用空间向量证明线线垂直与线面垂直
向量判定平行垂直
![向量判定平行垂直](https://img.taocdn.com/s3/m/cb75c0230066f5335a8121bc.png)
900 , SA ^ 面ABCD ,
1 SA = AB = BC = 1, AD = . 求平面SCD的法向量. 2 解: 分别以直线AD , AB , AS 为 x 轴,y 轴,z 轴建立直角坐标系 1 由条件知:A(0, 0, 0), B(- 1, 0, 0), C(- 1,1, 0), (0, , 0), S (0, 0,1) D z2 S 设面SCD 的一个法向量为 n ( x, y, z ) 则 n CD 0, n SD 0 C B 1 1 其中 CD (1, , 0), SD (0, , 1) y A 2 2 D x 1 x 2 y 0 x z 得 令 z 1, 则有 n (1, 2,1) 练习: 1 三角形ABC的顶点分别为A(1, 3) B (2, 1)、C (3, 2, 0, 0). y 2 z 2,、 yz 0 2 (1). 求直线AB的单位方向向量 解法可以怎样优化改进?
平面的法向量线线平行线面平行面面平行线线垂直线面垂直面面垂直线线平行线面平行面面平行线线垂直线面垂直面面垂直你能得到解的方法吗
复习
一)
空间平行的判定方法:
1.直线与直线平行 2.直线与平面平行------如果平面外一条直线平行于平面内的一条
直线,则这条直线平行于这个平面。
3.平面与平面平行------若一个平面内有两条相交直线都平行于
b
g
a
l
m
a
b
l // m a // b a b
a
u
l
l // a u a u 0
u
v
// u // v u v
32(二)向量方法证明空间线面垂直关系
![32(二)向量方法证明空间线面垂直关系](https://img.taocdn.com/s3/m/f16fa5334a7302768e9939d3.png)
学习目标 1.能用向量法判断一些简单线线、线面、面面垂直关系.2.能用向量语言表述直线与直线、直线与平面、平面与平面的垂直关系.3.能用向量方法证明空间线面垂直关系的有关定理.知识点一 向量法判断线线垂直思考 若直线l 1的方向向量为μ1=(1,3,2),直线l 2的方向向量为μ2=(1,-1,1),那么两直线是否垂直?用向量法判断两条直线垂直的一般方法是什么?答案 l 1与l 2垂直,因为μ1·μ2=1-3+2=0,所以μ1⊥μ2,又μ1,μ2是两直线的方向向量,所以l 1与l 2垂直.判断两条直线是否垂直的方法:(1)在两直线上分别取两点A 、B 与C 、D ,计算向量AB →与CD →的坐标,若AB →·CD →=0,则两直线垂直,否则不垂直.(2)判断两直线的方向向量的数量积是否为零,若数量积为零,则两直线垂直,否则不垂直. 梳理 设直线l 的方向向量为a =(a 1,a 2,a 3),直线m 的方向向量为b =(b 1,b 2,b 3),则l ⊥m ⇔a·b =0⇔a 1b 1+a 2b 2+a 3b 3=0. 知识点二 向量法判断线面垂直思考 若直线l 的方向向量为μ1=⎝⎛⎭⎫2,43,1,平面α的法向量为μ2=⎝⎛⎭⎫3,2,32,则直线l 与平面α的位置关系是怎样的?如何用向量法判断直线与平面的位置关系?答案 垂直,因为μ1=23μ2,所以μ1∥μ2,即直线的方向向量与平面的法向量平行,所以直线l 与平面α垂直.判断直线与平面的位置关系的方法:(1)直线l 的方向向量与平面α的法向量共线⇒l ⊥α.(2)直线的方向向量与平面的法向量垂直⇒直线与平面平行或直线在平面内. (3)直线l 的方向向量与平面α内的两相交直线的方向向量垂直⇒l ⊥α.梳理 设直线l 的方向向量a =(a 1,b 1,c 1),平面α的法向量μ=(a 2,b 2,c 2),则l ⊥α⇔a ∥μ⇔a =k μ(k ∈R ).知识点三 向量法判断面面垂直思考 平面α,β的法向量分别为μ1=(x 1,y 1,z 1),μ2=(x 2,y 2,z 2),用向量坐标法表示两平面α,β垂直的关系式是什么? 答案 x 1x 2+y 1y 2+z 1z 2=0.梳理 若平面α的法向量为μ=(a 1,b 1,c 1),平面β的法向量为ν=(a 2,b 2,c 2),则α⊥β⇔μ⊥ν⇔μ·ν=0⇔a 1a 2+b 1b 2+c 1c 2=0.