两科参加选考(1)“1+2”的选考方案共有多少种?请直接写出所有可能的选法;(选法与顺序无关,例如:“物、政、化”与“物、化、政”属于同一种选法)(2)高一学生小明和小杰将参加新高考,他们酷爱历史和生物,两人约定必选历史和生物.他们还需要从政治、化学、地理三科中选一科参考,若这三科被选中的机会均等,请用列表或画树状图的方法,求出他们恰好都选中政治的概率.【分析】(1)利用树状图可得所有等可能结果;(2)画树状图展示所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解可得.【解答】解:(1)画树状图如下,由树状图知,共有12种等可能结果;(2)画树状图如下由树状图知,共有9种等可能结果,其中他们恰好都选中政治的只有1种结果,所以他们恰好都选中政治的概率为.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.23.(8分)如图,在平面直角坐标系中,⊙M与x轴的正半轴交于A、B两点,与y轴的正半轴相切于点C,连接MA、MC,已知⊙M半径为2,∠AMC=60°,双曲线y=(x>0)经过圆心M.(1)求双曲线y=的解析式;(2)求直线BC的解析式.【分析】(1)先求出CM=2,再判断出四边形OCMN是矩形,得出MN,进而求出点M的坐标,即可得出结论;(2)先求出点C的坐标,再用三角函数求出AN,进而求出点B的坐标,即可得出结论.【解答】解:(1)如图,过点M作MN⊥x轴于N,∴∠MNO=90°,∵⊙M切y轴于C,∴∠OCM=90°,∵∠CON=90°,∴∠CON=∠OCM=∠ONM=90°,∴四边形OCMN是矩形,∴AM=CM=2,∠CMN=90°,∵∠AMC=60°,∴∠AMN=30°,在Rt△ANM中,MN=AM•cos∠AMN=2×=,∴M(2,),∵双曲线y=(x>0)经过圆心M,∴k=2×=2,∴双曲线的解析式为y=(x>0);(2)如图,过点B,C作直线,由(1)知,四边形OCMN是矩形,∴CM=ON=2,OC=MN=,∴C(0,),在Rt△ANM中,∠AMN=30°,AM=2,∴AN=1,∵MN⊥AB,∴BN=AN=1,OB=ON+BN=3,∴B(3,0),设直线BC的解析式为y=k'x+b,∴,∴,∴直线BC的解析式为y=﹣x+.【点评】此题是反比例函数综合题,主要考查了矩形的判定和性质,锐角三角函数,待定系数法,求出点M的坐标是解本题的关键.24.(8分)湘潭政府工作报告中强调,2019年着重推进乡村振兴战略,做优做响湘莲等特色农产品品牌.小亮调查了一家湘潭特产店A、B两种湘莲礼盒一个月的销售情况,A种湘莲礼盒进价72元/盒,售价120元/盒,B种湘莲礼盒进价40元/盒,售价80元/盒,这两种湘莲礼盒这个月平均每天的销售总额为2800元,平均每天的总利润为1280元.(1)求该店平均每天销售这两种湘莲礼盒各多少盒?(2)小亮调査发现,A种湘莲礼盒售价每降3元可多卖1盒.若B种湘莲礼盒的售价和销量不变,当A种湘莲礼盒降价多少元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是多少元?【分析】(1)根据题意,可设平均每天销售A礼盒x盒,B种礼盒为y盒,列二元一次方程组即可解题(2)根据题意,可设A种礼盒降价m元/盒,则A种礼盒的销售量为:(10+)盒,再列出关系式即可.【解答】解:(1)根据题意,可设平均每天销售A礼盒x盒,B种礼盒为y盒,则有,解得故该店平均每天销售A礼盒10盒,B种礼盒为20盒.(2)设A种湘莲礼盒降价m元/盒,利润为W元,依题意总利润W=(120﹣m﹣72)(10+)+800化简得W=m2+6m+1280=﹣(m﹣9)2+1307∵a=<0∴当m=9时,取得最大值为1307,故当A种湘莲礼盒降价9元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是1307元.【点评】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.25.(10分)如图一,抛物线y=ax2+bx+c过A(﹣1,0)B(3.0)、C(0,)三点(1)求该抛物线的解析式;(2)P(x1,y1)、Q(4,y2)两点均在该抛物线上,若y1≤y2,求P点横坐标x1的取值范围;(3)如图二,过点C作x轴的平行线交抛物线于点E,该抛物线的对称轴与x轴交于点D,连结CD、CB,点F为线段CB的中点,点M、N分别为直线CD和CE上的动点,求△FMN 周长的最小值.【分析】(1)将三个点的坐标代入,求出a、b、c,即可求出关系式;(2)可以求出点Q(4,y2)关于对称轴的对称点的横坐标为:x=﹣2,根据函数的增减。
