中考数学考点专题训练实数

合集下载

中考数学实数专题训练

中考数学实数专题训练

实数专题训练一、填空题:1、-2 的倒数是____。

2、4 的平方根是____。

3、-27 的立方根是____。

4、3-2 的绝对值是____。

5、2004年我国外汇储备327000亿美元,用科学记数法表示为____亿美元。

6、比较大小:-12 ____-13。

7、近似数0.020精确到____位,它有____个有效数字。

8、若 n 为自然数,则(-1)2n+(-1)2n+1=____。

9、若实数 a、b 满足|a-2|+( b+12)2=0,则 ab=____。

10、在数轴上表示 a 的点到原点的距离为 3,则 a-3=____。

11、已知一个矩形的长为 3cm,宽为 2cm,试估算它的对角线长为____。

二、选择题:1、下列各数中是负数的是()A、-(-3)B、-(-3)2C、-(-2)3D、|-2|2、绝对值大于 1 小于 4 的整数的和是()A、0B、5C、-5D、103、|-22|的值是()A.-2 B.2 C.4 D.-44、下列说法不正确的是()A.没有最大的有理数 B.没有最小的有理数C.有最大的负数 D.有绝对值最小的有理5、下列命题中正确的个数有()①实数不是有理数就是无理数② a<a+a ③121的平方根是±11④在实数范围内,非负数一定是正数⑤两个无理数之和一定是无理数A、1 个B、2 个C、3 个D、4 个6、已知| x |=3,| |=7,且 x<0,则 x+的值等于()A、10B、4C、±10D、±4三、计算:1、-212 ÷(-5)×152、(134-78-712)÷yyy(-13 4 )3、(-11 2 )3×3-2+2° 4、π+3-2 3(精确到0.01)5.计算:212221-+-- 6、计算:121(2)2(3)3-⎛⎫-+⨯-+ ⎪⎝⎭.7.计算:0(π2009)|2|-.四、解答题:1、把下列各数填入相应的大括号里。

2023年中考数学考点讲练专题3 实数的运算

2023年中考数学考点讲练专题3 实数的运算

专题3 实数的运算考点一:实数的大小比较1.(2022·四川成都·中考模拟)在实数 3.14-,-3,3-π-中,最小的数是( ) A . 3.14-B .-3C .3D .π-2.(2022·湖南益阳·21,2,13中,比0小的数是( )A 2B .1C .2D .133.(2022·吉林长春·中考真题)实数a ,b 在数轴上对应点的位置如图所示,下列结论正确的是( ) A .0a > B .a b <C .10b -<D .0ab >4.(2022·广东深圳·中考二模)下列数中,大于-1且小于0的是( ) A .3B .32-C .23-D .235.(2022·天津红桥·中考三模)估计17- ). A .5-和4-之间 B .4-和3-之间 C .3-和2-之间D .2-和1-之间6.(2022·山东临沂·23“>”或“<”或“=”).7.(2022·海南·310___________.考点二:实数的基本运算8.(2022·浙江·杭州中考模拟预测)下列计算结果是正数的是( ) A .1﹣2B .﹣π+3C .(﹣3)×(﹣5)2D .|59.(2022·河北唐山·中考三模)运算后结果正确的是( ) A .12332=B 342 C 8220= D 2632=10.(2022·天津·中考模拟预测)计算sin30tan 45︒-︒( ) A 31- B .12-C 32D .3211.(2022·重庆中考二模)计算:1122-⎛⎫-+= ⎪⎝⎭( ) A .0 B .4 C .-2D .3212.(2022·广东深圳·01(1+的结果是( )A .1BC .2D .113.(2022·山东威海·中考真题)按照如图所示的程序计算,若输出y 的值是2,则输入x 的值是 _____.14.(2022·陕西·中考真题)计算:3=______.15.(2022·四川攀枝花·0(1)=-__________.16.(2022·辽宁阜新·中考真题)计算:22-=______.17.(2022·广东肇庆·______________.18.(2022·湖北黄石·中考真题)计算:20(2)(2022--=____________.考点三:实数的混合运算19.(2022·广东·佛山市中考模拟)计算0312(2017)()2π----+的结果为( )A .3-B .3C .6D .920.(2022·山东威海·302(1)(1)2π-----的结果是( )A .74B .34C .14D .14-21.(2022·江苏南京·中考模拟)计算20212020的结果是( )A B .C .D 22.(2022·广东·东莞市中考三模)计算:10|2|3sin 302(2022)π--+---︒等于( )A .2-B .12-C .2D .023.(2022·广东惠州·中考二模)101tan60|(3)2π-︒⎛⎫---+-= ⎪⎝⎭__________.24.(2022·山东泰安·中考三模)()022112cos 45π--+-︒=________.25.(2022·重庆长寿·中考模拟)计算:20112160π1tan --+-︒+⋅=-()__________.26.(2022·内蒙古内蒙古·中考真题)计算:1012cos30(3π)2-︒⎛⎫-++- ⎪⎝⎭27.(2022·湖南·中考真题)计算:0112cos 45( 3.14)1()2π-︒+-+.28.(2022·湖南郴州·中考真题)计算:()12022112cos3013-⎛⎫--︒+ ⎪⎝⎭.29.(2022·广东北江实验学校三模)计算:()20120222sin 6023π-⎛⎫+-+︒ ⎪⎝⎭30.(2022·湖南·(032cos 60π+︒.31.(2022·四川德阳·()()023.143tan 6012π---︒+-.答案与解析考点一:实数的大小比较1.(2022·四川成都·中考模拟)在实数 3.14-,-3,π-中,最小的数是( ) A. 3.14- B .-3C .D .π-∴33 3.14<,在实数 3.14-,-3,3-,故选:D .【点睛】本题主要考查实数的比较大小,关键在于绝对值符号的去掉,根据负数绝对值越大,反而越小.2.(2022·湖南益阳·中考真题)四个实数﹣1,2,13中,比0小的数是( )A B .1 C .2D .133.(2022·吉林长春·中考真题)实数a ,b 在数轴上对应点的位置如图所示,下列结论正确的是( )A .0a >B .a b <C .10b -<D .0ab >【答案】B【分析】观察数轴得:2123a b -<<-<<<,再逐项判断即可求解.【详解】解:观察数轴得:2123a b -<<-<<<,故A 错误,不符合题意;B 正确,符合题意; ∴10b ->,故C 错误,不符合题意; ∴0ab <,故D 错误,不符合题意; 故选:B【点睛】本题主要考查了实数与数轴,实数的大小比较,利用数形结合思想解答是解题的关键. 4.(2022·广东深圳·中考二模)下列数中,大于-1且小于0的是( )A .B .32-C .23-D .23【详解】解:13<<,故A 不符合题意;B 不符合题意;,故C 符合题意;5.(2022·天津红桥·中考三模)估计 ). A .5-和4-之间 B .4-和3-之间 C .3-和2-之间 D .2-和1-之间【详解】解:1617<5-【点睛】本题考查无理数的估算,是基础考点,掌握相关知识是解题关键.6.(2022·山东临沂·“>”或“<”或“=”).【详解】解:22()2=1123>,∴223>故答案为:.【点睛】本题考查了实数的大小比较,解题的关键是灵活变通,比较两者平方后的结果.7.(2022·海南·___________.考点二:实数的基本运算8.(2022·浙江·杭州中考模拟)下列计算结果是正数的是( )A .1﹣2B .﹣π+3C .(﹣3)×(﹣5)2D .|【点睛】本题考查了实数,有理数的混合运算,熟练掌握运算法则是解本题的关键. 9.(2022·河北唐山·中考三模)运算后结果正确的是( )A.12=B 2 C 0= D =10.(2022·天津·中考模拟预测)计算sin30tan 45︒-︒( )A 1B .12-C D .3211.(2022·重庆中考二模)计算:1122-⎛⎫-+= ⎪⎝⎭( )A .0B .4C .-2D .32故选:B .【点睛】本题考查了实数的运算,正确理解实数的运算法则是解本题的关键.12.(2022·广东深圳·01(1+的结果是( )A.1 B C .2D .113.(2022·山东威海·中考真题)按照如图所示的程序计算,若输出y 的值是2,则输入x 的值是 _____.14.(2022·陕西·中考真题)计算:3-=______.15.(2022·四川攀枝花·0-__________.(1)=-【答案】3【分析】根据立方根的定义,零指数次幂的定义以及有理数减法法则,进行计算即可.=--=-.【详解】解:原式213-.故答案为:3【点睛】本题考查了立方根的定义,零指数次幂的定义以及有理数减法法则,正确进行计算是解题的关键.16.(2022·辽宁阜新·中考真题)计算:22-______.17.(2022·广东肇庆·中考二模)计算:=______________.18.(2022·湖北黄石·中考真题)计算:20--=____________.(2)(2022【答案】3【分析】根据有理数的乘法与零次幂进行计算即可求解.-=.【详解】解:原式=413故答案为:3.【点睛】本题考查了实数的混合运算,掌握零次幂以及有理数的乘方运算是解题的关键.考点三:实数的混合运算19.(2022·广东·佛山市中考模拟)计算0312(2017)()2π----+的结果为( ) A .3-B .3C .6D .920.(2022·山东威海·302(1)(1)2π-----的结果是( )A .74B .34C .14D .14-21.(2022·江苏南京·中考模拟)计算20212020的结果是( )A B .C .D 【答案】A【分析】把较高次幂拆分后逆用积的乘方法则,进行运算即可得解.22.(2022·广东·东莞市中考三模)计算:10|2|3sin 302(2022)π--+---︒等于( )A .2-B .12-C .2D .01123122 312122=+-- =2,23.(2022·广东惠州·中考二模)101tan60|(3)2π-︒⎛⎫---+-= ⎪⎝⎭__________. 【答案】-1【分析】根据负整数指数幂,特殊角三角函数值,绝对值,零指数幂,二次根式的性质化简等计算法则求解即可.24.(2022·山东泰安·中考三模)()022112cos 45π--+-︒=________.25.(2022·重庆长寿·中考模拟)计算:20112160π1tan --+-︒+⋅-()__________.26.(2022·内蒙古内蒙古·中考真题)计算:1012cos30(3π)2-︒⎛⎫-++- ⎪⎝⎭27.(2022·湖南·中考真题)计算:0112cos 45( 3.14)1()2π-︒+-++.28.(2022·湖南郴州·中考真题)计算:()12022112cos3013-⎛⎫--︒+ ⎪⎝⎭.=3.【点睛】本题考查了特殊角的三角函数值、绝对值的意义和负整数指数幂的运算法则等知识,熟记特殊角的三角函数值是解答本题的关键.29.(2022·广东中考三模)计算:()20120222sin 6023π-⎛⎫+-+︒ ⎪⎝⎭30.(2022·湖南·(032cos 60π+︒.31.(2022·四川德阳·()()023.143tan 6012π---︒++-.。

中考数学专题复习《实数的运算》测试卷-附带答案

中考数学专题复习《实数的运算》测试卷-附带答案

中考数学专题复习《实数的运算》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列说法中正确的是()A.√25的值是±5B.两个无理数的和仍是无理数C.-3没有立方根.D.√a2−b2是最简二次根式.2.实数m,n在数轴上的对应点的位置如图所示,下列结论中正确的是()A.|m|<|n|B.m+n>0C.m−n<0D.mn>0 3.计算:|−2|+3sin30°−2−1−(2022−π)0等于()A.-2B.−12C.2D.04.观察下列各式:√1+112+122=1+11×2√1+122+132=1+12×3√1+132+142=1+13×4…请利用你所发现的规律计算√1+112+122+√1+122+132+√1+132+142+⋯⋯+√1+192+1102其结果为()A.8910B.9910C.989D.8895.估计√2(√23−√2)的值应在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间.6.秦兵马俑的发现被誉为“世界第八大奇迹” 兵马俑的眼睛到下巴的距离与头顶到下巴的距离之比为√5−12下列各数中最接近于√5−12的是()A.25B.12C.35D.347.若x为实数在“(√3+1)◯ x”的“◯”中添上一种运算符号(在“+-× ÷”中选择)后其运算的结果为有理数则不可能是()A.√3−1B.1−√3C.3√3D.1+√38.计算sin60°⋅tan30°−sin45°⋅cos30°的结果是()A.−12+√62B.√32+12C.−√32+12D.12−√649.下列运算正确的是()A .√3+√2=√5B .|3.14−π|=π−3.14C .a 2⋅a 3=a 6D .(a −1)2=a 2−2a −110.今年“十一”期间 广州部分公园举行游园活动 据统计 天河公园早晨6时30分有2人进入公园 接下来的第一个30分钟内有4人进去1人出来 第二个30分钟内有8人进去2人出来 第三个30分钟内有16人进去3人出来 第四个30分钟内有32人进去4人出来.按照这种规律进行下去 到上午11时30分公园内的人数是( )A .211−47B .212−57C .213−68D .214−80二 填空题11.(√3−1.732)0+(−14)−2= .12.【中考变形】已知a =(12)−1+(−√3)0,b =(√3+√2)(√3−√2) 则√a +b = .13.计算:|−5|+(3−π)0−6×3−1+√3−1−2sin60°= 。

中考数学考点《实数》专项练习题-附答案

中考数学考点《实数》专项练习题-附答案

中考数学考点《实数》专项练习题-附答案学校: 班级: 姓名: 考号:一、单选题1.对 √2 描述不正确的一项是( )A .面积为2的正方形的边长B .它是一个无限不循环小数C .它是2的一个平方根D .它的小数部分大于2- √2 2.下列各式比较大小正确的是( )A .-√2<-√3B .-√55>-√66C .-π<-3.14D .-√10>-3 3.在实数−23,0,√43,π,√9中,无理数有 ( )A .1个B .2个C .3个D .4个4.估算√5+√15的运算结果应在( )A .3到4之间B .4到5之间C .5到6之间D .6到7之间5.满足 −√2<x <√5 的整数x 是( )A .-1,0,1,2B .-2,-1,0,1C .-1,1,2,3D .0,1,2,36.若某自然数的立方根为a ,则它前面与其相邻的自然数的立方根是( )A .a −1B .√a −13C .√a 3−13D .a 3−17.如图,已知数轴上的点A ,B ,C ,D 分别表示数﹣2、1、2、3,则表示数的点P 应落在线段( )A .AO 上B .OB 上C .BC 上D .CD 上8.如图,将五个边长为1的小正方形组成的十字形纸板沿虚线剪开,把剪下的①放在②的位置,③放在④的位置,⑤放在⑥的位置,⑦放在⑧的位置,这样重新拼成一个大正方形,则大正方形的边长为( )A .2B .4C .5D .√5二、填空题9.一个正数x 的平方根分别是2a ﹣3与5﹣a ,则x 等于 .10.若n 为整数,且n<√93<n+1,则n 的值是 .11.-64的立方根是 , √16 的平方根是 .12.已知:x-2的平方根是±2, 2x +y +7 的立方根为3,则 x 2+y 2 的算术平方根为 .13.如图,正方形 OABC 的边 OC 落在数轴上,点 C 表示的数为 1 ,点 P 表示的数为 −1 ,以 P 点为圆心, PB 长为半径作圆弧与数轴交于点 D ,则点 D 表示的数为 .三、解答题14.在数轴上表示下列各数,并用“<”连接起来.-(-2),-|-3.5|,0, √14 和(-2)215. 计算:(1)√16−√−83+√−1273; (2)√9+√−1253+|√3−2|.16.已知实数a ,b ,满足 √3a−b+|a 2√a+7 =0,c 是 √35 的整数部分,求a+2b+3c 的平方根.17.将一个体积为 125cm 3 的立方体体积增加V ,而保持立方体的形状不变,则棱长应该增加多少?(用含有V 的代数式表示);若 V =875cm 3 ,则棱长应增加多少厘米?18.阅读下面的文字,解答问题:大家知道 √2 是无理数,而无理是无限不循环小数,因此 √2 的小数部分我们不可能全部写出来,于是小明用 √2 ﹣1来表示 √2 的小数部分,事实上,小明的表示方法是有道理的,因为 √2 的整数部分是1,将这个数减去其整数部分,差就是 √2 的小数部分,又例如:∵23<( √7 )2<32,即2< √7 <3,∴√7 的整数部分为2,小数部分为( √7 ﹣2). 请解答(1)√11 的整数部分是 ,小数部分是 .(2)如果 √5 的小数部分为a , √41 的整数部分为b ,求a+b ﹣ √5 的值.(3)已知x 是3+ √5 的整数部分,y 是其小数部分,直接写出x ﹣y 的值.参考答案1.【答案】D2.【答案】C3.【答案】B4.【答案】D5.【答案】A6.【答案】C7.【答案】B8.【答案】D9.【答案】4910.【答案】211.【答案】-4;±212.【答案】1013.【答案】D14.【答案】解:描点如图所示:所以-|-3.5|< 3√−27 <0< √14<-(-2)><(-2)2.15.【答案】(1)解:原式=4−(−2)+(−13)=4+2−1 3=523;(2)解:原式=3−5+2−√3=−√3.16.【答案】解:∵实数a,b,满足√3a−b+|a2√a+7=0 ∴a2﹣49=0∴a=±7∵a+7>0∴a=7∵3a ﹣b=0∴b=21∵c 是 √35 的整数部分∴c=5∴a+2b+3c=7+2×21+3×5=64∴a+2b+3c 的平方根为±817.【答案】解:依题意得:棱长应该增加: √125+V 3−√1253=√125+V 3−5 (厘米) 当 V =875 时√125+V 3−5=√125+8753−5=10−5=5 (厘米). 18.【答案】(1)3;√11−3(2)解:∵√4<√5<√9∴2<√5<3∵√5 的小数部分为a∴a=√5−2;∵√36<√41<√49∴6<√41<7∵√41 的整数部分为b∴b=6;∴ a+b ﹣ √5 =√5−2+6−√5=4.(3)解: 7−√5。

1.1实数及其运算知识点演练(讲练)-2023届中考数学一轮大单元复习(解析版)

1.1实数及其运算知识点演练(讲练)-2023届中考数学一轮大单元复习(解析版)