类型一 证明线线垂直例1 已知正三棱柱ABC -A 1B 1C 1的各棱长都为1,M 是底面上BC 边的中点,N 是侧棱CC 1上的点,且CN =14CC 1.求证:AB 1⊥MN .证明 设AB 中点为O ,作OO 1∥AA 1.以O 为坐标原点,OB 为x 轴,OC 为y 轴,OO 1为z 轴建立如图所示的空间直角坐标系.由已知得A ⎝⎛⎭⎫-12,0,0,B ⎝⎛⎭⎫12,0,0,C ⎝⎛⎭⎫0,32,0,N ⎝⎛⎭⎫0,32,14,B 1⎝⎛⎭⎫12,0,1, ∵M 为BC 中点, ∴M ⎝⎛⎭⎫14,34,0.∴MN →=⎝⎛⎭⎫-14,34,14,AB 1→=(1,0,1),∴MN →·AB 1→=-14+0+14=0.∴MN →⊥AB 1→, ∴AB 1⊥MN .反思与感悟 证明两直线垂直的基本步骤:建立空间直角坐标系→写出点的坐标→求直线的方向向量→证明向量垂直→得到两直线垂直.跟踪训练1 如图,在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4,求证:AC ⊥BC 1.证明 ∵直三棱柱ABC -A 1B 1C 1底面三边长AC =3,BC =4,AB =5, ∴AC 、BC 、C 1C 两两垂直.如图,以C 为坐标原点,CA 、CB 、CC 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.则C (0,0,0),A (3,0,0),C 1(0,0,4),B (0,4,0), ∵AC →=(-3,0,0),BC 1→=(0,-4,4), ∴AC →·BC 1→=0.∴AC ⊥BC 1. 类型二 证明线面垂直例2 如图所示,正三棱柱ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .证明 如图所示,取BC 的中点O ,连接AO .因为△ABC 为正三角形,所以AO ⊥BC .因为在正三棱柱ABC -A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1, 所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,以OB →,OO 1→,OA →分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则B (1,0,0),D (-1,1,0),A 1(0,2,3),A (0,0,3),B 1(1,2,0). 所以AB 1→=(1,2,-3),BA 1→=(-1,2,3),BD →=(-2,1,0). 因为AB 1→·BA 1→=1×(-1)+2×2+(-3)×3=0. AB 1→·BD →=1×(-2)+2×1+(-3)×0=0.所以AB 1→⊥BA 1→,AB 1→⊥BD →,即AB 1⊥BA 1,AB 1⊥BD . 又因为BA 1∩BD =B ,所以AB 1⊥平面A 1BD . 反思与感悟 用坐标法证明线面垂直的方法及步骤 方法一:(1)建立空间直角坐标系. (2)将直线的方向向量用坐标表示.(3)找出平面内两条相交直线,并用坐标表示它们的方向向量. (4)分别计算两组向量的数量积,得到数量积为0. 方法二:(1)建立空间直角坐标系. (2)将直线的方向向量用坐标表示. (3)求出平面的法向量.(4)判断直线的方向向量与平面的法向量平行.跟踪训练2 如图,在长方体ABCD -A 1B 1C 1D 1中,AB =AD =1,AA 1=2,点P 为DD 1的中点.求证:直线PB 1⊥平面P AC .证明 如图建系,C (1,0,0),A (0,1,0),P (0,0,1),B 1(1,1,2),PC →=(1,0,-1),P A →=(0,1,-1),PB 1→=(1,1,1),B 1C →=(0,-1,-2),B 1A →=(-1,0,-2).PB 1→·PC →=(1,1,1)·(1,0,-1)=0, 所以PB 1→⊥PC →,即PB 1⊥PC .又PB 1→·P A →=(1,1,1)·(0,1,-1)=0, 所以PB 1→⊥P A →,即PB 1⊥P A .又P A ∩PC =P ,所以PB 1⊥平面P AC . 类型三 证明面面垂直例3 在三棱柱ABC -A 1B 1C 1中,AA 1⊥平面ABC ,AB ⊥BC ,AB =BC =2,AA 1=1,E 为BB 1的中点,求证:平面AEC 1⊥平面AA 1C 1C .