中考数学考点跟踪训练2-整式及其运算

合集下载

专题02整式及其运算(原卷版)

专题02整式及其运算(原卷版)

专题02 整式及其运算一、单选题 1.(2023·四川乐山·统考中考真题)计算:2a a -=( )A .aB .a -C .3aD .12.(2023·四川眉山·统考中考真题)下列运算中,正确的是( )A .3232a a a -=B .()222a b a b +=+C .322a b a a ÷=D .()2242a b a b = 3.(2023·江西·统考中考真题)计算()322m 的结果为( )A .68mB .66mC .62mD .52m4.(2023·江苏苏州·统考中考真题)下列运算正确的是( )A .32a a a -=B .325a a a ⋅=C .321a a ÷=D .()23a a = 5.(2023·山东滨州·统考中考真题)下列计算,结果正确的是( )A .235a a a ⋅=B .()325a a =C .33()ab ab =D .23a a a ÷= 6.(2023·湖南·统考中考真题)计算:()23a =( )A .5aB .23aC .26aD .29a7.(2023·湖南常德·统考中考真题)若2340a a +-=,则2263a a +-=( )A .5B .1C .1-D .08.(2023·全国·统考中考真题)下列算式中,结果等于5a 的是( )A .23a a +B .23a a ⋅C .23()aD .102a a ÷ 9.(2023·浙江宁波·统考中考真题)下列计算正确的是( )A .23x x x +=B .632x x x ÷=C .()437x x =D .347x x x ⋅= 10.(2023·云南·统考中考真题)下列计算正确的是( )A .236a a a ⋅=B .22(3)6a a =C .632a a a ÷=D .22232a a a -= 11.(2023·新疆·统考中考真题)计算2432a a b ab ⋅÷的结果是( )A .6aB .6abC .26aD .226a b23.(2023·山东枣庄·统考中考真题)下列运算结果正确的是( )A .4482x x x +=B .()32626x x -=-C .633x x x ÷=D .236x x x ⋅=24.(2020春·云南玉溪·八年级统考期末)下列计算正确的是( )A .3a +4b =7abB .x 12÷x 6=x 6C .(a +2)2=a 2+4D .(ab 3)3=ab 625.(2023·山西·统考中考真题)下列计算正确的是( )A .236a a a ⋅=B .()2236a b a b -=-C .632a a a ÷=D .()326a a = 26.(2023·湖北宜昌·统考中考真题)下列运算正确的是( ).A .4322x x x ÷=B .()437x x =C .437x x x +=D .3412x x x ⋅=27.(2023·湖南郴州·统考中考真题)下列运算正确的是( )A .437a a a ⋅=B .()325a a =C .2232a a -=D .()222a b a b -=- 28.(2023·广西·统考中考真题)下列计算正确的是( )A .347a a a +=B .347a a a ⋅=C .437a a a ÷=D .()437a a = 29.(2023·四川·统考中考真题)下列计算正确的是( )A .22ab a b -=B .236a a a ⋅=C .233a b a a ÷=D .222()()4a a a +-=-30.(2023·湖北荆州·统考中考真题)下列各式运算正确的是( )A .23232332a b a b a b -=B .236a a a ⋅=C .623a a a ÷=D .()325a a = 31.(2023·山东·统考中考真题)下列各式运算正确的是( )A .236x x x ⋅=B .1226x x x ÷=C .222()x y x y +=+D .()3263x y x y =32.(2023·山东·统考中考真题)下列运算正确的是( )A .632a a a ÷=B .235a a a ⋅=C .()23622a a =D .()222a b a b +=+ 33.(2023·湖南张家界·统考中考真题)下列运算正确的是( )A .22(2)4x x +=+B .248a a a ⋅=C .()23624x x =D .224235x x x +=34.(2023·黑龙江·统考中考真题)下列运算正确的是( )A .22(2)4a a -=-B .222()a b a b -=-C .()()2224m m m -+--=-D .()257a a = 35.(2023·黑龙江齐齐哈尔·统考中考真题)下列计算正确的是( )A .22434b b b +=B .()246a a =C .()224x x -=D .326a a a ⋅=36.(2023·湖南·统考中考真题)下列计算正确的是( )A .824a a a ÷=B .23a a a +=C .()325a a =D .235a a a ⋅=37.(2023·内蒙古·统考中考真题)下列各式计算结果为5a 的是( )A .()23aB .102a a ÷C .4a a ⋅D .15(1)a --38.(2023·内蒙古赤峰·统考中考真题)已知2230a a --=,则2(23)(23)(21)a a a +-+-的值是( ) A .6 B .5- C .3- D .439.(2023·内蒙古赤峰·统考中考真题)下列运算正确的是( )A .()22346a b a b =B .321ab ab -=C .34()a a a -⋅=D .222()a b a b +=+40.(2023·福建·统考中考真题)下列计算正确的是( )A .()326a a =B .623a a a ÷=C .3412a a a ⋅=D .2a a a -=41.(2023·广东深圳·统考中考真题)下列运算正确的是( )A .326a a a ⋅=B .44ab ab -=C .()2211a a +=+D .()236a a -=二、填空题42.(2023·湖南永州·统考中考真题)22a 与4ab 的公因式为________.43.(2023·天津·统考中考真题)计算()22xy 的结果为________. 44.(2023·河南·统考中考真题)某校计划给每个年级配发n 套劳动工具,则3个年级共需配发______套劳动工具.45.(2023·全国·统考中考真题)计算:(3)a b +=_________.46.(2022秋·上海·七年级专题练习)计算:2232a a -=________.47.(2023·湖北十堰·统考中考真题)若3x y +=,2y =,则22x y xy +的值是___________________.48.(2023·广东深圳·统考中考真题)已知实数a ,b ,满足6a b +=,7ab =,则22a b ab +的值为______. 49.(2023春·广东梅州·八年级校考阶段练习)计算:(a 2b )3=___.三、解答题。

专题02 整式及其运算(共37题)(原卷版)-学易金卷:2023年中考数学真题分项汇编(全国通用)

专题02 整式及其运算(共37题)(原卷版)-学易金卷:2023年中考数学真题分项汇编(全国通用)

专题02整式及其运算(37题)一、单选题1.(2023·宁夏·统考中考真题)下列计算正确的是()A .532a a -=B .632a a a ÷=C .()222a b a b -=-D .()3263a b a b =2.(2023·四川德阳·统考中考真题)已知3x y =,则13x +=()A .yB .1y+C .3y+D .3y3.(2023·四川德阳·统考中考真题)在“点燃我的梦想,数学皆有可衡”数学创新设计活动中,“智多星”小强设计了一个数学探究活动:对依次排列的两个整式m ,n 按如下规律进行操作:第1次操作后得到整式串m ,n ,n m -;第2次操作后得到整式串m ,n ,n m -,m -;第3次操作后…其操作规则为:每次操作增加的项,都是用上一次操作得到的最末项减去其前一项的差,小强将这个活动命名为“回头差”游戏.则该“回头差”游戏第2023次操作后得到的整式中各项之和是()A .m n+B .mC .n m-D .2n4.(2023·四川雅安·统考中考真题)若2210m m +-=.则2243m m +-的值是()A .1-B .5-C .5D .3-5.(2023·四川雅安·统考中考真题)下列运算正确的是()A .235a b ab+=B .()325a a =C .248a a a ⋅=D .32a a a ÷=6.(2023·湖南·统考中考真题)下列计算正确的是()A .235x x x ×=B .()336x x =C .()211x x x +=+D .()222141a a -=-7.(2023·山东泰安·统考中考真题)下列运算正确的是()A .235a b ab +=B .222()a b a b -=-C .()3235ab a b =D .()3253412a a a⋅-=-8.(2023·吉林长春·统考中考真题)下列运算正确的是()A .32a a a-=B .23a a a ⋅=C .()325a a =D .623a a a ÷=S S>B.A.1212.(2023·江苏徐州·统考中考真题)下列运算正确的是(A.236a a a⋅=B.13.(2023·辽宁·统考中考真题)下列运算正确的是(A.23+=B.a a a2314.(2023·湖北鄂州·统考中考真题)下列运算正确的是(A.235+=B.a a a18.(2023·江苏无锡·统考中考真题)下列运算正确的是()A .236a a a ⨯=B .235a a a +=C .22(2)4a a -=-D .642a a a ÷=19.(2023·河北·统考中考真题)代数式7x -的意义可以是()A .7-与x 的和B .7-与x 的差C .7-与x 的积D .7-与x 的商20.(2023·辽宁营口·统考中考真题)下列计算结果正确的是()A .3332a a a ⋅=B .222853a a a -=C .824a a a ÷=D .()32639a a -=-21.(2023·山东东营·统考中考真题)下列运算结果正确的是()A .339x x x ⋅=B .336235x x x +=C .()32626x x =D .()()2232349x x x+-=-22.(2023·四川巴中·统考中考真题)我国南宋时期数学家杨辉于1261年写下的《详解九章算法》,书中记载的图表给出了()n a b +展开式的系数规律.10()1a b +=111()a b a b +=+121222()2a b a ab b +=++1331+=+++33223()33a b a a b ab b 当代数式432125410881x x x x -+-+的值为1时,则x 的值为()A .2B .4-C .2或4D .2或4-23.(2023·四川巴中·统考中考真题)若x 满足2350x x +-=,则代数式2263x x +-的值为()A .5B .7C .10D .13-24.(2023·河北·统考中考真题)光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于129.4610km ⨯.下列正确的是()A .12119.4610109.4610⨯-=⨯B .12129.46100.46910⨯-=⨯C .129.4610⨯是一个12位数D .129.4610⨯是一个13位数二、填空题三、解答题33.(2023·甘肃兰州·统考中考真题)计算:()()()2234x y x y y y +---.34.(2023·河北·统考中考真题)现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图1所示(1)a >.某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如图2和图3,其面积分别为12,S S .(1)请用含a 的式子分别表示12,S S ;当2a =时,求12S S +的值;(2)比较1S 与2S 的大小,并说明理由.。

专题02整式的运算(知识点总结+例题讲解)-2021届中考数学一轮复习

专题02整式的运算(知识点总结+例题讲解)-2021届中考数学一轮复习

2021年中考数学 专题02 整式的运算(知识点总结+例题讲解)一、整式的基本概念:1.单项式:由数或者字母的积组成的式子,叫做单项式。

(1)单独的一个数或者一个字母也是单项式。

(2)单项式中的数字因数叫做这个单项式的系数。

(3)一个单项式中,所有字母的指数的和叫做这个单项式的次数。

【例题1】下列各式是单项式的是( ) A.n m B.3n m C.32D.3m+6n【答案】C【解析】数与字母乘积的代数式叫做单项式;A.分母中有字母,不是单项式; B 、D.是几个单项式的和,不是单项式; C.符合单项式的定义,是单项式;故选C 。

【变式练习1】下列关于单项式53-2yx 的说法中,正确的是( ) A.系数、次数都是3 B.系数是53,次数是3C.系数是53-,次数是2D.系数是53-,次数是3【答案】D【解析】根据单项式系数、次数的定义可知:单项式53-2y x 的系数是53-,次数是2+1=3,只有D 正确;故选D 。

2.多项式:几个单项式的和叫做多项式。

(1)其中每个单项式叫做多项式的项,不含字母的项叫做常数项; (2)多项式里,次数最高项的次数,叫做多项式的次数。

【例题2】关于多项式3x 2-2x 3y-4y 2+x-y+7,下列说法正确的是( ) A.它是三次六项式 B.它的最高次项是2x 3y C.它的一次项是x D.它的二次项系数是-4 【答案】D【解析】A.多项式3x 2-2x 3y-4y 2+x-y+7中的单项式-2x 3y 的次数最高,为3+1=4,故该多项式是四次六项式;B.该多项式的最高项是-2x 3y ;C.该多项式的一次项是x 和-y ; D.该多项式关于y 的二次项系数是-4,常数项是-7,故本选项正确。

【变式练习2】对于多项式π3232-22+-y x x ,下列说法正确的是( )A.是2次3项式,常数项是3πB.是3次3项式,没有常数项C.是2次3项式,没有常数项D.是3次3项式,常数项是3π 【答案】D【解析】∵多项式中的每个单项式叫做多项式的项, 多项式里次数最高项的次数,叫做这个多项式的次数;∴多项式π3232-22+-y x x 中最高次项-2x 2y 的次数为3,3π中虽有字母π,但是作已知数处理;故多项式为3次3项式,常数项是3π;故选D 。

中考数学专题训练第2讲整式(知识点梳理)

中考数学专题训练第2讲整式(知识点梳理)

整式知识点梳理考点01 代数式1.代数式的概念:用运算符号把数和字母连接而成的式子叫作代数式。

单独一个数或一个字母也是代数式.运算符号是指加、减、乘、除、乘方等。

2.代数式的书写规则:(1)含有乘法运算的代数式的书写规则:字母与字母相乘,乘号一般可以省略不写,字母的排列顺序不变.数字与字母相乘,乘号一般也可以省略,但数字一定要写在字母的前面,且当数字是带分数时,必须写成假分数的形式.数字与数字相乘,乘号不能省略.带括号的式子与字母的地位相同。

(2)含有除法运算的代数式的书写规则:当代数式中含有除法运算时,一般不用“÷”,而改用分数线.因为分数线具有括号的作用,所以分数线又称括线。

(3)含有单位名称的代数式的书写规则:若代数式是和或差的形式,如需注明单位,则必须用括号把整个式子括起来后再写单位.若代数式是积或商的形式,则无需加括号,直接在代数式后面写出单位即可。

3.代数式的值(1)代数式的值:一般地,用具体数值代替代数式中的字母,按照代数式中指明的运算计算出的结果,叫作代数式的值。

(2)求代数式的值的步骤:第1步:代入,用具体数值代替代数式里的字母.第2步:计算,按照代数式里指明的运算,计算出结果。

(3)求代数式的值时要注意:一个代数式中的同一个字母,只能用同一个数值去代替.如果代数式里省略了乘号,那么字母用数值代替时要添上乘号,代入负数和分数时要加括号.代入数值时,不能改变原式中的运算符号及数字。