专题1.1实数及其运算知识点演练考点1:实数的分类例1.(2022·浙江·温州市南浦实验中学七年级期中)把下列各数的序号填入相应的集合里.,④7,⑤36,⑥3.1313313331⋯(两个“1”之间依次多一个“3”).①0,②―4,③23整数∶______;分数∶______;无理数∶________;1.(2022·陕西宝鸡·八年级期中)下列说法中正确的是( )A.有理数都是有限小数B.无限小数都是无理数C.无理数都是无限小数D.π是分数2【答案】C【分析】根据有理数的定义及无理数的定义即可得到答案.【详解】解:A选项无限循环小数也是有理数,故A不正确;B选项无限循环小数也是有理数,故B不正确;2.(2022·江苏·沭阳县怀文中学七年级期中)下列各数中,是无理数的是()A.13B.1.732C.―πD.2273.(2022·四川·成都嘉祥外国语学校八年级期中)以下四个数:―2,3.14,227,0.101,无理数的个数是( )A.1B.2C.3D.44.(2022·广东河·八年级期中)在5,―0.333⋯,0,0.10010001⋯,38,(―2)0,3.1415,2.10101⋯(相邻两个1之间有1个0)中,无理数有()A.1个B.2个C.3个D.4个5.(2022·吉林·农安县新农乡初级中学八年级期中)下列各数3.1415926,9,1.212212221……(相邻两,2―π,―2020,4中,有理数有___________个.个l之间2的个数逐次加1),176.(2022··七年级期中)把下列各数填入相应的横线内:,0,5.-6,π,―23整数:__________________;负数:__________________;实数:__________________.7.(2022·浙江·余姚市子陵中学教育集团七年级期中)把下列各数的序号分别填入相应的大括号内:①0,②-π,③1.5,④―25,⑤―6,⑥1.1010010001…(每两个“1”之间依次多1个“0”)7负数:{___________…};整数:{___________…};无理数:{___________…}.8.(2022·浙江宁波·七年级期中)把下列各数对应的序号填在相应的括号里.①0;②3;③-2.5;④π2;⑤-57;⑥|―3|;⑦1.202002…… (每两个“2”之间依次多一个“0”).正整数:()负分数:()无理数:()【答案】⑥;③⑤;②④⑦【分析】根据正整数,负分数和无理数的概念,即可求解.【详解】解:|―3|=3,正整数:(⑥)负分数:(③⑤)无理数:(②④⑦)【点睛】本题主要考查实数的分类,掌握无理数是无限不循环小数是解题的关键.9.(2022·福建省大田县教师进修学校八年级期中)把下列各数填入相应的括号内:2 3,3―5,0.·7,―3.14,36,(―2)2,1.010010001⋯(1)无理数:{…};(2)负实数:{…};(3)整数:{…};(4)分数:{…};10.(2022·浙江金华·七年级期中)把下列各数对应的编号填在相应的大括号里:(1)―49,(2)18,(3)57,(4)π2,(5)—3.141,(6)0,(7)7,(8)80%,(9)―|―5|,(10)0.101001...(自左而右每两个1之间依次多一个0).整 数:____________________________________分 数:____________________________________无理数:___________________________________例2.(1)(2022·山东·宁津县育新中学九年级阶段练习)下列选项中,对2的说法错误的是().A.2的相反数是―2B.2的倒数是22C.2的绝对值是2D.2是有理数(2)(2022·河北唐山·八年级期中)3―5的绝对值是___________.个单位长度的圆,将圆上的点A放在原点,并把(3)(2022·河北邢台·八年级期中)如图,有一个半径为12圆沿数轴逆时针方向滚动一周,点A到达点A′的位置,则点A′表示的数______;若点B表示的数是―10,则点B在点A′的______(填“左边”、“右边”).1.(2022·山西实验中学八年级期中)实数―3的相反数是( )A.3B.3C.―3D.―332.(2022·陕西·西安市铁一中学七年级期中)―5的绝对值是( )A.5B.―5C.5D.―53.(2022·安徽省马鞍山市第七中学七年级期中)已知a为实数,则―a+|a|的值为()A.0B.不可能是负数C.可以是负数D.可以是正数也可以是负数【答案】B【分析】通过分类讨论去绝对值,即可判断结果.【详解】当a>0时,―a+|a|=―a+a=0;当a=0时,―a+|a|=―a+a=0;当a<0时,―a+|a|=―a―a=―2a>0.综上所述,―a+|a|的值不可能是负数.故选:B.【点睛】本题主要考查了实数的绝对值,a是实数时,正数、0、负数三种情况都要考虑到,用到了分类讨论的方法.4.(2022·江苏无锡·八年级期中)5―2的相反数是()A.―0.236B.5+2C.2―5D.―2+5【点睛】本题考查了相反数的定义,解决本题的关键是掌握其定义:只有符号不同的两个数互为相反数.5.(2022·河北石家庄·八年级期中)在以下说法中:①无理数和有理数统称为实数;②实数和数轴上的点是一一对应的;③0的算术平方根是0;④无限小数都是无理数.正确的有()A.1个B.2个C.3个D.4个【答案】C【分析】根据实数的相关概念、实数与数轴的对应关系、算术平方根的概念对各小题分析判断即可得解【详解】①无理数和有理数统称为实数,说法正确②实数和数轴上的点是一一对应的,说法正确③0的算术平方根是0,说法正确④无限小数都是无理数,说法错误,因为无限循环小数是有理数故选C【点睛】本题主要考查实数的相关概念、实数与数轴的对应关系、算术平方根的概念,算数平方根的概念是解题的关键6.(2022·湖北黄石·中考真题)1―2的绝对值是()A.1―2B.2―1C.1+2D.±(2―1)7.(2022·浙江·七年级专题练习)数轴上表示1,2的对应点分别为A,B,点B关于点A的对称点为C,则点C所表示的数是()A.2―1B.1―2C.2―2D.2―2【答案】C8.(2022·四川省成都市七中育才学校八年级期中)5―1的相反数是____,绝对值是__________.9.(2022·四川·成都外国语学校八年级期中)已知a、b、c在数轴上的位置如图所示.化简a2―|a+b|+ (c―a)2+|b+c|―3b3=___________.10.(2022·江苏·苏州工业园区金鸡湖学校一模)计算:|―3|+(π+3)0―12.11.(2022·福建省永春第三中学七年级期中)已知实数a,b满足|a|=b, |ab|+ab=0,化简|a|+|―2b| +3a.【答案】2a+2b【分析】根据实数的性质,绝对值的性质,相反数的意义,判断出a,b的符号,进而化简绝对值,再根据整式的加减进行化简即可求解.【详解】解:∵|a|=b, |ab|+ab=0∴b≥0,ab≤0∴a≤0∴|a|+|―2b|+3a=―a+2b+3a=2a+2b.【点睛】本题考查了实数的性质,整式的加减,化简绝对值,判断出a,b的符号是解题的关键.12.(2022·安徽·合肥市第四十五中学橡树湾校区七年级期中)如图,一只蚂蚁从点A沿数轴向右爬了2个单位长度到达点B,点A表示―2,设点B所表示的数为m.(1)实数m的值是______;(2)求|m―1|―|1―m|的值;(3)在数轴上还有C、D两点分别表示实数c和d,且有|2c+4|与d―4互为相反数,求2c+3d的平方根.13.(2022·福建三明·八年级期中)实数与数轴上的点一一对应,无理数也可以在数轴上表示出来,体现了数形结合思想.(1)由数到形:在数轴上用尺规作图作出―5对应的点P(不要写作法,保留作图痕迹).(2)由形到数:如图,在数轴上,点A,B表示的数分别为0,2,作BC⊥AB于点B,截取BC=1;连接AC,以点C为圆心,CB长为半径画弧交AC于点D;以点A为圆心,AD长为半径画弧交AB于点E,则点E表示的实数是________________.作法:作线段AB的垂直平分线MN;以点为半径作弧交数轴负半轴于点P.(2)解:由作法知CD=CB=1,AD考点3:平方根、算术平方根、与立方根例3.(2022·山东·德州市第九中学九年级期中)本学期第六章《实数》中学习了平方根和立方根,下表是平方根和立方根的部分内容:平方根立方根定义一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(也叫做二次方根).一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(也叫做三次方根).性质一个正数有两个平方根,它们互为相反数:0的平方根是0;负数没有平方根.正数的立方根是正数;0的立方根是0;负数的立方根是负数.【类比探索】(1)探索定义:填写下表x411681x类比平方根和立方根,给四次方根下定义:______.(2)探究性质:①1的四次方根是______;②16的四次方根是______;③0的四次方根是______;④-625 ______(填“有”或“没有”)四次方根.类比平方根和立方根的性质,归纳四次方根的性质:______;1.(2022·四川·绵阳中学英才学校二模)若―3x m y和5x3y n的和是单项式,则(m+n)3的平方根是()A.8B.―8C.±4D.±8【答案】D【分析】根据题意可得―3x m y和5x3y n是同类项,从而得到m=3,n=1,再代入,即可求解.【详解】解:∵―3x m y和5x3y n的和是单项式,∴―3x m y和5x3y n是同类项,∴m=3,n=1,∴(m+n)3=(3+1)3=64,∴(m+n)3的平方根是±8.故选:D.【点睛】本题主要考查了合并同类项,求一个数的平方根,熟练掌握根据题意得到―3x m y和5x3y n是同类项是解题的关键.2.(2022·广东北江实验学校三模)下列说法不正确的是()A.125的平方根是±15B.(-0.1)2的平方根是±0.1C.-9是81的算术平方根D.3-27=-33.(2022·江苏·连云港市新海初级中学三模)9的值为_______.4.(2022·上海嘉定·九年级期中)长为3、4的线段的比例中项长是___________.5.(2022·山西临汾·九年级期中)已知y=x―2+2―x―3,则(x+y)2022(x―y)2023的值为_____.【答案】2+3##3+26.(2022·山东·测试·编辑教研五二模)如图,这是由8个同样大小的立方体组成的魔方,体积为8,若阴影部分为正方形ABCD,则此正方形的边长是______.7.(2022·四川攀枝花·中考真题)3―8―(―1)0=__________.【答案】―3【分析】根据立方根的定义,零指数次幂的定义以及有理数减法法则,进行计算即可.【详解】解:原式=―2―1=―3.故答案为:―3.【点睛】本题考查了立方根的定义,零指数次幂的定义以及有理数减法法则,正确进行计算是解题的关键.8.(2022·广东·东莞市万江第三中学三模)计算下列各题:(1)4的平方根是______;(2)25的算术平方根是______;(3)―8的立方根是______;9.(2022·全国·九年级专题练习)已知c<b<0<a,且|b|<|a|,求(a―b)2+c2―|b+c|―|―b|―3(b―a)3的值.【答案】2a【分析】根据绝对值的意义可得a―b>0,b+c<0,―b>0,b―a<0,然后通过计算可得.【详解】解:∵c<b<0<a,|b|<|a|,10.(2022·全国·九年级专题练习)已知正数a的两个不同平方根分别是2x―2和6―3x,a―4b的算术平方根是4.(1)求这个正数a以及b的值;(2)求b3+3a―17的立方根.【答案】(1)a=36,b=5(2)6【分析】(1)首先利用正数的平方根有两个,它们互为相反数,再利用互为相反数的两个数相加为0,即可得出两个平方根,进而得出正数a的值,然后再利用题意“a―4b的算术平方根是4”,把a的值代入a―4b,即可得出b的值.(2)根据(1)得出a=36,b=5,然后把a=36,b=5代入b3+3a―17,求出值,然后再开立方,即可得出结果.【详解】(1)解:∵正数a的两个不同平方根分别是2x―2和6―3x,∴2x―2+6―3x=0,解得:x=4,∴2x―2=2×4―2=6,6―3x=6―3×4=―6,∵(±6)2=36,∴a=36,又∵a―4b的算术平方根是4,又∵42=16,∴a―4b=16,∴把a=36代入a―4b=16,可得:36―4b=16,解得:b=5.例4.(1)(2022·山东济南·模拟预测)最新统计,中国注册志愿者总数已超30000000人,30000000用科学记数法表示为()A.3×107B.3×106C.30×106D.3×105:30000000=3×107.故选:A.(2)(2022·四川德阳·二模)已知某种细胞的直径约为2.13×10―4cm,请问2.13×10―4这个数原来的数是()A.21300B.2130000C.0.0213D.0.000213解:2.13×10-4=0.000213,故选:D.知识点训练1.(2022·山东·济南市历城区教育教学研究中心一模)2021年5月15日,我国首个火星探测器“天问一号”经过470000000公里旅程成功着陆火星,为我国的宇宙探测之路迈出重要一步.将470000000用科学记数法表示为( )A.47×107B.4.7×107C.4.7×108D.0.47×109【答案】C【分析】根据科学记数法的表示方法确定a,n的值即可.【详解】解:470000000=4.7×108,故选:C.【点睛】题目主要考查科学记数法的表示方法,熟练掌握科学记数法的表示方法是解题关键.2.(2022·河南洛阳·二模)今年的“两会”上,李克强总理在谈到今年需要就业的新增劳动力时,指出今年高校毕业生1076万,是历年最高.数据“1076万”用科学记数法表示为( )A.1.076×107B.1.076×108C.10.76×106D.0.1076×108【分析】科学记数法的表示形式为a×10n的形式,其中1⩽|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值⩾10时,n是正整数;当原数的绝对值<1时,n是负整数,由此即可得到答案.【详解】解:1076万=10760000=1.076×107.故选:A.【点睛】本题主要考查了科学记数法,解题的关键是熟练掌握科学记数法的定义.3.(2022·福建·九年级专题练习)某种细胞的直径是5×10―4毫米,这个数用小数表示是()A.0.00005B.0.0005C.―50000D.50000【答案】B【分析】根据科学记数法a×10n得到n=―4,所以小数点向前移动4位来求解.【详解】解:∵5×10―4∴n=―4,∴5×10―4=0.0005.故选:B.【点睛】本题主要考查了把科学记数法还原原数,还原原数时,关键是看n,n<0时,|n|是几,小数点就向前移几位.4.(2022·全国·七年级专题练习)据科学家估计,地球的年龄大约是4.6×109年,4.6×109是一个()A.7位数B.8位数C.9位数D.10位数【答案】D【分析】把科学记数转化为原数即可求得答案.【详解】解:4.6×109=4600000000,故选D.【点睛】本题考查了把科学记数法转化为原数,解题的关键是熟练掌握科学记数法的表示形式.5.(2022·全国·七年级专题练习)一个整数x用科学记数法表示为1.381×1028,则x的位数为()A.27B.28C.29D.30【答案】C【分析】将科学记数法表示的数的指数加上1得到原来的数的整数位,由此解答即可.【详解】x的整数数位少1位为28,则x的位数为29.【点睛】本题考查了把科学记数法表示的数整数位与指数的关系.6.(2022·河南·九年级专题练习)数据0.0000037用科学记数法表示成3.7×10―n,则3.7×10n表示的原数为().A.3700000B.370000C.37000000D.―3700000【答案】A【分析】根据用科学记数法表示绝对值小于1的数的方法,可确定n的值.即得出3.7×10n表示的数为3.7×106,再将其转化为数字即可.【详解】∵数据0.0000037用科学记数法表示成3.7×10―n,∴n=6,∴3.7×10n即为3.7×106,∴3.7×10n表示的原数为3700000.故选A.【点睛】本题主要考查数科学记数法之间的转换.掌握科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同是解题关键.7.(2022·四川广安·九年级专题练习)近似数3.48×103精确到()A.百分位B.个位C.十位D.百位【答案】C【分析】先把科学记数法表示的数还原,再看首数的最后一位数字所在的位数,即为精确到的位数.【详解】近似数3.48×103=3480,8在十位上,故精确到十位故选C【点睛】本题考查了求近似数,将科学记数法还原是解题的关键.8.(2022·山东师范大学第二附属中学模拟预测)数据0.0000314用科学记数法表示为( )A.3.14×10―5B.31.44×10―4C.3.14×10―6D.0.314×10―6【答案】A【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10―n,其中n为正整数,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000314=3.14×10―5故选:A.【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10―n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9.(2022·河北邯郸·七年级期末)0.000985用科学记数法表示为9.85×10―n,则9.85×10n还原为原数为()A.9850000B.985000C.98500D.9850【答案】C【分析】用科学记数法表示的数还原成原数时,n> 0时,n是几,小数点就向右移几位.【详解】∵0.000985= 9.85×10-4∴n=4,∴9.85×104= 98500.故选: C.【点睛】本题考查写出用科学记数法表示的原数,将科学记数法a× 10n”表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数科学记数法a×10n表示的数,还原成通常表示的数,就是把a的小数点向右移动n位所得到的数;把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.10.(2022·吉林长春·一模)“天文单位”是天文学中用来计量距离的一种单位.1天文单位用科学记数法表示为1.496×108千米,这个数也可以写成______亿千米.【答案】1.496【分析】根据1亿=108,对这个数进行换算即可作答.【详解】解:∵1亿=108,∴1.496×108千米=1.496亿千米,故答案为:1.496.【点睛】本题考查了科学记数法−−−原数,解题的关键是掌握科学记数法表示的数与原数的关系.考点5:实数的大小比较例5.(1)(2022·四川乐山·九年级专题练习)在实数|―3.14|,-3,―3,―π中,最小的数是()A.|―3.14|B.-3C.―3D.―π【答案】D【分析】根据实数的比较大小的规则比较即可.(2)(2022·山东济南·中考真题)实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()A.ab>0B.a+b>0C.|a|<|b|D.a+1<b+1【答案】D【分析】利用数轴与实数的关系,及正负数在数轴上的表示求解.【详解】解:根据图形可以得到:―3<a<―2<0,0<b<1,∴ab<0,故A项错误,a+b<0,故B项错误,|a|>|b|,故C项错误,a+1<b+1,故D项错误.故选:D.知识点训练1.(2022·山东·测试·编辑教研五二模)下列实数中,最大的数是()A.―4B.―5C.0D.3【答案】D【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负数绝对值大的反而小,据此判断即可.【详解】解:∵―5<―4<0<3,∴最大的数是3,故选:D.【点睛】此题考查实数的大小比较的方法,熟练掌握:负实数<0<正实数,两个负数绝对值大的反而小,是解答此题的关键.2.(2022·湖南·长沙市南雅中学一模)下列实数中,最大的数是()A.0B.2C.πD.―33.(2022·湖南·长沙市开福区青竹湖湘一外国语学校九年级期中)在四个数―2,―0.6,1,3中,绝对值2最小的数是( )D.3A.―2B.―0.6C.124.(2022·江西·寻乌县教育局教学研究室二模)1,―2,0,3中最小的数是()A.1B.―2C.0D.35.(2022·四川·峨眉山市教育局二模)在2,-1,0,π这四个实数中,最小的一个实数是()2A.2B.-1C.0D.π26.(2022·河南·郑州市树人外国语中学九年级期末)下列四个实数中,绝对值最小的数是()A.﹣4B.―3C.2D.37.(2022·四川乐山·九年级专题练习)比较23和32的大小,下面结论正确的是( )A.23<32B.23=32C.23>32D.无法比较8.(2022·河北承德·九年级期中)对于实数p,q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2} =1,因此,min{―2,―3}=__________;min(x2+2x+3),0=__________;若min(x―1)2,x2=1,则x=_____________.【答案】―3 0 2或―1##―1或29.(2022·河北·大名县束馆镇束馆中学三模)定义新运算:对于两个不相等的实数a,b,我们规定符号max{a,b}表示a,b中的较大值,如:max{﹣2,﹣4}=﹣2.(1)max{26,5}=_____;(2)若max{﹣12,(一1)2}=2x,则x=_____.2―x考点6与实数的相关的计算例6.(2022·山东烟台·九年级期中)计算(1)sin230°+2sin60°+tan45°―tan60°+cos230°(2)8―2sin45°+2cos60°+|1―2|+1.1.(2022·重庆市开州区德阳初级中学模拟预测)计算:|―3|+2―1=______.2.(2022·山东济南·模拟预测)计算:12―(2022―π)0―2×cos30°+(―12)―1.3.(2022·山东济南·模拟预测)计算:1―|3―1|+3tan30°+(2022―π)0.4.(2022·吉林长春·一模)计算:12―3tan30°+(2022―π)0―1.5.(2022·四川·峨眉山市教育局二模)计算:38+|3―23|―tan60°+(3)2+(π―2022)06.(2022·江苏·盐城市初级中学三模)计算:364+|sin45°―tan45°|+1.7.(2022·广西·南宁市第四十七中学九年级期中)计算:―(―1)2022+10÷2×12―1―3tan30°。

2022年中考数学分类复习强化练 -第一讲 实数(含答案)

2022年中考数学分类复习强化练 -第一讲  实数(含答案)

