量子力学导论期末考试试题内含答案
量子力学期末考试试卷及答案范文
量子力学期末试题及答案红色为我认为可能考的题目一、填空题:1、波函数的标准条件:单值、连续性、有限性。
2、|Ψ(r,t)|^2的物理意义:t时刻粒子出现在r处的概率密度。
3、一个量的本征值对应多个本征态,这样的态称为简并。
4、两个力学量对应的算符对易,它们具有共同的确定值。
二、简答题:1、简述力学量对应的算符必须是线性厄米的。
答:力学量的观测值应为实数,力学量在任何状态下的观测值就是在该状态下的平均值,量子力学中,可观测的力学量所对应的算符必须为厄米算符;量子力学中还必须满足态叠加原理,而要满足态叠加原理,算符必须是线性算符。
综上所述,在量子力学中,能和可观测的力学量相对应的算符必然是线性厄米算符。
2、一个量子态分为本征态和非本征态,这种说法确切吗?答:不确切。
针对某个特定的力学量,对应算符为A,它的本征态对另一个力学量(对应算符为B)就不是它的本征态,它们有各自的本征值,只有两个算符彼此对易,它们才有共同的本征态。
3、辐射谱线的位置和谱线的强度各决定于什么因素?答:某一单色光辐射的话可能吸收,也可能受激跃迁。
谱线的位置决定于跃迁的频率和跃迁的速度;谱线强度取决于始末态的能量差。
三、证明题。
2、证明概率流密度J不显含时间。
四、计算题。
1、第二题:如果类氢原子的核不是点电荷,而是半径为0r、电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正。
解:这种分布只对0r r <的区域有影响,对0r r ≥的区域无影响。
据题意知)()(ˆ0r U r U H -=' 其中)(0r U 是不考虑这种效应的势能分布,即 2004ze U r rπε=-())(r U 为考虑这种效应后的势能分布,在0r r ≥区域,rZe r U 024)(πε-=在0r r <区域,)(r U 可由下式得出, ⎰∞-=r E d r e r U )(⎪⎪⎩⎪⎪⎨⎧≥≤=⋅⋅=)( 4 )( ,43441020********420r r r Ze r r r r Ze r r Ze r E πεπεπππε⎰⎰∞--=0)(r r rEdr e Edr e r U⎰⎰∞--=002023002144r r rdr r Ze rdr r Ze πεπε)3(84)(82203020022203002r r r Ze r Ze r r r Ze --=---=πεπεπε )( 0r r ≤ ⎪⎩⎪⎨⎧≥≤+--=-=')( 0 )( 4)3(8)()(ˆ000222030020r r r r r Ze r r r Ze r U r U H πεπε由于0r 很小,所以)(2ˆˆ022)0(r U H H +∇-=<<'μ,可视为一种微扰,由它引起一级修正为(基态03(0)1/210030()Zra Z e a ψπ-=) ⎰∞'=τψψd H E )0(1*)0(1)1(1ˆ ⎰-+--=0002202220302334]4)3(8[r r a Zdr r e r Ze r r r Ze a Z ππεπεπ ∵0a r <<,故102≈-r a Z e 。
量子力学期末试题及答案
(11)
⎛−i⎞
1⎜ ⎟
ψ1
=
2
⎜ ⎜
⎝
2 ⎟;
i
⎟ ⎠
ψ2 =
⎛1⎞
1
⎜⎟ ⎜ 0 ⎟;
2
⎜ ⎝
1
⎟ ⎠
⎛i⎞
1⎜ ⎟
ψ3
=
2
⎜ ⎜
⎝
2⎟
−
i
⎟ ⎠
(12)
Lˆ x 满足的本征方程为
相应的久期方程为 将其化为
ℏ 2
⎛ ⎜
⎜ ⎜⎝
0 1 0
1 0 1
0 ⎞ ⎛ c1 ⎞
⎛ c1 ⎞
1
⎟ ⎟
⎜ ⎜
c2
c1
⎞ ⎟
⎛ ⎜
c1
⎞ ⎟
0 − i⎟ ⎜ c2 ⎟ = λ ⎜ c2 ⎟
i
0
⎟ ⎠
⎜ ⎝
c3
⎟ ⎠
⎜ ⎝
c3
⎟ ⎠
iℏ
−λ −
0
2
iℏ
−λ
− iℏ = 0
2
2
0
iℏ
−λ
2
(8) (9)
λ3 − ℏ 2λ = 0
(10)
得到三个本征值分别为 λ1 = ℏ; λ 2 = 0; λ 3 = −ℏ
将它们分别代回本征方程,得到相应的本征矢为
Wˆ ψ 0
显然,求和号中不为零的矩阵元只有
ψ 0 Wˆ ψ 23
= ψ 23 Wˆ ψ 0
λ =−
2α 2
于是得到基态能量的二级修正为
E0(2)
=
E00
1 − E20
λ2 4α 4
λ2ℏ =−
8µ 2ω 3
量子力学期末考试试卷及答案集
量子力学试题集量子力学期末试题及答案(A)选择题(每题3分共36分)1.黑体辐射中的紫外灾难表明:CA. 黑体在紫外线部分辐射无限大的能量;B. 黑体在紫外线部分不辐射能量;C.经典电磁场理论不适用于黑体辐射公式;D.黑体辐射在紫外线部分才适用于经典电磁场理论。
2.关于波函数Ψ的含义,正确的是:BA. Ψ代表微观粒子的几率密度;B. Ψ归一化后,ψψ*代表微观粒子出现的几率密度;C. Ψ一定是实数;D. Ψ一定不连续。
3.对于偏振光通过偏振片,量子论的解释是:DA. 偏振光子的一部分通过偏振片;B.偏振光子先改变偏振方向,再通过偏振片;C.偏振光子通过偏振片的几率是不可知的;D.每个光子以一定的几率通过偏振片。
4.对于一维的薛定谔方程,如果Ψ是该方程的一个解,则:AA.*ψ一定也是该方程的一个解;B.*ψ一定不是该方程的解;C. Ψ与*ψ一定等价;D.无任何结论。
5.对于一维方势垒的穿透问题,关于粒子的运动,正确的是:CA. 粒子在势垒中有确定的轨迹;B.粒子在势垒中有负的动能;C.粒子以一定的几率穿过势垒;D粒子不能穿过势垒。