湖南省湘潭市2019届数学七上期末学业水平测试试题
湖南省湘潭市2019届数学七上期末学业水平测试试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.下列换算中,错误的是()A.83.5°=83°50′B.47.28°=47°16′48″C.16°5′24″=16.09°D.0.25°=900″2.如图,将一副三角板叠在一起,使直角顶点重合于点O,则∠AOB+∠DOC=()度。
A.小于180°B.大于180°C.等于180°D.无法确定3.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C的度数为()A.50° B.40° C.30° D.20°4.把方程12xx--=225x+-去分母,正确的是()A.10x-5(x-1)=2-2(x+2)B.10x-5(x-1)=20-2(x+2)C.10x-5(x-1)=20-(x+2)D.10x-(x-1)=2-2(x+2)5.3x的倒数与293x-互为相反数,那么x的值为()A.32B.32- C.3 D.-36.关于x,y的代数式(−3kxy+3y)+(9xy−8x+1)中不含二次项,则k=A.4B.13C.3D.147.多项式2x3-8x2+x-1与多项式3x3+2mx2-5x+3的和不含二次项,则m为()A.2 B.-2 C.4 D.-48.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A .m+3B .m+6C .2m+3D .2m+6 9.当x=4时,式子5(x +b)-10与bx +4的值相等,则b 的值为( ).A.-7B.-6C.6D.7 10.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则10098!!的值为( ) A .5049B .99!C .9900D .2! 11.下列各组数中,互为相反数的是( )A .+2与|﹣2|B .+(+2)与﹣(﹣2)C .+(﹣2)与﹣|+2|D .﹣|﹣2|与﹣(﹣2)12.-2017的相反数为 ( )A.2017B.-2017C.12017D.12017- 二、填空题13.如图,线段OA=1,其中点记为1A ,A 1A 的中点记为2A ,A 2A 的中点记为3A ,A 3A 的中点记为4A ,如此继续下去……,则当n 1≥时,O A n =_______.14.已知点O 在直线AB 上,且线段OA =4 cm ,线段OB =6 cm ,点E ,F 分别是OA ,OB 的中点,则线段EF =________cm.15.若11x y =⎧⎨=-⎩是方程2kx y -=的一组解,则k =__________. 16.己知多项式1A ay =-,351B ay y =--,且多项式2A B +中不含字母y ,则a 的值为__________.17.在某多媒体电子杂志的某一期上刊登了“正方形雪花图案的形成”的演示案例:作一个正方形,设每边长为4a ,将每边四等分,作一凸一凹的两个边长为a 的小正方形,得到图形如图(2)所示,称为第一次变化,再对图(2)的每个边做相同的变化,得到图形如图(3),称为第二次变化.如此连续作几次,便可得到一个绚丽多彩的雪花图案.如不断发展下去到第n 次变化时,图形的面积是否会变化,________(填写“会”或者“不会”),图形的周长为__________.18.已知5x+7与2﹣3x 互为相反数,则x =_____.19.