(4)运算时,要注意运算顺序。

(先算乘方,再算乘除,最后算加减,有括号的要求先算括号里面的)考点02 单项式和多项式一、单项式1.单项式的概念:如3、a 、xy 、ab 31-等这些代数式都是数字、字母、数字与字母的积、字母与字母的积,像这样的式子叫单项式,单独的一个数或一个字母也是单项式。

2.单项式中不能含有加减法运算,但可以含有除法运算。

3.单项式的系数:单项式中的数字因数叫作这个单项式的系数,确定单项式的系数的注意事项:(1)确定单项式的系数时,最好现将单项式写成数与字母的乘积的形式,在确定系数.(2)圆周率π是常数,单项式中出现π时,应看作系数.(3)当一个单项式的系数是1或-1时,1通常省略不写,负数做系数应包括前面的符号.(4)单项式的系数是带分数时,通常写成假分数。

中考数学专题复习2整式的运算(解析版)

中考数学专题复习2整式的运算(解析版)

整式的运算复习考点攻略考点01 整式的有关概念1.整式:单项式和多项式统称为整式.2.单项式:单项式是指由数字或字母的乘积组成的式子;单项式中的数字因数叫做单项式的系数;单项式中所有字母指数的和叫做单项式的次数. 【注意】单项式的系数包括它前面的符号3.多项式:几个单项式的和叫做多项式;多项式中.每一个单项式叫做多项式的项.其中不含字母的项叫做常数项;多项式中次数最高项的次数就是这个多项式的次数.4.同类项:多项式中所含字母相同并且相同字母的指数也相同的项叫做同类项. 【例1】单项式3212a b 的次数是_____. 【答案】5 【解析】单项式3212a b 的次数是325+=.故答案为5. 【例2】下列说法中正确的是( )A .25xy -的系数是–5 B .单项式x 的系数为1.次数为0C .222xyz -的次数是6D .xy +x –1是二次三项式 【答案】D【解析】A.25xy -的系数是–15.则A 错误;B.单项式x 的系数为1.次数为1.则B 错误;C.222xyz -的次数是1+1+2=4.则C 错误;D.xy +x –1是二次三项式.正确.故选D.【例3】若单项式32m x y 与3m nxy +是同类项.2m n +_______________.【答案】2【解析】由同类项的定义得:13m m n =⎧⎨+=⎩解得12m n =⎧⎨=⎩221242m n +=⨯+==故答案为:2.【例4】按一定规律排列的单项式:a .2a -.4a .8a -.16a .32a -.….第n 个单项式是( )A .()12n a --B .()2na -C .12n a -D .2n a【答案】A 【解析】解:a .2a -.4a .8a -.16a .32a -.….可记为:()()()()()()0123452,2,2,2,2,2,,a a a a a a ------•••∴ 第n 项为:()12.n a -- 故选A .【例5】如图.图案均是用长度相等的小木棒.按一定规律拼搭而成.第一个图案需4根小木棒.则第6个图案需小木棒的根数是( )A .54B .63C .74D .84【答案】A【解析】拼搭第1个图案需4=1×(1+3)根小木棒. 拼搭第2个图案需10=2×(2+3)根小木棒. 拼搭第3个图案需18=3×(3+3)根小木棒. 拼搭第4个图案需28=4×(4+3)根小木棒. …拼搭第n 个图案需小木棒n (n +3)=n 2+3n 根. 当n =6时.n 2+3n =62+3×6=54. 故选A.考点02 整式的运算1.幂的运算:a m ·a n =a m +n ;(a m )n =a mn ;(ab )n =a n b n ;a m ÷a n =m n a -. 2. 整式的加减:几个整式相加减.如有括号就先去括号.然后再合并同类项。

中考数学题型集训(2)-整式的运算练习卷及答案.docx

中考数学题型集训(2)-整式的运算练习卷及答案.docx

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】题型集训(2)——整式的运算1.化简:(a+3)(a-2)-a(a-1).解:原式=a2-2a+3a-6-a2+a=2a-6.2.(2019·常州)计算:(x-1)(x+1)-x(x-1).解:原式=x2-1-x2+x=x-1.3.计算:5x2y÷(-13xy)(2xy2)2.解:原式=5x2y÷(-13xy)·(4x2y4)=-15x·(4x2y4)=-60x3y4.4.计算:(6x4-8x3)÷(-2x2)-(3x+2)(1-x).解:原式=-3x2+4x-3x+3x2-2+2x=3x-2.5.计算:(2x+y)2+(x-y)(x+y)-5x(x-y).解:原式=4x2+4xy+y2+x2-y2-5x2+5xy=9xy.6.已知:x2-y2=12,x+y=3,求2x2-2xy的值.解:∵x2-y2=12,∵(x+y)(x-y)=12,∵x+y=3∵,∵x-y=4∵,∵+∵得,2x=7,∵2x2-2xy=2x(x-y)=7×4=28.7.先化简,再求值:(x+1)(x-1)+(2x-1)2-2x(2x -1),其中x=2+1.解:原式=x2-1+4x2-4x+1-4x2+2x=x2-2x,把x=2+1代入,得:原式=(2+1)2-2(2+1)=3+22-22-2=1.8.(2019·贵阳)如图是一个长为a,宽为b的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a,b的代数式表示矩形中空白部分的面积;(2)当a=3,b=2时,求矩形中空白部分的面积.解:(1)S=ab-a-b+1;(2)当a=3,b=2时,S=6-3-2+1=2.9.(2019·河北)已知:整式A=(n2-1)2+(2n)2,整式B>0.尝试化简整式A.发现A=B2,求整式B.联想由上可知,B2=(n2-1)2+(2n)2,当n>1时,n2-1,2n,B为直角三角形的三边长,如图.填写下表中B的值:直角三角形三边n2-12n B 勾股数组Ⅰ/8勾股数组Ⅰ35/解:A=(n2-1)2+(2n)2=n4-2n2+1+4n2=n4+2n2+1=(n2+1)2,∵A=B2,B>0,∵B=n2+1,当2n=8时,n=4,∵n2+1=42+1=15;当n2-1=35时,n2+1=37.中考数学知识点代数式一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

中考数学查补易混易错点《整式及其计算》原卷

中考数学查补易混易错点《整式及其计算》原卷

查补易混易错01 整式及其计算中考数学中,整式这个考点一般会考学生对整式化简计算的应用,偶尔考察整式的基本概念,对整式的复习,重点是要理解并掌握整式的加减法则、乘除法则及幂的运算,难度一般不大。

在整式的化简求值问题中,则多注意整式混合运算的法则应用。

中考五星高频考点,难度中等偏下,但在全国各地中考试卷中属于必考考点易错01:幂的各公式记背⎪⎩⎪⎨⎧•===••+底数分别乘方的积)(积的乘法,等于各个,指数相乘)(幂的乘方,底数不变数不变,指数相加)(同底数幂的乘法,底n n n n m n m nm n m b a ab a a a a a )()(易错02:乘法公式的记背与区别完全平方公式:()2222222)(2b ab a b a b ab a b a +-=-++=+;首先,需注意公式中ab 乘积项的符号与两数和或差的一致性;其次,公式也是等式,从右往左也可以应用,故应用时要注意两平方项符号的一致性,如:();2222y x y xy x --=-+-特别注意:当完全平方公式未知项为“中间项”时,答案一般会有两种情况,即正负皆可。

平方差公式:();22)(b a b a b a -=-+平方差公式从左往右应用,只要一项系数相同,一项系数互为相反数即可,不需要都和公式长的一模一样,而结果特征为符号相同项的平方-符号相反项的平方;如:();22)(x y y x y x -=---【中考真题练】1.(2022•德州)下列运算正确的是( ) A .a 2+2a 2=3a 4 B .(2a 2)3=8a 6C .a 3•a 2=a 6D .(a ﹣b )2=a 2﹣b 22.(2022•成都)下列计算正确的是()A.m+m=m2B.2(m﹣n)=2m﹣nC.(m+2n)2=m2+4n2D.(m+3)(m﹣3)=m2﹣9 3.(2022•德州)已知M=a2﹣a,N=a﹣2(a为任意实数),则M﹣N的值()A.小于0B.等于0C.大于0D.无法确定4.(2022•百色)如图,是利用割补法求图形面积的示意图,下列公式中与之相对应的是()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)(a﹣b)=a2﹣b2D.(ab)2=a2b25.(2022•大庆)已知代数式a2+(2t﹣1)ab+4b2是一个完全平方式,则实数t的值为.6.(2022•河北)发现两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.验证如,(2+1)2+(2﹣1)2=10为偶数.请把10的一半表示为两个正整数的平方和;探究设“发现”中的两个已知正整数为m,n,请论证“发现”中的结论正确.【中考模拟练】1.(2023•金牛区模拟)下列计算正确的是()A.a6÷a3=a2B.(4ab3)2=4a2b6C.(a+b)(a﹣b)=a2﹣b2D.(a﹣1)2=a2﹣12.(2023•福建模拟)化简结果为﹣8a6的单项式是()A.B.(﹣2a3)3C.(﹣2a2)3D.﹣(3a3)2 3.(2023•松北区一模)下列运算一定正确的是()A.2a2•3a2=6a6B.2a2+3a2=5a4C.(a3)2=a5D.a4•a2=a64.(2023•开州区模拟)有依次排列的2个整式:x,x+2,对任意相邻的两个整式,都用右边的整式减去左边的整式,所得之差写在这两个整式之间,可以产生一个新整式串:x,2,x+2,这称为第一次操作;将第一次操作后的整式串按上述方式再做一次操作,可以得到第二次操作后的整式串;以此类推.通过实际操作,四个同学分别得出一个结论:小琴:第二次操作后整式串为:x,2﹣x,2,x,x+2;小棋:第二次操作后,当|x|<2时,所有整式的积为正数;小书:第三次操作后整式串中共有8个整式;小画:第2023次操作后,所有的整式的和为2x+4048;四个结论正确的有()个A.1B.2C.3D.4 5.(2022•武江区校级一模)已知:,则x=.6.(2023•金牛区模拟)已知x+y=1,xy=﹣3,则x2+y2=.7.(2022•丽水二模)如图1,将一个边长为10的正方形纸片剪去两个全等小长方形,得到图2,再将剪下的两个小长方形拼成一个长方形(图3),若图3的长方形周长为30,则b的值为.8.(2023•大庆一模)若关于x的多项式x2﹣ax+36=(x+b)2,则a+b的值是.9.(2023•陕西模拟)我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”,如图揭示了(α+b)n(n为非负整数)展开式中各项系数的有关规律,第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中各项的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中各项的系数;……;请根据规律写出(α+b)4展开式中第3项的系数是.10.(2023•衡水模拟)下面是嘉淇对于一道整式化简题目的不完整的解题过程,其中P是关于a的多项式.a(P)﹣8 (a﹣1)=a2+4a﹣8a+8=……(1)求多项式P;(2)请将题目的化简过程补充完整,并判断该化简结果能为负数吗?说明理由.11.(2023•襄都区校级一模)将从1开始的连续自然数按如图的方式排列,其中第a行第b 个数字可以表示为(a,b),例如第三行第四个数字为8,用(3,4)的形式表示数字8.(1)图中(5,7)表示的数是,第9行共有个数,58可以表示为;(2)用含n的代数式表示第n行所有数字的和.。

聚焦中考数学(甘肃省)考点跟踪突破2整式及其运算

聚焦中考数学(甘肃省)考点跟踪突破2整式及其运算

考点跟踪突破2 整式及其运算一、选择题(每小题6分,共18分)1.(2015·长沙)下列运算中,正确的是( B )A .x 3÷x =x 4B .(x 2)3=x 6C .3x -2x =1D .(a -b)2=a 2-b 22.(2014·毕节)若-2a m b 4与5a n +2b 2m +n 可以合并成一项,则m n 的值是( D )A .2B .0C .-1D .13.(2015·恩施)随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a 元,再次降价20%,现售价为b 元,则原售价为( A )A .(a +54b)元B .(a +45b)元 C .(b +54a)元 D .(b +45a)元 二、填空题(每小题6分,共30分)4.(2014·连云港)计算(2x +1)(x -3)=__2x 2-5x -3__.5.(2015·连云港)已知m +n =mn ,则(m -1)(n -1)=__1__.6.(2015·资阳)已知:(a +6)2+b 2-2b -3=0,则2b 2-4b -a 的值为__12__.7.(2012·黔东南州)二次三项式x 2-kx +9是一个完全平方式,则k 的值是__±6__.解析:∵x 2-kx +9=x 2-kx +32,∴-kx =±2×x ×3,解得k =±68.(2015·铜仁)请看杨辉三角①,并观察下列等式②:根据前面各式的规律,则(a +b)6=__a 6+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6__.三、解答题(共52分)9.(10分)化简:(1)(2015·温州)(2a +1)(2a -1)-4a(a -1);解:原式=4a 2-1-4a 2+4a =4a -1(2)(2015·咸宁)(a 2b -2ab 2-b 3)÷b-(a -b)2.解:原式=a 2-2ab -b 2-(a 2-2ab +b 2)=-2b 210.(12分)(1)(2015·长沙)先化简,再求值:(x +y)(x -y)-x(x +y)+2xy ,其中x =(3-π)0,y =2;解:原式=x 2-y 2-x 2-xy +2xy =xy -y 2.当x =(3-π)0=1,y =2时,原式=1×2-22=-2(2)(2015·北京)已知2a2+3a-6=0,求代数式3a(2a+1)-(2a+1)(2a-1)的值.解:原式=6a2+3a-4a2+1=2a2+3a+1,因为2a2+3a-6=0,所以2a2+3a=6,所以原式=6+1=711.(10分)(2015·河北)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下:-3x=x2-5x+1(1)求所捂的二次三项式;(2)若x=6+1,求所捂的二次三项式的值.解:(1)设所捂的二次三项式为A,则:A=x2-5x+1+3x=x2-2x+1(2)若x=6+1,则A=(x-1)2=(6+1-1)2=612.(10分)(2015·茂名)设y=ax,若代数式(x+y)·(x-2y)+3y(x+y)化简的结果为x2,请你求出满足条件的a值.解:原式可化简为(x+y)2,由题可知,当y=ax时,(x+ax)2=x2,∴(1+a)2=1,解得a=0或-213.(10分)观察下列各式:①50×50=502-02=2500;②49×51=502-12=2499;③48×52=502-22=2496;④47×53=502-32=2491;……(1)上面的式子的规律是:(50+n)(50-n)=____;(2)观察各等式的左边:两个因数之和都是________,而其中乘积越来越____,两个因数的接近程度在变化,两个因数离____越近,其积越大,而当两个因数都是____时,积最大,最大值为____;(3)根据上面的规律,若a+b=200,则ab的最大值是____;(4)将一根长为20 cm的铁丝折成一个长方形或一个正方形,问:怎样折才能使围成的面积最大?最大面积是多少?(直接写出结果即可)解:(1)502-n2(2)100,小,50,50,2500(3)10000(4)折成一个边长为5 cm的正方形时,面积最大,最大面积为25 cm22016年甘肃名师预测1.下列计算中,正确的个数是( B)①(-3xy)3=-9x3y3;②27×3n=3n+3;③5×(2016)0=5;④(a+b)2=a2+b2.A.1个B.2个C.3个D.4个2.已知(m-n)2=8,(m+n)2=2,则m2+n2=( C)A.10 B.6 C.5 D.3。