6.如果以∧l表示角动量算符,则对易运算],[yxll为:BA. ih∧z lB. ih∧zlC.i∧x l D.h∧xl7.如果算符∧A 、∧B 对易,且∧A ψ=Aψ,则:BA.ψ 一定不是∧B 的本征态; B.ψ一定是 ∧B 的本征态; C.*ψ一定是∧B 的本征态;D. ∣Ψ∣一定是∧B 的本征态。
8.如果一个力学量∧A 与H∧对易,则意味着∧A :CA. 一定处于其本征态;B.一定不处于本征态;C.一定守恒;D.其本征值出现的几率会变化。
9.与空间平移对称性相对应的是:B A. 能量守恒; B.动量守恒; C.角动量守恒; D.宇称守恒。
10.如果已知氢原子的 n=2能级的能量值为-3.4ev ,则 n=5能级能量为:D A. -1.51ev; B.-0.85ev; C.-0.378ev; D. -0.544ev11.三维各向同性谐振子,其波函数可以写为nlm ψ,且 l=N-2n ,则在一确定的能量 (N+23)h ω下,简并度为:BA. )1(21+N N ;B.)2)(1(21++N N ;C.N(N+1);D.(N+1)(n+2)12.判断自旋波函数 )]1()2()2()1([21βαβαψ+=s 是什么性质:CA. 自旋单态;B.自旋反对称态;C.自旋三态;D.z σ本征值为1.二 填空题(每题4分共24分)1.如果已知氢原子的电子能量为eV nE n 26.13-= ,则电子由n=5 跃迁到n=4 能级时,发出的光子能量为:———————————,光的波长为———— ————————。
(完整版)量子力学期末考试题及解答
一、 波函数及薛定谔方程1.推导概率(粒子数)守恒的微分表达式;()(),,w r t J r t o t∂+∇•=∂解答:由波函数的概率波解释可知,当(),r t ψ已经归一化时,坐标的取值概率密度为()()()()2,,,,w r t r t r t r t ψψψ*== (1) 将上式的两端分别对时间t 求偏微商,得到()()()()(),,,,,w r t r t r t r t r t t t tψψψψ**∂∂∂=+∂∂∂ (2) 若位势为实数,即()()V r V r *=,则薛定谔方程及其复共轭方程可以分别改写如下形式()()()()2,,,2r t ih ir t V r r t t m h ψψψ∂=∇-∂ (3)()()()()2,,,2r t ih ir t V r r t t m hψψψ***∂=-∇+∂ (4) 将上述两式代入(2)式,得到()()()()()22,,,,,2r t ih r t r t r t r t t mψψψψψ**∂⎡⎤=∇-∇⎣⎦∂ ()()()(),,,,2ihr t r t r t r t mψψψψ**⎡⎤=∇•∇-∇⎣⎦ (5) 若令()()()()(),,,,,2ih J r t r t r t r t r t mψψψψ**⎡⎤=∇-∇⎣⎦ (6) 有()(),,0w r t J r t t∂+∇•=∂ (7) 此即概率(粒子数)守恒的微分表达式。
2.若线性谐振子处于第一激发态()2211exp 2x C x α⎛⎫ψ=- ⎪⎝⎭求其坐标取值概率密度最大的位置,其中实常数0α>。
解答:欲求取值概率必须先将波函数归一化,由波函数的归一化条件可知()()222221exp 1x dx Cx x dx ψα∞∞-∞-∞=-=⎰⎰(1)利用积分公示())2221121!!exp 2n n n n x x dx αα∞++--=⎰ (2) 可以得到归一化常数为C = (3)坐标的取值概率密度为 ()()()322221exp w x x x x ψα==- (4)由坐标概率密度取极值的条件())()3232222exp 0d w x x x x dx αα=--= (5) 知()w x 有五个极值点,它们分别是 10,,x α=±±∞(6)为了确定极大值,需要计算()w x 的二阶导数()()()232222322226222exp d w x x x x x x dx αααα⎤=----⎦)()32244222104exp x x x ααα=-+- (7)于是有()23200x d w x dx ==> 取极小值 (8)()220x d w x dx =±∞= 取极小值 (9)()23120x d w x dx α=±=< 取极大值 (10)最后得到坐标概率密度的最大值为2111w x x ψαα⎛⎫⎛⎫=±==±= ⎪ ⎪⎝⎭⎝⎭(11)3.半壁无限高势垒的位势为()()()()000x v x x a v x a ∞<⎧⎪=≤≤⎨⎪>⎩求粒子能量E 在00E v <<范围内的解。
量子力学期末考试题解答题
1。
你认为Bohr的量子理论有哪些成功之处?有哪些不成功的地方?试举一例说明.(简述波尔的原子理论,为什么说玻尔的原子理论是半经典半量子的?)答:Bohr理论中核心的思想有两条:一是原子具有能量不连续的定态的概念;二是两个定态之间的量子跃迁的概念及频率条件.首先,Bohr的量子理论虽然能成功的说明氢原子光谱的规律性,但对于复杂原子光谱,甚至对于氦原子光谱,Bohr理论就遇到了极大的困难(这里有些困难是人们尚未认识到电子的自旋问题),对于光谱学中的谱线的相对强度这个问题,在Bohr理论中虽然借助于对应原理得到了一些有价值的结果,但不能提供系统解决它的办法;其次,Bohr理论只能处理简单的周期运动,而不能处理非束缚态问题,例如:散射;再其次,从理论体系上来看,Bohr理论提出的原子能量不连续概念和角动量量子化条件等,与经典力学不相容的,多少带有人为的性质,并未从根本上解决不连续性的本质。
2。
什么是光电效应?光电效应有什么规律?爱因斯坦是如何解释光电效应的?答:当一定频率的光照射到金属上时,有大量电子从金属表面逸出的现象称为光电效应;光电效应的规律:a。