第一讲 实 数专项一 实数及有关概念知识清单1. 实数的分类⎧⎧⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎨⎩⎪⎪⎪⎧⎫⎨⎪⎨⎬⎪⎪⎩⎭⎩⎪⎪⎧⎫⎪⎨⎬⎪⎩⎭⎩正整数负整数实数分数有限小数或无限循环小数正无理数无理数无限不循环小数负无理数 2.规定了_____、_____和_____的直线叫做数轴.实数与数轴上的点具有______的关系.3.相反数、绝对值、倒数定 义 性 质 相反数 只有______不同的两个数互为相反数,0的相反数是______若a 与b 互为相反数,则a+b=______ 绝对值 数轴上表示数a 的点到原点的______叫做数a 的绝对值 |a|=(0)00(0)a a a a a ⎧⎪=⎨⎪-⎩>()< 倒数 乘积为______的两个数互为倒数.0是唯一没有倒数的数,倒数等于它本身的数是_____若a 与b 互为倒数,则ab=1 考点例析例1 (2021•模考 福建)2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10 907米.假设以马里亚纳海沟所在海域的海平面为基准,记为 0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为+100米,根据题意,“海斗一号”下潜至最大深度10 907米处,该处的高度可记为 米.分析:在一对具有相反意义的量中,规定其中一个为正,则另一个就用负表示,理解了“正”与“负”的意义后再根据题意作答即可.解:例2 (2021•模考 郴州)如图,表示互为相反数的两个点是( )A .点A 与点B B .点A 与点DC .点C 与点BD .点C 与点D分析:根据只有符号不同的两个数互为相反数可得答案.解:例3 (2021•模考 武威)下列实数是无理数的是( )A .-2B .16C .9D .11 分析:根据无理数的定义逐一分析.解:归纳:判断一个实数是不是无理数,关键是掌握几种常见的无理数:(1)含根号型,如322,等开方开不尽的数;⑵三角函数型:如sin60°,tan30°等;⑶特定结构型,如0.101 001 000 1…(每相邻两个1之间依次多一个0);⑷与π有关的数:如4π,π-1等.(注:在判断无理数时,不能只根据某些无理数的形式来判断,关键要看化简后的结果,如题中9含根号,但它是有理数)跟踪训练1.(2021•模考 无锡)-7的倒数是( )A .7B .17C .-17D .-7 2.(2021•模考 鄂尔多斯)实数-3的绝对值是( )A .3B .-33C .-3D .333.(2021•模考 天水)下列四个实数中,是负数的是( )A .-(-3) B. (-2)2 C. |-4| D.-54.(2021•模考 烟台)实数a ,b ,c 在数轴上对应点的位置如图所示,那么这三个数中绝对值最大的是( )A .aB .bC .cD .无法确定第4题图5.(2021•模考 株洲)一实验室检测A ,B ,C ,D 四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是( )A B C D专项二 科学记数法知识清单科学记数法就是把一个数写成 的形式,其中a 的范围是 .当表示一个大于10 的数时,n 的值等于原数的整数位数减去1;当表示一个大于0小于1的数时,n 是负整数,且其绝对值等于原数左起第一个非零数前所有零的个数(包括小数点前的零).考点例析例1 (2021•模考 成都)2020年6月23日,北斗三号最后一颗全球组网卫星在西昌卫星发射中心成功发射并顺利进入预定轨道,它的稳定运行标志着全球四大卫星导航系统之一的中国北斗卫星导航系统全面建成,该卫星距离地面约36 000千米,将数据36 000用科学记数法表示为()A.3.6×103 B.3.6×104 C.3.6×105 D.36×104分析:根据科学记数法的表示方法表示即可.解:例2 (2021•模考滨州)冠状病毒的直径约为80~120纳米,1纳米=1.0×10-9米,若用科学记数法表示110纳米,则正确的结果是()A.1.1×10-9米 B.1.1×10-8米 C.1.1×10-7米 D.1.1×10-6米分析:先将110纳米转化成110×10-9米,再根据科学记数法的表示方法移动小数点即可.解:归纳:对于含有计数(量)单位的数用科学记数法表示时,应先把计数(量)单位转化为数字,然后再表示为科学记数法的形式.常见的计数单位:1千可以表示为103 ,1万可以表示为104 ,1亿可以表示为108 ;常考的计量单位:1毫米可以表示为10-3 米,1纳米可以表示为10-9 米等.跟踪训练1.(2021•模考长沙)为了将“新冠”疫情对国民经济的影响降至最低,中国政府采取积极的财政税收政策,切实减轻企业负担,以促进我国进出口企业平稳发展.据国家统计局相关数据显示,2020年1月至5月,全国累计办理出口退税632 400 000 000元,其中632 400 000 000用科学记数法表示为()A.6.324×1011 B.6.324×1010 C.632.4×109 D.0.6324×10122.(2021•模考江西)教育部近日发布了2019年全国教育经费执行情况统计快报.经初步统计,2019年全国教育经费总投入为50 175亿元,比上年增长8.74%.将50 175亿用科学记数法表示为()A.5.017 5×1011 B.5.017 5×1012 C.0.501 75×1013 D.0.50 175×10143.(2021•模考苏州)某种芯片每个探针单元的面积为0.000 001 64 cm²,0.000 001 64用科学记数法可表示为()A.1.64×10-5 B.1.64×10-6 C.16.4×10-7 D.0.164×10-54.(2021•模考威海)人民日报讯,2020年6月23日,中国成功发射北斗系统第55颗导航卫星.至此中国提前半年全面完成北斗三号全球卫星导航系统星座部署.北斗三号卫星上配置的新一代国产原子钟,使北斗导航系统授时精度达到了十亿分之一秒.十亿分之一用科学记数法可以表示为()A.10×10-10 B.1×10-9 C.0.1×10-8 D.1×109专项三无理数的估算知识清单无理数的估算,最常见的就是对带根号的无理数的估算,通常用“夹逼法”,即将被开方数限定在两个连续的平方数之间,然后确定无理数的整数部分和小数部分.考点例析例1(2021•模考)A.3和4之间B.4和5之间C.5和6之间D.6和7之间,开方即可求得答案.解:例2 (2021•模考南通)若m<<m+1,且m为整数,则m=.分析:m的值.解:跟踪训练1.(2021•模考 黔东南州)实数 )A .4和5之间B .5和6之间C .6和7之间D .7和8之间2.(2021•模考 临沂)设a +2,则( )A .2<a <3B .3<a <4C .4<a <5D .5<a <63.(2021•模考 河南)请写出一个大于1且小于2的无理数 .4.(2021•模考 最接近的自然数是 .专项四 实数的大小比较知识清单实数的大小比较有以下几种常用方法:(1)在数轴上表示的两个数,右边的数总比左边的 ;(2)正数 零,负数 零,正数 负数;两个负数,绝对值大的 ;(3)作差比较法:若a-b>0,则a>b ;若a-b=0,则a=b ;若a-b<0,则a<b ;(4)平方比较法:,则a>b (a >0,b >0).考点例析例1 (2021•模考 聊城)在实数-10,41中,最小的实数是( )A .-1B .41 C .0 D 分析:思路一:把这几个数在数轴上表示出来,根据它们在数轴上的位置来比较大小;思路二:根据解:例2 (2021•模考 菏泽)下列各数中,绝对值最小的数是( )A .﹣5B .12C .﹣1 D分析:先求出四个数的绝对值,再进行比较即可得出结果.解:归纳:对含有无理数的实数在比较其大小时,可先估算出无理数的近似值,再和其他的有理数比较大小.跟踪训练1.(2021•模考 内江)下列四个数中,最小的数是( )A. 0B. 12020C. 5D. -12.(2021•模考 天门)下列各数中,比-2小的数是( )A .0B .-3C .-1D .|-0.6|3.(2021•模考 大庆)在﹣1,0 )A .﹣1B .0C .πD 4.(2021•模考 株洲)下列不等式错误的是( )A .﹣2<﹣1B C .52.13>0.3专项五 平方根、立方根知识清单1. 平方根:若一个数的____等于a ,则这个数叫做a 的平方根.一个正数有___个平方根,它们____,0的平方根是_____,负数____平方根.一个正数____的平方根,叫做它的算术平方根,0的算术平方根是 .2.立方根:若一个数的____等于a ,则这个数叫做a 的立方根.正数有一个____的立方根;负数有一个____的立方根;0的立方根是____.3.开平方:求一个非负数a 的______的运算,叫做开平方.4.开立方:求一个数a 的______的运算,叫做开立方.考点例析例1 (2021•模考 烟台)4的平方根是( )A .±2B .-2C .2D 分析:一个正数有两个平方根,它们互为相反数.例2 (2021•模考 常州)8的立方根是( )A .B .±C .2D .±2分析:根据立方根的定义求解即可.解:跟踪训练1.(2021•模考 0,则x 的值是( )A .﹣1B .0C .1D .22.(2021•模考 金昌)若一个正方形的面积是12,则它的边长是( )A .B .3C .D .43.(2021•模考 攀枝花)下列说法中正确的是( )A .0.09的平方根是0.3B 4C .0的立方根是0D .1的立方根是±14.(2021•模考 恩施州)9的算术平方根是 .5.(2021•模考 徐州)7的平方根是 .6.(2021•模考 的结果是 .专项六 实数的运算知识清单1. 实数的运算法则(1)加法:同号两数相加,取相同符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大数的绝对值减去较小数的绝对值;一个数同零相加仍得这个数.(2)减法:减去一个数,等于加上这个数的相反数.(3)乘法:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,积为零.(4)除法:两数相除,同号得正,异号得负,并把绝对值相除;零除以任何一个不为零的数都得零;除以任何一个不为零的数等于乘以这个数的倒数.2.求______________的运算,叫做乘方,乘方可以转化为乘法运算.3.用字母表示运算律:交换律:a+b=________,ab=________;结合律:(a+b )+c=a+(b+c )_________,(ab )c=________;乘法对加法的分配律m (a+b+c )=_________.4.实数的运算顺序:先算_____,再算______,最后算______;有括号的要先算_____;同级运算,要按________的顺序依次进行计算.5.若实数0≠a ,m 为整数,则0a =______,m a -=______.考点例析例1 (2021•模考 铜仁)计算:2÷12﹣(﹣1)20200. 分析:先根据除法法则、乘方的意义、算术平方根的定义、零指数幂的运算公式分别求得2÷12=4,(﹣1)2020=1=20=1,然后再进行实数的运算.解:归纳:在进行实数的运算时,一定要养成良好的习惯:运算前要认真审题,确定顺序(包括使用简便方法);运算过程中,要耐心细致;得出结果后,要认真检查,谨防出错.要特别注意a 0=1(a ≠0),(-1)2n+1=-1(n 是整数),(-1)2n =1(n 是整数).例2 (2021•模考 =0,则(a+b )2020= .分析:由非负数的意义,得a-2=0,b+1=0,求出a ,b 的值,代入计算即可.解:归纳:对非负数的考查是中考的一个热点,一个数的绝对值a ,一个非负数的算术平方根()0≥a a ,一个数的偶数次方n a 2是初中阶段常见的非负数.在解题时要正确理解并熟练应用非负数的性质:非负数有最小值(为零),但无最大值;如果几个非负数的和等于零,那么每一个非负数都等于零.例3 (2021•模考 娄底)下列各正方形中的四个数之间都有相同的规律,根据此规律,x 的值为( )A .135B .153C .170D .189分析:由前三个正方形可知规律为:左上方的数等于序号数,左下方的数比左上方的数大1,右上方的数是左下方数的2倍,右下方的数为左下方数与右上方数的乘积加上序号数,由此即可求得答案. 归纳:实数问题中的找规律问题是中考的常考内容,解题的关键是通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后进行归纳总结,得出一般的结论,从而将问题解决. 跟踪训练 1.(2021•模考 凉山州)-12020=( )A .1B .-1C .2020D .-20202.(2021•模考 咸宁)早在两千多年前,中国人就已经开始使用负数,并运用到生产和生活中,比西方早一千多年.下列各式计算结果为负数的是( )A .3+(-2)B .3-(-2)C .3×(-2)D .(-3)÷(-2)3.(2021•模考 雅安)已知2a -+|b ﹣2a|=0,则a+2b 的值是( )A .4B .6C .8D .104.(2021•模考 连云港)我市某天的最高气温是4℃,最低气温是-1℃,则这天的日温差是 ℃.5.(2021•模考 常州)计算:|-2|+(π-1)0= .6.(2021•模考 随州)(-1)2+9= .7.(2021•模考 张家界)观察下面的变化规律:213⨯=1-13,235⨯=13-15,257⨯=15-17,279⨯=17-19,…根据上面的规律计算:213⨯+235⨯+257⨯+…+220192021⨯= . 8.(2021•模考 宜宾)计算:()()1020*******π-⎛⎫----+- ⎪⎝⎭. 专项七 数轴与数形结合知识清单数和形是数学研究的两个方面,数形结合实质就是把问题中的数量关系转化为图形的性质,或者把图形的性质转化为数量关系来解决问题,这样可以使复杂的问题简单化、抽象的问题具体化. 考点例析例1 (2021•模考 北京)实数a 在数轴上对应点的位置如图1所示,若实数b 满足-a <b <a ,则b 的值可以是( )A .2B .-1C .-2D .-3图1分析:根据数轴可得1<a <2,所以-2<-a <-1.如图1,在数轴上找出-a 的对应点,即可确定符合条件的b 的值.解:例2 (2021•模考 铜仁)实数a ,b 在数轴上对应的点的位置如图2所示,下列结论正确的是( )A.a>b B.﹣a<b C.a>﹣b D.﹣a>b图2分析:先由数轴,得-2<a<-1,0<b<1,所以1<-a<2,-1<-b<0,再根据实数的大小比较方法进行比较即可求解.解:归纳:实数与数轴上的点具有一一对应的关系,把数和点对应起来,也就是说把“数”和“形”结合起来,二者相互补充,相辅相成,把许多复杂问题转化为简单的问题.跟踪训练1.(2021•模考盐城)实数a,b在数轴上对应的位置如图所示,则()A.a>0 B.a>b C.a<b D.|a|<|b|第1题图2.(2021•模考福建)如图,数轴上两点M,N所对应的实数分别为m,n,则m-n的结果可能是()A.-1 B.1 C.2 D.3第2题图3.(2021•模考枣庄)实数a,b在数轴上对应点的位置如图所示,下列判断正确的是()A.|a|<1 B.ab>0 C.a+b>0 D.1﹣a>1第3题图参考答案专项一实数及有关概念例1 -10 907 例2 B 例3 D1.C 2.A 3.D 4.A 5.D专项二科学记数法例1 B 例2 C1.A 2.B 3.B 4.B专项三无理数的估算例1 B 例2 51.C 2.C 3.2专项四实数的大小比较例1 D 例2 B1.D 2.B 3.C 4.C专项五平方根、立方根例1 A 例2 C1.C 2.A 3.C 4.3 5 6.3专项六实数的运算例1 0.例2 1 例3 C1.B 2.C 3.D 4.5 5.3 6.4 7.202020218.1.专项七数轴与数形结合例1 B 例2 D1.C 2.C 3.D。

中考数学专题练习 实数(含解析)

中考数学专题练习 实数(含解析)

实数一、选择题1.某年哈尔滨市一月份的平均气温为﹣18℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高()A.16℃ B.20℃ C.﹣16℃D.﹣20℃2.下列计算正确的是()A.B.(a+b)2=a2+b2C.(﹣2a)3=﹣6a3D.﹣(x﹣2)=2﹣x3.下列计算正确的是()A.(﹣1)﹣1=1 B.(﹣3)2=﹣6 C.π0=1 D.(﹣2)6÷(﹣2)3=(﹣2)24.数字,,π,,cos45°,中是无理数的个数有()个.A.1 B.2 C.3 D.45.据报道,2010年苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1300000)这个数用科学记数法可表示为()A.1.3×104B.1.3×105C.1.3×106D.1.3×1076.数轴上的点A表示的数是﹣1,点B表示的数是﹣,则点B关于点A的对称点B′点表示的数为()A.﹣2 B.﹣﹣2 C.﹣﹣1 D.07.下列计算结果正确的是()A.(﹣a3)2=a9B.a2•a3=a6C.D.(sin60°﹣)0=08.28cm接近于()A.珠穆朗玛峰的高度 B.三层楼的高度C.姚明的身高D.一张纸的厚度9.实数a、b在数轴上的位置如图所示,下列式子错误的是()A.a<b B.|a|>|b| C.﹣a<﹣b D.b﹣a>0二.填空题10.地球与太阳之间的距离约为149 600 000千米,用科学记数法表示(保留2个有效数字)约为千米.11.化简: = .12.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是.13.已知a、b为两个连续的整数,且,则a+b= .14.已知互为相反数,则a:b= .15.若的值在x与x+1之间,则x= .16.,则x y= .17.计算: = .18.化简二次根式: = .19.一个自然数的算术平方根是a,则相邻的下一个自然数的算术平方根是.三.计算题20.计算:﹣+|1﹣|+()﹣1.21.计算:﹣2sin30°﹣(﹣)﹣2+(﹣π)0﹣+(﹣1)2012.22..23.计算:.24.若x是不等于1的实数,我们把称为x的差倒数,如3的差倒数为,﹣5的差倒数为.现已知x1=﹣,x1的差倒数是x2,x2的差倒数是x3,…,以此类推,x2013的值是多少?实数参考答案与试题解析一、选择题1.某年哈尔滨市一月份的平均气温为﹣18℃,三月份的平均气温为2℃,则三月份的平均气温比一月份的平均气温高()A.16℃ B.20℃ C.﹣16℃D.﹣20℃【考点】有理数的减法.【专题】应用题.【分析】根据题意用三月份的平均气温气温减去一月份的平均气温气温,再根据有理数的减法运算法则“减去一个数等于加上这个数的相反数”计算求解.【解答】解:2﹣(﹣18)=2+18=20℃.故选B.【点评】本题考查有理数的减法运算法则.2.下列计算正确的是()A.B.(a+b)2=a2+b2C.(﹣2a)3=﹣6a3D.﹣(x﹣2)=2﹣x【考点】完全平方公式;去括号与添括号;幂的乘方与积的乘方;二次根式的加减法.【分析】利用完全平方公式、去括号与添括号法则、幂的乘方与积的乘方及二次根式的加减法等性质进行计算后即可确定答案.【解答】解:A、不是同类二次根式,因此不能进行运算,故本答案错误;B、(a+b)2=a2+b2+2ab,故本答案错误;C、(﹣2a)3=﹣8a3,故本答案错误;D、﹣(x﹣2)=﹣x+2=2﹣x,故本答案正确;故选D.【点评】本题考查了完全平方公式、去括号与添括号法则、幂的乘方与积的乘方及二次根式的加减法等性质,属于基本运算,要求学生必须掌握.3.下列计算正确的是()A.(﹣1)﹣1=1 B.(﹣3)2=﹣6 C.π0=1 D.(﹣2)6÷(﹣2)3=(﹣2)2【考点】负整数指数幂;同底数幂的除法;零指数幂.【专题】计算题.【分析】根据平方根,负指数幂的意义,同底数的幂的除法的意义,分别计算出各个式子的值即可判断.【解答】解:A、(﹣1)﹣1=﹣1,故A错误;B、(﹣3)2=9,故B错误;C、任何非0实数的零次幂等于1,故C正确;D、(﹣2)6÷(﹣2)3=(﹣2)3,故D错误.故选C.【点评】解决此题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、同底数的幂的除法等考点的运算.4.数字,,π,,cos45°,中是无理数的个数有()个.A.1 B.2 C.3 D.4【考点】无理数;特殊角的三角函数值.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给的数据判断即可.【解答】解: =2,cos45°=,所以数字,,π,,cos45°,中无理数的有:,π,cos45°,共3个.故选C.【点评】此题考查了无理数的定义,属于基础题,关键是掌握无理数的三种形式.5.据报道,2010年苏州市政府有关部门将在市区完成130万平方米老住宅小区综合整治工作.130万(即1300000)这个数用科学记数法可表示为()A.1.3×104B.1.3×105C.1.3×106D.1.3×107【考点】科学记数法—表示较大的数.【专题】应用题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:130万=1 300 000=1.3×106.故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.数轴上的点A表示的数是﹣1,点B表示的数是﹣,则点B关于点A的对称点B′点表示的数为()A.﹣2 B.﹣﹣2 C.﹣﹣1 D.0【考点】实数与数轴.【分析】先求出A、B之间的距离,然后根据对称的性质得出A、B′之间的距离,再设点B′表示的数为x,列出关于x的方程,解方程即可.【解答】解:∵数轴上的点A表示的数是﹣1,点B表示的数是﹣,∴AB=﹣1,∵点B和点B′关于点A对称,∴AB′=AB=﹣1.设点B′表示的数为x,则x+1=﹣1,x=﹣2.∴B′点表示的数为﹣2.故选A.【点评】本题考查了实数与数轴上的点的对应关系,以及对称的有关性质.7.下列计算结果正确的是()A.(﹣a3)2=a9B.a2•a3=a6C.D.(sin60°﹣)0=0【考点】负整数指数幂;同底数幂的乘法;幂的乘方与积的乘方;零指数幂.【分析】根据有理数的幂的乘方和同底数幂的乘法及负指数幂的运算法则计算.【解答】解:A、平方取正值,指数相乘,应为a6,故A错误;B、a2•a3=a5,故B错误;C、,故C正确;D、(sin60°﹣)0=1≠0,故D错误.故选C.【点评】本题主要考查了有理数的有关运算法则,解答此题时要注意任何非0数的0次幂等于1.8.28cm接近于()A.珠穆朗玛峰的高度 B.三层楼的高度C.姚明的身高D.一张纸的厚度【考点】有理数的乘方.【分析】根据有理数的乘方运算法则,计算出结果,然后根据生活实际来确定答案.【解答】解:28=24×24=16×16=256(cm)=2.56(m).A、珠穆朗玛峰峰的高度约8848米,错误;B、三层楼的高度20米左右,错误;C、姚明的身高是2.23米,接近2.56米,正确;D、一张纸的厚度只有几毫米,错误.故选C.【点评】解答这样的题目有两个要点需要注意,一是有理数的乘方运算法则要记牢;二是根据生活实际情况来做出选择.9.实数a、b在数轴上的位置如图所示,下列式子错误的是()A.a<b B.|a|>|b| C.﹣a<﹣b D.b﹣a>0【考点】实数与数轴.【分析】根据数轴表示数的方法得到a<0<b,数a表示的点比数b表示点离原点远,则a<b;﹣a >﹣b;b﹣a>0,|a|>|b|.【解答】解:根据题意得,a<0<b,∴a<b;﹣a>﹣b;b﹣a>0,∵数a表示的点比数b表示点离原点远,∴|a|>|b|,∴选项A、B、D正确,选项C不正确.故选C.【点评】本题考查了实数与数轴:数轴上的点与实数一一对应;数轴上原点左边的点表示负数,右边的点表示正数;右边的点表示的数比左边的点表示的数要大.二.填空题10.地球与太阳之间的距离约为149 600 000千米,用科学记数法表示(保留2个有效数字)约为1.5×108千米.【考点】科学记数法与有效数字.【专题】计算题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1 048 576有7位,所以可以确定n=7﹣1=6.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:149 600 000=1.496×108≈1.5×108.故答案为1.5×108.【点评】此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.11.化简: = .【考点】算术平方根.【分析】根据开平方的意义,可得答案.【解答】解:原式==,故答案为:.【点评】本题考查了算术平方根,先化成分数,再开方运算.12.若将三个数表示在数轴上,其中能被如图所示的墨迹覆盖的数是.【考点】实数与数轴.【专题】图表型.【分析】首先利用估算的方法分别得到﹣,,前后的整数(即它们分别在那两个整数之间),从而可判断出被覆盖的数.【解答】解:∵﹣2<﹣<﹣1,2<<3,3<<4,且墨迹覆盖的范围是1﹣3,∴能被墨迹覆盖的数是.【点评】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力.13.已知a、b为两个连续的整数,且,则a+b= 11 .【考点】估算无理数的大小.【分析】根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案.【解答】解:∵,a、b为两个连续的整数,∴<<,∴a=5,b=6,∴a+b=11.故答案为:11.【点评】此题主要考查了无理数的大小,得出比较无理数的方法是解决问题的关键.14.已知互为相反数,则a:b= .【考点】立方根.【分析】根据立方根互为相反数,可得被开方数互为相反数,根据互为相反数的两数的和为0,可得答案.【解答】解:互为相反数,∴(3a﹣1)+(1﹣2b)=0,3a=2b,故答案为:.【点评】本题考查了立方根,先由立方根互为相反数得出被开方数互为相反数,再求出的值.15.若的值在x与x+1之间,则x= 2 .【考点】估算无理数的大小.【分析】先估算的整数部分是多少,即可求出x的取值.【解答】解:∵2<<3,∴x=2.故答案为:2.【点评】此题主要考查了估算无理数的大小,确定无理数的整数部分即可解决问题.16.,则x y= ﹣1 .【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】首先根据非负数的性质,两个非负数的和是0,这两个数都是0求得x,y的值,代入即可求解.【解答】解:根据题意得:,解得:,∴x y=(﹣1)2011=﹣1.故答案是:﹣1.【点评】本题主要考查了非负数的性质,以及负指数幂的意义,正确求得x,y的值是解题的关键.17.计算: = .【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据负指数幂、二次根式化简、特殊角的三角函数3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3+0.5﹣6×=,故答案为.【点评】本题是基础题,考查了实数的有关运算,还涉及了零指数幂、负指数幂、二次根式化简、绝对值等考点.18.化简二次根式: = ﹣2 .【考点】二次根式的混合运算.【分析】首先进行各项的化简,然后合并同类项即可.【解答】解: =3﹣()﹣2=﹣2,故答案为﹣2.【点评】本题主要考查二次根式的化简、二次根式的混合运算,解题的关键在于对二次根式进行化简,然后合并同类项.19.一个自然数的算术平方根是a,则相邻的下一个自然数的算术平方根是.【考点】算术平方根.【分析】首先利用算术平方根求出这个自然数,然后即可求出相邻的下一个自然数的算术平方根.【解答】解:∵一个自然数的算术平方根是a,∴这个自然数是a2,∴相邻的下一个自然数为:a2+1,∴相邻的下一个自然数的算术平方根是:,故答案为:.【点评】此题主要考查算术平方根的定义及其应用,比较简单.三.计算题20.计算:﹣+|1﹣|+()﹣1.【考点】实数的运算;负整数指数幂.【专题】计算题.【分析】原式第一项化为最简二次根式,第二项分母有理化,第三项利用绝对值的代数意义化简,最后一项利用负指数幂法则计算即可得到结果.【解答】解:原式=3﹣+﹣1+2=3+1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.21.计算:﹣2sin30°﹣(﹣)﹣2+(﹣π)0﹣+(﹣1)2012.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】本题涉及零指数幂、乘方、特殊角的三角函数值、立方根等考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣2×﹣+1﹣(﹣2)+1=﹣1﹣9+1+2+1=﹣6.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握零指数幂、乘方、特殊角的三角函数值、立方根等考点的运算.22..【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据零指数幂、负整数指数幂和特殊角的三角函数值得到原式=4+(1﹣)﹣1+2×+,再去括号和进行乘法运算,然后合并即可.【解答】解:原式=4+(1﹣)﹣1+2×+=4+1﹣﹣1++=4+.【点评】本题考查了实数的运算:先算乘方或开方,再算乘除,然后进行加减运算;有括号先算括号.也考查了零指数幂、负整数指数幂和特殊角的三角函数值.23.计算:.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题.【分析】本题涉及零指数幂、特殊角的三角函数值、二次根式化简、去绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=2+×﹣(﹣1)﹣1,=2+1﹣+1﹣1,=+1.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握特殊角的三角函数值、零指数幂、二次根式、绝对值等考点的运算.24.若x是不等于1的实数,我们把称为x的差倒数,如3的差倒数为,﹣5的差倒数为.现已知x1=﹣,x1的差倒数是x2,x2的差倒数是x3,…,以此类推,x2013的值是多少?【考点】规律型:数字的变化类.【分析】根据差倒数的定义分别计算出x1=﹣,x2=;x3=4,x4=﹣,则得到从x1开始每3个值就循环,而2013÷3=671,即可得出答案.【解答】解:∵x1=﹣,∴x2==;x3==4;x4==﹣;…,∴三个数一个循环,∵2013÷3=671,∴x2013=x3=4.【点评】此题考查了数字的变化类,是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.。