中考数学总复习《整式与因式分解》专题训练-附答案

中考数学总复习《整式与因式分解》专题训练-附答案

中考数学总复习《整式与因式分解》专题训练-附答案学校:___________班级:___________姓名:___________考号:___________1.代数式:用基本运算符号(基本运算包括加、减、乘、除、乘方和开方)把数或表示数的字母连接起来的式子叫做代数式. (1)代数式求值:用数值代替代数式里的未知数,按照代数式的运算关系计算得出结果.(2)代数推理:通过数学证明,等式变换等方式将复杂的问题简单化,形成一般性的公式,最终达到想要的结果.【练习】1-1.用代数式表示“x 的13与y 的12的差”为 . 【练习】1-2.某种弹簧秤能称不超过10kg 的物体,不挂物体时弹簧的长为8cm ,每挂重1kg 物体,弹簧伸长2cm ,在弹性限度内,当挂重xkg 的物体时,弹簧长度是 cm .(用含x 的代数式表示)【练习】1-3.若4a ﹣3b =3,则7﹣12a +9b = .【练习】1-4.观察一列数:12,24,38,416…根据规律,请你写出第n 个数是 .2. 整式的相关概念:(1)单项式:由数或字母的积组成的式子叫做单项式.单独的一个数或一个字母也是单项式.(2)多项式:几个单项式的和叫做多项式. 多项式中,_____________的项的次数,叫做这个多项式的次数.(3)整式:单项式与多项式统称为整式.(4)同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.【练习】2-1.单项式3πx 4y 7的系数是 ,次数是 . 【练习】2-2.多项式12a 2bc −3ab +8是 次 项式.【练习】2-3.若单项式﹣2x m y 4与12x 3y m+n 的和仍是单项式,则m ﹣n = . 3. 整式的运算:知识梳理(1)整式的加减法:①合并同类项:把同类项的_____________相加,字母和字母的__________不变.②去括号法则:括号前为“+”,去括号后原括号里的每一项都不变号;括号前为“-”,去括号后原括号里的每一项都要变号.如a+(b+c)=________________,a-(b-c)=_______________.(2)幂的运算法则:①同底数幂相乘:a m·a n=_____________(m,n均为正整数).②同底数幂相除:a m÷a n=_____________(a≠0,m,n均为正整数,并且m>n).③幂的乘方:(a m)n=_____________(m,n均为正整数).④积的乘方:(a b)n=_____________(n为正整数).⑤负整数指数幂:a-n=____________(a≠0,n为正整数).⑥零指数幂:a0=_____________(a≠0).(3)整式的乘法:①单项式乘单项式:把它们的系数、同底数幂分别_____________,对于只在一个单项式里含有的字母,则连同它的_____________作为积的一个因式.②单项式乘多项式:m(a+b)=_________________.③多项式乘多项式:(a+b)(c+d)=__________________________.④乘法公式:平方差公式:(a+b)(a-b)=_____________.完全平方公式:(a±b)2=____________________.常用的公式变形:a2+b2=(a+b)2-2ab; a2+b2=(a-b)2+2ab;(a+b)2=(a-b)2+4ab; (a-b)2=(a+b)2-4ab.(4)整式的除法:①单项式除以单项式:把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.②多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加.【练习】3-1.计算:(a3)2•2a=.【练习】3-2.计算:2x2•3xy的结果是.【练习】3-3.计算(2x)2(﹣3xy2)=.【练习】3-4.计算:(1)3xy•5x3=;(2)6m2÷3m=.【练习】3-5.计算:28x4y2÷7x3y2=.【练习】3-6.计算:(2x﹣1)(3x+2)=.【练习】3-7.计算:(6x3y2−2x2y3)÷13x2y2=.【练习】3-8.计算:(2x+y)(2x﹣y)=.【练习】3-9.已知(x﹣3)2=x2+2mx+9,则m的值是.4. 因式分解:把一个多项式化成几个整式的积的形式.(1)提公因式法:ma+mb+mc=m(a+b+c).(2)公式法:①平方差公式:a2-b2=___________________________.②完全平方公式:a2±2ab+b2=________________.(3)(拓展)十字相乘法:x2+(a+b)x+ab=(x+a)(x+b).【练习】4-1.因式分解:3a2b﹣9ab=.【练习】4-2.分解因式:m2﹣36=.【练习】4-3.分解因式:a2+8a+16=.【练习】4-4.因式分解:am+an﹣bm﹣bn=.【练习】4-5.分解因式:2ax2﹣4ax+2a=.【练习】4-6.因式分解:x2﹣8x+12=.【练习】4-7.分解因式:m2﹣4m﹣5=.参考答案1-1.【答案】13x−12y.1-2.【答案】(8+2x).1-3.【答案】﹣2.1-4.【答案】n2n2-1.【答案】3π75.2-2.【答案】四;三.2-3.【答案】2.3-1.【答案】2a7.3-2.【答案】6x3y.3-3.【答案】﹣12x3y2.3-4.【答案】(1)15x4y;(2)2m.3-5.【答案】18x-6y.3-6.【答案】6x2+x-23-7.【答案】18x﹣6y.3-8.【答案】4x2-y2.3-9.【答案】﹣3.4-1.【答案】3ab(a﹣3).4-2.【答案】(m﹣6)(m+6).4-3.【答案】(a+4)2.4-4.【答案】(m+n)(a﹣b).4-5.【答案】2a(x﹣1)2.4-6.【答案】(x﹣2)(x﹣6).4-7.【答案】(m﹣5)(m+1).考点一:整式的相关概念1.单项式﹣2x2y的系数是;多项式x4y2﹣x2y+23y4的次数是.2.如果单项式﹣a n﹣2b n﹣1与12ab m+3的和仍是单项式,那么m n=.考点突破考点二:整式的运算3.下列计算正确的是()A.a3•a3=2a3B.(ab2)3=ab6C.2ab2•(﹣3ab)=﹣6ab3D.10ab3÷(﹣5ab)=﹣2b24.已知x m=2,x n=3,则x m+n的值是()A.5B.6C.8D.95.观察图,用等式表示图中图形面积的运算为()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)(a﹣b)=a2﹣b2C.a(a+b)=a2+ab D.(a+b)2=a2+2ab+b26.下列计算正确的是()A.(x+2y)(x﹣2y)=x2﹣2y2B.(﹣x+y)(x﹣y)=x2﹣y2C.(2x﹣y)(x+2y)=2x2﹣2y2D.(﹣x﹣2y)(﹣x+2y)=x2﹣4y27.下列计算正确的是()A.2a2•3a2=6a2B.(3a2b)2=6a4b2C.(a﹣b)2=a2﹣b2D.﹣a2+2a2=a2考点三:代数式求值8.若x2﹣2x+1的值为10,则代数式﹣2x2+4x+3的值为.9.已知a2+3a﹣2023=0,则2a2+6a﹣1的值为.10.图是一数值转换机的示意图,若输入的x值为18,则输出的结果为.11.已知m=2,n=−12求代数式m3n−2n3m2−4(mn−12m2n3)+16(12mn−6m3n)的值.12.已知(a+b)2+(a﹣b)2=20.(1)求a2+b2的值;(2)若ab=3,求(a+1)(b+1)的值;(3)若2a﹣3b=m,3a﹣2b=n求mn的最大值.考点四:因式分解13.分解因式:(1)m2﹣1=;(2)a2+5a=;(3)x2﹣4x+4=.14.若x2﹣mx+25可以用完全平方式来分解因式,则m的值为.15.如果关于x的二次三项式x2+kx+5可以用十字相乘法进行因式分解,那么整数k等于.考点五:规律探究16.已知S1=10 S2=11−S1S3=11−S2S4=11−S3…按此规律,则S2024=.17.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察右图中的数字排列规律,求a+b﹣c的值为.18.一组按规律排列的单项式a、2a2、3a3、4a4,…,依这个规律用含字母n(n为正整数,且n≥1)的式子表示第n个单项式为.19.如图,把每个正方形等分为4格,在每格中填入数字,在各正方形中的四个数之间都有相同的规律,根据此规律,x=.(用a,b表示)20.一列数:13,26,311,418,527,638…它们按一定的规律排列,则第n个数(n为正整数)为.参考答案与试题解1.【答案】﹣2,7.【解答】解:单项式﹣2x2y的系数是﹣2,多项式x4y2﹣x2y+23y4的次数是7.故答案为:﹣2,7.2.【答案】﹣1.【解答】解:由题意,n﹣2=1,n﹣1=m+3∴m=﹣1,n=3∴m n=(﹣1)3=﹣1.故答案为:﹣1.3.【答案】D【解答】解:A、a3•a3=a6本选项错误,不符合题意;B、(ab2)3=a3b6本选项错误,不符合题意;C、2ab2•(﹣3ab)=﹣6a2b3本选项错误,不符合题意;D、10ab3÷(﹣5ab)=﹣2b2本选项正确,符合题意;故选:D.4.【答案】B【解答】解:∵x m=2,x n=3∴x m+n=x m×x n=2×3=6.故选:B.5.【答案】B【解答】解:由题意得:图1的面积=(a+b)(a﹣b)图2的面积=a2﹣b2∴(a+b)(a﹣b)=a2﹣b2故选:B.6.【答案】D【解答】解:A、(x+2y)(x﹣2y)=x2﹣4y2,本选项错误,不符合题意;B、(﹣x+y)(x﹣y)=﹣(x﹣y)2=﹣x2+2xy﹣y2,本选项错误,不符合题意;C、(2x﹣y)(x+2y)=2x2+3xy﹣2y2,本选项错误,不符合题意;D、(﹣x﹣2y)(﹣x+2y)=(﹣x)2﹣(2y)2=x2﹣4y2,必须执行正确,符合题意.故选:D.7.【答案】D【解答】解:A、2a2•3a2=6a4,故A不符合题意;B、(3a2b)2=9a4b2,故B不符合题意;C、(a﹣b)2=a2﹣2ab+b2,故C不符合题意;D、﹣a2+2a2=a2,故D符合题意;故选:D.8.【答案】﹣15.【解答】解:∵x2﹣2x+1=10∴x2﹣2x=9∴﹣2x2+4x+3=﹣2(x2﹣2x)+3=﹣2×9+3=﹣15.故答案为:﹣15.9.【答案】4045.【解答】解:∵a2+3a﹣2023=0∴a2+3a=2023∴2a2+6a﹣1=2(a2+3a)﹣1=2×2023﹣1=4045故答案为:4045.10.【答案】见试题解答内容【解答】解:若输入的数为18,代入得:3(18﹣10)=24<100;此时输入的数为24,代入得:3(24﹣10)=42<100;此时输入的数为42,代入得:3(42﹣10)=96<100此时输入的数为96,代入得:3(96﹣10)=258>100则输出的结果为258.故答案为:258.11.【答案】﹣2mn,原式=2.【解答】解:m3n−2n3m2−4(mn−12m2n3)+16(12mn−6m3n)=m3n﹣2n3m2﹣4mn+2m2n3+2mn﹣m3n =﹣2mn当m=2,n=−12时,原式=﹣2×2×(−12)=2.12.【答案】(1)10;(2)8或0;(3)125.【解答】解:(1)∵(a+b)2+(a﹣b)2=20∴a2+2ab+b2+a2﹣2ab+b2=202a2+2b2=20∴a2+b2=10;(2)∵ab=3∴2ab=6∵a2+b2=10∴a2+2ab+b2=10+6=16(a+b)2=16a+b=±4∴当a+b=4时(a+1)(b+1)=ab+a+b+1=3+4+1=8当a+b=﹣4时(a+1)(b+1)=ab+a+b+1=3+(﹣4)+1=0∴(a+1)(b+1)的值为8或0;(3)由(1)可知:a2+b2=10∵(a+b)2≥0∴a2+b2+2ab≥010+2ab≥02ab≥﹣10ab≥﹣5∵(a﹣b)2≥0∴a2+b2﹣2ab≥010﹣2ab≥0﹣2ab≥﹣10ab≤5∴﹣5≤ab≤5∴ab的最小值为﹣5∵2a﹣3b=m,3a﹣2b=n∴mn=(2a﹣3b)(3a﹣2b)=6a2﹣4ab﹣9ab+6b2=6a2+6b2﹣13ab=6(a2+b2)﹣13ab=6×10﹣13ab=60﹣13ab∴mn的最大值为:60﹣13×(﹣5)=60+65=125.13.【答案】(1)(m+1)(m﹣1);(2)a(a+5);(3)(x﹣2)2.【解答】解:(1)m2﹣1=(m+1)(m﹣1)故答案为:(m+1)(m﹣1);(2)a2+5a=a(a+5)故答案为:a(a+5);(3)x2﹣4x+4=(x﹣2)2故答案为:(x﹣2)2.14.【答案】±10.【解答】解:∵x2﹣mx+25可以用完全平方式来分解因式∴m=±10.故答案为:±10.15.【答案】±6.【解答】解:∵关于x的二次三项式x2+kx+5可以用十字相乘法进行因式分解,5=1×5或5=(﹣1)×(﹣5)∴k=1+5=6或k=(﹣1)+(﹣5)=﹣6故答案为:±6.16.【答案】−1 9.【解答】解:由题知因为S1=10所以S2=11−S1=11−10=−19;S3=11−S2=11−(−19)=910;S4=11−S3=11−910=10;…由此可见,这列数按10,−19,910循环出现又因为2024÷3=674余2所以S2024=−1 9.故答案为:−1 9.17.【答案】1.【解答】解:根据杨辉三角形的特点确定a=1+5=6b=5+10=15c=10+10=20a+b﹣c=6+15﹣20=1.故答案为:1.18.【答案】n•a n.【解答】解:第n个单项式是n•a n.故答案为:n•a n.19.【答案】a+18b(答案不唯一).【解答】解:由所给表格可知9=2×4+1;20=3×6+2;35=4×8+3;…所以表格中的左下角与右上角的数字之积加上左上角的数字等于右下角的数字; 则x =a +18b .故答案为:a +18b (答案不唯一).20.【答案】nn 2+2.【解答】解:∵一列数:13,26,311,418,527,638…其的分子与序号相同,分母为分子的平分加2∴第n 个数(n 为正整数)为:nn 2+2.故答案为:nn 2+2.。