对于一定的金属材料做成的电极,有一个确定的临界频率,当照射光频率时,无论光的强度有多大,不会观测到光电子从电极上逸出;b。
每个光电子的能量只与照射光的频率有关,而与光强无关;c.当入射光频率时,不管光多微弱,只要光一照,几乎立刻观测到光电子.爱因斯坦认为:(1)电磁波能量被集中在光子身上,而不是象波那样散布在空间中,所以电子可以集中地、一次性地吸收光子能量,所以对应弛豫时间应很短,是瞬间完成的。
(2)所有同频率光子具有相同能量,光强则对应于光子的数目,光强越大,光子数目越多,所以遏止电压与光强无关,饱和电流与光强成正比。
(3)光子能量与其频率成正比,频率越高,对应光子能量越大,所以光电效应也容易发生,光子能量小于逸出功时,则无法激发光电子。
3.简述量子力学中的态叠加原理,它反映了什么?答:对于一般情况,如果和是体系的可能状态,那么它们的线性叠加:(是复数)也是这个体系的一个可能状态。
量子力学期末考试题解答题
量子力学期末考试题解答题[标签:标题]篇一:量子力学期末考试题解答题1. 你认为Bohr的量子理论有哪些成功之处?有哪些不成功的地方?试举一例说明。
(简述波尔的原子理论,为什么说玻尔的原子理论是半经典半量子的?)答:Bohr理论中核心的思想有两条:一是原子具有能量不连续的定态的概念;二是两个定态之间的量子跃迁的概念及频率条件。
首先,Bohr的量子理论虽然能成功的说明氢原子光谱的规律性,但对于复杂原子光谱,甚至对于氦原子光谱,Bohr理论就遇到了极大的困难(这里有些困难是人们尚未认识到电子的自旋问题),对于光谱学中的谱线的相对强度这个问题,在Bohr理论中虽然借助于对应原理得到了一些有价值的结果,但不能提供系统解决它的办法;其次,Bohr理论只能处理简单的周期运动,而不能处理非束缚态问题,例如:散射;再其次,从理论体系上来看,Bohr理论提出的原子能量不连续概念和角动量量子化条件等,与经典力学不相容的,多少带有人为的性质,并未从根本上解决不连续性的本质。
2. 什么是光电效应?光电效应有什么规律?爱因斯坦是如何解释光电效应的?答:当一定频率的光照射到金属上时,有大量电子从金属表面逸出的现象称为光电效应;光电效应的规律:a.对于一定的金属材料做成的电极,有一个确定的临界频率?0,当照射光频率0时,无论光的强度有多大,不会观测到光电子从电极上逸出;b.每个光电子的能量只与照射光的频率有关,而与光强无关;c.当入射光频率0时,不管光多微弱,只要光一照,几乎立刻?10?9s观测到光电子。
爱因斯坦认为:(1)电磁波能量被集中在光子身上,而不是象波那样散布在空间中,所以电子可以集中地、一次性地吸收光子能量,所以对应弛豫时间应很短,是瞬间完成的。
(2)所有同频率光子具有相同能量,光强则对应于光子的数目,光强越大,光子数目越多,所以遏止电压与光强无关,饱和电流与光强成正比。
(3)光子能量与其频率成正比,频率越高,对应光子能量越大,所以光电效应也容易发生,光子能量小于逸出功时,则无法激发光电子。
厦门大学量子力学期末考试试卷及答案集
( x,0)
Exp(ip0
x
/
h)
,求
( x, t )
。(10
分)
3.计算
z
表象变换到
x
表象的变换矩个单态1 , 2 ,3 ,把所有满足对称性要求的态写出来。(10 分)
B卷 一、(共 25 分)
1、厄密算符的本征值和本征矢有什么特点?(4 分) 2、什么样的状态是束缚态、简并态和偶宇称态?(6 分) 3、全同玻色子的波函数有什么特点?并写出两个玻色子组成的全同粒子体系的波函数。(4 分)
n
n
4.如果选用的函数空间基矢为 ,则某波函数
处于 态的几率用 Dirac 符号表示为———
———————,某算符 A
在
态中的平均值的表示为——————————。
5.在量子力学中,波函数
在算符 操作下具有对称性,含义是———————————————
———————————,与 对应的守恒量 F 一定是——————————算符。
4、在一维情况下,求宇称算符 Pˆ 和坐标 x 的共同本征函数。(6 分) 5、简述测不准关系的主要内容,并写出时间 t 和能量 E 的测不准关系。(5 分) 二、(15 分)已知厄密算符 Aˆ, Bˆ ,满足 Aˆ 2 Bˆ 2 1,且 Aˆ Bˆ BˆAˆ 0 ,求
1、在 A 表象中算符 Aˆ 、 Bˆ 的矩阵表示; 2、在 A 表象中算符 Bˆ 的本征值和本征函数;
A.
一定也是该方程的一个解;
B. 一定不是该方程的解;
C. Ψ 与 一定等价;
D.无任何结论。 5.对于一维方势垒的穿透问题,关于粒子的运动,正确的是:C A. 粒子在势垒中有确定的轨迹; B.粒子在势垒中有负的动能; C.粒子以一定的几率穿过势垒; D 粒子不能穿过势垒。
安徽大学期末试卷量子力学复习及答案(88题).pdf
2
安徽大学期末试卷
量子力学复习题答案(安徽大学)
( ) 解: L2 , L z 的共同本征函数是球谐函数Ylm (θ ,ϕ) 。
L2Ylm (θ ,ϕ) = l(l + 1)= 2Ylm (θ ,ϕ ) , LzYlm (θ ,ϕ ) = m=Ylm (θ ,ϕ)
⎣
d⎤
d
x
⎥ ⎦
=
?
解:(1)-1 (2) 2x 。
(2)
⎡ ⎢
⎣
d dx
,
x2
⎤ ⎥
=
?
⎦
2. 一维运动中,哈密顿量 H = p 2 + V (x) ,求 [x , H ] = ? [p , H ] = ?
2m
解: [x , H ] = = 2 d ,
m dx
[p , H ] = −i= d V (x) 。
x → ∞ , V (x) → 0 );
( b ) 该势与轨道角动量为 l 的氢原子态的径向势有何异同?