计算:﹣33=_____.20.3的相反数是________;﹣1.5的倒数是________.三、解答题21.如图,P 是线段AB 上任一点,AB=12cm ,C 、D 两点分别从P 、B 同时向A 点运动,且C 点的运动速度为2cm/s ,D 点的运动速度为3cm/s ,运动的时间为ts .(1)若AP=8cm ,①运动1s 后,求CD 的长;②当D 在线段PB 上运动时,试说明AC=2CD ;(2)如果t=2s 时,CD=1cm ,试探索AP 的值.22.已知O 为直线AB 上的一点,∠COE 是直角,OF 平分∠AOE .(1)如图1,若∠COF=34°,则∠BOE=______;(2)如图1,若∠BOE=80°,则∠COF=______;(3)若∠COF=m°,则∠BOE=______度;∠BOE 与∠COF 的数量关系为______.(4)当∠COE 绕点O 逆时针旋转到如图2的位置时,(3)中∠BOE 与∠COF 的数量关系是否仍然成立?请说明理由.23.某市出租车收费标准是:起步价为8元,3千米后每千米为2元,若某人乘坐了(3)x x >千米. ()1用含x 的代数式表示他应支付的车费.()2行驶30千米,应付车费多少钱?()3若他支付了36元,你能算出他乘坐的路程吗?24.为了备战学校体育节的乒乓球比赛活动,某班计划买5副乒乓球拍和若干盒乒乓球(多于5盒).该班体育委员发现在学校附近有甲、乙两家商店都在出售相同品牌的乒乓球拍和乒乓球,乒乓球拍每副售价100元,乒乓球每盒售价25元.经过体育委员的洽谈,甲商店给出每买一副乒乓球拍送一盒乒乓球的优惠;乙商店给出乒乓球拍和乒乓球全部九折的优惠.(1)若这个班计划购买6盒乒乓球,则在甲商店付款 元,在乙商店付款 元;(2)当这个班购买多少盒乒乓球时,在甲、乙两家商店付款相同?25.如图所示,将面积为a 2的小正方形和面积为b 2的大正方形放在同一水平面上(b >a >0).(1)用a 、b 表示阴影部分的面积;(2)计算当a =3,b =5时,阴影部分的面积.26.计算:(1)()()()332122-⨯-+-÷(2)201813121234⎛⎫-+-+-⨯ ⎪⎝⎭(3)先化简,再求值:221131a 2a b a b 4323⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中3a 2=,1b 2=-. 27.一辆载重汽车的车厢容积为4m 2m 0.5m ⨯⨯,额定载重量为4t .问.()1如果车厢装满泥沙(泥沙的体积等于车厢容积)是否超载?(已知泥沙的密度为33210kg /m ⨯) ()2为了行车安全,汽车不能超载,如果不超载,此车最多能装多少立方米的泥沙?28.计算:(1)225(3)()39⎡⎤-⨯-+-⎢⎥⎣⎦;(2)62311(10.5)2(3)5⎡⎤---⨯⨯+-⎣⎦【参考答案】***一、选择题1.A2.C3.C4.B5.C6.C7.C8.C9.B10.C11.D12.A二、填空题13. SKIPIF 1 < 0 解析:112n- 14.1或515.116.117.不会 SKIPIF 1 < 0. 解析:不会 42n a +.18.﹣4.519.-2720.-3 - SKIPIF 1 < 0解析:-3 -23三、解答题21.(1)3cm,(2)见解析;(3)9 cm 或11 cm.22.(1)68° (2) 40° (3) 2m ∠BOE=2∠COF;(4)成立,理由见解析.23.()1支付车费22(x +元);(2)他应该支付62元;(3) 他乘坐的里程是17千米.24.(1)525 ,585;(2)30盒.25.(1)211b +a(a+b)22;(2)492. 26.() 12-;()24-;(3)54-. 27.()1 车厢装满泥沙超载;()2此车最多能装2立方米的泥沙.28.(1)-11(2)0.25.。
湖南省湘潭市2019届数学八上期末学业水平测试试题