证明 由题意知直线AB ,BC ,B 1B 两两垂直,以点B 为原点,分别以BA ,BC ,BB 1所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系,则A (2,0,0),A 1(2,0,1),C (0,2,0),C 1(0,2,1),E (0,0,12),故AA 1→=(0,0,1),AC →=(-2,2,0),AC 1→=(-2,2,1),AE →=(-2,0,12).设平面AA 1C 1C 的法向量为n 1=(x ,y ,z ), 则⎩⎪⎨⎪⎧n 1·AA 1→=0,n 1·AC →=0,即⎩⎪⎨⎪⎧z =0,-2x +2y =0.令x =1,得y =1,故n 1=(1,1,0). 设平面AEC 1的法向量为n 2=(a ,b ,c ), 则⎩⎪⎨⎪⎧ n 2·AC 1→=0,n 2·AE →=0,即⎩⎪⎨⎪⎧-2a +2b +c =0,-2a +12c =0. 令c =4,得a =1,b =-1,故n 2=(1,-1,4). 因为n 1·n 2=1×1+1×(-1)+0×4=0, 所以n 1⊥n 2.所以平面AEC 1⊥平面AA 1C 1C . 反思与感悟 证明面面垂直的两种方法(1)常规法:利用面面垂直的判定定理转化为线面垂直、线线垂直去证明.(2)向量法:证明两个平面的法向量互相垂直.跟踪训练3 在四面体ABCD 中,AB ⊥平面BCD ,BC =CD ,∠BCD =90°,∠ADB =30°,E 、F 分别是AC 、AD 的中点,求证:平面BEF ⊥平面ABC .证明 以B 为原点建立如图所示的空间直角坐标系,设A (0,0,a ),则易得B (0,0,0),C ⎝⎛⎭⎫32a ,32a ,0,D (0,3a ,0),E ⎝⎛⎭⎫34a ,34a ,a 2,F (0,32a ,a 2),故AB →=(0,0,-a ),BC →=⎝⎛⎭⎫32a ,32a ,0.设平面ABC 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·AB →=0,n 1·BC →=0,即⎩⎪⎨⎪⎧-az 1=0,x 1+y 1=0,取x 1=1,∴n 1=(1,-1,0)为平面ABC 的一个法向量. 设n 2=(x 2,y 2,z 2)为平面BEF 的一个法向量, 同理可得n 2=(1,1,-3).∵n 1·n 2=(1,-1,0)·(1,1,-3)=0, ∴平面BEF ⊥平面ABC .1.下列命题中,正确命题的个数为( )①若n 1,n 2分别是平面α,β的法向量,则n 1∥n 2⇔α∥β; ②若n 1,n 2分别是平面α,β的法向量,则α⊥β ⇔ n 1·n 2=0; ③若n 是平面α的法向量,a 与平面α平行,则n ·a =0; ④若两个平面的法向量不垂直,则这两个平面不垂直. A.1 B.2 C.3 D.4 答案 C解析 ①中平面α,β可能平行,也可能重合,结合平面法向量的概念,易知②③④正确. 2.已知两直线的方向向量为a ,b ,则下列选项中能使两直线垂直的为( ) A.a =(1,0,0),b =(-3,0,0) B.a =(0,1,0),b =(1,0,1) C.a =(0,1,-1),b =(0,-1,1)D.a=(1,0,0),b=(-1,0,0)答案 B解析因为a=(0,1,0),b=(1,0,1),所以a·b=0×1+1×0+0×1=0,所以a⊥b,故选B.3.若直线l的方向向量为a=(1,0,2),平面α的法向量为μ=(-2,0,-4),则()A.l∥αB.l⊥αC.l⊂αD.l与α斜交答案 B解析∵a∥μ,∴l⊥α.4.平面α的一个法向量为m=(1,2,0),平面β的一个法向量为n=(2,-1,0),则平面α与平面β的位置关系是()A.平行B.相交但不垂直C.垂直D.不能确定答案 C解析∵(1,2,0)·(2,-1,0)=0,∴两法向量垂直,从而两平面垂直.5.已知平面α与平面β垂直,若平面α与平面β的法向量分别为μ=(-1,0,5),ν=(t,5,1),则t的值为________.答案 5解析∵平面α与平面β垂直,∴平面α的法向量μ与平面β的法向量ν垂直,∴μ·ν=0,即(-1)×t+0×5+5×1=0,解得t=5.空间垂直关系的解决策略40分钟课时作业一、选择题1.设直线l 1,l 2的方向向量分别为a =(-2,2,1),b =(3,-2,m ),若l 1⊥l 2,则m 等于( ) A.