=2 解:( a ) E = − 2mx02
V (x)
=
=2 2m
⎡ n (n −1)
⎢ ⎣
x2
−
2n ⎤
x0
x
⎥ ⎦
( b ) 氢原子有效径向势为
6
安徽大学期末试卷
量子力学复习题答案(安徽大学)
±
=
2;
K (2)电子具有自旋磁矩 M ,它的回转磁比值为轨道回转磁比值的 2 倍,即
gs
内禀磁矩 = 自旋
= e = 2 ⎜⎛取 e 为单位⎟⎞
mc ⎝ 2mc
量子力学期末考试试卷及答案集
量子力学期末考试试卷及答案集量子力学期末试题及答案(A)选择题(每题3分共36分)1.黑体辐射中的紫外灾难表明:CA. 黑体在紫外线部分辐射无限大的能量;B. 黑体在紫外线部分不辐射能量;C.经典电磁场理论不适用于黑体辐射公式;D.黑体辐射在紫外线部分才适用于经典电磁场理论。
2.关于波函数Ψ 的含义,正确的是:B A. Ψ 代表微观粒子的几率密度;B. Ψ归一化后,ψψ* 代表微观粒子出现的几率密度;C. Ψ一定是实数;D. Ψ一定不连续。
3.对于偏振光通过偏振片,量子论的解释是:D A. 偏振光子的一部分通过偏振片;B.偏振光子先改变偏振方向,再通过偏振片;C.偏振光子通过偏振片的几率是不可知的;D.每个光子以一定的几率通过偏振片。
4.对于一维的薛定谔方程,如果 Ψ是该方程的一个解,则:AA. *ψ 一定也是该方程的一个解;B. *ψ一定不是该方程的解;C. Ψ 与*ψ 一定等价;D.无任何结论。
5.对于一维方势垒的穿透问题,关于粒子的运动,正确的是:C A. 粒子在势垒中有确定的轨迹; B.粒子在势垒中有负的动能; C.粒子以一定的几率穿过势垒; D 粒子不能穿过势垒。
6.如果以∧l 表示角动量算符,则对易运算],[y x l l 为:BA. ih ∧zlB. ih∧z lC.i∧xl D.h∧xl7.如果算符∧A 、∧B 对易,且∧A ψ=Aψ,则:BA. ψ 一定不是∧B 的本征态;B. ψ一定是 ∧B 的本征态;C.*ψ一定是∧B 的本征态;D. ∣Ψ∣一定是∧B 的本征态。
8.如果一个力学量 ∧A 与H∧对易,则意味着∧A :C A. 一定处于其本征态; B.一定不处于本征态; C.一定守恒;D.其本征值出现的几率会变化。
9.与空间平移对称性相对应的是:B A. 能量守恒; B.动量守恒; C.角动量守恒; D.宇称守恒。
10.如果已知氢原子的 n=2能级的能量值为-3.4ev ,则 n=5能级能量为:D A. -1.51ev; B.-0.85ev; C.-0.378ev; D. -0.544ev11.三维各向同性谐振子,其波函数可以写为nlm ψ,且 l=N-2n ,则在一确定的能量 (N+23)h ω下,简并度为:BA. )1(21+N N ; B. )2)(1(21++N N ;C.N(N+1);D.(N+1)(n+2)12.判断自旋波函数 )]1()2()2()1([21βαβαψ+=s 是什么性质:CA. 自旋单态;B.自旋反对称态;C.自旋三态;D. z σ本征值为1.二 填空题(每题4分共24分)1.如果已知氢原子的电子能量为eV n E n 26.13-= ,则电子由n=5 跃迁到n=4 能级时,发出的光子能量为:———————————,光的波长为———— ————————。
量子力学期末考试试卷及答案集
量子力学试题集量子力学期末试题及答案(A) 选择题(每题3分共36分)1.黑体辐射中的紫外灾难表明:CA、黑体在紫外线部分辐射无限大的能量;B、黑体在紫外线部分不辐射能量;C、经典电磁场理论不适用于黑体辐射公式;D、黑体辐射在紫外线部分才适用于经典电磁场理论。
2.关于波函数Ψ的含义,正确的就是:BA、Ψ代表微观粒子的几率密度;B、Ψ归一化后,ψψ*代表微观粒子出现的几率密度;C、Ψ一定就是实数;D、Ψ一定不连续。
3.对于偏振光通过偏振片,量子论的解释就是:DA、偏振光子的一部分通过偏振片;B、偏振光子先改变偏振方向,再通过偏振片;C、偏振光子通过偏振片的几率就是不可知的;D、每个光子以一定的几率通过偏振片。
4.对于一维的薛定谔方程,如果Ψ就是该方程的一个解,则:AA、*ψ一定也就是该方程的一个解;B、*ψ一定不就是该方程的解;C、Ψ与*ψ一定等价;D、无任何结论。
5.对于一维方势垒的穿透问题,关于粒子的运动,正确的就是:CA、粒子在势垒中有确定的轨迹;B、粒子在势垒中有负的动能;C、粒子以一定的几率穿过势垒;D粒子不能穿过势垒。
6.如果以∧l表示角动量算符,则对易运算],[yxll为:BA、ih∧z lB 、 ih ∧zlC 、i∧x l D 、h∧xl7.如果算符∧A 、∧B 对易,且∧A ψ=Aψ,则:BA 、ψ 一定不就是∧B 的本征态; B 、ψ一定就是 ∧B 的本征态;C 、*ψ一定就是∧B 的本征态;D 、 ∣Ψ∣一定就是∧B 的本征态。
8.如果一个力学量∧A 与H∧对易,则意味着∧A :CA 、 一定处于其本征态;B 、一定不处于本征态;C 、一定守恒;D 、其本征值出现的几率会变化。
9.与空间平移对称性相对应的就是:B A 、 能量守恒; B 、动量守恒; C 、角动量守恒; D 、宇称守恒。
10.如果已知氢原子的 n=2能级的能量值为-3、4ev,则 n=5能级能量为:D A 、 -1、51ev; B 、-0、85ev; C 、-0、378ev; D 、 -0、544ev11.三维各向同性谐振子,其波函数可以写为nlm ψ,且 l=N-2n,则在一确定的能量 (N+23)h ω下,简并度为:BA 、)1(21+N N ;B 、)2)(1(21++N N ;C 、N(N+1);D 、(N+1)(n+2)12.判断自旋波函数 )]1()2()2()1([21βαβαψ+=s 就是什么性质:CA 、 自旋单态;B 、自旋反对称态;C 、自旋三态;D 、z σ本征值为1、二 填空题(每题4分共24分)1.如果已知氢原子的电子能量为eV nE n 26.13-= ,则电子由n=5 跃迁到n=4 能级时,发出的光子能量为:———————————,光的波长为———— ————————。
量子力学期末考试题库含答案22套
量子力学自测题(1)一、简答与证明:(共25分)1、什么是德布罗意波?并写出德布罗意波的表达式。
(4分)2、什么样的状态是定态,其性质是什么?(6分)3、全同费米子的波函数有什么特点?并写出两个费米子组成的全同粒子体系的波函数。
(4分)4、证明)ˆˆ(22x x p x x p i -是厄密算符 (5分) 5、简述测不准关系的主要内容,并写出坐标x 和动量x pˆ之间的测不准关系。