2013中考数学第一轮复习讲义考点跟踪训练2 整式及其运算

2013中考数学第一轮复习讲义考点跟踪训练2 整式及其运算

考点跟踪训练2整式及其运算一、选择题(每小题6分,共30分)1.(2012·金华)下列计算正确的是()A.a3a2=a6B.a2+a4=2a2C.(a3)2=a6D.(3a)2=a62.(2011·宁波)把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为m cm,宽为n cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是()A.4m cm B.4n cmC.2(m+n) cm D.4(m-n) cm3.(2012·连云港)下列各式计算正确的是()A.(a+1)2=a2+1 B.a2+a3=a5C.a8÷a2=a6D.3a2-2a2=14.(2012·苏州)若3×9m×27m=311,则m的值为()A.2 B.3 C.4 D.55.(2012·南昌)已知(m-n)2=8,(m+n)2=2,则m2+n2=()A.10 B.6 C.5 D.3二、填空题(每小题6分,共30分)6.(2012·嘉兴)当a=2时,代数式3a-1的值是________.7.(2012·扬州)已知2a-3b2=5,则10-2a+3b2的值是________.8.(2012·长沙)若实数a、b满足|3a-1|+b2=0,则a b的值为________.9.(2012·黔东南)二次三项式x2-kx+9是一个完全平方式,则k的值是________.10.(2012·株洲)一组数据为:x2,-2x3,4x3,-8x4,…观察其规律,推断第n个数据应为________.三、解答题(每小题10分,共40分)11.计算:(1)(2012·乐山)3(2x2-y2)-2(3y2-2x2)(2)(2012·嘉兴)(x+1)2-x(x+2)12.(1)(2012·广东)先化简,再求值:(x+3)(x-3)-x(x-2),其中x=4.(2)(2012·泉州)先化简,再求值:(x+3)2+(2+x)(2-x),其中x=-2.13.(2011·益阳)观察下列算式:①1×3-22=3-4=-1②2×4-32=8-9=-1③3×5-42=15-16=-1④__________________________……(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.14.(2012·珠海)观察下列等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43,62×286=682×26,……以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子称为“数字对称等式”:①52×________=________×25;②________×396=693×________.(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a、b),并证明.四、附加题(共20分)15.试确定a和b,使x4+ax2-bx+2能被x2+3x+2整除.。

中考数学必考考点 专题2 整式的运算(含解析)-人教版初中九年级全册数学试题

中考数学必考考点 专题2 整式的运算(含解析)-人教版初中九年级全册数学试题

专题02 整式的运算1.同底数幂的乘法法则:n m n m a a a +=•(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。

2.幂的乘方法则:mn n m a a =)((n m ,都是正整数)幂的乘方,底数不变,指数相乘。

幂的乘方法则可以逆用:即m n n m mn a a a)()(== 3.积的乘方法则:nn n b a ab =)((n 是正整数)。

积的乘方,等于各因数乘方的积。

4.同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m同底数幂相除,底数不变,指数相减。

5.零指数:任何不等于零的数的零次方等于1。

即10=a (a ≠0)6.负整数指数:任何不等于0的数的-p 次幂(p 是正整数),等于这个数的p 次幂的倒数,即 ( a ≠0,p 是正整数)。

7.单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。

8.单项式乘以多项式,就是用单项式去乘多项式的每一项,再把所得的积相加,即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式)。

9.多项式与多项式相乘,用多项式的每一项乘以另一个多项式的每一项,再把所的的积相加。

10.平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差。

即22))((b a b a b a -=-+11.完全平方和公式:两个数的和的平方,等于这两个数的平方和,再加上这两个的积的2倍。

即:(a+b )2=a 2+b 2+2ab12. 完全平方差公式:两个数的差的平方,等于这两个数的平方和,再减上这两个的积的2倍。

即:(a-b )p p a a 1=- 专题知识回顾2=a 2+b 2-2ab完全平方公式的口诀:首平方,尾平方,首尾2倍中间放,符号和前一个样。

13.单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

中考数学总复习2整式及其运算 (共26张)

中考数学总复习2整式及其运算 (共26张)

1
2
3
4
5
5.(2015· 佛山)若(x+2)(x-1)=x2+mx+n,则m+n=( C )
A.1
C.-1
B.-2
D.2
解析 ∵(x+2)(x-1)=x2+mx+n, 即x2+x-2=x2+mx+n, ∴mx+n=x-2.
考点突破
返回
考点一
幂的运算
例1 (2016· 宿迁)下列计算正确的是( D ) A.a2+a3=a5 C.(a2)3=a5 B.a2a3=a6 D.a5÷a2=a3
当x=2时,原式=3×2-1=5.
分析
答案
考点四
乘法公式
例4 (2016· 重庆B)计算:(x-y)2-(x-2y)(x+y). 分析 根据平方差公式、多项式乘多项式法则进行计算. 解 原式=x2-2xy+y2-x2+xy+2y2=-xy+3y2.
分析
答案
规律方法
规律方法
本题考查的是整式的混合运算,掌握完全平方公式、单项式乘多项式 法则是解题的关键.
2
诊断自测
1.(2016· 舟山)计算2a2+a2,结果正确的是( D ) A.2a4 C.3a4 B.2a2 D.3a2
1
2
3
4
5
2.(2016· 福州)下列算式中,结果等于a6的是( D ) A.a4+a2 C.a2· a3 B.a2+a2+a2 D.a2· a2· a2
1
2
3
4
5
的结果是 3.(2016· 成都 )计算 的结果是 ( ( 3.(2016· 成都 )计算 -x y D ) )
4. 乘法公式 (1)平方差公式:(a+b)(a-b)= (2)完全平方公式:(a±b)2= 5. 整式除法 单项式与单项式相除,把系数、同底数幂分别相除,作为商的因子, 对于只在被除式里含有的字母,连同它的指数作为商的一个因式. 多项式除以单项式,将这个多项式的每一项除以这个单项式,然后 把所得的商相加. a2-b2 a2±2ab+b2

【2022年陕西中考备考】数学一轮复习专题训练2整式及因式分解(知识点+基础+提升练习)(含答案)

【2022年陕西中考备考】数学一轮复习专题训练2整式及因式分解(知识点+基础+提升练习)(含答案)

【2022年陕西中考备考】数学一轮复习专题训练2整式及因式分解【2021陕西考题训练】1.[2021陕西,3]计算:(a 3b )-2=( ) A .B .a 6b 2C .D .﹣2a 3b2.[2021陕西,9]分解因式x 3+6x 2+9x = .【知识点训练】知识点1 整式的运算1.[2021陕西,3]计算:(a 3b )-2=( ) A .B .a 6b 2C .D .﹣2a 3b2.[2020陕西,5]计算:⎝⎛⎭⎫-23x 2y 3= ( )A .-2x 6y 3B .827x 6y 3C .-827x 6y 3D .-827x 5y 43.[2019陕西,5]下列计算正确的是( ) A .2a 2·3a 2=6a 2 B .(-3a 2b )2=6a 4b 2C .(a -b )2=a 2-b 2D .-a 2+2a 2=a 2 4.[2018陕西,5]下列计算正确的是( ) A .a 2·a 2=2a 4 B .(-a 2)3=-a 6 C .3a 2-6a 2=3a 2D .(a -2)2=a 2-4 5.[2016陕西,3]下列计算正确的是( ) A .x 2+3x 2=4x 4 B .x 2y ·2x 3=2x 4y C .(6x 3y 2)÷(3x )=2x 2D .(-3x )2=9x 2 6.下列各式中,计算结果为x 5的是 ( ) A .x 10÷x 2 B .x 6-x C .(x 2)3D .x 2·x 3知识点2 因式分解7.[2021陕西,9]分解因式x 3+6x 2+9x = . 8.下列因式分解正确的是( )A .x 2-x =x (x +1)B .a 2-3a -4=(a +4)(a -1)C .a 2+2ab -b 2=(a -b )2D .x 2-y 2=(x +y )(x -y )9.[2020西工大附中第二次网考]分解因式:8a 2-2b 2= .【基础题型训练】1.[2020湘潭]已知2x n +1y 3与13x 4y 3是同类项,则n 的值是( )A .2B .3C .4D .52.[2020扬州]下列各式中,计算结果为m 6的是 ( ) A .m 2·m 3 B .m 3+m 3 C .m 12÷m 2D .(m 2)33.[2020台州]计算2a 2·3a 4的结果是 ( )A .5a 6B .5a 8C .6a 6D .6a 84.[2020西工大附中第一次网考]计算⎝⎛⎭⎫-12x 2y 3,结果正确的是 ( )A .-18x 6y 3B .18x 5y 3C .-16x 6y 3D .16x 5y 35.[2020潍坊]若m 2+2m =1,则4m 2+8m -3的值是 ( )A .4B .3C .2D .16.[2020西安二十六中二模]下列计算正确的是 ( )A .2x 2·6x 4=12x 8B .(y 4)m ÷(y 3)m =y mC .(2ab )3=6a 3b 3D .4a 2-a 2=3 7.[2020遵义]下列计算正确的是( )A .x 2+x =x 3B .(-3x )2=6x 2C .8x 4÷2x 2=4x 2D .(x -2y )(x +2y )=x 2-2y 28.[2020铁一中一模]下列运算中正确的是 ( )A .2m ×3n =6m +n B .(2a 3)4=8a 12C .(6x 2-xy )÷2x =3x -2yD . (2x +1)(2x -1)=4x 2-19.[2020黔东南州]下列运算正确的是( )A .(x +y )2=x 2+y 2B .x 3+x 4=x 7C .x 3·x 2=x 6D .(-3x )2=9x 210.[2019临沂]下列计算错误的是 ( )A .(a 3b )·(ab 2)=a 4b 3B .(-mn 3)2=m 2n 6C .a 5÷a -2=a 3D .xy 2-15xy 2=45xy 211.[2020铁一中三模]下列计算正确的是 ( )A .-2a -3a =-aB .2a 2b ·3a 3=6a 6bC .(2a 2b )2=2a 4b 2D .6a 6b ÷(-2a 2b )=-3a 412.[2020达州]如图,正方体的每条棱上放置相同数目的小球,设每条棱上的小球数为m ,下列代数式表示正方体上小球总数,则表示错误的是( )第12题图A .12(m -1)B .4m +8(m -2)C .12(m -2)+8D .12m -1613.[2020广东]已知x =5-y ,xy =2,计算3x +3y -4xy 的值为 . 14.[2020广东]若a -2+|b +1|=0,则(a +b )2 020= .15.[2020杭州]设M =x +y ,N =x -y ,P =xy .若M =1,N =2,则P = . 16.[2020沈阳]因式分解:2x 2+x = . 17.[2020丹东]因式分解:mn 3-4mn = . 18.[2019温州]分解因式:m 2+4m +4=.19.[2020益新中学一模]因式分解:m (x -y )+n (x -y )= . 20.[2020黔西南州]如图,是一个运算程序的示意图,若开始输入x 的值为625,则第2 020次输出的结果为 .第20题图【提高题型训练】1.下列因式分解正确的是( )A .-2a 2+4a =-2a (a +2)B .3ax 2-6axy +3ay 2=3a (x -y )2C .2x 2+3x 3+x =x (2x +3x 2)D .m 2+n 2=(m +n )22.[2020重庆A卷]把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为()第2题图A.10B.15C.18D.213.[2020云南]按一定规律排列的单项式:a,-2a,4a,-8a,16a,-32a,…,第n 个单项式是() A.(-2)n-1a B.(-2)n aC.2n-1a D.2n a4.[2020十堰]根据图中数字的规律,若第n个图中出现数字396,则n=()第4题图A.17B.18C.19D.205.[2020内江]分解因式:b4-b2-12=.6.[2020高新一中五模]分解因式:m2(x-3)+(3-x)=.7.[2020绵阳]若多项式xy|m-n|+(n-2)x2y2+1是关于x,y的三次多项式,则mn =.8.[2020雅安]若(x2+y2)2-5(x2+y2)-6=0,则x2+y2=.9.[2020山西]如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形,…按此规律摆下去,第n个图案有个三角形(用含n的代数式表示).…第9题图10.[2020铜仁]观察下列等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;2+22+23+24+25=26-2;…已知按一定规律排列的一组数:220,221,222,223,224,…,238,239,240,若220=m,则220+221+222+223+224+…+238+239+240=(结果用含m的代数式表示).11.[2020赤峰]一个电子跳蚤在数轴上做跳跃运动.第一次从原点O起跳,落点为A1,点A1表示的数为1;第二次从点A1起跳,落点为OA1的中点A2,第三次从A2点起跳,落点为OA2的中点A3;如此跳跃下去…最后落点为OA2 019的中点A2 020,则点A2 020表示的数为.第11题图12.[2020绍兴]化简:(x+y)2-x(x+2y).13.[2020衡阳]化简:b(a+b)+(a+b)(a-b).参考答案【2021陕西考题训练】1.解:(a 3b )﹣2==.故选:A .2.解:原式=x (9+6x +x 5)=x (x +3)2. 故答案为x (x +5)2【知识点训练】1.解:(a 3b )﹣2==.故选:A .2.C 3.D 4.B 5.D 6.D 7. x (x +5)2 8.D 9.2(2a +b )(2a -b )【基础题型训练】1.B 2.D 3.C 4.A 5.D 6.B 7.C 8.D 9.D 10.C 11.D 12.A 13.7 14.1 15.-34 16.x (2x +1) 17.mn (n +2)(n -2)18.(m +2)2 19.(x -y )(m +n ) 20.1【提高题型训练】1.B 2.B 3.A 4.B 5.(b +2)(b -2)(b 2+3) 6.(m +1)(m -1)(x -3) 7.0或8 8.6 9.(3n +1) 10.m (2m -1) 11.122 01912.解:原式=x 2+2xy +y 2-x 2-2xy=y 2.13.解:原式=ab +b 2+a 2-b 2=ab +a 2.。