湖南省湘潭市2019届数学八上期末学业水平测试试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.某厂进行技术创新,现在每天比原来多生产30台机器,并且现在生产500台机器所需时间与原来生产350台机器所需时间相同.设现在每天生产x 台机器,根据题意可得方程为( ) A.50035030x x =- B.50035030x x =- C.500350+30x x = D.500350+30x x= 2.计算 2x 2·(-3x 3)的结果是( )A .-6x 5B .6x 5C .-2x 6D .2x 6 3.2016 年,2017 年,2018 年某地的森林面积(单位:km²)分别是 S1,S2,S3,则下列说法正确的是( ) A .2017 年的森林面积增长率是212S S S - B .2018 年的森林面积增长率是312S S S - C .2017 年与 2016 年相比,森林面积增长率提高了211S S S - D .2018 年与 2017 年相比,森林面积增长率提高了322S S S - -211S S S - 4.下列式子是分式的是( )A .1x x- B .3a b + C .1x - D .12a + 5.多项式2ax a -与多项式22ax ax a -+的公因式是 A .a B .1x - C .()1a x - D .()21a x - 6.已知a 、b 、c 为△ABC 的三边,且满足a 2c 2-b 2c 2=a 4-b 4,则△ABC 是( )A .直角三角形B .等腰三角形C .等腰三角形或直角三角形D .等腰直角三角形7.下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是( )A. B. C . D .8.如图甲骨文中,不是轴对称图形的是( )A .B .C .D .9.一张长方形纸片的长为m ,宽为n (m >3n )如图1,先在其两端分别折出两个正方形(ABEF 、CDGH )后展开(如图2),再分别将长方形ABHG 、CDFE 对折,折痕分别为MN 、PQ (如图3),则长方形MNQP 的面积为( )A.n 2B.n (m ﹣n )C.n (m ﹣2n )D.10.如图,△ABC 中,AB=AC ,BE 平分∠ABC ,CD 平分∠ACB ,则下图中共有几对全等三角形( )A.2B.3C.4D.5 11.如图所示,点P 是BAC ∠的平分线AD 上一点,PE AC ⊥于点E ,已知3PE =,则点P 到AB 的距离是( )A .1.5B .3C .5D .612.下列四个图形中,通过旋转和平移能够全等图形的是( )A.③和④B.②和③C.②和④D.①②④ 13.已知三角形三边长分别为2,x ,9,若x 为正整数,则这样的三角形个数为( ) A .3B .5C .7D .11 14.下列哪一种正多边形不能..铺满地面( ) A .正三边形 B .正四边形 C .正六边形 D .正八边形15.小聪将一副直角三角尺如图所示的方式摆放在一起,其中090E ∠=,090C ∠=, 045A ∠=, 030D ∠=,则12∠+∠= ( )A .0180B .0210C .0150D .0240二、填空题 16.如图,点O ,A 在数轴上表示的数分别是0,1,将线段OA 分成1000等份,其分点由左向右依次为1M ,2M ,3M ……999M ;将线段1OM 分成100等份,其分点由左向右依次为1N ,2N ,3N ……999N ;将线段1ON 分成1000等份,其分点由左向右依次为1P ,2P ,3P ……999P ;则点314P 所表示的数用科学记数法表示为______.17.如图,ABC ∆为正三角形,AD 是ABC ∆的角平分线,ADE ∆也是正三角形,下列结论:①AD BC ⊥:②=EF FD :③BE BD =,其中正确的有________(填序号).18.三角形三个内角的比为1:3:5,则最大的内角是___________,最大的外角是__________.19.已知a,b,c 是△ABC 的三边,且满足关系式a 2+c 2=2ab+2bc -2b 2,则△ABC 是_____三角形.20.如图1,三角形纸片ABC ,AB AC =,将其折叠,如图2,使点A 与点B 重合,折痕为ED ,点E ,D 分别在AB ,AC 上,如果40A ∠=︒,那么DBC ∠的度数为________三、解答题21.