(6分)二、(15分)已知厄密算符B A ˆ,ˆ,满足1ˆˆ22==B A,且0ˆˆˆˆ=+A B B A ,求 1、在A 表象中算符Aˆ、B ˆ的矩阵表示; 2、在B 表象中算符Aˆ的本征值和本征函数; 3、从A 表象到B 表象的幺正变换矩阵S 。
三、(15分)设氢原子在0=t 时处于状态),()(21),()(21),()(21)0,(112110311021ϕθϕθϕθψ-+-=Y r R Y r R Y r R r ,求1、0=t 时氢原子的E 、2Lˆ和z L ˆ的取值几率和平均值; 2、0>t 时体系的波函数,并给出此时体系的E 、2Lˆ和z L ˆ的取值几率和平均值。
四、(15分)考虑一个三维状态空间的问题,在取定的一组正交基下哈密顿算符由下面的矩阵给出⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=C C C H000000200030001ˆ 这里,H H H'+=ˆˆˆ)0(,C 是一个常数,1<<C ,用微扰公式求能量至二级修正值,并与精确解相比较。
五、(10分)令y x iS S S +=+,y x iS S S -=-,分别求+S 和-S 作用于z S 的本征态⎪⎪⎭⎫ ⎝⎛=+0121和⎪⎪⎭⎫ ⎝⎛=-1021的结果,并根据所得的结果说明+S 和-S 的重要性是什么?量子力学自测题(1)参考答案一、1、描写自由粒子的平面波称为德布罗意波;其表达式:)(Et r p i Ae -⋅=ψ2、定态:定态是能量取确定值的状态。
【试题】量子力学期末考试题库含答案22套
【关键字】试题量子力学自测题(1)一、简答与证明:(共25分)1、什么是德布罗意波?并写出德布罗意波的表达式。
(4分)2、什么样的状态是定态,其性质是什么?(6分)3、全同费米子的波函数有什么特点?并写出两个费米子组成的全同粒子体系的波函数。
(4分)4、证明是厄密算符(5分)5、简述测不准关系的主要内容,并写出坐标和动量之间的测不准关系。
(6分)2、(15分)已知厄密算符,满足,且,求1、在A表象中算符、的矩阵表示;2、在B表象中算符的本征值和本征函数;3、从A表象到B表象的幺正变换矩阵S。
三、(15分)设氢原子在时处于状态,求1、时氢原子的、和的取值几率和平均值;2、时体系的波函数,并给出此时体系的、和的取值几率和平均值。
四、(15分)考虑一个三维状态空间的问题,在取定的一组正交基下哈密顿算符由下面的矩阵给出这里,,是一个常数,,用微扰公式求能量至二级修正值,并与精确解相比较。
五、(10分)令,,分别求和作用于的本征态和的结果,并根据所得的结果说明和的重要性是什么?量子力学自测题(1)参考答案一、1、描写自由粒子的平面波称为德布罗意波;其表达式:2、定态:定态是能量取确定值的状态。
性质:定态之下不显含时间的力学量的取值几率和平均值不随时间改变。
3、全同费米子的波函数是反对称波函数。
两个费米子组成的全同粒子体系的波函数为:。
4、=,因为是厄密算符,所以是厄密算符。
5、设和的对易关系,是一个算符或普通的数。
以、和依次表示、和在态中的平均值,令,,则有,这个关系式称为测不准关系。
坐标和动量之间的测不准关系为:2、解1、由于,所以算符的本征值是,因为在A表象中,算符的矩阵是对角矩阵,所以,在A表象中算符的矩阵是:设在A 表象中算符的矩阵是,利用得:;由于,所以,;由于是厄密算符,, 令,其中为任意实常数,得在A 表象中的矩阵表示式为: 2、类似地,可求出在B 表象中算符的矩阵表示为:在B 表象中算符的本征方程为:,即 和不同时为零的条件是上述方程的系数行列式为零,即 对有:,对有:所以,在B 表象中算符的本征值是,本征函数为和 3、类似地,在A 表象中算符的本征值是,本征函数为和从A 表象到B 表象的幺正变换矩阵就是将算符在A 表象中的本征函数按列排成的矩阵,即 三、解: 已知氢原子的本征解为: ,将向氢原子的本征态展开, 1、=,不为零的展开系数只有三个,即,,,显然,题中所给的状态并未归一化,容易求出归一化常数为:,于是归一化的展开系数为: ,,(1)能量的取值几率,, 平均值为:(2)取值几率只有:,平均值 (3)的取值几率为: ,,平均值 2、时体系的波函数为:=由于、和皆为守恒量,所以它们的取值几率和平均值均不随时间改变,与时的结果是一样的。
安徽大学2021 - 2022 学年第 2 学期《量子力学》期末考试试卷(A卷)试题及答案
安徽大学2021 -2022 学年第 2 学期《量子力学》期末考试试卷(A卷)试题及答案(时间120分钟)年级院系专业姓名学号座位号分,共40分)1.用球坐标表示,粒子波函数表为,写出粒子在球壳中被测到的几率。
解:。
2.一质量为的粒子在一维无限深方势阱中运动,写出其状态波函数和能级表达式。
解:3.写出电子自旋的二本征值和对应的本征态。
解:;。
4.何谓正常塞曼效应?何谓反常塞曼效应?何谓斯塔克效应?解:在强磁场中,原子发出的每条光谱线都分裂为三条的现象称为正常塞曼效应。
在弱磁场中,原子发出的每条光谱线都分裂为条(偶数)的现象称为正常塞曼效应。
原子置于外电场中,它发出的光谱线会发生分裂的现象称为斯塔克效应。
5.量子力学中,体系的任意态可用一组力学量完全集的共同本征态展开:,写出展开式系数的表达式。
解:。
6.一个电子运动的旋量波函数为,写出表示电子自旋向上、位置在处的几率密度表达式,以及表示电子自旋向下的几率的表达式。
解:电子自旋向上()、位置在处的几率密度为;电子自旋向下()的几率为。
7.量子力学中,一个力学量守恒的条件是什么?用式子表示。
解:有两个条件:。
8.描述电子组态的四个量子数是什么?答:主量子数,角量子数,磁量子数,自旋量子数分)9.计算下列对易式:(1)(2)(15分)解:设是任意波函数。
(1),因任意,所以。
(2)因任意,所以。
10.在状态中,讨论的值,并求。
(10分)解:的本征函数为,本征值为but显然,是由的两个本征函数叠加而成,这两个本征态对应于,且取的概率相同,各为。
的本征值自然为零=。
11.对于氢原子基态,求电子处于经典禁区的几率(已知氢原子能级,基态波函数为半径, 势能 )。
(15分)解:氢原子基态波函数为,为半径。
相应的能量。
动能。
是经典禁区。
由上式解出。
因此,电子处于经典禁区的几率为。
12.一维无限深势阱中的粒子,受到微扰的作用,求基态能量的一级修正。
(20分) 0 解:一维无限深势阱的能量本征值及本征函数为基态,。
(完整版)量子力学期末考试题及解答