中考数学考点跟踪突破整式及其运算试题

中考数学考点跟踪突破整式及其运算试题

考点跟踪突破2 整式及其运算一、选择题1.(2021·荆州)以下运算正确的选项是( B ) A.m6÷m2=m3B.3m2-2m2=m2C.(3m2)3=9m6D. 12m·2m2=m22.(2021·济宁)x-2y=3,那么代数式3-2x+4y的值是( A ) A.-3 B.0 C.6 D.93.(2021 ·杭州)以下各式的变形中,正确的选项是( A ) A.(-x-y)(-x+y)=x2-y2B.1x-x=1-xxC.x2-4x+3=(x-2)2+1D.x÷(x2+x)=1x+14.(2021 ·天水)定义运算a⊗b=a(1-b).下面给出了关于这种运算的几种结论:①2⊗(-2)=6;②a⊗b=b⊗a;③假设a+b=0,那么(a⊗a)+(b⊗b)=2ab;④假设a⊗b=0,那么a=0或b=1,其中结论正确的序号是( B )A.①④ B.①③④ C.②③④ D.①②④5.(2021·临沂)用大小相等的小正方形按一定规律拼成以下图形,那么第n个图形中小正方形的个数是( C )A.2n+1 B.n2-1 C.n2+2n D.5n-2点拨:∵第1个图形中,小正方形的个数是:22-1=3;第2个图形中,小正方形的个数是:32-1=8;第3个图形中,小正方形的个数是:42-1=15;…∴第n个图形中,小正方形的个数是:(n+1)2-1=n2+2n +1-1=n2+2n;应选:C二、填空题6.(2021·大庆)假设a m=2,a n=8,那么a m+n=__16__.7.(2021·河北)假设mn=m+3,那么2mn+3m-5mn+10=__1__.8.多项式x|m|+(m-2)x-10是二次三项式,m为常数,那么m的值为__-2__.9.(2021·漳州)一个矩形的面积为a2+2a,假设一边长为a,那么另一边长为__a+2__.10.(2021·西宁)x2+x-5=0,那么代数式(x-1)2-x(x-3)+(x+2)(x-2)的值为__2__.三、解答题11.化简:(1)(2021·洛阳模拟):(a2b-2ab2-b3)÷b-(a-b)2;解:原式=-2b2(2)(2021 ·嘉兴)a(2-a)+(a+1)(a-1).解:原式=2a-a2+a2-1=2a-112.先化简再求值:(1)(2021·宜昌)4x·x+(2x-1)(1-2x),其中x=140;解:4x·x+(2x-1)(1-2x)=4x2+(2x-4x2-1+2x)=4x2+4x-4x2-1=4x-1,当x=140时,原式=4×140-1=-910(2)(2021·湖北)(2x+1)(2x-1)-(x+1)(3x-2),其中x=2-1.解:(2x+1)(2x-1)-(x+1)(3x-2)=4x2-1-(3x2+3x-2x-2)=4x2-1-3x2-x+2=x2-x+1把x=2-1代入得:原式=(2-1)2-(2-1)+1=3-22-2+2=5-3 2.13.(2021 ·茂名)设y=ax,假设代数式(x+y)(x-2y)+3y(x+y)化简的结果为x2,请你求出满足条件的a值.解:原式=(x+y)(x-2y)+3y(x+y)=(x+y)2,当y=ax,代入原式得(1+a)2x2=x2,即(1+a)2=1,解得:a=-2或014.(2021·达州)x ,y 满足方程组⎩⎨⎧x -5y =-2,2x +5y =-1,求代数式(x -y)2-(x +2y)(x -2y)的值.解:原式=(x 2-2xy +y 2)-(x 2-4y 2)=x 2-2xy +y 2-x 2+4y 2=-2xy+5y 2,方程组⎩⎨⎧x -5y =-2①,2x +5y =-1②,由①+②得:3x =-3,即x =-1,把x =-1代入①得:y =15,那么原式=25+15=3515.(1)填空:(a -b)(a +b)=__a 2-b 2__;(a -b)(a 2+ab +b 2)=__a 3-b 3__;(a -b)(a 3+a 2b +ab 2+b 3)=__a 4-b 4__.(2)猜测:(a -b)(a n -1+a n -2b +…+ab n -2+b n -1)=__a n -b n __;(其中n 为正整数,且n≥2).(3)利用(2)猜测的结论计算:29-28+27-…+23-22+2.解:原式=(29-28+27-…+23-22+2-1)+1=13×[2-(-1)](29-28+27-…+23-22+2-1)+1=13×[210-(-1)10]+1=341+1=342。

中考数学题型归类与解析2---整式及运算(解析版)

中考数学题型归类与解析2---整式及运算(解析版)