(1)计算:()1013.142122π-⎛⎫--⨯-+ ⎪⎝⎭ (2)先化简,再求值:()()()()21121221x x x x x +-+---,其中3x =.(3)若552a =,443b =,334c =,试比较,,a b c 的大小.22.(1)计算: ()2233(2)(4)mn m mn ⋅-÷-;(2)计算: 2(5)(23)(2)x x x -+--;23.如图是4×4正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个涂成黑色,使整个涂成黑色的图形成为轴对称图形.在下面每个网格中画出一种符合要求的图形.24.如图,在ABC ∆中,90A ∠=︒,AB AC =.(1)请用尺规作图的方法在边AC 上确定点D ,使得点D 到边BC 的距离等于DA 的长;(保留作图痕迹,不写作法)(2)在(1)的条件下,求证:BC AB AD =+.25.已知:∠AOC =144°,OD 为∠AOC 的平分线,射线OB ⊥OA 于O ,部分图形如图所示.请补全图形,并求∠BOD 的度数.【参考答案】一、选择题二、填空题16.63.1410-⨯17.①②③18.100° 160°19.等边20.30三、解答题21.(1)1;(2)22x x -,3;(3)a c b <<22.(1)4318m n ;(2)2319x x --.23.见解析.【解析】【分析】利用轴对称的性质设计出图案即可.【详解】如图.【点睛】此题主要考查了利用轴对称设计图案,正确把握轴对称图形的定义是解题关键.24.(1)如图,点D 即为所求.见解析;(2)见解析.【解析】【分析】(1)先画出∠CBA 的角平分线交AC 于D ,再过D 点作垂直BC 的垂线.(2)利用角平分线的性质得到AB=BE ,再证明AD=ED=CE ,即可解答.【详解】(1)如图,点D 即为所求.(2)如图,过点D 作DE BC ⊥于点E ,由(1)知DA DE =.又90A ∠=︒,BD BD =,()Rt ABD Rt EBD HL ∴∆≅∆,AB BE ∴=,90A ∠=︒,AB AC =,45C ∴∠=︒.904545CDE ∴∠=︒-︒=︒,CDE C ∴∠=∠,DE CE ∴=,CE AD ∴=,BC BE EC AB AD ∴=+=+.【点睛】本题考查画图和线段转化,掌握画角平分线的步骤是解题关键.25.18°或162°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年湖南省湘潭市中考数学试卷一、选择题(本大题共8小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分)1.(3分)下列各数中是负数的是()A.|﹣3| B.﹣3 C.﹣(﹣3)D.2.(3分)下列立体图形中,俯视图是三角形的是()A. B. C. D.3.(3分)今年湘潭市参加初中学业水平考试的九年级学生人数约24000人,24000用科学记数法表示为()A.0.24×105B.2.4×104C.2.4×103D.24×1034.(3分)下列计算正确的是()A.a6÷a3=a2B.(a2)3=a5C.2a+3a=6a D.2a•3a=6a25.(3分)已知关于x的一元二次方程x2﹣4x+c=0有两个相等的实数根,则c=()A.4 B.2 C.1 D.﹣46.(3分)随着长株潭一体化进程不断推进,湘潭在交通方面越来越让人期待.将要实施的“两干一轨”项目中的“一轨”,是将长沙市地铁3号线南延至湘潭北站,往返长潭两地又将多“地铁”这一选择.为了解人们选择交通工具的意愿,随机抽取了部分市民进行调查,并根据调查结果绘制如下统计图,关于交通工具选择的人数数据,以下结论正确的是()A.平均数是8 B.众数是11 C.中位数是2 D.极差是107.(3分)如图,将△OAB绕点O逆时针旋转70°到△OCD的位置,若∠AOB=40°,则∠AOD=()A.45°B.40°C.35°D.30°8.(3分)现代互联网技术的广泛应用,催生了快递行业的高速发展.