一、 波函数及薛定谔方程1.推导概率(粒子数)守恒的微分表达式;()(),,w r t J r t o t∂+∇•=∂解答:由波函数的概率波解释可知,当(),r t ψ已经归一化时,坐标的取值概率密度为()()()()2,,,,w r t r t r t r t ψψψ*== (1) 将上式的两端分别对时间t 求偏微商,得到()()()()(),,,,,w r t r t r t r t r t t t tψψψψ**∂∂∂=+∂∂∂ (2) 若位势为实数,即()()V r V r *=,则薛定谔方程及其复共轭方程可以分别改写如下形式()()()()2,,,2r t ih ir t V r r t t m h ψψψ∂=∇-∂ (3)()()()()2,,,2r t ih ir t V r r t t m hψψψ***∂=-∇+∂ (4) 将上述两式代入(2)式,得到()()()()()22,,,,,2r t ih r t r t r t r t t mψψψψψ**∂⎡⎤=∇-∇⎣⎦∂ ()()()(),,,,2ihr t r t r t r t mψψψψ**⎡⎤=∇•∇-∇⎣⎦ (5) 若令()()()()(),,,,,2ih J r t r t r t r t r t mψψψψ**⎡⎤=∇-∇⎣⎦ (6) 有()(),,0w r t J r t t∂+∇•=∂ (7) 此即概率(粒子数)守恒的微分表达式。
2.若线性谐振子处于第一激发态()2211exp 2x C x α⎛⎫ψ=- ⎪⎝⎭求其坐标取值概率密度最大的位置,其中实常数0α>。
解答:欲求取值概率必须先将波函数归一化,由波函数的归一化条件可知()()222221exp 1x dx Cx x dx ψα∞∞-∞-∞=-=⎰⎰(1)利用积分公示())2221121!!exp 2n n n n x x dx αα∞++--=⎰ (2) 可以得到归一化常数为C = (3)坐标的取值概率密度为 ()()()322221exp w x x x x ψα==- (4)由坐标概率密度取极值的条件())()3232222exp 0d w x x x x dx αα=--= (5) 知()w x 有五个极值点,它们分别是 10,,x α=±±∞(6)为了确定极大值,需要计算()w x 的二阶导数()()()232222322226222exp d w x x x x x x dx αααα⎤=----⎦)()32244222104exp x x x ααα=-+- (7)于是有()23200x d w x dx ==> 取极小值 (8)()220x d w x dx =±∞= 取极小值 (9)()23120x d w x dx α=±=< 取极大值 (10)最后得到坐标概率密度的最大值为2111w x x ψαα⎛⎫⎛⎫=±==±= ⎪ ⎪⎝⎭⎝⎭(11)3.半壁无限高势垒的位势为()()()()000x v x x a v x a ∞<⎧⎪=≤≤⎨⎪>⎩求粒子能量E 在00E v <<范围内的解。
量子力学期末考试试卷及答案集
量子力学试题集量子力学期末试题及答案☎✌✆选择题(每题 分共 分).黑体辐射中的紫外灾难表明:✌ 黑体在紫外线部分辐射无限大的能量; 黑体在紫外线部分不辐射能量;经典电磁场理论不适用于黑体辐射公式;黑体辐射在紫外线部分才适用于经典电磁场理论。
.关于波函数➢ 的含义,正确的是:✌ ➢ 代表微观粒子的几率密度; ➢归一化后,ψψ*代表微观粒子出现的几率密度; ➢一定是实数; ➢一定不连续。
.对于偏振光通过偏振片,量子论的解释是:✌ 偏振光子的一部分通过偏振片;偏振光子先改变偏振方向,再通过偏振片;偏振光子通过偏振片的几率是不可知的;每个光子以一定的几率通过偏振片。
.对于一维的薛定谔方程,如果 ➢是该方程的一个解,则:✌✌ *ψ一定也是该方程的一个解;*ψ一定不是该方程的解; ➢ 与*ψ 一定等价;无任何结论。
.对于一维方势垒的穿透问题,关于粒子的运动,正确的是: ✌ 粒子在势垒中有确定的轨迹; 粒子在势垒中有负的动能; 粒子以一定的几率穿过势垒; 粒子不能穿过势垒。
.如果以∧l 表示角动量算符,则对易运算],[y x l l 为:✌ ♓♒∧z l ♓♒∧zl♓∧x l ♒∧xl.如果算符∧A 、∧B 对易,且∧A ψ✌ψ,则:✌ ψ 一定不是∧B 的本征态; ψ一定是 ∧B 的本征态;*ψ一定是∧B 的本征态; ✁➢✁一定是∧B 的本征态。
.如果一个力学量∧A 与H∧对易,则意味着∧A :✌ 一定处于其本征态; 一定不处于本征态;一定守恒;其本征值出现的几率会变化。
.与空间平移对称性相对应的是: ✌ 能量守恒; 动量守恒; 角动量守恒; 宇称守恒。
.如果已知氢原子的 ⏹能级的能量值为 ♏❖,则 ⏹能级能量为: ✌ ♏❖ ♏❖ ♏❖ ♏❖.三维各向同性谐振子,其波函数可以写为nlmψ,且 ●☠⏹,则在一确定的能量☎☠23✆♒ω下,简并度为:✌ )1(21+N N ; )2)(1(21++N N ;☠☎☠✆; ☎☠✆☎⏹✆.判断自旋波函数 )]1()2()2()1([21βαβαψ+=s 是什么性质:✌ 自旋单态;自旋反对称态; 自旋三态; z σ本征值为 二 填空题(每题 分共 分).如果已知氢原子的电子能量为eV nE n 26.13-= ,则电子由⏹ 跃迁到⏹ 能级时,发出的光子能量为:———————————,光的波长为———— ————————。
量子力学期末考试题解答题
量子力学期末考试题解答题1. 你认为的量子理论有哪些成功之处?有哪些不成功的地方?试举一例说明。
(简述波尔的原子理论,为什么说玻尔的原子理论是半经典半量子的?)答:理论中核心的思想有两条:一是原子具有能量不连续的定态的概念;二是两个定态之间的量子跃迁的概念及频率条件。
首先,的量子理论虽然能成功的说明氢原子光谱的规律性,但对于复杂原子光谱,甚至对于氦原子光谱,理论就遇到了极大的困难(这里有些困难是人们尚未认识到电子的自旋问题),对于光谱学中的谱线的相对强度这个问题,在理论中虽然借助于对应原理得到了一些有价值的结果,但不能提供系统解决它的办法;其次,理论只能处理简单的周期运动,而不能处理非束缚态问题,例如:散射;再其次,从理论体系上来看,理论提出的原子能量不连续概念和角动量量子化条件等,与经典力学不相容的,多少带有人为的性质,并未从根本上解决不连续性的本质。
2. 什么是光电效应?光电效应有什么规律?爱因斯坦是如何解释光电效应的?答:当一定频率的光照射到金属上时,有大量电子从金属表面逸出的现象称为光电效应;光电效应的规律:a.对于一定的金属材料做成的电极,有一个确定的临界频率0υ,当照射光频率0υυ<时,无论光的强度有多大,不会观测到光电子从电极上逸出;b.每个光电子的能量只与照射光的频率有关,而与光强无关;c.当入射光频率0υυ>时,不管光多微弱,只要光一照,几乎立刻910s -≈观测到光电子。