中考数学题型归类与解析2 整式及运算一、单选题1.(2021·浙江丽水市·中考真题)计算:()24a a -⋅的结果是( )A .8aB .6aC .8aD .6a -【答案】B【分析】根据乘方的意义消去负号,然后利用同底数幂的乘法计算即可.【解析】解:原式24246a a a a +=⋅==.故选B .【小结】此题考查的是幂的运算性质,掌握同底数幂的乘法法则是解题关键.2.(2021·四川资阳市·中考真题)下列计算正确的是( )A .2242a a a +=B .23a a a ⋅=C .22(3)6a a =D .623+=a a a【答案】B【分析】根据合并同类项,同底数幂的乘法,积的乘方法则进行计算作出判断.【解析】解:A . 2222a a a +=,故此选项不符合题意; B . 23a a a ⋅=,正确,故此选项符合题意;C . 22(3)9a a =,故此选项不符合题意;D . 62,a a 不是同类项,不能合并计算,故此选项不符合题意;故选:B .【小结】本题考查合并同类项,同底数幂的乘法,积的乘方计算,掌握计算法则准确计算是解题关键.3.(2021·四川自贡市·中考真题)已知23120x x --=,则代数式2395x x -++的值是( )A .31B .31-C .41D .41-【答案】B【分析】根据题意,可先求出x 2-3x 的值,再化简()22395=3+53x x x x -++--,然后整体代入所求代数式求值即可.【解析】解:∵23120x x --=,∴23=12x x -,∴()223395=3+5=312+5=31x x x x -++---⨯-.故选:B .【小结】此题考查了代数式求值,此题的关键是代数式中的字母表示的数没有明确告知,而是隐含在题设中,得出23=12x x -,是解题的关键.4.(2021·四川乐山市·中考真题)某种商品m 千克的售价为n 元,那么这种商品8千克的售价为( )A .8n m (元)B .8n m (元)C .8m n (元)D .8m n(元) 【答案】A【分析】先求出1千克售价,再计算8千克售价即可;【解析】∵m 千克的售价为n 元,∴1千克商品售价为n m, ∴8千克商品的售价为8n m (元); 故答案选A .【小结】本题主要考查了列代数式,准确分析列式是解题的关键.5.(2021·四川泸州市·中考真题)关于x 的一元二次方程2220x mx m m ++-=的两实数根12,x x ,满足122x x =,则2212(2)(2)x x ++的值是( )A .8B .16C . 32D .16或40【答案】C【分析】根据一元二次方程根与系数的关系,即韦达定理,先解得2m =或1m =-,再分别代入一元二次方程中,利用完全平方公式变形解题即可.【解析】解:一元二次方程2220x mx m m ++-=21,2,a b m c m m ===-2122c m x am x ==-= 220m m --=(2)(1)0m m ∴-+=2m ∴=或1m =-当2m =时,原一元二次方程为2420x x ++=12=24b m ax x +-=-=-, 22221212122)+2((2)(2)()+4=x x x x x x +∴++,221212122=()2x x x x x x ++-221212212212)+(2)(2)=)(2(4+4x x x x x x x x -∴+++22=2+2(4)424⨯--⨯+32=当1m =-时,原一元二次方程为2220x x +=-2(2)41240∆=--⨯⨯=-<原方程无解,不符合题意,舍去,故选:C .【小结】本题考查一元二次方程根与系数的关系,韦达定理等知识,涉及解一元二次方程,是重要考点,难度较易,掌握相关知识是解题关键.6.(2021·四川泸州市·中考真题)已知1020a =,10050b =,则1322a b ++的值是( ) A .2B .52C .3D .92【答案】C【分析】根据同底数幂的乘法31010010a b ⋅=,可求23a b +=再整体代入即可.【解析】解: ∵1020a =,10050b =,∴2310100102050100010a b a b +⋅==⨯==,∴23a b +=, ∴()()1311233332222a b a b ++=++=+=. 故选:C .【小结】本题考查幂的乘方,同底数幂的乘法逆运算,代数式求值,掌握幂的乘方,同底数幂的乘法法则,与代数式值求法是解题关键.7.(2021·云南中考真题)按一定规律排列的单项式:23456,4,9,16,25a a a a a ,……,第n 个单项式是( )A .21n n a +B .21n n a -C .1n n n a +D .()21n n a +【答案】A【分析】根据题目中的单项式可以发现数字因数是从1开始的正整数的平方,字母的指数从1开始依次加1,然后即可写出第n 个单项式,本题得以解决.【解析】解:∵一列单项式:23456,4,9,16,25a a a a a ,...,∴第n 个单项式为21n n a +,故选:A .【小结】本题考查数字的变化类、单项式,解答本题的关键是明确题意,发现单项式的变化特点,求出相应的单项式.8.(2021·浙江金华市·中考真题)某超市出售一商品,有如下四种在原标价基础上调价的方案,其中调价后售价最低的是()A.先打九五折,再打九五折B.先提价50%,再打六折C.先提价30%,再降价30%D.先提价25%,再降价25%【答案】B【分析】设原件为x元,根据调价方案逐一计算后,比较大小判断即可.【解析】设原件为x元,∵先打九五折,再打九五折,∴调价后的价格为0.95x×0.95=0.9025x元,∵先提价50%,再打六折,∴调价后的价格为1.5x×0.6=0.90x元,∵先提价30%,再降价30%,∴调价后的价格为1.3x×0.7=0.91x元,∵先提价25%,再降价25%,∴调价后的价格为1.25x×0.75=0.9375x元,∵0.90x<0.9025x<0.91x<0.9375x故选B【小结】本题考查了代数式,打折,有理数大小比较,准确列出符合题意的代数式,并能进行有理数大小的比较是解题的关键.9.(2021·浙江温州市·中考真题)某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a 元;超过部分每立方米()1.2a +元.该地区某用户上月用水量为20立方米,则应缴水费为( )A .20a 元B .()2024a +元C .()17 3.6a +元D .()20 3.6a +元【答案】D【分析】分两部分求水费,一部分是前面17立方米的水费,另一部分是剩下的3立方米的水费,最后相加即可.【解析】解:∵20立方米中,前17立方米单价为a 元,后面3立方米单价为(a +1.2)元, ∴应缴水费为17a +3(a +1.2)=20a +3.6(元),故选:D .【小结】本题考查的是阶梯水费的问题,解决本题的关键是理解其收费方式,能求出不同段的水费,本题较基础,重点考查了学生对该种计费方式的理解与计算方法等.10.(2021·甘肃武威市·中考真题)对于任意的有理数,a b ,如果满足2323a b a b ++=+,那么我们称这一对数,a b 为“相随数对”,记为(),a b .若(),m n 是“相随数对”,则()323[]21m m n ++-=( )A .2-B .1-C .2D .3【答案】A先根据新定义,可得9m +4n =0,将整式()21]2[33m m n ++-去括号合并同类项化简得942m n +-,然后整体代入计算即可.【解析】解:∵(),m n 是“相随数对”, ∴2323m n m n ++=+, 整理得9m +4n =0,()323213642942[]2m m n m m n m n ++-=++-=+-=-.故选择A .【小结】本题考查新定义相随数对,找出数对之间关系,整式加减计算求值,掌握新定义相随数对,找出数对之间关系,整式加减计算求值是解题关键.11.(2021·山东临沂市·中考真题)实验证实,放射性物质在放出射线后,质量将减少,减少的速度开始较快,后来较慢,实际上,物质所剩的质量与时间成某种函数关系.下图为表示镭的放射规律的函数图象,据此可计算32mg 镭缩减为1mg 所用的时间大约是( )A .4860年B .6480年C .8100年D .9720年【分析】根据物质所剩的质量与时间的规律,可得答案.【解析】解:由图可知:1620年时,镭质量缩减为原来的12, 再经过1620年,即当3240年时,镭质量缩减为原来的21142=, 再经过1620×2=3240年,即当4860年时,镭质量缩减为原来的31182=, ...,∴再经过1620×4=6480年,即当8100年时,镭质量缩减为原来的511232=, 此时132132⨯=mg , 故选C .【小结】本题考查了函数图象,规律型问题,利用函数图象的意义是解题关键.12.(2021·山东泰安市·中考真题)下列运算正确的是( )A .235235x x x +=B .()3326x x -=-C .()222x y x y +=+D .()()2322349x x x +-=- 【答案】D【分析】分别根据合并同类项法则、积的乘方运算法则、完全平方公式、平方差公式进行判断即可.【解析】解:A 、x 2和x 3不是同类项,不能合并,此选项错误;B 、()3328x x -=-,此选项错误;C 、()2222x y x xy y +=++,此选项错误;D 、()()23223(23)(23)49x x x x x +-=+-=-,此选项正确, 故选:D .【小结】本题考查了同类项、积的乘方、完全平方公式、平方差公式,熟记公式,掌握运算法则是解答的关键.13.(2021·江苏连云港市·中考真题)下列运算正确的是( )A .325a b ab +=B .22523a b -=C .277a a a +=D .()22112x x x -+-=【答案】D【分析】根据同类项与合并同类项、全完平方差公式的展开即可得出答案.【解析】解:A ,3a 与2b 不是同类项,不能合并,故选项错误,不符合题意;B ,25a 与22b 不是同类项,不能合并得到常数值,故选项错误,不符合题意;C ,合并同类项后2787a a a a +=≠,故选项错误,不符合题意;D ,完全平方公式:()22211221x x x x x =-++-=-,故选项正确,符合题意; 故选:D .【小结】本题考查了代数式的运算,同类项合并及完全平方差公式,解题的关键是:掌握相关的运算法则.14.(2021·安徽)计算23()x x ⋅-的结果是( )A .6xB .6x -C .5xD .5x -【答案】D【分析】利用同底数幂的乘法法则计算即可【解析】解:52233=-()x x x x +⋅-=-故选:D【小结】本题考查同底数幂的乘法法则,正确使用同底数幂相乘,底数不变,指数相加是关键15.(2021·陕西中考真题)计算:()23a b -=( ) A .621a b B .62a b C .521a bD .32a b - 【答案】A【分析】根据积的乘方,幂的乘方以及负整数指数幂运算法则计算即可.【解析】解:()23621a b a b -=, 故选:A .【小结】本题考查积的乘方,幂的乘方以及负整数指数幂等知识点,熟记相关定义与运算法则是解答本题的关键.16.(2021·湖南衡阳市·中考真题)下列运算结果为6a 的是( )A .23a a ⋅B .122a a ÷C .()23aD .2312a ⎛⎫ ⎪⎝⎭ 【答案】C【分析】根据同底数幂相乘、同底数幂相除、幂的乘方法则逐项计算即可.【解析】A 选项,23235a a a a +⋅==,不符合题意;B 选项,12210122=a a a a -=÷,不符合题意;C 选项,()23326=a a a ⨯=,符合题意;D 选项,22233611=1224a a a ⨯⎛⎫⋅= ⎪⎝⎭⎛⎫ ⎪⎝⎭,不符合题意. 故选:C .【小结】本题考查同底数幂相乘、同底数幂相除、幂的乘方和积的乘方法则.同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘;积的乘方,等于把积的每一个因式的积的乘方,再把所得的幂相乘.17.(2021·浙江台州市·中考真题)已知(a +b )2=49,a 2+b 2=25,则ab =( )A .24B .48C .12D .【答案】C【分析】利用完全平方公式计算即可.【解析】解:∵()222249a b a b ab +=++=,2225a b +=, ∴4925122ab -==, 故选:C .【小结】本题考查整体法求代数式的值,掌握完全平方公式是解题的关键.18.(2021·浙江台州市·中考真题)将x 克含糖10%的糖水与y 克含糖30%的糖水混合,混合后的糖水含糖( )A .20%B .+100%2x y ⨯C .+3100%20x y ⨯D .+3 100%10+10x y x y ⨯ 【答案】D【分析】先求出两份糖水中糖的重量,再除以混合之后的糖水总重,即可求解.【解析】 解:混合之后糖的含量:10%30%3100%1010x y x y x y x y ++=⨯++, 故选:D .【小结】本题考查列代数式,理解题意是解题的关键.19.(2021·江苏苏州市·中考真题)已知两个不等于0的实数a 、b 满足0a b +=,则b a a b +等于( ) A .2-B .1-C .1D .2【答案】A【分析】先化简式子,再利用配方法变形即可得出结果.【解析】 解:∵22=b a b a a b ab++, ∴()2222==a b ab b a b a a b ab ab +-++, ∵两个不等于0的实数a 、b 满足0a b +=, ∴()22-2===-2a b ab b a ab a b ab ab+-+, 故选:A .【小结】本题考查分式的化简、配完全平方、灵活应用配方法是解题的关键.20.(2021·上海中考真题)下列单项式中,23a b 的同类项是( )A .32a bB .232a bC .2a bD .3ab【答案】B【分析】比较对应字母的指数,分别相等就是同类项【解析】∵a 的指数是3,b 的指数是2,与23a b 中a 的指数是2,b 的指数是3不一致, ∴32a b 不是23a b 的同类项,不符合题意; ∵a 的指数是2,b 的指数是3,与23a b 中a 的指数是2,b 的指数是3一致, ∴232a b 是23a b 的同类项,符合题意;∵a 的指数是2,b 的指数是1,与23a b 中a 的指数是2,b 的指数是3不一致,∴2a b 不是23a b 的同类项,不符合题意;∵a 的指数是1,b 的指数是3,与23a b 中a 的指数是2,b 的指数是3不一致, ∴3ab 不是23a b 的同类项,不符合题意;故选B【小结】本题考查了同类项,正确理解同类项的定义是解题的关键.21.(2021·四川广安市·中考真题)下列运算中,正确的是( )A .2510a a a ⋅=B .222()a b a b -=-C .()23636a a -=D .22232a b a b a b -+=- 【答案】D【分析】根据同底数幂的乘法,合并同类项,幂的乘方和积的乘方,完全平方公式分别判断即可.【解析】解:A 、257a a a ⋅=,故选项错误;B 、222()2a b a b ab -=+-,故选项错误;C 、()23639a a -=,故选项错误;D 、22232a b a b a b -+=-,故选项正确;故选D .【小结】本题考查了同底数幂的乘法,合并同类项,幂的乘方和积的乘方,完全平方公式,解题的关键是掌握各自的运算法则.22.(2021·四川眉山市·中考真题)下列计算中,正确的是( )A .5315a a a ⨯=B .53a a a ÷=C .()423812a b a b -=D .()222a b a b +=+ 【答案】C【分析】逐一分析各选项中的计算结果,利用计算公式进行计算即可得到正确选项.【解析】解:A 选项中,538a a a ⨯=;B 选项中,532a a a ÷=;C 选项正确;D 选项中,()2222a b a ab b +=++;故选:C .【小结】本题综合考查了同底数幂的乘法计算、同底数幂的除法计算、幂的乘方运算、积的乘方运算、完全平方公式等内容,解决本题的关键是牢记对应法则和公式即可.23.(2021·湖南岳阳市·中考真题)下列运算结果正确的是( )A .32a a -=B .248a a a ⋅=C .()()2224a a a +-=-D .()22a a -=- 【答案】C【分析】逐一分析各选项,利用对应法则进行计算即可判断出正确选项.【解析】解:A 选项中:32a a a -=,因此错误;B 选项中:246·a a a =,因此错误;C 选项中:()()2224a a a +-=-,因此正确;D 选项中:()22a a -=,因此错误;故选:C .【小结】本题考查了合并同类项、同底数幂的乘法、平方差公式、乘方的运算性质等内容,解决本题的关键是牢记相关运算法则和公式即可.24.(2021·浙江台州市·中考真题)下列运算中,正确的是( )A .a 2+a =a 3B .(-ab )2=-ab 2C .a 5÷a 2=a 3D .a 5・a 2=a 10【答案】C【分析】根据合并同类项、积的乘方、同底数幂相除、同底数幂相乘的法则分别计算即可.【解析】解:A .2a 与a 不是同类项,不能合并,故该项错误;B .()222b a ab =-,故该项错误;C .523a a a ÷=,该项正确;D .527a a a ⋅=,该项错误;故选:C .【小结】本题考查整式的运算,掌握合并同类项、积的乘方、同底数幂相除、同底数幂相乘的法则是解题的关键.25.(2021·四川成都市·中考真题)下列计算正确的是( )A .321mn mn -=B .()22346m n m n = C .()34m m m -⋅=D .()222m n m n +=+ 【答案】B【分析】利用合并同类项法则可判定A ,利用积的乘方法则与幂的乘方法则可判定B ,利用同底数幂乘法法则可判定C ,利用完全平方公式可判定D .【解析】解:A . 