-2 B.2 C.6 D.10 答案 D解析 因为a ⊥b ,故a ·b =0,即-2×3+2×(-2)+m =0,解得m =10.2.若平面α,β的法向量分别为a =(-1,2,4),b =(x ,-1,-2),并且α⊥β,则x 的值为( )A.10B.-10C.12D.-12答案 B解析 因为α⊥β,则它们的法向量也互相垂直, 所以a ·b =(-1,2,4)·(x ,-1,-2)=0, 解得x =-10.3.已知点A (0,1,0),B (-1,0,-1),C (2,1,1),P (x ,0,z ),若P A ⊥平面ABC ,则点P 的坐标为( )A.(1,0,-2)B.(1,0,2)C.(-1,0,2)D.(2,0,-1) 答案 C解析 由题意知AB →=(-1,-1,-1),AC →=(2,0,1),AP →=(x ,-1,z ),又P A ⊥平面ABC ,所以有AB →·AP →=(-1,-1,-1)·(x ,-1,z )=0,得-x +1-z =0, ① AC →·AP →=(2,0,1)·(x ,-1,z )=0,得2x +z =0,②联立①②得x =-1,z =2,故点P 的坐标为(-1,0,2).4.在正方体ABCD -A 1B 1C 1D 1中,若E 为A 1C 1的中点,则直线CE 垂直于( ) A.AC B.BD C.A 1D D.A 1A 答案 B解析 建立如图所示的空间直角坐标系.设正方体的棱长为1,则A (0,1,0),B (1,1,0),C (1,0,0),D (0,0,0),A 1(0,1,1),C 1(1,0,1),E ⎝⎛⎭⎫12,12,1,∴CE →=⎝⎛⎭⎫-12,12,1,AC →=(1,-1,0), BD →=(-1,-1,0),A 1D →=(0,-1,-1),A 1A →=(0,0,-1), ∵CE →·BD →=(-1)×(-12)+(-1)×12+0×1=0,∴CE ⊥BD .5.若平面α,β垂直,则下面可以作为这两个平面的法向量的是( ) A.n 1=(1,2,1),n 2=(-3,1,1) B.n 1=(1,1,2),n 2=(-2,1,1) C.n 1=(1,1,1),n 2=(-1,2,1) D.n 1=(1,2,1),n 2=(0,-2,-2) 答案 A解析 ∵1×(-3)+2×1+1×1=0, ∴n 1·n 2=0,故选A.6.两平面α,β的法向量分别为μ=(3,-1,z ),v =(-2,-y ,1),若α⊥β,则y +z 的值是( )A.-3B.6C.-6D.-12 答案 B解析 α⊥β⇒μ·v =0⇒-6+y +z =0,即y +z =6. 二、填空题7.在三棱锥S -ABC 中,∠SAB =∠SAC =∠ACB =90°,AC =2,BC =13,SB =29,则异面直线SC 与BC 是否垂直________.(填“是”或“否”) 答案 是解析 如图,以A 为原点,AB ,AS 分别为y 轴,z 轴建立空间直角坐标系,则由AC =2,BC =13,SB =29, 得B (0,17,0),S (0,0,23),C ⎝ ⎛⎭⎪⎫21317,417,0, SC →=⎝⎛⎭⎪⎫21317,417,-23,CB →=⎝⎛⎭⎪⎫-21317,1317,0. 因为SC →·CB →=0,所以SC ⊥BC .8.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的是________.(填序号) 答案 ①②③解析 ∵AP →·AB →=(-1,2,-1)·(2,-1,-4)=-1×2+2×(-1)+(-1)×(-4)=0,∴AP ⊥AB ,即①正确;∵AP →·AD →=(-1,2,-1)·(4,2,0)=(-1)×4+2×2+(-1)×0=0,∴AP ⊥AD ,即②正确; 又∵AB ∩AD =A , ∴AP ⊥平面ABCD ,即AP →是平面ABCD 的一个法向量,即③正确; ∵AP →是平面ABCD 的法向量, ∴AP →⊥BD →,即④不正确.9.在空间直角坐标系Oxyz 中,已知点P (2cos x +1,2cos 2x +2,0)和点Q (cos x ,-1,3),其中x ∈[0,π].若直线OP 与直线OQ 垂直,则x 的值为________. 