据调查,湘潭某家小型快递公司的分拣工小李和小江,在分拣同一类物件时,小李分拣120个物件所用的时间与小江分拣90个物件所用的时间相同,已知小李每小时比小江多分拣20个物件.若设小江每小时分拣x个物件,A.=B.=C.=D.=二、填空题(本大题共8小题,请将答案写在答题卡相应的位置上,每小题3分,满分24分)9.(3分)函数y=中,自变量x的取值范围是.10.(3分)若a+b=5,a﹣b=3,则a2﹣b2=.11.(3分)为庆祝新中国成立70周年,某校开展以“我和我亲爱的祖国”为主题的“快闪”活动,七年级准备从两名男生和三名女生中选出一名同学领唱,如果每一位同学被选中的机会均等,则选出的恰为女生的概率是.12.(3分)计算:()﹣1=.13.(3分)将一次函数y=3x的图象向上平移2个单位,所得图象的函数表达式为.14.(3分)四边形的内角和是.15.(3分)如图,在四边形ABCD中,若AB=CD,则添加一个条件,能得到平行四边形ABCD.(不添加辅助线,任意添加一个符合题意的条件即可)16.(3分)《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章计算弧田面积所用的经验公式是:弧田面积=(弦×矢+矢2).孤田是由圆弧和其所对的弦围成(如图中的阴影部分),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,运用垂径定理(当半径OC⊥弦AB时,OC平分AB)可以求解.现已知弦AB=8米,半径等于5米的弧田,按照上述公式计算出弧田的面积为平方米.三、解答题(本大题共10小题,解答应写出文字说明、证明过程或演算步骤请将解答过程写在答题卡相应位置上,满分72分)17.(6分)解不等式组,并把它的解集在数轴上表示出来.18.(6分)阅读材料:运用公式法分解因式,除了常用的平方差公式和完全平方公式以外,还可以应用其他公式,如立方和与立方差公式,其公式如下:立方和公式:x3+y3=(x+y)(x2﹣xy+y2)立方差公式:x3﹣y3=(x﹣y)(x2+xy+y2)根据材料和已学知识,先化简,再求值:﹣,其中x=3.19.(6分)我国于2019年6月5日首次完成运载火箭海上发射,这标志着我国火箭发射技术达到了一个崭新的高度.如图,运载火箭从海面发射站点M处垂直海面发射,当火箭到达点A处时,海岸边N处的雷达站测得点N到点A的距离为8千米,仰角为30°.火箭继续直线上升到达点B处,此时海岸边N处的雷达测得B处的仰角增加15°,求此时火箭所在点B处与发射站点M处的距离.(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)20.(6分)每年5月份是心理健康宣传月,某中学开展以“关心他人,关爱自己”为主题的心理健康系列活动.为了解师生的心理健康状况,对全体2000名师生进行了心理测评,随机抽取20名师生的测评分数进行了以下数据的整理与分析:①数据收集:抽取的20名师生测评分数如下85,82,94,72,78,89,96,98,84,65,73,54,83,76,70,85,83,63,92,90.②数据整理:将收集的数据进行分组并评价等第:分数x90≤x<100 80≤x<90 70≤x<80 60≤x<70 x<60人数 5 a 5 2 1等第A B C D E③数据分析:绘制成不完整的扇形统计图:④依据统计信息回答问题(1)统计表中的a=.(2)心理测评等第C等的师生人数所占扇形的圆心角度数为.(3)学校决定对E等的师生进行团队心理辅导,请你根据数据分析结果,估计有多少师生需要参加团队心理辅导?21.(6分)如图,将△ABC沿着AC边翻折,得到△ADC,且AB∥CD.(1)判断四边形ABCD的形状,并说明理由;(2)若AC=16,BC=10,求四边形ABCD的面积.22.(6分)2018年高一新生开始,湖南全面启动高考综合改革,实行“3+1+2”的高考选考方案.“3”是指语文、数学、外语三科必考;“1”是指从物理、历史两科中任选一科参加选考,“2”是指从政治、化学、地理、生物四科中任选两科参加选考(1)“1+2”的选考方案共有多少种?