中考数学专题复习1实数的运算(原卷版)

中考数学专题复习1实数的运算(原卷版)

实数的运算复习考点攻略考点01 有理数1.整数和分数统称为有理数。

(有限小数与无限循环小数都是有理数。

)2.正整数、0、负整数统称为整数。

正分数、负分数统称分数。

3.正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。

4.正数和负数表示相反意义的量。

【注意】0既不是正数,也不是负数。

【例1】.在下列各组中,哪个选项表示互为相反意义的量()A.足球比赛胜5场与负5场B.向东走3千米,再向南走3千米C.增产10吨粮食与减产﹣10吨粮食D.下降的反义词是上升【例2】已知某快递公司的收费标准为:寄一件物品不超过5千克,收费13元;超过5千克的部分每千克收2元。

圆圆在该快递公司寄一件8千克的物品,需要付费( )。

A.17元B.19元C.21元D.23元考点02 数轴1.数轴的三要素:原点、正方向、单位长度。

数轴是一条直线。

2.所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。

3.数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。

【例3】如图,数轴上的点A,B分别表示数﹣2和1,点C是线段AB的中点,则点C 表示的数是()A.﹣0.5B.﹣1.5C.0D.0.5考点03 相反数、绝对值和倒数1.在数轴上表示数a的点与原点的距离,叫做a的绝对值,记作:a。

2.一个正数的绝对值等于本身,一个负数的绝对值等于它的相反数,0的绝对值是0.即(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩3. 乘积为1的两个数互为倒数。

正数的倒数为正数,负数的倒数为负数,0没 有倒数。

倒数是本身的只有1和-1。

4. 倒数性质:(1)若a 与b 互为倒数,则a·b=1;反之,若a·b=1,则a 与b 互为倒数。

(2)若a 与b 互为负倒数,则a·b=-1;反之,若a·b= -1则a 与b 互为倒数。

中考《数学》实数的有关概念与计算专题练习题(共53题)

中考《数学》实数的有关概念与计算专题练习题(共53题)

实数的有关概念与计算专题练习题(53题)一、单选题12.(2023年安徽省滁州市南片五校中考二模数学试卷)12-的倒数是( )A .12-B .2-C .12D .213.(2023·浙江宁波·统考中考真题)在2,1,0,π--这四个数中,最小的数是( ) A .2-B .1-C .0D .π14.(2023·江西·统考中考真题)下列各数中,正整数是( ) A .3B .2.1C .0D .2-15.(2023·新疆·统考中考真题)﹣5的绝对值是( ) A .5B .﹣5C .15-D .1516.(2023·甘肃武威·统考中考真题)9的算术平方根是( ) A .3±B .9±C .3D .3-17.(2023·浙江温州·统考中考真题)如图,比数轴上点A 表示的数大3的数是( )A .1-B .0C .1D .218.(2023·四川自贡·统考中考真题)如图,数轴上点A 表示的数是2023,OA=OB ,则点B 表示的数是( )A .2023B .2023-C .12023D .12023-19.(2023·浙江绍兴·统考中考真题)计算23-的结果是( ) A .1-B .3-C .1D .320.(2023·江苏扬州·统考中考真题)已知523a b c ===,,,则a 、b 、c 的大小关系是( ) A .b a c >>B .a c b >>C .a b c >>D .b c a >>21.(2023·江苏扬州·统考中考真题)3-的绝对值是( ) A .3B .3-C .13D .3±22.(2023·重庆·统考中考真题)4的相反数是( )A .14B .14-C .4D .4-23.(2023·四川凉山·统考中考真题)下列各数中,为有理数的是( )二、填空题39.(2023·江苏连云港·统考中考真题)计算:2(5)=__________.三、解答题40.(2023·浙江金华·统考中考真题)计算:0(2023)42sin305-+-︒+-.41.(2023·四川自贡·统考中考真题)计算:02|3|(71)2--+-.42.(2023·四川泸州·统考中考真题)计算:()0123212sin 303-⎛⎫+-+︒-- ⎪⎝⎭.43.(2023·浙江·统考中考真题)计算:011(2023)22--+-+.44.(2023·四川广安·统考中考真题)计算:02024212cos60532⎛⎫-+--+- ⎪⎝⎭︒45.(2023·江苏连云港·统考中考真题)计算()11422π-⎛⎫-+-- ⎪⎝⎭.。

实数(整体思想)备战2023年中考数学考点微专题

实数(整体思想)备战2023年中考数学考点微专题

考向1.7 实数(整体思想)例 1、(2021·四川内江·中考真题)若实数x 满足210x x --=,则3222021x x -+=__. 【答案】2020解:210--=x x ,21x x ∴=+,21x x -=,3222021x x -+ 2(1)22021x x x =+-+2222021x x x =+-+ 22021x x =-+12021=-+2020=.故答案为:2020.例 2、(2021·江苏苏州·中考真题)已知两个不等于0的实数a 、b 满足0a b +=,则b a a b+等于( ) A .2- B .1- C .1 D .2【答案】A解:∵22=b a b a a b ab++,∴()2222==a b ab b a b a a b ab ab+-++, ∵两个不等于0的实数a 、b 满足0a b +=,∴()22-2===-2a b ab b a ab a b ab ab +-+, 故选:A .例 3、(2021·广东广州·中考真题)已知3m n mnA n m ⎛⎫=- ⎪⎝⎭(1)化简A ;(2)若230m n +-=,求A 的值. 【答案】(1)3m n +;(2)6.解:(1)()())22333m n m n m n mn mnA m n mn nm mn +-⎛⎫=-==+ ⎪⎝⎭;(2)∵230m n +-=,∴23m n +=,∴()3=323=6A m n =+⨯.整体思想的运用形式: (1) 整体降次; (2) 整体求值。