爱因斯坦认为:(1)电磁波能量被集中在光子身上,而不是象波那样散布在空间中,所以电子可以集中地、一次性地吸收光子能量,所以对应弛豫时间应很短,是瞬间完成的。
(2)所有同频率光子具有相同能量,光强则对应于光子的数目,光强越大,光子数目越多,所以遏止电压与光强无关,饱和电流与光强成正比。
(3)光子能量与其频率成正比,频率越高,对应光子能量越大,所以光电效应也容易发生,光子能量小于逸出功时,则无法激发光电子。
量子力学导论期末考试试题内含答案
量子力学试题(1)(2005)姓名 学号 得分一. 简答题(每小题5分,共40分)1. 一粒子的波函数为()()z y x r ,,ψψ=,写出粒子位于dx x x +~间的几率。
2. 粒子在一维δ势阱 )0()()(>-=γδγx x V中运动,波函数为)(x ψ,写出)(x ψ'的跃变条件。
3. 量子力学中,体系的任意态)(x ψ可用一组力学量完全集的共同本征态)(x n ψ展开:∑=nn n x c x )()(ψψ,写出展开式系数n c 的表达式。
4. 给出如下对易关系:[][][]?,?,?,===z xy z L Lp x p z5. 何谓几率流密度?写出几率流密度),(t r j的表达式。
6. 一维运动中,哈密顿量)(22x V mp H +=,求[][]?,?,==H p H x7. 一质量为μ的粒子在一维无限深方势阱⎩⎨⎧><∞<<=ax x a x x V 2,0,20,0)(中运动,写出其状态波函数和能级表达式。
8. 已知厄米算符A 、B 互相反对易:{}0,=+=BA AB B A ;b 是算符B 的本征态:b b b B =,本征值0≠b 。
求在态b 中,算符A 的平均值。
二. 计算和证明题1. 设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。
2. 考虑如下一维波函数:0/0()nx x x x A e x ψ-⎛⎫= ⎪⎝⎭, 其中0,,A n x 为已知常数。
利用薛定谔方程求位势()V x 和能量E 。
对于它们,该波函数为一本征函数(已知当,()0x V x →∞→)。
3.一质量为m 的粒子沿x 正方向以能量E 向0=x 处的势阶运动。
当0≤x 时,该势为0;当0>x 时,该势为 E 43。
问在0=x 处粒子被反射的的几率多大?(15分)0 X4.设粒子处于()ϕθ,lm Y 状态下,1)证明在的本征态下,0==y x L L 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
量子力学试题(1)(2005)姓名 学号 得分一. 简答题(每小题5分,共40分)1. 一粒子的波函数为()()z y x r ,,ψψ=,写出粒子位于dx x x +~间的几率。
2. 粒子在一维δ势阱 )0()()(>-=γδγx x V中运动,波函数为)(x ψ,写出)(x ψ'的跃变条件。
3. 量子力学中,体系的任意态)(x ψ可用一组力学量完全集的共同本征态)(x n ψ展开:∑=nn n x c x )()(ψψ,写出展开式系数n c 的表达式。
4. 给出如下对易关系:[][][]?,?,?,===z xy z L Lp x p z5. 何谓几率流密度?写出几率流密度),(t r j的表达式。
6. 一维运动中,哈密顿量)(22x V mp H +=,求[][]?,?,==H p H x7. 一质量为μ的粒子在一维无限深方势阱⎩⎨⎧><∞<<=ax x a x x V 2,0,20,0)(中运动,写出其状态波函数和能级表达式。
8. 已知厄米算符A 、B 互相反对易:{}0,=+=BA AB B A ;b 是算符B 的本征态:b b b B =,本征值0≠b 。
求在态b 中,算符A 的平均值。
二. 计算和证明题1. 设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。
2. 考虑如下一维波函数:0/0()nx x x x A e x ψ-⎛⎫= ⎪⎝⎭, 其中0,,A n x 为已知常数。
利用薛定谔方程求位势()V x 和能量E 。
对于它们,该波函数为一本征函数(已知当,()0x V x →∞→)。
3.一质量为m 的粒子沿x 正方向以能量E 向0=x 处的势阶运动。
当0≤x 时,该势为0;当0>x 时,该势为 E 43。
问在0=x 处粒子被反射的的几率多大?(15分)0 X4.设粒子处于()ϕθ,lm Y 状态下,1)证明在的本征态下,0==y x L L 。
(提示:利用x y z z y L i L L L L =-,[]y L i =-=z x x z x z L L L L L ,L 求平均。
)2)求()2x L ∆和()2yL ∆(附加题)5. 设),(p x F 是p x ,的整函数,证明[][]F , F,,pi F x x i F p ∂∂=∂∂-=整函数是指),(p x F 可以展开成∑∞==0,),(n m n m mnp x Cp x F 。
量子力学试题(1)(2005)姓名 学号 得分一、 简答题(每小题5分,共40分)1. 一粒子的波函数为()()z y x r ,,ψψ=,写出粒子位于dx x x +~间的几率。
解: ⎰⎰+∞∞-+∞∞-2)(r dz dy dxψ。
2. 粒子在一维δ势阱 )0()()(>-=γδγx x V中运动,波函数为)(x ψ,写出)(x ψ'的跃变条件。
解: )0(2)0()0(2ψγψψ m -='-'-+。
3. 量子力学中,体系的任意态)(x ψ可用一组力学量完全集的共同本征态)(x n ψ展开:∑=nn n x c x )()(ψψ,写出展开式系数n c 的表达式。
解: ()dx x x x x c n n n ⎰==)()()(,)(*ψψψψ。
4. 给出如下对易关系:[][][]?,?,?,===z xy z L Lp x p z解: [][][]y z xyz L i L Lp x i p z-===,0,,5. 何谓几率流密度?写出几率流密度),(t r j的表达式。
解:单位时间内通过与粒子前进方向垂直的单位面积的几率称为几率流密度。
()**2),(ψψψψ∇-∇-=mi t r j6. 一维运动中,哈密顿量)(22x V mp H +=,求[][]?,?,==H p H x解:[][])(,,,x V dxd i H p mp i H x -==7. 一质量为μ的粒子在一维无限深方势阱⎩⎨⎧><∞<<=ax x a x x V 2,0,20,0)(中运动,写出其状态波函数和能级表达式。