请直接写出所有可能的选法;(选法与顺序无关,例如:“物、政、化”与“物、化、政”属于同一种选法)(2)高一学生小明和小杰将参加新高考,他们酷爱历史和生物,两人约定必选历史和生物.他们还需要从政治、化学、地理三科中选一科参考,若这三科被选中的机会均等,请用列表或画树状图的方法,求出他们恰好都选中政治的概率.23.(8分)如图,在平面直角坐标系中,⊙M与x轴的正半轴交于A、B两点,与y轴的正半轴相切于点C,连接MA、MC,已知⊙M半径为2,∠AMC=60°,双曲线y=(x>0)经过圆心M.(1)求双曲线y=的解析式;(2)求直线BC的解析式.24.(8分)湘潭政府工作报告中强调,2019年着重推进乡村振兴战略,做优做响湘莲等特色农产品品牌.小亮调查了一家湘潭特产店A、B两种湘莲礼盒一个月的销售情况,A种湘莲礼盒进价72元/盒,售价120元/盒,B种湘莲礼盒进价40元/盒,售价80元/盒,这两种湘莲礼盒这个月平均每天的销售总额为2800元,平均每天的总利润为1280元.(1)求该店平均每天销售这两种湘莲礼盒各多少盒?(2)小亮调査发现,A种湘莲礼盒售价每降3元可多卖1盒.若B种湘莲礼盒的售价和销量不变,当A种湘莲礼盒降价多少元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是多少元?25.(10分)如图一,抛物线y=ax2+bx+c过A(﹣1,0)B(3.0)、C(0,)三点(1)求该抛物线的解析式;(2)P(x1,y1)、Q(4,y2)两点均在该抛物线上,若y1≤y2,求P点横坐标x1的取值范围;(3)如图二,过点C作x轴的平行线交抛物线于点E,该抛物线的对称轴与x轴交于点D,连结CD、CB,点F为线段CB的中点,点M、N分别为直线CD和CE上的动点,求△FMN周长的最小值.26.(10分)如图一,在射线DE的一侧以AD为一条边作矩形ABCD,AD=5,CD=5,点M是线段AC上一动点(不与点A重合),连结BM,过点M作BM的垂线交射线DE于点N,连接BN.(1)求∠CAD的大小;(2)问题探究:动点M在运动的过程中,①是否能使△AMN为等腰三角形,如果能,求出线段MC的长度;如果不能,请说明理由.②∠MBN的大小是否改变?若不改变,请求出∠MBN的大小;若改变,请说明理由.(3)问题解决:如图二,当动点M运动到AC的中点时,AM与BN的交点为F,MN的中点为H,求线段FH的长度.参考答案一、选择题BCBDA ADB二、填空题9.x≠6.10.15.11..12.4.13.y=3x+2.14.360°.15.AD=BC(答案不唯一).16.10.三、解答题17.(6分)解:,解不等式①得,x≤3,解不等式②,x>﹣1,所以,原不等式组的解集为﹣1<x≤3,在数轴上表示如下:.18.解:﹣===,当x=3时,原式==2.19.解:如图所示:连接OR,由题意可得:∠AMN=90°,∠ANM=30°,∠BNM=45°,AN=8km,在直角△AMN中,MN=AN•cos30°=8×=4(km).在直角△BMN中,BM=MN•tan45°=4km≈6.9km.答:此时火箭所在点B处与发射站点M处的距离约为6.9km.20.解:(1)总人数=2÷10%=20(人),a=20×35%=7,故答案为7.(2)C所占的圆心角=360°×=90°,故答案为90°.(3)2000×=100(人),答:估计有100名师生需要参加团队心理辅导.21.解:(1)四边形ABCD是菱形;理由如下:∵△ABC沿着AC边翻折,得到△ADC,∴AB=AD,BC=CD,∠BAC=∠DAC,∠BCA=∠DCA,∵AB∥CD,∴∠BAC=∠DAC,∴∠BAC=∠DAC=∠BCA=∠DCA,∴AD∥BC,AB=AD=BC=CD,∴四边形ABCD是菱形;(2)连接BD交AC于O,如图所示:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC=AC=8,OB=OD,∴OB===6,∴BD=2OB=12,∴四边形ABCD的面积=AC×BD=×16×12=96.22.