【知识识记与拓展】1、代数式求值中整体思想体现;2、降次中整体思想体现;3、一元次次方程根与系数关系中整体思想体现;一、单选题 1.(2018·山东潍坊·中考真题)|12|=( ) A .12B 21C .12D .12-2.(2021·四川泸州·中考真题)已知1020a =,10050b =,则1322a b ++的值是( )A .2B .52C .3D .923.(2021·四川泸州·中考真题)关于x 的一元二次方程2220x mx m m ++-=的两实数根12,x x ,满足122x x =,则2212(2)(2)x x ++的值是( )A .8B .16C . 32D .16或404.(2020·江苏无锡·中考真题)若2x y +=,3z y -=-,则x z +的值等于( ) A .5B .1C .-1D .-55.(2016·四川雅安·中考真题)已知231a a +=,则代数式2261a a +-的值为( ) A .0B .1C .2D .36.(2011·辽宁沈阳·中考真题)已知230a a +-=,那么2(4)a a +的值是( ) A .9B .12-C .18-D .15-7.(2021·浙江台州·中考真题)已知(a +b )2=49,a 2+b 2=25,则ab =( )A .24B .48C .12D .8.(2021·四川自贡·中考真题)已知23120x x --=,则代数式2395x x -++的值是( ) A .31B .31-C .41D .41-9.(2020·江苏泰州·中考真题)点(),P a b 在函数32y x =+的图像上,则代数式621a b -+的值等于( ) A .5B .3C .3-D .1-10.(2020·重庆·中考真题)已知a +b =4,则代数式122a b++的值为( ) A .3B .1C .0D .-111.(2020·贵州遵义·中考真题)已知x 1,x 2是方程x 2﹣3x ﹣2=0的两根,则x 12+x 22的值为( ) A .5B .10C .11D .1312.(2019·江苏泰州·中考真题)若231a b -=-,则代数式2463a ab b -+的值为( ) A .-1B .1C .2D .3二、填空题 13.(2019·江苏常州·中考真题)如果20a b --=,那么代数式122a b +-的值是_____. 14.(2019·湖南湘潭·中考真题)若5a b +=,3a b -=,则22a b -=_____. 15.(2017·湖北·中考真题)已知2a ﹣3b=7,则8+6b ﹣4a=_____.16.(2015·江苏扬州·中考真题)若235a b -=,则2622015b a -+=______. 17.(2014·贵州贵阳·中考真题)若0m n +=,则221m n ++=____________.18.(2021·四川绵阳·中考真题)若x y -=34xy =-,则22x y -=_____.19.(2021·四川广安·中考真题)若x 、y 满足2223x y x y -=-⎧⎨+=⎩,则代数式224x y -的值为______.20.(2021·湖南岳阳·中考真题)已知1x x +1x x+=______. 21.(2020·宁夏·中考真题)2002年8月,在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图1),且大正方形的面积是15,小正方形的面积是3,直角三角形的较短直角边为a ,较长直角边为b .如果将四个全等的直角三角形按如图2的形式摆放,那么图2中最大的正方形的面积为____.22.(2020·湖北·中考真题)已知23x y +=,则124x y ++=______.23.(2020·广东·中考真题)已知5x y =-,2xy =,计算334x y xy +-的值为_________. 24.(2020·四川泸州·中考真题)已知12,x x 是一元二次方程2470x x --=的两个实数根,则2211224x x x x ++的值是_________.25.(2020·山东临沂·中考真题)若1a b +=,则2222a b b -+-=________.26.(2020·四川成都·中考真题)已知73a b =-,则代数式2269a ab b ++的值为_________. 27.(2020·江苏宿迁·中考真题)已知3a b +=,代数式225a b +=,则ab 的值是_____________.三、解答题 28.(2020·北京·中考真题)已知2510x x --=,求代数式(32)(32)(2)x x x x +-+-的值.一、单选题 1.(2021·广东金平·一模)如果代数式4m 2﹣2m +5的值为7,那么代数式2m 2﹣m ﹣3的值为( ) A .﹣3B .3C .2D .﹣22.(2021·安徽·三模)已知实数a≠b≠c≠0,且满足c a =a +4,c b =b +4,则2a c +2b c-16c 的值为( ) A .2B .-2C .-1D .13.(2020·江苏泰兴·模拟预测)已知24m n a =+,24n m a =+,m n ≠,则222m mn n ++的值为( ) A .16B .12C .10D .无法确定二、填空题 4.(2018·河北·模拟预测)当代数式x 2+3x +5的值为7时,代数式3x 2+9x ﹣2的值是 ___. 5.(2021·广东·珠海市文园中学三模)已知2430x x -+=,则254x x -+=________________. 6.(2021·广东·佛山市华英学校一模)当x =3时,px 3+qx +1=2020,则当x =﹣3时,px 3+qx +1的值为_____.7.(2021·浙江·杭州市采荷中学二模)设M x y =+,N x y =-,P xy =.若99M =,98N =,则P =______.8.(2021·安徽·安庆市第四中学二模)实数a ,b 满足a 2+b 2﹣2a =0,则4a +b 2的最大值________.9.(2021·山东乳山·模拟预测)若方程2250x x +-=的两个根是1x ,2x 12()x x >,则1211x x -的值为________.10.(2021·福建·模拟预测)已知4x y =-,2xy =,计算22x y +的值为______.11.(2021·贵州黔东南·一模)若实数m 、n 满足21010m m -+=,21010n n -+=,则代数式33m n mn +的值为______.12.(2021·四川邛崃·二模)已知代数式23a a -的值为6,则代数式2926a a -+的值为______. 13.(2021·江苏邗江·二模)若23a b -=22934a ab b -+的值等于________.14.(2021·湖南茶陵·模拟预测)如若21x x +=,则431x x x +++的值为__________.15.(2020·广东斗门·二模)已知实数m ,n 满足20191m n m n +=⎧⎨-=-⎩,则代数式m 2﹣n 2的值为_____.三、解答题 16.(2021·浙江海曙·一模)(1)已知250x x -,求代数式2210x x - (2)化简:226993x x x x x ++---.17.(2020·陕西·西安市第三十一中学模拟预测)阅读材料:“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛,如我们把()a b +看成一个整体,4()2()((421)()3())a b a b a b a b a b =+-+++-++=+. 尝试应用:(1)把2()a b -看成一个整体,合并2223()5()7()---+-a b a b a b 的结果是_________. (2)已知221x y -=,求2362021--x y 的值. 拓广探索:(3)已知22,25,9-=-=--=a b b c c d ,求()(2)(2)a c b d b c -+---的值.18.(2021·江苏镇江·一模)阅读材料:《见微知著》谈到:从一个简单的经典问题出发,从特殊到一般,由简单到复杂,从部分到整体,由低维到高维,知识与方法上的类比是探索发展的重要途径,是思想阀门发现新问题、新结论的重要方法. 例如:已知1xy =,求1111x y+++的值. 解:原式11111111xy y y xy x y y y y +=+=+==+++++. 问题解决: (1)已知1xy =. ①代数式221111x y +++的值为_______; ②求证:2021202111111x y +=++.(2)若x 满足22(2021)(2020)4043x x -+-=,求(2021)(2020)x x --的值.19.(2020·四川·正兴中学二模)已知2a b +=,2ab =,求32231122a b a b ab ++和22223a ab b a b ab +++的值.20.(2020·湖北·黄石八中一模)已知25,25,x y =+=-求22x y -的值.一、单选题1.已知221224a b a b +=--,则132a b -的值为( )A .4B .2C .2-D .4-2.已知a ﹣b=2,则代数式2a ﹣2b ﹣3的值是( ) A .1B .2C .5D .7二、填空题3.已知2,33xy x y =-=,则322321218x y x y xy -+=_________. 4.若2a b =+,则代数式222a ab b -+的值为__. 5.若21x x +=,则433331x x x +++的值为_____.6.若实数x 满足2210x x --=,则322742017x x x -+-=_____________.7.已知实数a ,b 满足:211a a +=,211b b+=,则2015a b -|=_____.三、解答题8.先化简,再求值:221121m m m m m m---÷++,其中m 满足:210m m --=.1.B【解析】分析:根据绝对值的性质解答即可. 解:221. 故选B .【点拨】:此题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 2.C【分析】根据同底数幂的乘法31010010a b ⋅=,可求23a b +=再整体代入即可. 解: ∵1020a =,10050b =,∴2310100102050100010a b a b +⋅==⨯==, ∴23a b +=,∴()()1311233332222a b a b ++=++=+=. 故选:C .【点拨】本题考查幂的乘方,同底数幂的乘法逆运算,代数式求值,掌握幂的乘方,同底数幂的乘法法则,与代数式值求法是解题关键.【分析】根据一元二次方程根与系数的关系,即韦达定理,先解得2m =或1m =-,再分别代入一元二次方程中,利用完全平方公式变形解题即可. 解:一元二次方程2220x mx m m ++-= 21,2,a b m c m m ===-2122cm x am x ==-= 220m m --= (2)(1)0m m ∴-+=2m ∴=或1m =- 当2m =时,原一元二次方程为2420x x ++=12=24bm ax x +-=-=-, 22221212122)+2((2)(2)()+4=x x x x x x +∴++,221212122=()2x x x x x x ++- 221212212212)+(2)(2)=)(2(4+4x x x x x x x x -∴+++22=2+2(4)424⨯--⨯+32=当1m =-时,原一元二次方程为2220x x +=- 2(2)41240∆=--⨯⨯=-<原方程无解,不符合题意,舍去, 故选:C .【点拨】本题考查一元二次方程根与系数的关系,韦达定理等知识,涉及解一元二次方程,是重要考点,难度较易,掌握相关知识是解题关键. 4.C【分析】将两整式相加即可得出答案. 解:∵2x y +=,3z y -=-, ∴()()1x y z y x z ++-=+=-, ∴x z +的值等于1-, 故选:C .【点拨】本题考查了整式的加减,熟练掌握运算法则是解本题的关键. 5.B解:试题分析:∵231a a +=,∴2261a a +-=22(3)1a a +-=2×1﹣1=1.故选B . 考点:代数式求值;条件求值;整体代入.【分析】由a 2+a -3=0,变形得到a 2=-(a -3),a 2+a =3,先把a 2=-(a -3)代入整式得到a 2(a +4)=-(a -3)(a +4),利用乘法得到原式=-(a 2+a -12),再把a 2+a =3代入计算即可. 解:∵a 2+a -3=0, ∴a 2=-(a -3),a 2+a =3, a 2(a +4)=-(a -3)(a +4) =-(a 2+a -12) =-(3-12) =9. 故选:A .【点拨】本题考查了整式的混和运算及其化简求值:先把已知条件变形,用底次代数式表示高次式,然后整体代入整式进行降次,进行整式运算求值. 7.C【分析】利用完全平方公式计算即可.解:∵()222249a b a b ab +=++=,2225a b +=, ∴4925122ab -==, 故选:C .【点拨】本题考查整体法求代数式的值,掌握完全平方公式是解题的关键. 8.B【分析】根据题意,可先求出x 2-3x 的值,再化简()22395=3+53x x x x -++--,然后整体代入所求代数式求值即可. 解:∵23120x x --=, ∴23=12x x -,∴()223395=3+5=312+5=31x x x x -++---⨯-.故选:B .【点拨】此题考查了代数式求值,此题的关键是代数式中的字母表示的数没有明确告知,而是隐含在题设中,得出23=12x x -,是解题的关键. 9.C【分析】把(),P a b 代入函数解析式得32=+b a ,化简得32-=-a b ,化简所求代数式即可得到结果;解:把(),P a b 代入函数解析式32y x =+得:32=+b a , 化简得到:32-=-a b ,∴()()621=231=221=-3-+-+⨯-+a b a b . 故选:C .【点拨】本题主要考查了通过函数解析式与已知点的坐标得到式子的值,求未知式子的值,准确化简式子是解题的关键. 10.A【分析】通过将所求代数式进行变形,然后将已知代数式代入即可得解. 解:由题意,得 411132222a b a b +++=+=+= 故选:A.【点拨】此题主要考查已知代数式求代数式的值,熟练掌握,即可解题. 11.D【分析】利用根与系数的关系得到12123,2,x x x x +==-再利用完全平方公式得到222121212()2,x x x x x x +=+-然后利用整体代入的方法计算.解:根据题意得12123,2,x x x x +==-所以2222121212()232(2)13.x x x x x x +=+-=-⨯-=故选:D .【点拨】本题考查的是一元二次方程的根与系数的关系,以及完全平方公式的变形,掌握以上知识是解题的关键. 12.B【分析】先将代数式2463a ab b -+变形后,再整体代入即可得结论. 解:2463a ab b -+()2233a a b b =-+ 23a b =-+()23a b =-- 1=故选B .【点拨】此题考查代数式的求值,根据代数式的特点将原式变形,再整体代入已知条件是解题的关键. 13.5【分析】将所求式子化简后再将已知条件中2a b -=整体代入即可求值; 解:20a b --=,∴2a b -=,∴()12212145a b a b +-=+-=+=;故答案为5.【点拨】本题考查代数式求值;熟练掌握整体代入法求代数式的值是解题的关键. 14.15【分析】先根据平方差公式分解因式,再代入求出即可.解:∵5a b +=,3a b -=,∴22a b -()()a b a b =+-53=⨯15=故答案为15【点拨】本题考查了平方差公式,能够正确分解因式是解此题的关键.15.-6解:试题分析:∵2a ﹣3b=7,∴8+6b ﹣4a=8﹣2(2a ﹣3b )=8﹣2×7=﹣6,故答案为﹣6. 考点:代数式求值;整体代入.16.2005解:试题分析:2622015b a -+=()223201510+20152005a b --+=-=故答案为2005考点:代数式的求值17.1解:试题分析:把所求代数式转化成已知条件的形式,然后整体代入进行计算即可得解: ∵m+n=0,∴()22121201011m n m n ++=++=⨯+=+=.考点:1.代数式求值,2.整体思想的应用.18.0【分析】先求出22x y +,再求22x y -的平方,然后再开方即可求出22x y -.解:∴x y -=2()3x y ∴-=,2223x xy y ∴-+=, ∵34xy =-, ∴22332x y ++=,∴2232x y +=, 22222222()()4x y x y x y ∴-=+-9940416=-⨯=, 220x y ∴-=,故答案为:0.【点拨】本题考查了完全平方公式的应用,等式的灵活变形是本题的关键.19.-6【分析】根据方程组中x +2y 和x -2y 的值,将代数式利用平方差公式分解,再代入计算即可.解:∵x -2y =-2,x +2y =3,∴x 2-4y 2=(x +2y )(x -2y )=3×(-2)=-6,故答案为:-6.【点拨】本题主要考查方程组的解及代数式的求值,观察待求代数式的特点与方程组中两方程的联系是解题关键.20.0【分析】把1x x+=解:10x x+== 故答案为:0.【点拨】本题考查了求代数式的值,涉及二次根式的减法运算,整体代入法是解决本题的关键.21.27【分析】根据题意得出a 2+b 2=15,(b-a )2=3,图2中大正方形的面积为:(a+b )2,然后利用完全平方公式的变形求出(a+b )2即可.解:由题意可得在图1中:a 2+b 2=15,(b-a )2=3,图2中大正方形的面积为:(a+b )2,∵(b-a )2=3a 2-2ab+b 2=3,∴15-2ab=32ab=12,∴(a+b )2=a 2+2ab+b 2=15+12=27,故答案为:27.【点拨】本题考查了完全平方公式在几何图形中的应用,熟知完全平方式的形式是解题关键.22.7【分析】由23x y +=可得到246x y +=,然后整体代入124x y ++计算即可.解:∵23x y +=,∴()2224236x y x y +=+=⨯=,∴124167x y ++=+=,故答案为:7.【点拨】本题考查了代数式的求值问题,注意整体代入的思想是解题的关键.23.7【分析】将代数式化简,然后直接将5x y +=,2xy =代入即可.解:由题意得5x y +=,2xy =,∴3343()41587x y xy x y xy +-=+-=-=,故答案为:7.【点拨】本题考查了提取公因式法,化简求值,化简334x y xy +-是解题关键.24.2【分析】由已知结合根与系数的关系可得:12x x +=4,12x x ⋅= -7,2211224x x x x ++=()212122x x x x ++,代入可得答案. 解:∵12,x x 是一元二次方程2470x x --=的两个实数根,∴12x x +=4,12x x ⋅= -7,∴2211224x x x x ++=()212122x x x x ++=()2427+⨯- =2,故答案为:2.【点拨】本题考查的知识点是一元二次方程根与系数的关系,难度不大,属于基础题 25.-1【分析】将原式变形为()()22a b a b b +-+-,再将1a b +=代入求值即可.解:2222a b b -+-=()()22a b a b b +-+-将1a b +=代入,原式=22a b b -+-=2a b +-=1-2=-1故答案为:-1.【点拨】本题考查了代数式求值,其中解题的关键是利用平方差公式将原式变形为()()22a b a b b +-+-.26.49【分析】先将条件的式子转换成a +3b =7,再平方即可求出代数式的值.解:∵73a b =-,∴37a b +=,∴()2222693749a ab b a b ++=+==,故答案为:49.【点拨】本题考查完全平方公式的简单应用,关键在于通过已知条件进行转换. 27.2【分析】根据完全平方公式()2222a b a ab b +=++,代入计算即可得出结果.解:由()2222a b a ab b +=++可得:2352ab =+ 解得:2ab =故答案为2.【点拨】本题考查了完全平方公式,熟练掌握完全平方公式的结构特点是解题的关键. 28.21024x x --,-2【分析】先按照整式的混合运算化简代数式,注意利用平方差公式进行简便运算,再把2510x x --=变形后,整体代入求值即可.解:原式=22942x x x -+-2102 4.x x =--∵2510x x --=,∴251x x -=,∴21022x x -=,∴原式=242-=-.【点拨】本题考查的是整式化简求值,掌握利用平方差公式进行简便运算,整体代入求值是解题的关键.1.D【分析】由代数式4m 2﹣2m +5的值为7,可得到4m 2﹣2m =2,两边除以2得到2m 2﹣m =1,然后把2m 2﹣m =1代入2m 2﹣m ﹣3即可得到答案.解:∵4m2﹣2m+5=7,∴4m2﹣2m=2,∴2m2﹣m=1把2m2﹣m=1代入2m2﹣m﹣3得,2m2﹣m﹣3=1-3=-2.故选D.【点拨】本题考查了代数式求值:先把代数式变形,然后利用整体代入的方法求代数式的值.2.A【分析】由ca=a+4,cb=b+4,可求出c=a2+4a,c=b2+4b,进而可得a+b=-4,a2=c-4a,b2=c-4b,代入所给代数式求解即可.解:∵ca=a+4,cb=b+4,∴c=a2+4a,c=b2+4b,∴a2+4a =b2+4b,∴a2-b2=4b-4a,∴(a+b)(a-b)=-4(a-b),∵a≠b≠c≠0,∴a+b=-4,∵c=a2+4a,c=b2+4b,∴a2=c-4a,b2=c-4b,∴4c ac-+4c bc--16c=2+() 416a bc-+-=2+() 4416c-⨯--=2.故选:A【点拨】本题考查了分式的化简求值,因式分解的应用等知识,求出a+b=-4,a2=c-4a,b2=c-4b 是解答本题的关键.3.A【分析】先由已知条件得出m+n的值,再把m2+2mn+n2化成完全平方的形式,再进行计算即可.解:∵24m n a=+,24n m a=+,∴224(4)444()m n n a m a n m n m -=+-+=-=-,即()()4()m n m n m n +-=--,即(4)()0m n m n ++-=,又∵m≠n ,∴m+n+4=0,即m+n =﹣4,∴22222()(4)16m mn n m n ++=+=-=.故选:A .【点拨】本题考查了因式分解的应用.能通过对已知条件的变形得出m+n 的值是解题的关键.4.4【分析】根据题意确定出x 2+3x 的值,原式变形后代入计算即可求出值.解:由题意得:x 2+3x +5=7,即x 2+3x =2,则3x 2+9x ﹣2=3(x 2+3x )-2=6-2=4,故答案为:4.【点拨】本题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.5.8【分析】由题意,先得到243x x -=-,然后整体代入计算,即可得到答案.解:∵2430x x -+=,∴243x x -=-,∴2254(4)5(3)58x x x x -+=--+=--+=;故答案为:8.【点拨】本题考查了求代数式的值,解题的关键是掌握所学的知识,正确得到243x x -=-,运用整体代入的运算法则进行解题.6.-2018【分析】把x =3代入代数式得27p +3q =2019,再把x =﹣3代入,可得到含有27p +3q 的式子,直接解答即可.解:当x =3时, px 3+qx +1=27p +3q +1=2020,即27p +3q =2019,所以当x =﹣3时, px 3+qx +1=﹣27p ﹣3q +1=﹣(27p +3q )+1=﹣2019+1=﹣2018. 故答案为:﹣2018.【点拨】此题考查了代数式求值;代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式27p +3q 的值,然后利用“整体代入法”求代数式的值. 7.49.25【分析】先分别求出(x +y )2和(x -y )2的值,根据完全平方公式展开,再相减,即可求出xy 的值,再得出答案即可.解:∵M =x +y =99,∴两边平方,得(x +y )2=992,即x 2+y 2+2xy =992①,∵N =x -y =98,∴两边平方,得(x -y )2=982,即x 2+y 2-2xy =982②,∴①-②,得4xy =992-982=(99+98)×(99-98)=197,∴xy =1974=49.25, 即P =xy =49.25,故答案为:49.25.【点拨】本题考查了完全平方公式和平方差公式,能灵活运用完全平方公式进行计算是解此题的关键,注意:(x +y )2=x 2+y 2+2xy ,(x -y )2=x 2+y 2-2xy .8.8【分析】根据条件变形为222=-b a a ,确定出a 的取值范围,将4a +b 2转化为()239a --+即可.解:∵a 2+b 2﹣2a =0,∴()2211a b -+=,2a =a 2+b 2,222=-b a a∴()2211b a =--,∵b 2≥0,∴()2110a --≥,∴0≤a ≤2,∴4a +b 2=()()22242639a a a a a a +-=--=--+, ∵-1<0,∴当a <3时,式子的值随a 的增大而增大,∴当2a =时,4a +b 2的最大值为8.故答案为8.【点拨】本题考查代数式的最值问题,将代数式变形,利用完全平方公式配方,利用非负数的性质是解题关键.9【分析】利用一元二次方程根与系数的关系可得1212x x +=- ,1252x x ⋅=- ,然后利用完全平方公式的变形可求出12x x -= 解:∵方程2250x x +-=的两个根是1x ,2x , ∴1212x x +=- ,1252x x ⋅=- , ∵()2221212122x x x x x x +=++, ∴2221215212224x x ⎛⎫⎛⎫+=--⨯-= ⎪ ⎪⎝⎭⎝⎭ , ∴()2221212122154122424x x x x x x ⎛⎫-=+-=-⨯-= ⎪⎝⎭ ,∴12x x -=±, ∵12x x >,∴12x x -=∴122121()11252-==-=--x x x x x x. 【点拨】本题主要考查了一元二次方程根与系数的关系和 完全平方公式的变形,熟练掌握一元二次方程根与系数的关系是解题的关键.10.12【分析】根据22x y +=(x +y )2-2xy ,再根据已知条件代入计算即可得出答案.解:∵4x y =-,∴4x y +=,∴()222224412x y x y xy +=+-=-=.故答案为:12.【点拨】本题主要考查了完全平方公式的变式应用,熟练掌握完全平方公式的变式进行计算是解决本题的关键.11.98【分析】由题意得:m 、n 是方程21010x x -=+的两个根,利用跟与系数的关系,得出10m n +=,1⋅=m n ,进而即可求解.解:∵实数m 、n 满足21010m m -+=,21010n n -+=,∴m 、n 是方程21010x x -=+的两个根,∴10m n +=,1⋅=m n ,∴33m n mn +=222()()2mn m n mn m n mn ⎡⎤+=+-⎣⎦=21102198⎡⎤⨯-⨯=⎣⎦,故答案是:98.【点拨】本题主要考查一元二次方程根与系数的关系,完全平方公式,把实数m 、n 看作是方程21010x x -=+的两个根,是解题的关键.12.-3【分析】构造等式23a a -=6,同乘以-2后,整体代入计算即可.解:∵23a a -=6,∴22612a a -+=-,∴2926a a -+=9+(-12)=-3,故答案为:-3.【点拨】本题考查了条件等式型的代数式求值,准确构造条件等式,并灵活进行变形,后整体代入是解题的关键.13.2【分析】由23a b -=32a b -=32a b -解:∵23a b -=∴32a b -= ∴22934a ab b -+=23()2a b -=2, 故答案为:2【点拨】本题考查利用完全平方公式求代数式的值,熟练掌握完全平方公式,运用整体代入的思想是解题关键.14.2【分析】利用提公因式分将原式变形为22()1x x x x +++,然后利用整体代入思想代入求解.解:∵21x x +=,∴431x x x +++=22()1x x x x +++=21x x ++=1+1=2.故答案为:2【点拨】本题考查了因式分解的应用,掌握提公因式的技巧把所求多项式进行灵活变形,并利用整体代入思想求解是解题关键.15.-2019【分析】直接利用平方差公式将原式变形得出答案.解:∵实数m ,n 满足20191m n m n +=⎧⎨-=-⎩, ∴m 2﹣n 2=(m +n )(m ﹣n )=﹣2019.故答案为:﹣2019.【点拨】此题主要考查了平方差公式,根据题目要求正确将原式变形是解题关键.16.(1(2)33x - 【分析】(1)将条件变形后,两边同时乘以2,然后整体代入求值即可;(2)因式分解,约分后转化为同分母分式的减法计算即可.解:.解:(1)由已知得:25x x -=∴原式()225x x =-==(2)原式2(3)(3)(3)3+=-+--x x x x x 333+=---x x x x 33x =-. 【点拨】本题考查了条件型代数式的值,分式的减法,熟练掌握整体变形代入求值,因式分解后约分等技能是解题的关键.17.(1)25()a b -;(2)-2018;(3)6【分析】(1)把2()a b -看做一个整体,合并即可得到结果;(2)原式前两项提取3变形后,将已知等式代入计算即可求出值;(3)原式去括号整理后,将已知等式代入计算即可求出值.解:(1)25()a b -.(2)∵221x y -=,∴2362021--x y()2322021x y =--32021=-2018=-(3)∵22,25,9-=-=--=a b b c c d ,∴()(2)(2)a c b d b c -+---=a-c+2b-d-2b+c=a-d=a-2b+2b-c+c-d=(a-2b )+(2b-c )+(c-d )=2-5+9=6.【点拨】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.18.(1)①1;②证明见解析;(2)2021.【分析】(1)①把xy =1代入221111x y +++,分母提取公因式,约分,再根据分式加法法则计算即可得答案;②由xy =1可得20212021x y =1,同①的方法计算即可得结论;(2)设2021x a -=,2020x b -=,可得1a b -=,利用完全平方公式求出ab 的值即可得答案.解:(1)①∵xy =1, ∴221111x y +++ =22xy xy xy x xy y +++ =()()xy xy x y x y x y +++ =x y x y++ =1.故答案为:1②∵xy =1,∴20212021x y =1, ∴202120211111x y +++ =20212021202120212021202111x y x y x y +++=202120212021202120211(1)1x y x y y +++ =202120212021111y y y +++ =2021202111y y ++ =1.(2)设2021x a -=,2020x b -=,∴1a b -=,∵22(2021)(2020)4043x x -+-=,∴224043a b +=,∴222()2a b a b ab -=+-=4043-2ab =1,解得:ab=2021,∴(2021)(2020)x x --=2021.【点拨】本题考查利用提取公因式法和完全平方公式因式分解及分式的加法,熟练掌握完全平方公式及分式的加法法则是解题关键.19.4; 32【分析】(1)先提取公因式12ab 后,再因式分解即可求解; (2)对分子和分母分别进行因式分解后代入数据即可求解. 解:232232211=(12)122()22++++=+ab a ab a b a b ab a b b ab 再代入数据:2a b +=,2ab =∴原式12442=⨯⨯= 故答案为:4.222222233()()()++++++==+++a ab b a ab b a b ab a b ab ab a b ab a b 再代入数据:2a b +=,2ab =∴原式=22263==2242+=⨯. 故答案为:32. 【点拨】本题考查分式的加减乘除混合运算,运算前先因式分解,熟练掌握运算法则是解决此类题的关键.20.【分析】先把22x y -分解因式,然后把x ,y 的值代入化简即可.解:()()2242585x y x y x y -=+-=⨯=【点拨】本题考查了代数式的运算,运用平方差公式对原式进行因式分解是解题的关键.1.A 【分析】根据221224a b a b +=--,变形可得:()22221121111042a a b b a b ⎛⎫-++++=-++= ⎪⎝⎭,因此可求出1a =,2b =-,把a 和b 代入132a b -即可求解. 解:∵221224a b a b +=-- ∴()22221121111042a a b b a b ⎛⎫-++++=-++= ⎪⎝⎭ 即2(1)0a -=,21(1)02b += ∴求得:1a =,2b =-∴把a 和b 代入132a b -得:131(2)42⨯-⨯-= 故选:A【点拨】本题主要考查了完全平方公式因式分解,熟记完全平方公式,通过移项对已知条件进行配方是解题的关键.2.A解:试题分析:∵a ﹣b=2,∴2a ﹣2b ﹣3=2(a ﹣b )﹣3=2×2﹣3=1.故选A . 考点:代数式求值.3.36【分析】先把多项式因式分解,再代入求值,即可.解:∵2,33xy x y =-=,∴原式=()222322336xy x y -=⨯⨯=,故答案是:36.【点拨】本题主要考查代数式求值,掌握提取公因式法和公式法分解因式,是解题的关键.4.4. 【分析】由2a b =+,可得2a b -=,所求代数式变形后,整体代入即可.解:2a b =+,2a b ∴-=,22222()24a ab b a b ∴-+=-==,故答案为4【点拨】本题考查了代数式求值,利用完全平方公式因式分解,熟记完全平方公式的结构特征是解答本题的关键.5.4【分析】把所求多项式进行变形,代入已知条件,即可得出答案.解:∵21x x +=,∴()43222233313313313()1314x x x x x x x x x x x +++=+++=++=++=+=;故答案为4.【点拨】本题考查了因式分解的应用;把所求多项式进行灵活变形是解题的关键. 6.﹣2020.解:∵2210x x --=,∴221x x =+,322742017=2(21)-7(21)42017x x x x x x x -+-+++-=242147+42017x x x x +--- =2482024=4(21)82024x x x x --+--=4﹣2024=﹣2020,故答案为﹣2020.7.1.解:试题分析:∵2110a a +=>,2110b b+=>,∴0a >,0b >,∴()10ab a b ++>,∵211a a +=,211b b+=,两式相减可得2211a b a b -=-,()()b a a b a b ab -+-=,[()1]()0ab a b a b ++-=,∴0a b -=,即a b =,∴2015a b -=02015=1.故答案为1. 考点:1.因式分解的应用;2.零指数幂.8.2m m+1,1. 【分析】将分式运用完全平方公式及平方差公式进行化简,并根据m 所满足的条件得出2m =m+1,将其代入化简后的公式,即可求得答案. 解:原式为22m -1m-1m-m +2m+1m÷ =2(m+1)(m-1)m m-(m+1)m-1⨯ =m m-m+1=2m m m-m+1m+1=2mm+1,又∵m满足2m-m-1=0,即2m=m+1,将2m代入上式化简的结果,∴原式=2m m+1==1 m+1m+1.【点拨】本题主要考察了分式的化简求值、分式的混合运算、完全平方公式及平方差公式的应用,该题属于基础题,计算上的错误应避免.。

中考数学复习之实数,与实数有关的概念与练习题

中考数学复习之实数,与实数有关的概念与练习题

一.实数知识过关1.实数有关的概念1. 有理数:__________________2. 无理数:无限不循环小数叫做无理数.3. 实数:有理数和_______统称为实数.4. 实数的分类:(1) 按定义分: (2)按性质分:5. 数轴:(1)规定了______、_______、_______的直线叫做数轴;(2)______和实数是一一对应的关系.6. 相反数、绝对值、倒数考点分类考点1 相反数、倒数和绝对值 例1:2023-的相反数是( )A.1B.-1C.2023D.20231已知点M 、N 、P 、Q 在数轴上的位置如图所示,则其中对应的绝对值最大的点是( )A. NB.MC.PD.Q考点2 无理数的识别例2 在实数389722,,,π-中,是无理数的是( ) A. 722- B.9 C.π D.38考点3 科学记数法例3 (1) 一天时间为86400秒,用科学记数法表示这一数字是( )A. 210864⨯B. 3104.86⨯C. 41064.8⨯D.510864.0⨯(2) 目前世界上能制造出的最小晶体管的长度只有0.00000004m ,将0.00000004用科学记数法表示为( )A. 8104⨯B. 8104-⨯C.8104.0⨯D.8104⨯-考点4 非负数的性质例4 已知x,y 为实数,且0|2|31=-+-y x 则x -y 的值为( ) A.3 B.-3 C.1 D.-1考点5 绝对值的化简例5 已知有理数a,b 在数轴上如图所示,且||||b a =,则可化简为( )A.a -bB.a+bC.2aD.2b真题演练1.两千多年前,中国人就开始使用负数,如果收入100元记作+100元,那么支出60元应记作( ) A .﹣60元B .﹣40元C .+40元D .+60元2.下列各数不是有理数的是( ) A .1.21B .﹣2C .2πD .123.下列各数:−74,1.010010001,833,0,﹣π,﹣2.626626662…,0.1⋅2⋅,其中有理数的个数是( ) A .2B .3C .4D .54.在−13,227,0,﹣1,0.12,14,﹣2,﹣1.5这些数中,正有理数有m 个,非负整数有n 个,分数有k 个,则m ﹣n +k 的值为( ) A .3B .4C .6D .55.有理数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .a >﹣2B .|a |>bC .a >﹣bD .|b |>|a |6.已知数a ,b ,c 在数轴上的位置如图所示,化简|a +b |﹣|a ﹣b |+|a ﹣c |的结果为( )A .﹣a ﹣2b ﹣cB .﹣a ﹣b ﹣cC .﹣a ﹣cD .﹣a ﹣2b +c7.﹣2022的相反数是( ) A .﹣2022B .2022C .﹣2021D .20218.−43的相反数是( ) A .34B .43C .−34D .−439.新的一年到来了,中考也临近了,你是否准备好了?请选出2023的相反数是( ) A .12023 B .−12023C .2023D .﹣202310.下列各数中,属于分数的是()A.﹣0.2B.π2C.234D.|a|a11.已知:(a﹣2)2+|b+3|+|c+4|=0,请求出:5a﹣b+3c的值是()A.0B.﹣1C.1D.无法确定12.数据2060000000用科学记数法表示为()A.206×107B.2.06×10C.2.06×109D.20.6×108 13.2022年11月27日,宁波舟山港累计完成集装箱吞吐量超过3108万标准箱,提前34天达到去年全年总水平.将3108万用科学记数法表示应为()A.3.108×106B.3.108×107C.31.08×106D.0.3108×108 14.新型冠状病毒是承载在飞沬上传播的,而飞沬的直径是5um(提示:1m=1000000um),只要能够过滤小于5um的颗粒的空气净化器都有用,我们常用的医用口罩等都是有用的,飞沬直径用科学记数法可表示为()A.5×106m B.5×10﹣6m C.50×10﹣6m D.0.5×10﹣5m 15.华为麒麟990芯片采用了最新的0.000000007米的工艺制程,数0.000000007用科学记数法表示为()A.7×10﹣9B.7×10﹣4C.0.7×10﹣9D.0.7×10﹣8课后练习1.中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.在一部中国古代数学著作中,涉及用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数,这部著作是()A.《几何原本》B.《九章算术》C.《孙子算经》D.《四元玉鉴》2.有理数a、b、c、d在数轴上的对应点如图所示,这四个数中绝对值最小的是()A.a B.b C.c D.d3.下列各数中最小的负整数是()A.﹣2021B.﹣2022C.﹣2023D.﹣14.2022年11月13日,第十四届中国国际航空航天博览会在珠海圆满落幕,本届航展参展规模远超预期、参展展品全领域覆盖、商贸交流活动成效显著.航展6天,共签订总值超过398亿美元的合作协议书,39800000000用科学记数法表示为()A.3.98×1011B.0.398×1010C.3.98×1010D.0.398×1011 5.已知|3a+1|+(b﹣3)2=0,则(ab)2022的值是()A.1B.﹣1C.0D.36.若(a+1)2+|b﹣2|=0,则(b+a)2021的值是()A.1B.﹣2021C.﹣1D.2021填空题(共21小题)7.2022年全国粮食达到13731亿斤,数据13731用四舍五入法精确到1000,并用科学记数法表示是.8.某头非洲大象的体重大约3880千克,则将3880千克精确到100千克用科学记数法表示记为千克.9.观察下面式子:21=2,22=4,23=8,24=16,25=32,26=64…,那么22023的结果的个位上的数字是.10.如图,周长为6个单位长度的圆上的六等分点分别为A,B,C,D,E,F,点A落在2的位置,将圆在数轴上沿负方向滚动,那么落在数轴上﹣2023的点是.11.数轴上,点B在点A的右边,已知点A表示的数是﹣1,且AB=2023,那么点B表示的数是.12.若a的相反数等于它本身,b是最小的正整数,c是最大的负整数,则代数式a﹣b+c =.13.若a.b互为相反数,c的倒数是−35,则a+b﹣6c的值是.冲击A+如图1所示,△ABC是以AB为底的等腰三角形,AC=BC=6,延长CB至P,使得BP=BC,连接AP,AP=4.(1)求证:直线AP为圆O的切线;(2)如图2所示,将△ABC沿着AC翻折至△ACQ处,QC边与圆交于点D,连接AD,求△ACD的面积.。