321mn mn mn -=≠,故选项A 计算不正确;B.()()()222232346m n m n m n =⋅=,故选项B 计算正确; C . ()3344m m m m m m -⋅=-⋅=-≠,故选项C 计算不正确;D . ()222222m n m mn n m n +=++≠+,故选项D 计算不正确.故选择B .【小结】本题考查同类项合并,积的乘方与幂的乘方,同底数幂乘法,完全平方公式,掌握同类项合并,积的乘方与幂的乘方,同底数幂乘法,完全平方公式是解题关键.26.(2021·山东临沂市·中考真题)计算3325a a 的结果是( )A .610aB .910aC .37aD .67a【答案】A【分析】直接利用单项式乘以单项式运算法则计算得出答案.【解析】解:6332510a a a =⋅,故选:A .【小结】此题主要考查了单项式乘以单项式,正确掌握相关运算法则是解题关键.27.(2021·浙江宁波市·中考真题)计算()3a a ⋅-的结果是( )A .2aB .2a -C .4aD .4a -【答案】D【分析】根据单项式乘以单项式和同底数幂的运算法则解答即可.【解析】解:原式4a =-.故选:D【小结】本题考查了整式的乘法,属于基础题目,熟练掌握运算法则是关键.28.(2021·重庆中考真题)计算63a a ÷的结果是( )A .63aB .52aC .62aD .53a【答案】D【分析】根据单项式除以单项式法则、同底数幂除法法则解题.【解析】解:63a a ÷=53a ,故选:D .【小结】本题考查同底数幂相除、单项式除以单项式等知识,是重要考点,难度较易,掌握相关知识是解题关键.二、填空题29.(2021·上海中考真题)计算:72=x x÷_____________.【答案】5x【分析】根据同底数幂的除法法则计算即可【解析】∵72=÷5x,x x故答案为: 5x.【小结】本题考查了同底数幂的除法,熟练掌握运算的法则是解题的关键.30.(2021·天津中考真题)计算42a a a+-的结果等于_____.【答案】5a【分析】根据合并同类项的性质计算,即可得到答案.【解析】()+-=+-=424215a a a a a故答案为:5a.【小结】本题考查了整式加减的知识;解题的关键是熟练掌握合并同类项的性质,从而完成求解.31.(2021·江苏扬州市·中考真题)计算:22-=__________.20212020【答案】4041 【分析】利用平方差公式进行简便运算即可. 【解析】 解:2220212020-=()()2021202020212020+⨯- =40411⨯ =4041故答案为:4041. 【小结】本题考查了平方差公式的应用,解题时注意运算顺序.32.(2021·浙江嘉兴市·中考真题)观察下列等式:22110=-,22321=-,22532=-,…按此规律,则第n 个等式为21n -=__________________. 【答案】()221n n --. 【分析】第一个底数是从1开始连续的自然数的平方,减去从0开始连续的自然数的平方,与从1开始连续的奇数相同,由此规律得出答案即可. 【解析】解:∵22110=-,22321=-, 22532=-,…∴第n 个等式为:()22211n n n -=--故答案是:()221n n --. 【小结】本题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题的关键.33.(2021·四川遂宁市·中考真题)如图都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第___个图形共有210个小球.【答案】20 【分析】根据已知图形得出第n 个图形中黑色三角形的个数为1+2+3++n =()12n n +,列一元二次方程求解可得. 【解析】解:∵第1个图形中黑色三角形的个数1, 第2个图形中黑色三角形的个数3=1+2, 第3个图形中黑色三角形的个数6=1+2+3, 第4个图形中黑色三角形的个数10=1+2+3+4, ……∴第n 个图形中黑色三角形的个数为1+2+3+4+5++n =()12n n +,当共有210个小球时,()12102n n +=,解得:20n =或21-(不合题意,舍去), ∴第20个图形共有210个小球. 故答案为:20. 【小结】本题考查了图形的变化规律,解一元二次方程,解题的关键是得出第n 个图形中黑色三角形的个数为1+2+3+……+n .34.(2021·湖南岳阳市·中考真题)已知1x x +=1x x+=______. 【答案】0 【分析】把1x x+=直接代入所求的代数式中,即可求得结果的值. 【解析】10x x+== 故答案为:0. 【小结】本题考查了求代数式的值,涉及二次根式的减法运算,整体代入法是解决本题的关键. 35.(2021·江苏苏州市·中考真题)若21m n +=,则2366m mn n ++的值为______. 【答案】3 【分析】根据21m n +=,将式子2366m mn n ++进行变形,然后代入求出值即可. 【解析】 ∵ 21m n +=,∴2366m mn n ++=3m (m +2n )+6n =3m +6n =3(m +2n )=3. 故答案为:3. 【小结】本题考查了代数式的求值,解题的关键是利用已知代数式求值.36.(2021·江苏扬州市·中考真题)将黑色圆点按如图所示的规律进行排列,图中黑色圆点的个数依次为:1,3,6,10,……,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第33个数为___________.【答案】1275 【分析】首先得到前n 个图形中每个图形中的黑色圆点的个数,得到第n 个图形中的黑色圆点的个数为()12n n +,再判断其中能被3整除的数,得到每3个数中,都有2个能被3整除,再计算出第33个能被3整除的数所在组,为原数列中第50个数,代入计算即可. 【解析】解:第①个图形中的黑色圆点的个数为:1,第②个图形中的黑色圆点的个数为:()1222+⨯=3,第③个图形中的黑色圆点的个数为:()1332+⨯=6,第④个图形中的黑色圆点的个数为:()1442+⨯=10,...第n个图形中的黑色圆点的个数为()12n n+,则这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,...,其中每3个数中,都有2个能被3整除,33÷2=16...1,16×3+2=50,则第33个被3整除的数为原数列中第50个数,即50512⨯=1275,故答案为:1275.【小结】此题考查了规律型:图形的变化类,关键是通过归纳与总结,得到其中的规律.37.(2021·陕西中考真题)幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a的值为______.【答案】-2【分析】先通过计算第一行数字之和得到各行、各列及各条对角线上的三个数字之和,再利用第二列三个数之和得到a 的值. 【解析】解:由表第一行可知,各行、各列及各条对角线上的三个数字之和均为1616--+=-, ∴626a -++=-, ∴2a =-, 故答案为:2-. 【小结】本题考查了数字之间的关系,解决本题的关键是读懂题意,正确提取表中数据,找到它们之间的关系等,该题对学生的观察分析能力有一定的要求,同时也考查了学生对有理数的和差计算的基本功.38.(2021·甘肃武威市·中考真题)一组按规律排列的代数式:2335472,2,2,2a b a b a b a b +-+-,…,则第n 个式子是___________.【答案】()12112n n n a b +-+-⋅【分析】根据已知的式子可以看出:每个式子的第一项中a 的次数是式子的序号;第二项中b 的次数是序号的2倍减1,而第二项的符号是第奇数项时是正号,第偶数项时是负号. 【解析】解:∵当n 为奇数时,()111n +-=;当n 为偶数时,()111n +-=-,∴第n 个式子是:()1211?2n n n a b +-+-.故答案为:()1211?2n n n a b +-+- 【小结】本题考查了多项式的知识点,认真观察式子的规律是解题的关键.39.(2021·重庆中考真题)某销售商五月份销售A 、B 、C 三种饮料的数量之比为3:2:4,A 、B 、C 三种饮料的单价之比为1:2:1.六月份该销售商加大了宣传力度,并根据季节对三种饮料的价格作了适当的调整,预计六月份三种饮料的销售总额将比五月份有所增加,A 饮料增加的销售占六月份销售总额的115,B 、C 饮料增加的销售额之比为2:1.六月份A 饮料单价上调20%且A 饮料的销售额与B 饮料的销售额之比为2:3,则A 饮料五月份的销售数量与六月份预计的销售数量之比为_____________. 【答案】910【分析】设销售A 饮料的数量为3x ,销售B 种饮料的数量2x, 销售C 种饮料的数量4x ,A 种饮料的单价y . B 、C 两种饮料的单价分别为2y 、y .六月份A 饮料单价上调20%,总销售额为m ,可求A 饮料销售额为3xy+115m ,B 饮料的销售额为91210xy m +,C 饮料销售额:171420xy m +,可求=15m xy ,六月份A 种预计的销售额4xy ,六月份预计的销售数量103x ,A 饮料五月份的销售数量与六月份预计的销售数量之比103:3x x 计算即可【解析】解:某销售商五月份销售A 、B 、C 三种饮料的数量之比为3:2:4,设销售A 饮料的数量为3x ,销售B 种饮料的数量2x, 销售C 种饮料的数量4x ,A 、B 、C 三种饮料的单价之比为1:2:1.,设A 种饮料的单价y . B 、C 两种饮料的单价分别为2y 、y .六月份A 饮料单价上调20%后单价为(1+20%)y,总销售额为m ,A 饮料增加的销售占六月份销售总额的115A 饮料销售额为3xy+115m , A 饮料的销售额与B 饮料的销售额之比为2:3,B 饮料的销售额为31913=215210xy m xy m ⎛⎫++ ⎪⎝⎭ B 饮料的销售额增加部分为3134215xy m xy ⎛⎫+- ⎪⎝⎭∴C 饮料增加的销售额为131342215xy m xy ⎡⎤⎛⎫+- ⎪⎢⎥⎝⎭⎣⎦∴C 饮料销售额:13117134+42215420xy m xy xy xy m ⎡⎤⎛⎫+-=+ ⎪⎢⎥⎝⎭⎣⎦∴191171315210420xy m xy m xy m m +++++= ∴=15m xy六月份A 种预计的销售额1315415xy xy xy +⨯=, 六月份预计的销售数量()1041+20%y 3xy x ÷=∴A 饮料五月份的销售数量与六月份预计的销售数量之比1093:9:10=310x x = 故答案为910【小结】本题考查销售问题应用题,用字母表示数,列代数式,整式的加减法,单项式除以单项式,掌握销售额=销售单价×销售数量是解题关键40.(2021·四川凉山彝族自治州·中考真题)如图,用火柴棍拼成一个由三角形组成的图形,拼第一个图形共需要3根火柴棍,拼第二个图形共需要5根火柴棍;拼第三个图形共需要7根火柴棍;……照这样拼图,则第n 个图形需要___________根火柴棍.【答案】2n +1 【分析】分别得到第一个、第二个、第三个图形需要的火柴棍,找到规律,再总结即可. 【解析】 解:由图可知:拼成第一个图形共需要3根火柴棍, 拼成第二个图形共需要3+2=5根火柴棍, 拼成第三个图形共需要3+2×2=7根火柴棍, ...拼成第n 个图形共需要3+2×(n -1)=2n +1根火柴棍, 故答案为:2n +1. 【小结】此题考查图形的变化规律,找出图形之间的联系,得出运算规律解决问题.三、解答题41.(2021·湖南衡阳市·中考真题)计算:()()()()22224x y x y x y x x y ++-++-. 【答案】23x【分析】利用完全平方公式,平方差公式,单项式乘以多项式的法则,计算合并同类项即可 【解析】解:()()()()22224x y x y x y x x y ++-++-222224x 444x y y x y x xy =+++-+-23x =.【小结】本题考查了完全平方公式,平方差公式,单项式乘以多项式,合并同类项,熟练掌握公式,准确合并计算是解题的关键.42.(2021·浙江金华市·中考真题)已知16x =,求()()()2311313x x x -++-的值. 【答案】1 【分析】直接利用完全平方差公式展开及平方差公式展开后,合并同类项化简,再将16x =代入进去计算. 【解析】解:原式229611962x x x x =-++-=-+ 当16x =时,原式16216=-⨯+=. 故答案是:1.【小结】本题考查了代数式的化简求值,解题的关键是:先利用完全平方差公式,平方差公式,合并同类项运算法则化简,然后代值计算.43.(2021·浙江温州市·中考真题)(1)计算:()0438⨯-+--.(2)化简:()()215282a a a -++. 【答案】(1)-6;(2)22625a a -+.【分析】(1)直接利用有理数乘法法则以及绝对值的性质、二次根式的性质、零指数幂的性质分别化简得出答案;(2)直接利用完全平方公式以及单项式乘以多项式运算法则计算再合并即可得出答案.【解析】解:(1)()0438⨯-+- 12831=-+-+6=-;(2)()()215282a a a -++ 2210254a a a a =-+++22625a a =-+.【小结】此题主要考查了实数运算、整式的混合运算,正确掌握相关运算法则是解题关键.44.(2021·四川南充市·中考真题)先化简,再求值:2(21)(21)(23)x x x +---,其中1x =-.【答案】1210x -,-22【分析】利用平方差公式和完全平方公式,进行化简,再代入求值,即可求解.【解析】解:原式=2241(4129)x x x ---+=22414129x x x --+-=1210x -,当x =-1时,原式=()12110⨯--=-22.【小结】本题主要考查整式的化简求值,熟练掌握完全平方公式和平方差公式,是解题的关键.45.(2021·浙江宁波市·中考真题)(1)计算:()()()2113a a a +-++. (2)解不等式组:21930x x +<⎧⎨-≤⎩①②. 【答案】(1)610a +;(2)34x ≤<.【分析】(1)根据平方差公式和完全平方公式进行多项式乘法,再将结果合并同类项即可; (2)先解出①,得到4x <,再解出②,得到3x ≥,由大小小大中间取得到解集.【解析】解:(1)原式22169a a a =-+++610a =+.(2)解不等式①,得4x <,解不等式②,得3x ≥,所以原不等式组的解是34x ≤<.【小结】本题主要考查了整式的混合运算和解不等式组,关键在于平方差公式、完全平方公式以及不等式基本性质的应用,特别注意不等式的基本性质3,不等号的方向要改变.46.(2021·重庆中考真题)计算:(1)2(23)()a a b a b ++-;(2)22293211x x x x x x ⎛⎫--÷+ ⎪+++⎝⎭. 【答案】(1)223++a ab b ;(2)-31x x + 【分析】(1)根据单项式乘以多项式以及完全平方公式计算即可;(2)利用分式的混合运算法则进行计算即可.【解析】解:(1)2(23)()a a b a b ++-2222+3+2+=a ab a ab b -22=3++a ab b (2)22293211x x x x x x ⎛⎫--÷+ ⎪+++⎝⎭()()()222+3-3+3=11+x x x x x x x ⎛⎫-÷ ⎪++⎝⎭()()()2+3-31=31x x x x x +++ -3=1x x + 【小结】本题考查了整式的混合运算和分式的混合运算,熟练掌握运算法则是解题的关键.47.(2021·浙江中考真题)计算:()()()211x x x x +++-.【答案】21x +【分析】利用单项式乘多项式、平方差公式直接求解即可.【解析】解:原式2221x x x =++-21x =+.【小结】本题考查整式的乘法,掌握单项式乘多项式法则和平方差公式是解题的关键.48.(2021·四川乐山市·中考真题)已知2612(1)(2)A B x x x x x --=----,求A 、B 的值. 【答案】A 的值为4,B 的值为-2【分析】根据分式、整式加减运算,以及二元一次方程组的性质计算,即可得到答案.【解析】(2)(1)12(1)(2)(1)(2)A B A x B x x x x x x x ---=+------, ∴(2)(1)26(1)(2)(1)(2)A xB x x x x x x -+--=----, ∴(2)(1)26A x B x x -+-=-,即()(2)26A B x A B x +-+=-.∴226A B A B +=⎧⎨+=⎩, 解得:42A B =⎧⎨=-⎩∴A 的值为4,B 的值为2-.【小结】本题考查了分式、整式、二元一次方程组的知识;解题的关键是熟练掌握分式加减运算、整式加减运算、二元一次方程组的性质,从而完成求解.49.(2021·安徽)某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形地砖为连续排列.[观察思考]当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2);当正方形地砖有2块时,等腰直角三角形地砖有8块(如图3);以此类推,[规律总结](1)若人行道上每增加1块正方形地砖,则等腰直角三角形地砖增加块;(2)若一条这样的人行道一共有n(n为正整数)块正方形地砖,则等腰直角三角形地砖的块数为(用含n的代数式表示).[问题解决](3)现有2021块等腰直角三角形地砖,若按此规律再建一条人行道,要求等腰直角三角形地砖剩余最少,则需要正方形地砖多少块?n ;(3)1008块【答案】(1)2 ;(2) 24【分析】(1)由图观察即可;(2)由每增加一块正方形地砖,即增加2块等腰直角三角形地砖,(3)再结合题干中的条件正方形地砖只有1块时,等腰直角三角形地砖有6块,递推即可;利用上一小题得到的公式建立方程,即可得到等腰直角三角形地砖剩余最少时需要正方形地砖的数量.【解析】。