解:(1)画树状图如下,由树状图知,共有12种等可能结果;(2)画树状图如下由树状图知,共有9种等可能结果,其中他们恰好都选中政治的只有1种结果,所以他们恰好都选中政治的概率为.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.23.解:(1)如图,过点M作MN⊥x轴于N,∴∠MNO=90°,∵⊙M切y轴于C,∴∠OCM=90°,∵∠CON=90°,∴∠CON=∠OCM=∠ONM=90°,∴四边形OCMN是矩形,∴AM=CM=2,∠CMN=90°,∵∠AMC=60°,∴∠AMN=30°,在Rt△ANM中,MN=AM•cos∠AMN=2×=,∴M(2,),∵双曲线y=(x>0)经过圆心M,∴k=2×=2,∴双曲线的解析式为y=(x>0);(2)如图,过点B,C作直线,由(1)知,四边形OCMN是矩形,∴CM=ON=2,OC=MN=,∴C(0,),在Rt△ANM中,∠AMN=30°,AM=2,∴AN=1,∵MN⊥AB,∴BN=AN=1,OB=ON+BN=3,∴B(3,0),设直线BC的解析式为y=k'x+b,∴,∴,∴直线BC的解析式为y=﹣x+.24.解:(1)根据题意,可设平均每天销售A礼盒x盒,B种礼盒为y盒,则有,解得故该店平均每天销售A礼盒10盒,B种礼盒为20盒.(2)设A种湘莲礼盒降价m元/盒,利润为W元,依题意总利润W=(120﹣m﹣72)(10+)+800化简得W=m2+6m+1280=﹣(m﹣9)2+1307∵a=<0∴当m=9时,取得最大值为1307,故当A种湘莲礼盒降价9元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是1307元.25.解:(1)∵抛物线y=ax2+bx+c过A(﹣1,0)B(3.0)、C(0,)三点∴解得:a=,b=,c=;∴抛物线的解析式为:y=x2+x+.(2)抛物线的对称轴为x=1,抛物线上与Q(4,y2)相对称的点Q′(﹣2,y2)P(x,y1在该抛物线上,y1≤y2,根据抛物线的增减性得:1∴x1≤﹣2或x1≥4答:P点横坐标x1的取值范围:x1≤﹣2或x1≥4.(3)∵C(0,),B,(3,0),D(1,0)∴OC=,OB=3,OD,=1∵F是BC的中点,∴F(,)当点F关于直线CE的对称点为F′,关于直线CD的对称点为F″,直线F′F″与CE、CD交点为M、N,此时△FMN的周长最小,周长为F′F″的长,由对称可得到:F′(,),F″(0,0)即点O,F′F″=F′O==3,即:△FMN的周长最小值为3,26.解:(1)如图一(1)中,∵四边形ABCD是矩形,∴∠ADC=90°,∵tan∠DAC===,∴∠DAC=30°.(2)①如图一(1)中,当AN=NM时,∵∠BAN=∠BMN=90°,BN=BN,AN=NM,∴Rt△BNA≌Rt△BNM(HL),∴BA=BM,在Rt△ABC中,∵∠ACB=∠DAC=30°,AB=CD=5,∴AC=2AB=10,∵∠BAM=60°,BA=BM,∴△ABM是等边三角形,∴AM=AB=5,∴CM=AC﹣AM=5.如图一(2)中,当AN=AM时,易证∠AMN=∠ANM=15°,∵∠BMN=90°,∴∠CMB=75°,∵∠MCB=30°,∴∠CBM=180°﹣75°﹣30°=75°,∴∠CMB=∠CBM,∴CM=CB=5,综上所述,满足条件的CM的值为5或5.②结论:∠MBN=30°大小不变.理由:如图一(1)中,∵∠BAN+∠BMN=180°,∴A,B,M,N四点共圆,∴∠MBN=∠MAN=30°.如图一(2)中,∵∠BMN=∠BAN=90°,∴A,N,B,M四点共圆,∴∠MBN+∠MAN=180°,∵∠DAC+∠MAN=180°,∴∠MBN=∠DAC=30°,综上所述,∠MBN=30°.(3)如图二中,∵AM=MC,∴BM=AM=CM,∴AC=2AB,∴AB=BM=AM,∴△ABM是等边三角形,∴∠BAM=∠BMA=60°,∵∠BAN=∠BMN=90°,∴∠NAM=∠NMA=30°,∴NA=NM,∵BA=BM,∴BN垂直平分线段AM,∴FM=,∴NM==,∵∠NFM=90°,NH=HM,∴FH=MN=.11。