中考数学一轮复习专题 实数知识点、对应习题及答案

中考数学一轮复习专题  实数知识点、对应习题及答案

实数考点1 实数的大小比较两实数的大小关系如下:正实数都大于0,负实数都小于0,正数大于一切负数;两个正实数,绝对值大的实数较大;两个负实数,绝对值大的实数反而小.实数和数轴上的点一一对应,在数轴上表示的两个实数,右边的数总大于左边的数. 例1 比较3-2与2-1的大小.分析:比较3-2与2-1的大小,可先将各数的近似值求出来, 即3-2≈1.732-1.414=0.318,2-1≈1.414-1=0.414,再比较大小例2 在-6,0,3,8这四个数中,最小的数是( )A.-6B.0C.3D.8 答:2-1,A 利用数轴考点2 无理数常见的无理数类型(1) 一般的无限不循环小数,如:1.41421356¨··· (2) 看似循环而实际不循环的小数,如0.1010010001···(相邻两个1之间0的个数逐次加1)。

(3) 有特定意义的数,如:π=3.14159265···(4).开方开不尽的数。

如:35,3注意:(1)无理数应满足:①是小数;②是无限小数;③不循环;(2)无理数不是都带根号的数(例如π就是无理数),反之,带根号的数也不一定都是无理数(例如4,327就是有理数).例3 下列是无理数的是( )A.-5/2B.πC. 0D.7.131412例4在实数中-23 ,0 3.14 )A .1个B .2个C .3个D .4个答:B ,A考点3 实数有关的概念实数的分类(1)按实数的定义分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数(2)按实数的正负分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负无理数负分数负整数负有理数负实数负数)零(既不是正数也不是正无理数正分数正整数正有理数正实数实数例5若a 为实数,下列代数式中,一定是负数的是( ) A. -a 2 B. -( a +1)2 C.-2a D.-(a -+1)分析:本题主要考查负数和非负数的概念,同时涉及考查字母表示数这个知识点.由于a 为实数, a 2、( a +1)2、2a 均为非负数,∴-a 2≤0,-( a +1)2≤0,-2a ≤0.而0既不是正数也不是负数,是介于正数与负数之间的中性数.因此,A 、B 、C 不一定是负数.又依据绝对值的概念及性质知-(a -+1)﹤0.故选D例6实数a 在数轴上的位置如图所示, 化简:2)2(1-+-a a =分析:这里考查了数形结合的数学思想,要去掉绝对值符号,必须清楚绝对值符号内的数是正还是负.由数轴可知:1﹤a ﹤2,于是,22)2(,112a a a a a -=-=--=-所以, 2)2(1-+-a a =a -1+2-a =1.例7 如图所示,数轴上A 、B 两点分别表示实数1,5,点B 关于点A 的对称点为C ,则点C 所表示的实数为( )A. 5-2B. 2-5C.5-3 D.3-5分析:这道题也考查了数形结合的数学思想,同时又考查了对称的性质.B 、C 两点关于点A 对称,因而B 、C 两点到点A 的距离是相同的,点B 到点A 的距离是5-1,所以点C 到点A 的距离也是5-1,设点C 到点O 的距离为a ,所以a +1=5-1,即a =5-2.又因为点C 所表示的实数为负数,所以点C 所表示的实数为2-5.例8已知a 、b 是有理数,且满足(a -2)2+3-b =0,则a b的值为 分析:因为(a -2)2+3-b =0,所以a -2=0,b -3=0。

专题01 实数(含二次根式)(8大考点)-2023年中考数学总复习真题探究与变式训练(解析版)

专题01 实数(含二次根式)(8大考点)-2023年中考数学总复习真题探究与变式训练(解析版)
实数的概念与分类
1.实数的概念:有理数和无理数统称为实数。
2.有理数:有限小数或无限循环小数叫做有理数。
3.无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类:
(1)开方开不尽的数,如
等;
(2)有特定意义的数,如圆周率π,或化简后含有π的数,如 +8 等; (3)有特定结构的数,如 0.1010010001…等; (4)某些三角函数,如 sin60o 等。
第一部分 数与式
专题 01 实数(含二次根式)(8 大考点)
核心考点一 实数的分类 核心考点二 相反数、倒数、绝对值 核心考点三 数轴 核心考点四 科学记数法
核心考点
核心考点五 实数的大小比较 核心考点六 平方根、立方根 核心考点七 二次根式及其运算 核心考点八 实数的运算 新题速递
核心考点一 实数的分类
【变式 1】(2022·广西桂林·一模)实数 , ,2,-6 中,为负整数的是( )
A.
B.
C.2
D.- 6
【答案】D
【分析】根据实数的分类即可做出判断.
【详解】解:A 选项是负分数,不符合题意;
Байду номын сангаас
B 选项是无理数,不符合题意;
C 选项是正整数,不符合题意;
D 选项是负整数,符合题意;
故选:D.
【点睛】本题考查了实数的分类,属于简单题,注意整数包括正整数,负整数和 0.
是无理数; 故答案为: . 【点睛】此题考查了无理数的识别,无限不循环小数叫无理数,解题的关键是知道初中范围 内常见的无理数有三类:①π 类,如 2π,π3 等;②开方开不尽的数,如 等;③虽有规 律但却是无限不循环的小数,如 0.1010010001…(两个 1 之间依次增加 1 个 0), 0.2121121112…(两个 2 之间依次增加 1 个 1)等.

专题01实数中考数学真题分项汇编(全国通用)(解析版)

专题01实数中考数学真题分项汇编(全国通用)(解析版)