解:,02()20,02n xx a x ax x aπψ<<=<>⎩或22228n n E a πμ=8. 已知厄米算符A 、B 互相反对易:{}0,=+=BA AB B A ;b 是算符B 的本征态:b b b B =,本征值0≠b 。
求在态b 中,算符A 的平均值。
解:{},0A B AB BA =+=,{}0,2A B b AB b b BA b b A b ∴==+=。
但0≠b ,从而有0A A b ==,即在态b 中,算符A 的平均值为零。
二. 计算和证明题1.设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。
解:除了与箱壁碰撞外,粒子在箱内作自由运动。
假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。
动量大小不改变,仅方向反向。
选箱的长、宽、高三个方向为z y x ,,轴方向,把粒子沿z y x ,,轴三个方向的运动分开处理。
利用量子化条件,对于x 方向,有()⎰==⋅ ,3,2,1,x x xn h n dx p即 h n a p x x =⋅2 (a 2:一来一回为一个周期)a h n p x x 2/=∴,同理可得, b h n p y y 2/=, c h n p z z 2/=,,3,2,1,,=z y x n n n粒子能量 ⎪⎪⎭⎫ ⎝⎛++=++=222222222222)(21c n b n a n mp p p m E z y x z y x n n n zy x π,3,2,1,,=z y x n n n2. 考虑如下一维波函数:0/0()nx xx x A e x ψ-⎛⎫= ⎪⎝⎭,其中0,,A n x 为已知常数。
利用薛定谔方程求位势()V x 和能量E 。
对于它们,该波函数为一本征函数(已知当,()0x V x →∞→)。
解: 定态S.eq 为)()()(2222x E x x V dx d m ψψ=⎥⎦⎤⎢⎣⎡+- , (2) 对题给)(x ψ求导:ψψ⎪⎪⎭⎫ ⎝⎛1-=⎪⎪⎭⎫ ⎝⎛1-⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛='0-00-1-0000x x n e x xx A e x xx n A x x nx x n // (3)ψψψψ⎥⎦⎤⎢⎣⎡+--='⎪⎪⎭⎫ ⎝⎛-+-=''20020212)1(1x x x n x n n x x n x n (4) 从式(2)和(4)中消去)(x ψ,得⎥⎦⎤⎢⎣⎡+---=-2002212)1(2)(x x x n x n n m x V E (5) 当0)(,→∞→x V x ,所以222mx E -= (6) 代回式(5),解得 ⎥⎦⎤⎢⎣⎡--=x x n x n n m x V 0222)1(2)(3.一质量为m 的粒子沿x 正方向以能量E 向0=x 处的势阶运动。
当0≤x 时,该势为0;当0>x 时,该势为 E 43。
问在0=x 处粒子被反射的的几率多大?(15分)0 X 解:S.eg 为⎪⎩⎪⎨⎧>='+''≤=+''0,00,022x k x k ψψψψ其中 ,222 mE k = ⎪⎭⎫ ⎝⎛==-='E V k V E m k 434)(202202方程的解为:⎪⎩⎪⎨⎧0≥0≤+=2-x tex re e x k i xk i x k i ,,ψ处,ψψ'及分别连续,给出⎪⎩⎪⎨⎧=-=+t k r k t r 2)1(1 解得 31=r , 反射系数 91==2r R 。
4.设粒子处于()ϕθ,lm Y 状态下,1)证明在的本征态下,0==y x L L 。
(提示:利用x y z z y L i L L L L =-,[]y L i =-=z x x z x z L L L L L ,L 求平均。
)证:设ψ是z L 的本征态,本征值为 m ,即ψψ m L z=[]x L i =-=y z z y z y L L L L L ,L ,()()()0111=ψψ-ψψ=ψψ-ψψ=ψψ-ψψ=∴y y y z z y y z z y x L m L m i L L L L i L L L L i L同理:利用[]y L i =-=z x x z x z L L L L L ,L . 有:0=y L 。
2)求()2x L ∆和()2yL ∆解:记本征态lm Y 为lm ,满足本征方程()lm l l lm L 221 +=,lm m lm L z =,lm m L z =,将上式在lm 态下求平均,因z L 作用于lm 或lm 后均变成本征值 m ,使得后两项对平均值的贡献互相抵消,因此 22yxL L =又()[]222221 m l l L L L zy x -+=-=+()[]2222121m l l L L yx-+==∴ 上题已证0==y x L L 。
()()()[]2222222121m l l L L L L L L x x x xx x -+==-=-=∆∴同理 ()()[]222121m l l L y-+=∆。
5. 设),(p x F 是p x ,的整函数,证明[][]F , F,,pi F x x i F p ∂∂=∂∂-=整函数是指),(p x F 可以展开成∑∞==,),(n m n m mnp x Cp x F 。
证: (1)先证[][]11, ,,--=-=n n m mp ni p x xmi xp 。
[][][][][][][][]()()[]()111111331332312221111,1,3,,2,,,,,------------------=---=+--==+-=++-=++-=+=m m m m m m m m m m m m m m m m m mx mi x i x i m x x p x i m xxp xi x x p x x p x x i x x p x x p x x i xx p x p x x p同理,[][][][][][]1221222111,2,,,,,--------==+=++=+=n n n n n n n n np ni ppx pi p p x p p x p p i pp x p x p p x现在,[][]()∑∑∑∞=-∞=∞=-==⎥⎦⎤⎢⎣⎡=0,10,0,,,,n m nm mn n m n m mn n m n m mn p x mi C p x p C p x C p F p而 ()∑∞=--=∂∂-0,1n m n m mn p x mi C x Fi。