中考数学复习之整式,整式的概念与整式的运算基础练习题

中考数学复习之整式,整式的概念与整式的运算基础练习题

3. 整式知识过关2. 整式的加减 (1)同类项:_______相同,且_____和___也分别相同的项,所有的____都是同类项. (2)合并同类项的法则:_____和____不变,________.(3)去括号法则:当括号前面是“+”时,把括号和它前面的“+”去掉,括号内各项都___; 当括号前面是“—”时,把括号和它前面的“—”去掉,括号内各项都_______。

(4)整式的加减:先_______,再________5. 乘法公式(1)平方差公式:=-+))((b a b a __________ (2)完全平方式:=±)(b a _________ 考点分类:考点1 同类项的概念例1若a y x 3-与y x b 是同类项,则a+b 的值是( )A.2B.3C.4D.5考点2 幂的运算例2下列运算正确的是( )A. 6328)2(a a -=-B.6332a a a =+C.236a a a =÷D.3332a a a =⋅考点3 整式的运算例3 下列运算正确的是( )A. 22223x x x =-B.222)2(a a -=-C.222)(b a b a +=+D.12)1(2--=--a a考点4 乘法公式例4 下列计算正确的是( )A. 222)(y x y x +=+B.2222)(y xy x y x --=-C.222)2)(2(y x y x y x -=-+D.2222)(y xy x y x +-=+-考点5代数式的值例5 (1)先化简再求值:(a +2)(a -2)+a (1-a ),其中a =5(2) 已知352=-x x ,求代数式的值:1)1()12)(1(2++---x x x方法指引:整体代入思想若0532=--y x ,则6262--x y =_________.真题演练1.下列运算正确的是()A.a2•a2=2a4B.a3+a3=2a6C.(a3)2=a6D.a6÷a2=a3 2.若关于x的二次三项式4x2+(m﹣1)x+1是一个完全平方式,则m的值为()A.m=﹣5B.m=﹣3C.m=5或m=﹣3D.m=﹣5或m=3 3.下列计算正确的是()A.a3•a4=a6B.(﹣a)3÷(﹣a)2=﹣aC.a2+a2=2a4D.(﹣3mn)2=﹣6m2n24.若a m=3,a n=2,则a2m﹣n的值为()A.6B.9C.4.5D.15.若x m=2,x m+n=6,则x n=()A.2B.3C.6D.126.代数式x2+2,1a +4,3ab27,abc,5,1π,﹣x中,整式的个数是()A.7B.6C.5D.4 7.已知(x+y)2=49,(x﹣y)2=25,则xy=()A.﹣6B.6C.12D.248.若m,n互为相反数,则2(2m﹣n﹣5)﹣9(m+13n)的值为()A.﹣5B.﹣10C.5D.10 9.下列说法正确的是()A.多项式x2﹣2x﹣1的常数项是1B.0不是单项式C.多项式2ab﹣3b+2的次数是3D.−πab24的系数是−π4,次数是310.已知(m+3)x|m+1|y3是关于x、y的五次单项式,则m的值为()A.﹣1B.1C.﹣3D.311.计算(﹣1)2n+1﹣(﹣3)2(其中n为正整数)的结果是.12.若3x=4,9y=7,则3x﹣2y的值为.13.若9x2+mxy+y2是一个完全平方式,则m=.14.已知线段AB=m,BC=n,且m2﹣mn=28,mn﹣n2=12,则m2﹣2mn+n2等于.15.若12a 6+xb 3y 与3a 3b 6是同类项,则3y 3+4x 2y ﹣4y 3﹣2x 2y = .16.计算:(1)[3xy 3+(xy )2]÷xy ; (2)(x +1)2﹣(x +2)(x ﹣2).课后作业1.一个多项式与x 2﹣3x +2的和是2x +5,则这个多项式为( ) A .x 2﹣x ﹣7B .﹣x 2﹣x ﹣3C .﹣x 2+5x +3D .x 2﹣5x ﹣32.单项式﹣3π2x 3y 的系数和次数分别是( ) A .﹣3和6B .﹣3和5C .﹣3π2和4D .﹣3π2和33.下列计算结果正确的是( ) A .a 8÷a 4=a 2 B .(﹣2ab 2)3=﹣8a 3b 6 C .(a 3)2=a 5D .(1+2a )2=4a 2+2a +14.下列计算中,正确的是( ) A .y =3x +2 B .a 6÷a 2=a 3 C .(a 2)3=a 6D .2a 2+3a 2=5a 4 5.已知单项式﹣2x m y 2的次数为5,求m 的值 . 6.添括号:x 2﹣xy +y 2=x 2﹣( ).7.我们学习的平方差公式不但可以使运算简便,也可以解决一些复杂的数学问题.尝试计算(1+12)(1+122)(1+124)(1+128)+1215的值是 . 8.已知多项式(﹣2x 2+ax ﹣y +6)﹣(2bx 2﹣3x +5y ﹣1)的值与字母x 的取值无关,则a = ,b = .9.若10x =a ,10x +y +2=100ab ,则10y = . 10.计算:(512)2022×(−2.4)2023= .11.若x 2﹣2(m ﹣1)xy +16y 2是完全平方式,则m = . 12.请写出一个只含有字母x ,y ,且次数不超过3的多项式: . 13.若x ﹣y ﹣3=0,则代数式x 2﹣y 2﹣6y ﹣2的值等于 .14.计算(1)(2x﹣3)(3x+2)﹣(﹣3x)2;(2)(x﹣y)2﹣(﹣x+y)(y+x);(3)先化简,再求值:[3a(ab﹣2b)﹣(ab﹣3)2+9]÷(﹣2ab),其中a=−23,b=2.15.计算:(1)(x+3)(2x﹣1)﹣5x2;(2)4x(x﹣2y)﹣(2x﹣3y)2;(3)先化简,再求值:(a+2b)2﹣(a﹣2b)(﹣a﹣2b)﹣(3a)2,其中a=﹣1,b=1 2.冲击A+18.在△ABC中,P为边AB上一点(1)如图1,若△ACP=△B,求证:AC2=AP∙AB;(2)若M为CP的中点,AC=2,△如图2,若△PBM=△ACP,AB=3,求BP的长;△如图3,若△ABC=45°,△A=△BMP=60°,直接写出BP的长.。

中考数学 考点跟踪突破2 整式及其运算

中考数学 考点跟踪突破2 整式及其运算

整式及其运算一、选择题(每小题5分,共25分)1.(沈阳模拟)下列计算正确的是( B ) A .a 2·a 3=a 6 B .(-2ab)2=4a 2b 2 C .(a 2)3=a 5 D .3a 2b 2÷a 2b 2=3ab 22.(2015·临沂)观察下列关于x 的单项式,探究其规律:x ,3x 2,5x 3,7x 4,9x 5,11x 6,… 按照上述规律,第2015个单项式是( C ) A .2015x 2015 B .4029x 2014 C .4029x 2015 D .4031x 20153.(抚顺模拟)下列各式的变形中,正确的是( A ) A .(-x -y)(-x +y)=x 2-y 2 B .1x -x =1-x xC .x 2-4x +3=(x -2)2+1D .x ÷(x 2+x)=1x+14.(本溪模拟)定义运算:a ⊗b =a(1-b).下面给出了关于这种运算的几种结论:①2⊗(-2)=6;②a ⊗b =b ⊗a ;③若a +b =0,则(a ⊗a)+(b ⊗b)=2ab ;④若a ⊗b =0,则a =0或b =1,其中结论正确的序号是( A )A .①④B .①③C .②③④D .①②④5.若m ,n 是正数,m -n =1,mn =2,则m +n =( B ) A .-3 B .3 C .±3 D .9二、填空题(每小题5分,共25分)6.(2015·绵阳)计算:a(a 2÷a)-a 2=__0__.7.(2015·大庆)若a 2n =5,b 2n =16,则(ab)n=8.(丹东模拟)计算:b(2a +5b)+a(3a -2b)=__5b +3a 2__. 9.(2015·连云港)已知m +n =mn ,则(m -1)(n -1)=__1__. 10.请看杨辉三角①,并观察下列等式②:根据前面各式的规律,则(a +b)6=__a 6+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6__. 三、解答题(共50分) 11.(10分)计算:(1)(锦州模拟)化简:(a 2b -2ab 2-b 3)÷b-(a -b)2;解:原式=-2b 2(2)已知x 2+y 2=25,x +y =7,且x >y ,求x -y 的值.解:由题意可得xy =12,∵x >y ,∴x -y =(x -y )2=112.(10分)(1)(2015·南昌)先化简,再求值:2a(a +2b)-(a +2b)2,其中a =-1,b =3;解:原式=2a 2+4ab -a 2-4ab -4b 2=a 2-4b 2,当a =-1,b =3时,原式=1-12=-11(2)(2015·长沙)先化简,再求值:(x+y)(x-y)-x(x+y)+2xy,其中x=(3-π)0,y=2.解:(x+y)(x-y)-x(x+y)+2xy=x2-y2-x2-xy+2xy=xy-y2,∵x=(3-π)0=1,y=2,∴原式=2-4=-213.(10分)利民商店出售一种原价为a的商品,有如下几种方案:(1)先提价10%,再降价10%;(2)先降价10%,再提价10%;(3)先提价20%,再降价20%.问用这三种方案调价的结果是否一样?最后是不是都恢复了原价?解:(1)a(1+10%)(1-10%)=0.99a (2)a(1-10%)(1+10%)=0.99a (3)a(1+20%)(1-20%)=0.96a,∴调价结果不都一样,只有(1)(2)相同,最后都没有恢复原价14.(10分)先阅读后作答:我们已经知道,根据几何图形的面积关系可以说明完全平方公式,实际上还有一些等式也可以用这种方式加以说明,例如:(2a+b)(a+b)=2a2+3ab +b2,就可以用图(1)的面积关系来说明.①根据图(2)写出一个等式__(2a+b)(2b+a)=2b2+4ab+2a2__;②已知等式:(x+p)(x+q)=x2+(p+q)x+pq,请你画出一个相应的几何图形加以说明.解:②15.(10分)(1)填空:(a-b)(a+b)=__a2-b2__;(a-b)(a2+ab+b2)=__a3-b3__;(a-b)(a3+a2b+ab2+b3)=__a4-b4__.(2)猜想:(a-b)(a n-1+a n-2b+…+ab n-2+b n-1)=__a n-b n__.(其中n为正整数,且n≥2)(3)利用(2)猜想的结论计算:29-28+27-…+23-22+2.解:(3)29-28+27-…+23-22+2=(2-1)(28+26+24+22+2)=342。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点跟踪训练2整式及其运算
一、选择题
1.(2011·嘉兴)下列计算正确的是()
A.x2·x=x3B.x+x=x2
C.(x2)3=x5D.x6÷x3=x2
答案 A
解析x2·x=x2+1=x3,正确理解“同底数幂相乘”法则.
2.(2011·宁波)把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为m cm,宽为n cm)的盒子底部(如图②)盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是()
A.4m cm B.4n cm
C.2(m+n) cm D.4(m-n) cm
答案 B
解析设小长方形卡片的长为a、宽为b,则有a+2b=m,m-a-2b=0.图中较大的阴影部分(矩形)的一边为a,另一边为(n-2b).较小的阴影部分(矩形)的一边为(m-a),另一边为(n-a),其周长和为2×[a+(n-2b)+(n-a)+(m-a)]=2×(2n+m-a-2b)=4n.
3.(2011·广州)若a<c<0<b,则abc与0的大小关系是()
A.abc<0 B.abc=0
C.abc>0 D.无法确定
答案 C
解析因为a、b、c中有两个负数,所以abc>0.
4.(2011·邵阳)如果□×3ab=3a2b,则□内应填的代数式是()
A.ab B.3ab C.a D.3a
答案 C
解析□=3a2b÷3ab=a.
5.(2011·湖北)将代数式x2+4x-1化成(x+p)2+q的形式为()
A.(x-2)2+3 B.(x+2)2-4
C.(x+2)2-5 D.(x+2)2+4
答案 C
解析x2+4x-1=x2+4x+4-5=(x+2)2-5.
二、填空题
6.(2011·金华)“x与y的差”用代数式可以表示为________.
答案x-y
解析减法运算的结果叫做“差”,按读法的顺序书写即可.
7.(2011·东莞)按下面程序计算:输入x=3,则输出的答案是________.
答案26
解析根据题意,输出x3-x+2.当x=3时,原式=33-3+2=26.
8.(2011·杭州)当x=-7时,代数式(2x+5)(x+1)-(x-3)(x+1)的值为______.
答案-6
解析化简原式,得(x+1)(x+8),当x=-7时,原式=(-7+1)×(-7+8)=-6×1=-6.
9.(2011·荆州)已知A=2x,B是多项式,在计算B+A时,小马虎同学把B+A看成了
B ÷A ,结果得x 2+12
x ,则B +A =________. 答案 2x 3+x 2+2x
解析 因为A =2x ,B ÷A =x 2+12
x ,所以B =⎝⎛⎭⎫x 2+12x ·2x =2x 3+x 2,故B +A =(2x 3+x 2)+2x =2x 3+x 2+2x .
10.(2011·乌兰察布)将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 n 个图形有________个小圆. (用含 n 的代数式表示)
答案 n (n +1)+4或n 2+n +4
解析 第1个图形有2+4=(1×2+4)个小圆,第2个图形6+4=(2×3+4)个小圆,第3个图形有12+4=(3×4+4)个小圆,……第n 个图形有[n (n +1)+4]个小圆.
三、解答题
11.(2011·金华)已知2x -1=3,求代数式(x -3)2+2x (3+x )-7的值.
解 由2x -1=3得x =2,
又(x -3)2+2x (3+x )-7=x 2-6x +9+6x +2x 2-7=3x 2+2,
∴当x =2时,原式=3×22+2=12+2=14.
12.(2011·北京)已知a 2+2ab +b 2=0,求代数式a (a +4b )-(a +2b )(a -2b )的值. 解 a (a +4b )-(a +2b )(a -2b )
=a 2+4ab -(a 2-4b 2)
=4ab +4b 2.
∵ a 2+2ab +b 2=0,即(a +b )2=0,
∴ a +b =0,
∴ 原式=4b (a +b )=0.
13.(2011·益阳)观察下列算式:
① 1 × 3-22=3-4=-1
② 2 × 4-32=8-9=-1
③ 3 × 5-42=15-16=-1
④ __________________________
……
(1)请你按以上规律写出第4个算式;
(2)把这个规律用含字母的式子表示出来;
(3)你认为(2)中所写出的式子一定成立吗?并说明理由.
解 (1)4×6-52=24-25=-1.
(2)答案不唯一.如n ()n +2-()n +12=-1.
(3)n ()n +2-()n +12 =n 2+2n -()n 2+2n +1
=n 2+2n -n 2-2n -1 =-1.
所以一定成立.
14.(2011·凉山)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了()a +b n (n 为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律.例
如,在三角形中第三行的三个数1,2,1,恰好对应()a +b 2=a 2+2ab +b 2展开式中的系数;第
四行的四个数1,3,3,1,恰好对应着()a +b 3=a 3+3a 2b +3ab 2+b 2展开式中的系数等等.
(1)根据上面的规律,写出()a +b 5的展开式;
(2)利用上面的规律计算:25-5×24+10×23-10×22+5×2-1.
解 (1)()a +b 5=a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5.
(2)原式=25+5×24×()-1+10×23×()-12+10×22×()-13+5×2×()-14+()-15=(2-1)5=1.
15.(2011·东莞)如下数表是由从1 开始的连续自然数组成的,观察规律并完成各题的解答.
(1)表中第8行的最后一个数是______,它是自然数______的平方,第8行共有______
个数;
(2)用含n 的代数式表示:第n 行的第一个数是______,最后一个数是________,第n 行共有______个数;
(3)求第n 行各数之和.
解 (1)64,8,15;
(2)(n -1)2+1,n 2,2n -1;
(3)第2行各数之和等于3×3;第3行各数之和等于5×7;第4行各数之和等于7×13;第5行各数之和等于9×21;……类似的,第n 行各数之和等于(2n -1)(n 2-n +1)=2n 3-3n 2+3n -1.
四、选做题
16.试确定a 和b ,使x 4+ax 2-bx +2能被x 2+3x +2整除.
解 由于x 2+3x +2=(x +1)(x +2),因此,设x 4+ax 2-bx +2=(x +1)(x +2)·M , 当x =-1时,即1+a +b +2=0,
当x =-2时,即16+4a +2b +2=0,
∴⎩⎪⎨⎪⎧ 1+a +b +2=0,16+4a +2b +2=0, ⎩
⎪⎨⎪⎧
a +
b =-3,2a +b =-9, 解方程组,得⎩⎪⎨⎪⎧ a =-6,b =3.。

相关文档
最新文档