实数一、单选题1.(2022·湖北鄂州)实数9的相反数等于()A.﹣9B.+9C.19D.﹣19【答案】A【解析】【分析】根据相反数的定义:如果两个数只有符号不同.我们称其中一个数为另一个数的相反数.进行求解即可.【详解】解:实数9的相反数是-9.故选A.【点睛】本题主要考查了相反数的定义.熟知相反数的定义是解题的关键.2.(2022·湖南永州)如图.数轴上点E对应的实数是()A.2-B.1-C.1D.2【答案】A【解析】【分析】根据数轴上点E所在位置.判断出点E所对应的值即可.【详解】解:根据数轴上点E所在位置可知.点E在-1到-3之间.符合题意的只有-2.故选:A.【点睛】本题主要考查数轴上的点的位置问题.根据数轴上点所在位置对点的数值进行判断是解题的关键.3.(2022·21-.2这四个实数中.最大的数是()A.0B.1-C.2D2【答案】C【分析】正实数都大于0.负实数都小于0.正实数大于一切负实数.两个负实数绝对值大的反而小.据此判断即可.【详解】解:∵220>-1.∵2-1.2这四个实数中.最大的数是2.故选:C .【点睛】此题主要考查了实数大小比较的方法.解答此题的关键是要明确:正实数>0>负实数.两个负实数绝对值大的反而小.4.(2022·黑龙江绥化)下列计算中.结果正确的是( )A .22423x x x +=B .()325x x =C 3322-=-D 42=±【答案】C【解析】【分析】根据合并同类项法则、幂的乘方运算法则、开立方运算、求一个数的算术平方根.即可一一判定.【详解】解:A.22223x x x +=.故该选项不正确.不符合题意.B.()326x x =.故该选项不正确.不符合题意. 3322--.故该选项正确.符合题意. 42.故该选项不正确.不符合题意.故选:C .【点睛】本题考查了合并同类项法则、幂的乘方运算法则、开立方运算、求一个数的算术平方根.熟练掌握和运用各运算法则是解决本题的关键.5.(2021·81 ) A .±3B .3C .±9D .9 【答案】A【解析】81.再求平方根即可.【详解】解:81=9.9的平方根是±3. 81±3.故选:A .【点睛】本题考查了算术平方根.平方根.熟练掌握相关知识是解题的关键.6.(2021·广西河池)下列4个实数中.为无理数的是( )A .-2B .0C 5D .3.14 【答案】C【解析】【分析】根据无理数的定义.无限不循环小数是无理数.即可解答.【详解】解:-2.0是整数.属于有理数.3.14是有限小数.属于有理数5.属于无理数.故C 符合题意.故选:C .【点睛】本题主要考查了无理数的定义.熟练掌握无限不循环小数是无理数是解题的关键. 7.(2021·贵州毕节)下列运算正确的是( )A .()031π-=-B 93=±C .133-=-D .()236a a -= 【答案】D【解析】【分析】直接计算后判断即可.【详解】 ()031π-=93=;1133-=;()236a a -=.故选D本题考查了零指数幂、算数平方根.负整数指数幂和幂的运算.关键是掌握概念和运算规则.8.(2020·贵州黔南)已知171a .a 介于两个连续自然数之间.则下列结论正确的是( )A .12a <<B .23a <<C .34a <<D .45a << 【答案】C【解析】【分析】 17.即可得出答案.【详解】解:∵4175<. ∵31714<. 171在3和4之间.即34a <<.故选:C .【点睛】 179.(2020·山东东营)利用科学计算器求值时.小明的按键顺序为.则计算器面板显示的结果为( )A .2-B .2C .2±D .4 【答案】B【解析】【分析】根据算术平方根的求解方法进行计算即可得解.【详解】 42=.故选:B .【点睛】本题主要考查了算术平方根的求解方法.考生需要将其与平方根进行对比掌握. 10.(2022·3(235)的值应在( )A .10和11之间B .9和10之间C .8和9之间D .7和8之间【答案】B【解析】【分析】 3(235)615=91516<<从而判定即可.【详解】 335)615= 91516<< ∵1543<<. ∵91510<6+<.故选:B .【点睛】本题考查了二次根式混合运算及无理数的估算.熟练掌握无理数估算方法是解题的关键.11.(2020·湖北荆州)若x 为实数.在)31x的“”中添上一种运算符号(在+.-.×.÷中选择)后.其运算的结果是有理数.则x 不可能的是( )A 31B 31C .23D .13【答案】C【解析】【分析】根据题意填上运算符计算即可.【详解】 A.())31310-=,结果为有理数; B.())31312⋅= ,结果为有理数; C.无论填上任何运算符结果都不为有理数; D.()(31132+=,结果为有理数; 故选C .【点睛】本题考查实数的运算,关键在于牢记运算法则.12.(2022·广东广州)实数a .b 在数轴上的位置如图所示.则 ( )A .a b =B .a b >C .a b <D .a b >【答案】C【解析】【分析】根据数轴上点的位置.可得11a b -<<<.进而逐项分析判断即可求解.【详解】解:根据数轴上点的位置.可得11a b -<<<. ∴a b <. 故选C .【点睛】本题考查了实数与数轴.根据数轴上点的位置判断实数的大小.数形结合是解题的关键. 13.(2022·广东广州)下列运算正确的是( )A 382-=B .11a a a a +-=(0a ≠)C 5510D .235a a a ⋅= 【答案】D【解析】【分析】根据求一个数的立方根.分式的加减.二次根式的加法.同底数幂的乘法运算.逐项分析判断即可求解.【详解】 A.382-=-.故该选项不正确.不符合题意. B.111a a a +-=(0a ≠).故该选项不正确.不符合题意. C. 5525该选项不正确.不符合题意.D.235a a a ⋅=.故该选项正确.符合题意.故选D【点睛】本题考查了求一个数的立方根.分式的加减.二次根式的加法.同底数幂的乘法运算.正确的计算是解题的关键.14.(2021·17 )A .2和3之间B .3和4之间C .4和5之间D .5和6之间 【答案】C【解析】【分析】直接利用估算无理数的方法分析得出答案.【详解】解:∵16<17<25.∵417 5. 174和5之间.故选:C .【点睛】此题主要考查了估算无理数的大小.1715.(2021·四川绵阳)下列数中.3803200 )A .3B .4C .5D .6【答案】C【解析】【分析】 3331258064>364=431255=333125200216<32166.即可得出结果.【详解】33364801253364=41255,.34805∴<. 又333125200216<32166.∴352006<<.3348052006∴<<.故选:C .【点睛】本题考查了估算无理数的大小.立方根.解决本题的关键是用有理数逼近无理数.求无理数的近似值.16.(2021·山东日照)下列命题:4的算术平方根是2.∵菱形既是中心对称图形又是轴对称图形.∵天气预报说明天的降水概率是95%.则明天一定会下雨.∵若一个多边形的各内角都等于108︒.则它是正五边形.其中真命题的个数是()A.0B.1C.2D.3【答案】B【解析】【分析】利用算术平方根的定义、菱形的对称性、概率的意义及多边形的内角和等知识分别判断后即可确定正确的选项.【详解】解:42故原命题错误.是假命题.∵菱形既是中心对称图形又是轴对称图形.正确.是真命题.∵天气预报说明天的降水概率是95%.则明天下雨可能性很大.但不确定是否一定下雨.故原命题错误.是假命题.∵若一个多边形的各内角都等于108︒.各边也相等.则它是正五边形.故原命题错误.是假命题.真命题有1个.故选:B.【点睛】本题考查了命题与定理的知识.解题的关键是了解算术平方根的定义、菱形的对称性、概率的意义及多边形的内角和等知识.难度不大.17.(2020·广西贵港)下列命题中真命题是()A42B.数据2.0.3.2.3的方差是6 5C.正六边形的内角和为360°D.对角线互相垂直的四边形是菱形【答案】B【解析】【分析】A.根据算术平方根解题.B.根据方差、平均数的定义解题.C.根据多边形的内角和为180(n2)︒⨯-解题.D.根据菱形、梯形的性质解题.【详解】A. 42=.22.故A错误.B. 数据2.0.3.2.3的平均数是20323=25++++.方差是 2222216(22)(02)(32)(22)(32)55⎡⎤-+-+-+-+-=⎣⎦.故B 正确. C. 正六边形的内角和为180(62)720︒⨯-=︒.故C 错误.D. 对角线互相垂直的四边形不一定是菱形.可能是梯形.故D 错误.故选:B .【点睛】本题考查判断真命题.其中涉及算术平方根、方差、多边形内角和、梯形性质、菱形性质等知识.是基础考点.难度较易.掌握相关知识是解题关键.18.(2020·内蒙古赤峰)估计(123323 ( ) A .4和5之间B .5和6之间C .6和7之间D .7和8之间【答案】A【解析】【分析】根据二次根式的混合运算法则进行计算.再估算无理数的大小.【详解】 (123323=11332336 ∵4<6<9. 6<3. 6故选:A.【点睛】此题考查了二次根式的混合运算.无理数的估算.正确掌握二次根式的运算法则、会进行无理数的大小估算是解题的关键.19.(2020·山东烟台)利用如图所示的计算器进行计算.按键操作不正确的是( )A .按键即可进入统计计算状态B .计算8的值.按键顺序为:C .计算结果以“度”为单位.按键可显示以“度”“分”“秒”为单位的结果D .计算器显示结果为13时.若按键.则结果切换为小数格式0.333333333 【答案】B【解析】【分析】根据计算器的按键写出计算的式子.然后求值.【详解】解:A 、按键即可进入统计计算状态是正确的.故选项A 不符合题意. B 、计算8的值.按键顺序为:.故选项B 符合题意. C 、计算结果以“度”为单位.按键可显示以“度”“分”“秒”为单位的结果是正确的.故选项C 不符合题意.D 、计算器显示结果为13时.若按键.则结果切换为小数格式0.333333333是正确的.故选项D 不符合题意.故选:B .【点睛】 本题考查了科学计算器.熟练了解按键的含义是解题的关键.20.(2020·湖北荆州)定义新运算a b *.对于任意实数a.b 满足()()1a b a b a b *=+--.其中等式右边是通常的加法、减法、乘法运算.例如43(43)(43)1716*=+--=-=.若x k x *=(k 为实数) 是关于x 的方程.则它的根的情况是( ) A .有一个实根 B .有两个不相等的实数根 C .有两个相等的实数根 D .没有实数根【答案】B 【解析】 【分析】将x k *按照题中的新运算方法展开.可得()()1x k x k x k *=+--.所以x k x *=可得()()1x k x k x +--=.化简得:2210x x k ---=.()()222141145k k ∆=--⨯⋅--=+.可得0∆>.即可得出答案. 【详解】解:根据新运算法则可得:()()2211x k x k x k x k *=+--=--.则x k x *=即为221x k x --=. 整理得:2210x x k ---=. 则21,1,1a b c k ==-=--.可得:()()222141145k k ∆=--⨯⋅--=+20k ≥.2455k ∴+≥.0∴∆>.∴方程有两个不相等的实数根.故答案选:B. 【点睛】本题考查新定义运算以及一元二次方程根的判别式.注意观察题干中新定义运算的计算方法.不能出错.在求一元二次方程根的判别式时.含有参数的一元二次方程要尤其注意各项系数的符号.21.(2022·重庆)对多项式x y z m n ----任意加括号后仍然只含减法运算并将所得式子化简.称之为“加算操作”.例如:()()x y z m n x y z m n ----=--++.()x y z m n x y z m n ----=--+-.….给出下列说法:∵至少存在一种“加算操作”.使其结果与原多项式相等. ∵不存在任何“加算操作”.使其结果与原多项式之和为0. ∵所有的“加算操作”共有8种不同的结果. 以上说法中正确的个数为( )A .0B .1C .2D .3【答案】D 【解析】 【分析】给x y -添加括号.即可判断∵说法是否正确.根据无论如何添加括号.无法使得x 的符号为负号.即可判断∵说法是否正确.列举出所有情况即可判断∵说法是否正确. 【详解】解:∵()x y z m n x y z m n ----=---- ∵∵说法正确∵0x y z m n x y z m n -----++++=又∵无论如何添加括号.无法使得x 的符号为负号 ∵∵说法正确∵当括号中有两个字母.共有4种情况.分别是()x y z m n ----、()x y z m n ----、()x y z m n ----、()x y z m n ----.当括号中有三个字母.共有3种情况.分别是()x y z m n ----、()x y z m n ----、()x y z m n ----.当括号中有四个字母.共有1种情况.()x y z m n ---- ∵共有8种情况 ∵∵说法正确 ∵正确的个数为3 故选D . 【点睛】本题考查了新定义运算.认真阅读.理解题意是解答此题的关键.22.(2021·广东)设610的整数部分为a .小数部分为b .则(210a b +的值是( ) A .6 B .10C .12D .10【答案】A 【解析】 【分析】10a 的值.进而确定b 的值.然后将a 与b 的值代入计算即可得到所求代数式的值. 【详解】∵3104. ∵26103<.∵6102a =. ∵小数部分6102410b ==∵(((210221041041041016106a b =⨯==-=. 故选:A . 【点睛】本题考查了二次根式的运算.正确确定610a 与小数部分b 的值是解题关键.23.(2021·湖北鄂州)已知1a 为实数﹐规定运算:2111a a =-.3211a a =-.4311a a =-.5411a a =- (1)11n n a a -=-.按上述方法计算:当13a =时.2021a 的值等于( )A .23- B .13C .12-D .23【答案】D 【解析】 【分析】当13a =时.计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅.会发现呈周期性出现.即可得到2021a 的值.【详解】解:当13a =时.计算出23421,,3,32a a a ==-=⋅⋅⋅⋅⋅⋅.会发现是以:213,,32-.循环出现的规律.202136732=⨯+.2021223a a ∴==. 故选:D . 【点睛】本题考查了实数运算规律的问题.解题的关键是:通过条件.先计算出部分数的值.从中找到相应的规律.利用其规律来解答.24.(2020·四川巴中)定义运算:若am =b .则log ab =m (a >0).例如23=8.则log 28=3.运用以上定义.计算:log 5125﹣log 381=( )A .﹣1B .2C .1D .44【答案】A 【解析】 【分析】先根据乘方确定53=125.34=81.根据新定义求出log 5125=3.log 381=4.再计算出所求式子的值即可. 【详解】解:∵53=125.34=81. ∵log 5125=3.log 381=4. ∵log 5125﹣log 381. =3﹣4. =﹣1. 故选:A . 【点睛】本题考查新定义对数函数运算.仔细阅读题目中的定义.找出新定义运算的实质.掌握新定义对数函数运算.仔细阅读题目中的定义.找出新定义运算的实质.解题关键理解新定义就是乘方的逆运算.25.(2021·湖北荆州)定义新运算“∵”:对于实数m .n .p .q .有[][],,m p q n mn pq =+※.其中等式右边是通常的加法和乘法运算.如:[][]2,34,5253422=⨯+⨯=※.若关于x 的方程[]21,52,0x x k k ⎡⎤⎣⎦+-=※有两个实数根.则k 的取值范围是( )A .54k <且0k ≠ B .54k ≤C .54k ≤且0k ≠ D .54k ≥【答案】C 【解析】 【分析】按新定义规定的运算法则.将其化为关于x 的一元二次方程.从二次项系数和判别式两个方面入手.即可解决. 【详解】解:∵[x 2+1.x ]∵[5−2k .k ]=0.∵()()21520k x k x ++-=.整理得.()2520kx k x k +-+=.∵方程有两个实数根.∵判别式0≥且0k ≠. 由0≥得.()225240k k --≥. 解得.54k ≤. ∵k 的取值范围是54k ≤且0k ≠. 故选:C 【点睛】本题考查了新定义运算、一元二次方程的根的判别等知识点.正确理解新定义的运算法则是解题的基础.熟知一元二次方程的条件、根的不同情况与判别式符号之间的对应关系是解题的关键.此类题目容易忽略之处在于二次项系数不能为零的条件限制.要引起高度重视.26.(2022·广西贺州)某餐厅为了追求时间效率.推出一种液体“沙漏”免单方案(即点单完成后.开始倒转“沙漏”. “沙漏”漏完前.客人所点的菜需全部上桌.否则该桌免费用餐).“沙漏”是由一个圆锥体和一个圆柱体相通连接而成.某次计时前如图(1)所示.已知圆锥体底面半径是6cm .高是6cm .圆柱体底面半径是3cm .液体高是7cm .计时结束后如图(2)所示.求此时“沙漏”中液体的高度为( )A .2cmB .3cmC .4cmD .5cm【答案】B 【解析】 【分析】由圆锥的圆锥体底面半径是6cm.高是6cm.可得CD =DE .根据园锥、圆柱体积公式可得液体的体积为63πcm 3.圆锥的体积为72πcm 3.设此时“沙漏”中液体的高度AD =x cm.则DE =CD =(6-x )cm.根据题意.列出方程.即可求解. 【详解】解:如图.作圆锥的高AC .在BC 上取点E .过点E 作DE ∵AC 于点D .则AB =6cm.AC =6cm.∵∵ABC 为等腰直角三角形. ∵DE ∵AB . ∵∵CDE ∵∵CAB .∵∵CDE 为等腰直角三角形. ∵CD =DE .圆柱体内液体的体积为:233763cm ππ⨯⨯=圆锥的体积为2316672cm 3ππ⨯⨯=.设此时“沙漏”中液体的高度AD =x cm.则DE =CD =(6-x )cm.∵21(6)(6)72633x x πππ⋅-⋅-=-. ∵3(6)27x -=. 解得:x =3.即此时“沙漏”中液体的高度3cm . 故选:B . 【点睛】本题考查圆柱体、圆锥体体积问题.解题的关键是掌握圆柱体、圆锥体体积公式.列出方程解决问题.27.(2020·湖南长沙)2020年3月14日.是人类第一个“国际数学日”这个节日的昵称是“π(Day )”国际数学日之所以定在3月14日.是因为3.14与圆周率的数值最接近的数字.在古代.一个国家所算的的圆周率的精确程度.可以作为衡量这个国家当时数学与科技发展的水平的主要标志.我国南北朝时期的祖冲之是世界上最早把圆周率的精确值计算到小数点后第七位的科学巨匠.该成果领先世界一千多年.以下对圆周率的四个表述:∵圆周率是一个有理数.∵圆周率是一个无理数.∵圆周率是一个与圆的大小无关的常数.它等于该圆的周长与直径的比.∵圆周率是一个与圆大小有关的常数.它等于该圆的周长与半径的比.其中正确的是( ) A .∵∵ B .∵∵C .∵∵D .∵∵【答案】A【解析】【分析】圆周率的含义:圆的周长和它直径的比值.叫做圆周率.用字母π表示.π是一个无限不循环小数.据此进行分析解答即可.【详解】解:∵圆周率是一个有理数.错误.∵π是一个无限不循环小数.因此圆周率是一个无理数.说法正确.∵圆周率是一个与圆的大小无关的常数.它等于该圆的周长与直径的比.说法正确.∵圆周率是一个与圆大小有关的常数.它等于该圆的周长与半径的比.说法错误.故选:A.【点睛】本题考查了对圆周率的理解.解题的关键是明确其意义.并知道圆周率一个无限不循环小数.3.14只是取它的近似值.二、填空题28.(2022·湖南)2.1-.π.0.3这五个数中随机抽取一个数.恰好是无理数的概率是__.【答案】25##0.4【解析】【分析】先确定无理数的个数.再除以总个数.【详解】2π是无理数.P(恰好是无理数)25 =.故答案为:25.【点睛】本题主要考查了概率公式及无理数.熟练掌握概率公式及无理数的定义进行计算是解决本题的关键.29.(2022·山东威海)按照如图所示的程序计算.若输出y的值是2.则输入x的值是_____.【答案】1 【解析】 【分析】根据程序分析即可求解. 【详解】解:∵输出y 的值是2. ∵上一步计算为121x=+或221x =- 解得1x =(经检验.1x =是原方程的解).或32x = 当10x =>符合程序判断条件.302x =>不符合程序判断条件 故答案为:1 【点睛】本题考查了解分式方程.理解题意是解题的关键. 30.(2021·105______. 【答案】10 【解析】 【分析】根据1010511<<.105 【详解】 解:100105121<<即1010511<<. 10510. 故答案为:10. 【点睛】本题主要考查无理数的估算.解题的关键是确定无理数位于哪两个整数之间. 31.(2021·()131820213π-⎛⎫--+-= ⎪⎝⎭___________. 【答案】-4 【解析】 【分析】根据立方根、零指数幂、负整数指数幂的运算法则即可求解. 【详解】解:原式=()213-++- 51=-+4=-.故答案为:-4 【点睛】本题考查了立方根、零指数幂、负整数指数幂、实数的混合运算等知识点.熟知上述的各种运算法则是解题的基础.32.(2020·青海)(-3+8)的相反数是16________. 【答案】 5- 2± 【解析】 【分析】第1空:先计算-3+8的值.根据相反数的定义写出其相反数. 第216.再写出其平方根. 【详解】第1空:∵385-+=.则其相反数为:5- 第2空:164.则其平方根为:2± 故答案为:5-.2±. 【点睛】本题考查了相反数.平方根.熟知相反数.平方根的知识是解题的关键.33.(2020·四川遂宁)下列各数917.2﹣π.﹣34.无理数的个数有_____个. 【答案】3 【解析】 【分析】根据无理数的三种形式:∵开不尽的方根.∵无限不循环小数.∵含有π的绝大部分数.找出无理数的个数即可. 【详解】解:在所列实数中.无理数有1.212212221….2﹣343个. 故答案为:3. 【点睛】本题考查无理数的定义.熟练掌握无理数的概念是解题的关键.34.(2022·四川广安)若(a ﹣3)25-b 则以a 、b 为边长的等腰三角形的周长为________.【答案】11或13##13或11 【解析】 【分析】根据平方的非负性.算术平方根的非负性求得,a b 的值.进而根据等腰三角形的定义.分类讨论.根据构成三角形的条件取舍即可求解. 【详解】解:∵(a ﹣3)25-b ∵3a =.5b =.当3a =为腰时.周长为:26511a b +=+=. 当5b =为腰时.三角形的周长为231013a b +=+=. 故答案为:11或13. 【点睛】本题考查了等腰三角形的定义.非负数的性质.掌握以上知识是解题的关键.35.(2022·四川内江)对于非零实数a .b .规定a ∵b =11a b-.若(2x ﹣1)∵2=1.则x 的值为 _____. 【答案】56【解析】 【分析】根据题意列出方程.解方程即可求解. 【详解】 解:由题意得:11212x --=1.等式两边同时乘以2(21)x -得.2212(21)x x -+=-.解得:56x =.经检验.x =56是原方程的根. ∵x =56. 故答案为:56. 【点睛】本题考查了解分式方程.掌握分式方程的一般解法是解题的关键. 36.(2022·湖北随州)已知m 为正整数.189m .则根据1893337337m m m ⨯⨯⨯=⨯m 有最小值3721⨯=.设n 为正整数.300n于1的整数.则n 的最小值为______.最大值为______. 【答案】 3 75 【解析】 【分析】 根据n 为正整数.300n 1的整数.先求出n 的值可以为3、12、75.300.300n是大于1的整数来求解. 【详解】 解:30032525310n n n⨯⨯⨯⨯==300n 1的整数.30031n n=. ∵n 为正整数∵n 的值可以为3、12、75. n 的最小值是3.最大值是75. 故答案为:3.75. 【点睛】本题考查了无理数的估算.理解无理数的估算方法是解答关键.37.(2021·安徽)埃及胡夫金字塔是古代世界建筑奇迹之一.其底面是正方形.侧面是全等的等腰三角形.51.它介于整数n 和1n +之间.则n 的值是______. 【答案】1 【解析】 【分析】551即可完成求解. 【详解】 解:5 2.236. 51 1.236≈.因为1.236介于整数1和2之间. 所以1n =; 故答案为:1. 【点睛】本题考查了对算术平方根取值的估算.55的整数部分即可.该题题干前半部分涉及到数学文化.后半部分为解题的要点.考查了学生的读题、审题等能力.38.(2021·内蒙古呼和浩特)若把第n 个位置上的数记为n x .则称1x .2x .3x .….n x 有限个有序放置的数为一个数列A .定义数列A 的“伴生数列”B 是:1y ﹐2y .3y …n y 其中n y 是这个数列中第n 个位置上的数.1n =.2.…k 且111101n n n n n x x y x x -+-+=⎧=⎨≠⎩并规定0n x x =.11n x x +=.如果数列A 只有四个数.且1x .2x .3x .4x 依次为3.1.2.1.则其“伴生数列”B 是__________. 【答案】0.1.0.1 【解析】 【分析】根据定义先确定x 0=x 4=1与x 5=x 1=3.可得x 0.1x .2x .3x .4x . x 5依次为1.3.1.2.1.3.根据定义其“伴生数列”B 是y 1. y 2. y 3. y 4.依次为0. 1. 0. 1即可. 【详解】解:∵1x .2x .3x .4x 依次为3.1.2.1. ∵x 0=x 4=1.x 5=x 1=3.∵x 0.1x .2x .3x .4x . x 5依次为1.3.1.2.1.3.∵x 0=2x =1.y 1=0.x 1≠x 3.y 2=1.2x =4x =1.y 3=0.3x ≠x 5.y 4=1. ∵其“伴生数列”B 是y 1. y 2. y 3. y 4.依次为0. 1. 0. 1. 故答案为:0. 1. 0. 1.【点睛】本题考查新定义数列与伴生数列.仔细阅读题目.理解定义.抓住“伴生数列”中y n 与数列A 中11,n n x x -+关系是解题关键. 39.(2020·上海)已知f (x )=21x -.那么f (3)的值是____. 【答案】1. 【解析】 【分析】 根据f (x )=21x -.将3x =代入即可求解. 【详解】解:由题意得:f (x )=21x -. ∵将3x =代替表达式中的x . ∵f (3)=231-=1. 故答案为:1. 【点睛】本题考查函数值的求法.解答本题的关键是明确题意.利用题目中新定义解答. 40.(2020·浙江衢州)定义a ∵b =a (b +1).例如2∵3=2×(3+1)=2×4=8.则(x ﹣1)∵x 的结果为_____. 【答案】x 2﹣1 【解析】 【分析】根据规定的运算.直接代值后再根据平方差公式计算即可. 【详解】 解:根据题意得:(x ﹣1)∵x =(x ﹣1)(x +1)=x 2﹣1. 故答案为:x 2﹣1. 【点睛】本题考查了平方差公式.实数的运算.理解题目中的运算方法是解题关键. 41.(2020·青海)对于任意不相等的两个实数a.b ( a > b )定义一种新运算a ba b+-.如3232+-.那么12∵4=______ 2 【解析】 【分析】按照规定的运算顺序与计算方法化为二次根式的混合运算计算即可. 【详解】 解:12∵41241621248+==- 2【点睛】此题考查二次根式的化简求值.理解规定的运算顺序与计算方法是解决问题的关键. 42.(2022·510.618-≈这个数叫做黄金比.著名数学家华罗庚优选法中的“0.618法”就应用了黄金比.设51a -=51b +=记11111S a b =+++.2222211S a b =+++ (100100100100100)11S a b=+++.则12100S S S +++=_______.【答案】5050 【解析】 【分析】利用分式的加减法则分别可求S 1=1.S 2=2.S 100=100.•••.利用规律求解即可. 【详解】 解:51a -=51b +=51511ab -+==∴. 1112211112a b a b a b b b a bS a a ++++=+===+++++++. 222222222222222222221112a b a b S a b a b a b a b ++++=+=⨯=⨯=+++++++.….10010010010010010010010010010010011100100111a b S a b a b a b+++=+=⨯=+++++ ∴12100S S S +++=121005050++⋯⋯+=故答案为:5050 【点睛】本题考查了分式的加减法.二次根式的混合运算.求得1ab =.找出的规律是本题的关键. 43.(2021·内蒙古鄂尔多斯)下列说法不正确的是___________ (只填序号) ∵717 2.174.∵外角为60︒且边长为23∵把直线23y x =-向左平移1个单位后得到的直线解析式为22y x =-. ∵新定义运算:2*21m n mn n =--.则方程1*0x -=有两个不相等的实数根. 【答案】∵∵∵ 【解析】 【分析】17∵.先判断出正多边形为正六边形.再求出其内切圆半径即可判断∵.根据直线的平移规律可判断∵.根据新定义运算列出方程即可判断∵. 【详解】解:∵∵161725<<. ∵4175< ∵5174-<-- ∵27173<<∵717 2.小数部分为517故∵错误. ∵外角为60︒的正多边形的边数为:36060=6︒÷︒ ∵这个正多边形是正六边形.设这个正六边形为ABCDEF .如图.O 为正六边形的中心.连接OA .过O 作OG ∵AB 于点G .∵AB =2.∵BAF =120° ∵AG =1.∵GAO =60°∵3OG =,即外角为60︒且边长为23故∵正确. ∵把直线23y x =-向左平移1个单位后得到的直线解析式为2(1)321y x x =+-=-.故∵错误.∵∵新定义运算:2*21m n mn n =--.∵方程21*(1)210x x x -=-⨯--=.即2210x x ++=. ∵2=24110∆-⨯⨯=∵方程1*0x -=有两个相等的实数根.故∵错误. ∵错误的结论是∵∵∵ 帮答案为∵∵∵. 【点睛】此题主要考查了无理数的估算.正多边形和圆.直线的平移以及根的判别式.熟练掌握以上相关知识是解答此题的关键.44.(2021·湖北随州)2021年5月7日.《科学》杂志发布了我国成功研制出可编程超导量子计算机“祖冲之”号的相关研究成果.祖冲之是我国南北朝时期杰出的数学家.他是第一个将圆周率π精确到小数点后第七位的人.他给出π的两个分数形式:227(约率)和355113(密率).同时期数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法.其理论依据是:设实数x 的不足近似值和过剩近似值分别为b a 和dc (即有b d x ac <<.其中a .b .c .d 为正整数).则b da c ++是x 的更为精确的近似值.例如:已知15722507π<<.则利用一次“调日法”后可得到π的一个更为精确的近似分数为:1572217950757+=+.由于179 3.140457π≈<.再由17922577π<<.可以再次使用“调日法”得到π的更为精确的近似分数……现已知73252<<.则使用两次“调日法”2为______. 【答案】1712【解析】 【分析】根据“调日法”的定义.第一次结果为:107.2 .所以710257.根据第二次“调日法”进行计算即可. 【详解】解:∵73252<<∵第一次“调日法”.结果为:7+310=5+27∵101.42862 7≈>∵710257 <<∵第二次“调日法”.结果为:7+1017=5+712故答案为:17 12【点睛】本题考查无理数的估算.根据定义.严格按照例题步骤解题是重点.45.(2020·湖南邵阳)在如图方格中.若要使横、竖、斜对角的3个实数相乘都得到同样的结果.则2个空格的实数之积为________.32231632【答案】62【解析】【分析】先将表格中最上一行的3个数相乘得到66然后中间一行的三个数相乘以及最后一行的三个数相等都是66即可求解.【详解】解:由题意可知.第一行三个数的乘积为:322366=设第二行中间数为x.则166⨯⨯=x解得6x设第三行第一个数为y.则3266⨯=y解得3y=∵2个空格的实数之积为2182xy=故答案为:62【点睛】本题考查了二次根数的乘法运算法则.熟练掌握二次根式的加减乘除运算法则是解决此类题的关键.三、解答题46.(2022·北京)计算:0(1)4sin 458 3.π-+-+- 【答案】4 【解析】 【分析】根据零次幂、特殊角的正弦值、二次根式和去绝对值即可求解. 【详解】解:0(1)4sin 458 3.π-+-+-2=142232+⨯- =4.【点睛】本题考查了实数的混合运算.掌握零次幂、特殊角的正弦值、二次根式的化简及去绝对值是解题的关键.47.(2022·江苏宿迁)计算:11122-⎛⎫ ⎪⎝⎭4sin 60°.【答案】2 【解析】 【分析】先计算负整数指数幂.二次根式的化简.特殊角的三角函数值.再计算乘法.再合并即可. 【详解】解:11124sin 6023=2+23422233=+2=【点睛】本题考查的是特殊角的三角函数值的运算.负整数指数幂的含义.二次根式的化简.掌握“运算基础运算”是解本题的关键. 48.(2021·湖南张家界)计算:2021(1)222cos608-+-︒2 【解析】 【分析】。

专题01实数(共43题)【解析版】--2023年中考数学真题专题讲解汇总

专题01实数(共43题)【解析版】--2023年中考数学真题专题讲解汇总

专题01实数(共43题)--2023年中考数学专题训练一、单选题1.(2022年云南省中考数学真题)中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作()A.10℃B.0℃C.-10℃D.-20℃【答案】C【解析】【分析】零上温度记为正,则零下温度就记为负,则可得出结论.【详解】解:若零上10°C记作+10°C,则零下10°C可记作:−10°C.故选:C.【点睛】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.2.(2022年四川省凉山州中考数学真题)−2022的相反数是()A.2022B.−2022C.−12022D.12022【答案】A【解析】【分析】根据相反数的意义即只有符号不同的两个数互为相反数,即可解答.【详解】解:﹣2022的相反数是2022,故选:A.【点睛】本题考查了相反数,熟练掌握相反数的意义是解题的关键.3.(2022年浙江省舟山市中考数学真题)若收入3元记为+3,则支出2元记为()A.1B.-1C.2D.-2【答案】D【解析】【分析】根据正负数的意义可得收入为正,收入多少就记多少即可.【详解】解:∵收入3元记为+3,∴支出2元记为-2.故选:D【点睛】本题考查正、负数的意义;在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.4.(2022年安徽省中考数学真题)下列为负数的是()A.−2B.3C.0D.−5【答案】D【解析】【分析】根据正负数的意义分析即可;【详解】解:A、−2=2B、3是正数,故该选项不符合题意;C、0不是负数,故该选项不符合题意;D、-5<0是负数,故该选项符合题意.故选D.【点睛】本题考查正负数的概念和意义,熟练掌握绝对值、算术平方根和正负数的意义是解决本题的关键.5.(2022年四川省南充市中考数学试卷)下列计算结果为5的是()A.−(+5)B.+(−5)C.−(−5)D.−|−5|【答案】C【解析】【分析】根据去括号法则及绝对值化简依次计算判断即可.【详解】解:A、-(+5)=-5,不符合题意;B、+(-5)=-5,不符合题意;C、-(-5)=5,符合题意;D、−−5=−5,不符合题意;故选:C.【点睛】题目主要考查去括号法则及化简绝对值,熟练掌握去括号法则是解题关键.6.(2022年甘肃省中考第三次数学模拟测试题)2的相反数是()A.−12B.12C.2D.−2【答案】D【解析】【分析】直接根据相反数的定义解答即可.【详解】解:2的相反数是﹣2.故选:D【点睛】此题考查的是相反数,熟练掌握相反数的定义是解题的关键.7.(2022年云南省中考数学真题)赤道长约为40000000m,用科学记数法可以把数字40000000表示为()A.4×107B.40×106C.400×105D.4000×103【答案】A【解析】【分析】根据科学记数法“把一个大于10的数表示成×10的形式(其中a是整数数位只有一位的数,即a大于或等于1且小于10,n是正整数)”进行解答即可得.【详解】解:40000000=4×107,【点睛】本题考查了科学记数法,解题的关键是掌握科学记数法表示形式中a与n的确定.8.(2022年浙江省舟山市中考数学真题)根据有关部门测算,2022年春节假期7天,全国国内旅游出游251000000人次.数据251000000用科学记数法表示为()A.2.51×108B.2.51×107C.25.1×107D.0.251×109【答案】A【解析】【分析】绝对值大于1的数可以用科学记数法表示,一般形式为a×10n,为正整数,且比原数的整数位数少1,据此可以解答.【详解】解:251000000=2.51×108.故选:A【点睛】本题考查用科学记数法表示较大的数,熟练掌握科学记数法表示较大的数一般形式为×10,其中1≤<10,是正整数,正确确定的值和的值是解题的关键.9.(2022年江苏省连云港市中考数学真题)2021年12月9日,“天宫课堂”正式开课,我国航天员在中国空间站首次进行太空授课,本次授课结束时,网络在线观看人数累计超过14600000人次.把“14600000”用科学记数法表示为()A.0.146×108B.1.46×107C.14.6×106D.146×105【答案】B【解析】【分析】科学记数法的表现形式为×10的形式,其中1≤<10,n为整数,确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正数,当原数绝对值小于1时n是负数;由此进行求解即可得到答案.【详解】解:14600000=1.46×107.【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的具体要求.10.(2022年四川省达州市中考数学真题)2022年5月19日,达州金垭机场正式通航.金亚机场位于达州高新区,占地总面积2940亩,概算投资约为26.62亿元.数据26.62亿元用科学记数法表示为()A.2.662×108元B.0.2662×109元C.2.662×109元D.26.62×1010元【答案】C【解析】【分析】用科学记数法表示较大的数时,一般形式为×10,其中1≤|U<10,为整数.【详解】解:26.62亿=2662000000=2.662×109.故选C.【点睛】本题考查了科学记数法,科学记数法的表示形式为×10的形式,其中1≤|U<10,为整数.确定的值时,要看把原来的数,变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值≥10时,是正数;当原数的绝对值<1时,是负数,确定与的值是解题的关键.11.(2022年浙江省金华市中考数学真题)体现我国先进核电技术的“华龙一号”,年发电能力相当于减少二氧化碳排放16320000吨,数16320000用科学记数法表示为()A.1632×104B.1.632×107C.1.632×106D.16.32×105【答案】B【解析】【分析】在用科学记数法表示的大于10的数时,×10的形式中a的取值范围必须是1≤<10,10的指数比原来的整数位数少1.【详解】解:数16320000用科学记数法表示为1.632×107.故选:B.【点睛】本题考查科学记数法,对于一个写成用科学记数法写出的数,则看数的最末一位在原数中所在数位,其中a 是整数数位只有一位的数,10的指数比原来的整数位数少1.12.(2022年安徽省中考数学真题)据统计,2021年我省出版期刊杂志总印数3400万册,其中3400万用科学记数法表示为()A.3.4×108B.0.34×108C.3.4×107D.34×106【答案】C【解析】【分析】将3400万写成34000000,保留1位整数,写成×10(1≤<10)的形式即可,n为正整数.【详解】解:3400万=34000000,保留1位整数为3.4,小数点向左移动7位,因此34000000=3.4×107,故选:C.【点睛】本题考查科学记数法的表示方法,熟练掌握×10(1≤|U<10)中a的取值范围和n的取值方法是解题的关键.13.(2022年四川省凉山州中考数学真题)我州今年报名参加初中学业水平暨高中阶段学校招生考试的总人数为80917)A.8.0917×106B.8.0917×105C.8.0917×104D.8.0917×103【答案】C【解析】【分析】根据科学记数法的定义即可得.【详解】解:科学记数法:将一个数表示成×10的形式,其中1≤<10,为整数,这种记数的方法叫做科学记数法,则80917=8.0917×104,故选:C.【点睛】本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成×10的形式,其中1≤<10,为整数,这种记数的方法叫做科学记数法)是解题关键.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.14.(2022年四川省成都市中考数学真题)2022年5月17日,工业和信息化部负责人在“2022世界电信和信息社会日”大会上宣布,我国目前已建成5G基站近160万个,成为全球首个基于独立组网模式规模建设5G网络的国家.将数据160万用科学记数法表示为()A.1.6×102B.1.6×105C.1.6×106D.1.6×107【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是非负数;当原数的绝对值<1时,n是负数.【详解】解答:解:160万=1600000=1.6×106,故选:C.【点睛】a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.(2022年四川省泸州市中考数学真题)2022年5月,四川省发展和改革委员会下达了保障性安居工程2022年第一批中央预算内投资计划,泸州市获得75500000元中央预算内资金支持,将75500000用科学记数法表示为()A.7.55×106B.75.5×106C.7.55×107D.75.5×107【答案】C【解析】【分析】科学记数法表示较大的数形式为a×10n的形式,其中1≤|a|<10,n为整数,10的指数n比原来的整数位数少1.75500000=7.55×107故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.(2022年山东省滨州市中考数学真题)某市冬季中的一天,中午12时的气温是−3℃,经过6小时气温下降了7℃,那么当天18时的气温是()A.10℃B.−10℃C.4℃D.−4℃【答案】B【解析】【分析】根据有理数减法计算−3−7=−10℃即可.【详解】解:∵中午12时的气温是−3℃,经过6小时气温下降了7℃,∴当天18时的气温是−3−7=−10℃.故选B.【点睛】本题考查有理数的减法,掌握有理数的减法法则是解题关键.17.(2022年四川省遂宁市中考数学真题)2022年4月16日,神舟十三号飞船脱离天宫空间站后成功返回地面,总共飞行里程约198000公里.数据198000用科学计数法表示为()A.198×103B.1.98×104C.1.98×105D.1.98×106【答案】C【解析】【分析】用科学记数法表示较大的数时,一般形式为×10,其中1≤|U<10,为整数.【详解】解:198000=1.98×105.故选:C.本题考查了科学记数法,科学记数法的表示形式为×10的形式,其中1≤|U<10,为整数.确定的值时,要看把原来的数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值≥10时,是正数;当原数的绝对值<1时,是负数,确定与的值是解题的关键.18.(2022年浙江省衢州市柯城区九年级第二次模拟考试数学试题)-3的倒数是()A.3B.-3C.13D.−13【答案】D【解析】【分析】根据倒数的定义,即可计算出结果.【详解】解:-3的倒数是−13;故选:D【点睛】本题考查了倒数的定义:乘积是1的两数互为倒数.19.(2022年四川省自贡市中考数学试题)自贡市江姐故里红色教育基地自去年底开放以来,截止今年5月,共接待游客180000余人;人数180000用科学记数法表示为()A.1.8×104B.18×104C.1.8×105D.1.8×106【答案】C【解析】【分析】用移动小数点的方法确定a值,根据整数位数减一原则确定n值,最后写成×10的形式即可.【详解】∵180000=1.8×105,故选C.【点睛】本题考查了科学记数法表示大数,熟练掌握把小数点在左边第一个非零数字的后面确定a,运用整数位数减去1确定n值是解题的关键.20.(2022年四川省自贡市中考数学试题)下列运算正确的是()A.−12=−2B.323−2=1C.6÷3=2D.−=0【答案】B【解析】【分析】根据乘方运算,平方差公式,同底数幂的除法法则,零指数幂的运算法则进行运算即可.【详解】A.−12=1,故A错误;B.3+23−2=32−22=1,故B正确;C.633,故C错误;D.−=1,故D错误.故选:B.【点睛】本题主要考查了整式的运算和实数的运算,熟练掌握平方差公式,同底数幂的除法法则,零指数幂的运算法则,是解题的关键.21.(2022年山东省淄博市高青县中考二模数学试题)−2的倒数是()A.2B.12C.−2D.−12【答案】D【解析】【分析】根据倒数的定义求解即可.【详解】解:-2的倒数是−12,故D正确.故选:D.【点睛】本题主要考查了倒数的定义,熟练掌握乘积为1的两个数互为倒数,是解题的关键.22.(2022年四川省达州市中考数学真题)下列四个数中,最小的数是()A.0B.-2C.1D.2【答案】B【解析】【分析】根据实数的大小比较即可求解.【详解】解:∵−2<0<1<2,∴最小的数是−2,故选B.【点睛】本题考查了实数的大小比较,掌握实数的大小比较是解题的关键.23.(2022年浙江省舟山市中考数学真题)估计6的值在()A.4和5之间B.3和4之间C.2和3之间D.1和2之间【答案】C【解析】【分析】【详解】∵4<6<9∴2<6<3故选:C.【点睛】本题主要考查了无理数的估算能力,要求掌握无理数的基本估算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.24.(2022年浙江省金华市中考数学真题)在−2,12,3,2中,是无理数的是()A.−2B.12C.3D.2【答案】C【解析】【分析】根据无理数的定义判断即可;【详解】解:∵-2,12,2是有理数,3是无理数,故选:C.【点睛】本题考查了无理数的定义:无限不循环小数叫做无理数,如开方开不尽的数的方根、π.25.(2022年四川省凉山州中考数学真题)化简:(−2)2=()A.±2B.-2C.4D.2【答案】D【解析】【分析】先计算(-2)2=4,再求算术平方根即可.【详解】解:−22=4=2,故选:D.【点睛】本题考查算术平方根,熟练掌握算术平方根的定义是解题的关键.26.(2022年山东省滨州市中考数学真题)下列计算结果,正确的是()A.(2)3=5B.8=32C.38=2D.cos30°=12【答案】C【解析】【分析】根据幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值逐一进行计算即可.【详解】解:A、(2)3=2×3=6,该选项错误;B、8=2×2×2=22,该选项错误;C、38=32×2×2=2,该选项正确;D、cos30°=故选:C.【点睛】本题考查了幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值,熟练掌握运算法则是解题的关键.27.(2022年四川省泸州市中考数学真题)与2+15最接近的整数是()A.4B.5C.6D.7【答案】C【解析】【分析】估算无理数的大小即可得出答案.【详解】解:∵12.25<15<16,∴3.5<15<4,∴5.5<2+15<6,∴最接近的整数是6,故选:C.【点睛】本题考查了估算无理数的大小,无理数的估算常用夹逼法,用有理数夹逼无理数是解题的关键.28.(2022年四川省泸州市中考数学真题)−4=()A.−2B.−12C.12D.2【答案】A【解析】【分析】根据算术平方根的定义可求.【详解】解:−4=-2,【点睛】本题考查了算术平方根的定义,要注意正确区分平方根与算术平方根,解题的关键是掌握算术平方根的定义.29.(2022年重庆市中考数学试卷A卷)估计3×(23+5)的值应在()A.10和11之间B.9和10之间C.8和9之间D.7和8之间【答案】B【解析】【分析】先化简3×(23+5)=6+15,利用9<15<16,从而判定即可.【详解】3×(23+5)=6+15,∵9<15<16,∴3<15<4,∴9<6+15<10,故选:B.【点睛】30.(2022年重庆市中考数学真题(B卷))估计54−4的值在()A.6到7之间B.5到6之间C.4到5之间D.3到4之间【答案】D【解析】【分析】根据49<54<64,得到7<54<8,进而得到3<54−4<4,即可得到答案.【详解】解:∵49<54<64,∴7<54<8,∴3<54−4<4,即54−4的值在3到4之间,故选:D.此题考查了无理数的估算,正确掌握无理数的估算方法是解题的关键.二、填空题31.(2022年重庆市中考数学试卷A卷)计算:−4+3−0=_________.【答案】5【解析】【分析】根据绝对值和零指数幂进行计算即可.【详解】解:−4+3−0=4+1=5,故答案为:5.【点睛】本题考查了绝对值和零指数幂的计算,熟练掌握定义是解题的关键.32.(2022年四川省南充市中考数学试卷)比较大小:2−2_______________30.(选填>,=,<)【答案】<【解析】【分析】先计算2−2=14,30=1,然后比较大小即可.【详解】解:2−2=14,30=1,∵14<1,∴2−2<30,故答案为:<.【点睛】本题主要考查有理数的大小比较,负整数指数幂的运算,零次幂的运算,熟练掌握运算法则是解题关键.33.(2022年重庆市中考数学真题(B卷))|−2|+(3−5)0=_________.【答案】3【解析】先计算绝对值和零指数幂,再进行计算即可求解.【详解】解:|−2|+(3−5)0=2+1=3故答案为:3.【点睛】本题考查了实数的运算,解答此题的关键是要掌握负数的绝对值等于它的相反数,任何不为0的数的0次幂都等于1.34.(2022年四川省凉山州中考数学真题)计算:-12+|-2023|=_______.【答案】2022【解析】【分析】先计算有理数的乘方、化简绝对值,再计算加法即可得.【详解】解:原式=−1+2023=2022,故答案为:2022.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握有理数的运算法则是解题关键.三、解答题35.(2022年四川省泸州市中考数学真题)计算:30+2−1+2cos45°−−【答案】2【解析】【分析】根据零指数幂、负整数指数幂、特殊角三角函数、绝对值的性质化简即可.【详解】原式=1+12+2−12=2.本题考查了实数的运算,熟练掌握运算法则是解题的关键.36.(2022年浙江省丽水市中考数学真题)计算:9−(−2022)0+2−1.【答案】52【解析】【分析】根据求一个数的算术平方根、零指数和负整数指数幂的运算法则进行运算,即可求得.【详解】解:9−(−2022)0+2−1=3−1+12=52.【点睛】本题考查了求一个数的算术平方根、零指数和负整数指数幂的运算法则,熟练掌握和运用各运算法则是解决本题的关键.37.(2022年江苏省连云港市中考数学真题)计算:(−10)×−−16+20220.【答案】2【解析】【分析】根据有理数的乘法,二次根式的性质,零指数的计算法则求解即可.【详解】解:原式=5−4+1=2.【点睛】本题主要考查了有理数的乘法,二次根式的性质,零指数,熟知相关计算法则是解题的关键.38.(2022年四川省达州市中考数学真题)计算:(−1)2022+|−2|−−2tan45°.【答案】0【解析】先计算乘方和去绝对值符号,并把特殊角三角函数值代入,再计算乘法,最后计算加减即可求解.【详解】解:原式=1+2-1-2×1=1+2-1-2=0.【点睛】本题考查实数的混合运算,熟练掌握零指数幂的运算、熟记特殊角的三角函数值是解题的关键.39.(2022年浙江省金华市中考数学真题)计算:(−2022)0−2tan45°+|−2|+9.【答案】4【解析】【分析】根据零指数幂,正切三角函数值,绝对值的化简,算术平方根的定义计算求值即可;【详解】解:原式=1−2×1+2+3=1−2+2+3=4;【点睛】本题考查了实数的混合运算,掌握特殊角的三角函数值是解题关键.40.(2022−16+−22.【答案】1【解析】【分析】原式运用零指数幂,二次根式的化简,乘方的意义分别计算即可得到结果.【详解】−16+−22=1−4+4=1故答案为:1【点睛】本题主要考查了实数的运算,熟练掌握零指数幂,二次根式的化简和乘方的意义是解本题的关键.41.(2022−9+3tan30°+2.(2)解不等式组:3(+2)≥2+5 ①2−1<K23 ②.【答案】(1)1;(2)−1≤<2【解析】【分析】(1)本题涉及负整数指数幂、特殊角的三角函数值、绝对值、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)分别解出两个不等式的解集再求其公共解.【详解】解:(19+3tan30°+2=2−3+3+2−3=−1+3+2−3=1.(2)3(+2)≥2+5 ①2−1<K23 ②不等式①的解集是x≥-1;不等式②的解集是x<2;所以原不等式组的解集是-1≤x<2.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型,解决此类题目的关键是熟练掌握负整数指数幂、特殊角的三角函数值、绝对值、二次根式等考点的运算.求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.42.(2022年四川省德阳市中考数学真题)计算:12+3.14−0−3tan60°+1−+−2−2.【答案】14【解析】【分析】根据二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则分别化简后再进行实数的加减法运算.【详解】解:12+(3.14−p0−3tan60°+1−+(−2)−2=23+1−33+3−1+14=14.【点睛】此题考查实数的运算法则,正确掌握二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则是解题的关键.43.(2022年重庆市中考数学真题(B卷))对于一个各数位上的数字均不为0的三位自然数N,若N能被它的各数位上的数字之和m整除,则称N是m的“和倍数”.例如:∵247÷(2+4+7)=247÷13=19,∴247是13的“和倍数”.又如:∵214÷(2+1+4)=2147=30⋯⋯4,∴214不是“和倍数”.(1)判断357,441是否是“和倍数”?说明理由;(2)三位数A是12的“和倍数”,a,b,c分别是数A其中一个数位上的数字,且>>.在a,b,c中任选两个组成两位数,其中最大的两位数记为op,最小的两位数记为op,若op+op16为整数,求出满足条件的所有数A.【答案】(1)357不是15“和倍数”,441是9的“和倍数”;理由见解析(2)数A可能为732或372或516或156【解析】【分析】(1)根据题目中给出的“和倍数”定义进行判断即可;(2)先根据三位数A是12的“和倍数”得出++=12,根据>>,是最大的两位数,是最小的两位数,得出+=10+2+10,op+op16=(k为整数),结合++=12得出=15−2,根据已知条件得出1<<6,从而得出=3或=5,然后进行分类讨论即可得出答案.(1)解:∵357÷3+5+7=357÷15=23⋅⋅⋅⋅⋅⋅12,∴357不是15“和倍数”;∵441÷4+4+1=441÷9=49,∴441是9的“和倍数”.(2)∵三位数A是12的“和倍数”,∴++=12,∵>>,∴在a,b,c中任选两个组成两位数,其中最大的两位数=10+,最小的两位数=10+,∴+=10++10+=10+2+10,∵op+op16为整数,设op+op16=(k为整数),则10r2r1016=,整理得:5+5+=8,根据++=12得:+=12−,∵>>,∴12−>,解得<6,∵“和倍数”是各数位上的数字均不为0的三位自然数,∴>>>0,∴>1,∴1<<6,把+=12−代入5+5+=8得:512−+=8,整理得:=15−2,∵1<<6,k为整数,∴=3或=5,当=3时,+=12−3=9,∵>>>0,∴>3,0<<3,∴=7,=3,=2,或=8,=3,=1,要使三位数A是12的“和倍数”,数A必须是一个偶数,当=7,=3,=2时,组成的三位数为732或372,∵732÷12=61,∴732是12的“和倍数”,∵372÷12=31,∴372是12的“和倍数”;当=8,=3,=1时,组成的三位数为318或138,∵318÷12=26⋅⋅⋅⋅⋅⋅6,∴318不是12的“和倍数”,∵138÷12=11⋅⋅⋅⋅⋅⋅6,∴138不是12的“和倍数”;当=5时,+=12−5=7,∵>>>0,∴5<<7,∴=6,=5,=1,组成的三位数为516或156,∵516÷12=43,∴516是12的“和倍数”,∵156÷12=13,∴156是12的“和倍数”;综上分析可知,数A可能为732或372或516或156.【点睛】本题主要考查了新定义类问题,数的整除性,列代数式,利用数位上的数字特征和数据的整除性,是解题的关键,分类讨论是解答本题的重要方法,本题有一定的难度.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

热点01 实数
【命题趋势】
在中考中,实数的有关概念多以选择题形式考查,常出现在选择题第一题,比较简单;科学记数法多以选择题或填空题形式考查,有大数或小数两种形式,有时带“亿”“万”“千万”等单位,要仔细审题,切勿忽略单位;实数的比较大小常以选择题形式出现,常与数轴结合考查;实数的运算考查形式多样,多数以解答题形式出现,结合绝对值、锐角三角函数、二次根式、平方根、立方根等知识考查.
【限时检测】(建议用时:30分钟)
1.(2019·宿迁)2019的相反数是
A .12019
B .-2019
C .12019
D .2019
【答案】B
【解析】2019的相反数是-2019.故选B .
2.(2019•邵阳)下列各数中,属于无理数的是
A .13
B .1.414
C
D 【答案】C
=2是无理数,故选C .
3.(2019•遵义)遵义市2019年6月1日的最高气温是25 °C ,最低气温是15 °C ,遵义市这一天的最高气温比最低气温高
A .25 °C
B .15 °
C C .10 °C
D .-10 °C 【答案】C
【解析】25-15=10 °C .故选C .
4.(广东省佛山市禅城市2019届九年级中考数学一模试卷)十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为
A .8×1012
B .8×1013
C .8×1014
D .0.8×1013
【答案】B
【解析】80万亿用科学记数法表示为8×1013.
故选B .
5.(2019•河南)成人每天维生素D 的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为
A .46×10-7
B .4.6×10-7
C .4.6×10-6
D .0.46×10-5
【答案】C
【解析】0.0000046=4.6×10-6.故选C .
6.(江苏省扬州市江都区2019届九年级第二次模拟考试数学试题)下列二次根式中的最简二次根式是
A B C D 【答案】C
【解析】A
B
C
D 2不是最简二次根式,故本选项错误,
故选C .
7.(2019•广东)实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是
A .a >b
B .|a |<|b |
C .a +b >0
D .a
b <0
【答案】D
【解析】由图可得:-2<a <-1,0<b <1,∴a <b ,故A 错误;
|a |>|b |,故B 错误;
a +
b <0,故C 错误;
a
b <0,故D 正确,故选D .
8.(甘肃省白银市靖远县2019届九年级中考数学二模试卷)计算:1||2--
A .1
B .2
C .0
D .-1
【答案】C
【解析】原式=1
2-1
2=0,故选C .
9.(上海市静安区2019届九年级下学期二模考试数学试题)
A B C D
【答案】C
【解析】A
=
B3
=
C
3
D=
故选C.
10.(2019·重庆A卷)估计
A.4和5之间B.5和6之间
C.6和7之间D.7和8之间
【答案】C
【解析】<5,所以,故选C.
11.(2019年河北省唐山市滦南县中考二模数学试题)估计
A.5和6之间B.6和7之间C.7和8之间D.8和9之间
【答案】C
【解析】=,
∵49<54<64,
∴,
∴7和8之间,
故选C.
12.(四川省三台外国语修悟学院2019
A.9 B.±9C.±3D.3
【答案】D

又∵(±3)2=9,
∴9的平方根是±3,
∴9的算术平方根是3.
3.
故选D .
13.(2019
A .2和3之间
B .3和4之间
C .4和5之间
D .5和6之间
【答案】D
【解析】∵25<33<36,∴.故选D .
14.(2019·重庆A 卷)计算:01
1(π()2-+=__________.
【答案】3
【解析】原式=1+2=3,故答案为:3.
15.(2019·连云港)64的立方根是__________.
【答案】4
【解析】∵43=64,∴64的立方根是4,故答案为:4.
16.(河北省石家庄桥西区2019届九年级下学期质量检测数学试题)比较大小:3________.
【答案】>
【解析】32=9,)2=8,
∵9>8,

故答案为:>.
17.(2019·天津)计算1)的结果等于__________.
【答案】2
【解析】原式=3-1=2.故答案为:2.
18.(2019·宿迁)计算:()0
11()π1|12---+.
【解析】原式211=-
=
19.(2019•上海)计算:1|
-82
3.
【解析】1|
82
3
=2 4 =-3.
20.(2019(13)-1
+|-2|cos60°.
(13)-1+|-2|cos60°=3-3+21
2⨯=1.。

相关文档
最新文档