答案 π2或π3解析 由题意得OP →⊥OQ →,∴cos x ·(2cos x +1)-(2cos 2x +2)=0. ∴2cos 2x -cos x =0, ∴cos x =0或cos x =12.又x ∈[0,π], ∴x =π2或x =π3.10.在△ABC 中,A (1,-2,-1),B (0,-3,1),C (2,-2,1).若向量n 与平面ABC 垂直,且|n |=21,则n 的坐标为________________. 答案 (-2,4,1)或(2,-4,-1)解析 据题意,得AB →=(-1,-1,2),AC →=(1,0,2).设n =(x ,y ,z ),∵n 与平面ABC 垂直,∴⎩⎪⎨⎪⎧ n ·AB →=0,n ·AC →=0,即⎩⎪⎨⎪⎧ -x -y +2z =0,x +2z =0,可得⎩⎪⎨⎪⎧y =4z ,y =-2x . ∵|n |=21,∴x 2+y 2+z 2=21,解得y =4或y =-4.当y =4时,x =-2,z =1;当y =-4时,x =2,z =-1.三、解答题11.如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AB =4,BC =3,AD =5,∠DAB =∠ABC =90°,E 是CD 的中点.证明:CD ⊥平面P AE .证明 如图,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设P A =h ,则相关各点的坐标为A (0,0,0),B (4,0,0),C (4,3,0),D (0,5,0),E (2,4,0),P (0,0,h ).易知CD →=(-4,2,0),AE →=(2,4,0),AP →=(0,0,h ).因为CD →·AE →=-8+8+0=0,CD →·AP →=0,所以CD ⊥AE ,CD ⊥AP ,而AP ,AE 是平面P AE 内的两条相交直线,所以CD ⊥平面P AE .12.如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,P A ⊥底面ABCD ,P A =AB =1,AD =3,点F 是PB 的中点,点E 在边BC 上移动.求证:无论点E 在BC 边的何处,都有PE ⊥AF .证明 建立如图所示空间直角坐标系,则P (0,0,1),B (0,1,0),F ⎝⎛⎭⎫0,12,12,D ()3,0,0,设BE =x (0≤x ≤3),则E (x ,1,0),PE →·AF →=(x ,1,-1)·⎝⎛⎭⎫0,12,12=0, 所以x ∈[0, 3 ]时都有PE ⊥AF ,即无论点E 在BC 边的何处,都有PE ⊥AF .13.已知正方体ABCDA 1B 1C 1D 1中,E 为棱CC 1上的动点.(1)求证:A 1E ⊥BD ;(2)若平面A 1BD ⊥平面EBD ,试确定E 点的位置.(1)证明 以D 为坐标原点,以DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设正方体棱长为a ,则 A (a ,0,0),B (a ,a ,0),C (0,a ,0),A 1(a ,0,a ),C 1(0,a ,a ).设E (0,a ,e ) (0≤e ≤a ),A 1E →=(-a ,a ,e -a ),BD →=(-a ,-a ,0),A 1E →·BD →=a 2-a 2+(e -a )·0=0,∴A 1E →⊥BD →,即A 1E ⊥BD .(2)解 设平面A 1BD ,平面EBD 的法向量分别为n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2). ∵DB →=(a ,a ,0),DA 1→=(a ,0,a ),DE →=(0,a ,e ),∴⎩⎪⎨⎪⎧ ax 1+ay 1=0,ax 1+az 1=0,⎩⎪⎨⎪⎧ ax 2+ay 2=0,ay 2+ez 2=0. 取x 1=x 2=1,得n 1=(1,-1,-1),n 2=(1,-1,a e), 由平面A 1BD ⊥平面EBD 得n 1⊥n 2,∴2-a e =0,即e =a 2. ∴当E 为CC 1的中点时,平面A 1BD ⊥平面EBD .。
空间向量与垂直关系
![空间向量与垂直关系](https://img.taocdn.com/s3/m/dbfb3ce95fbfc77da269b141.png)
设PA=PB=PC=3,则
C
G (1,1,0) F (0,1,0)
E
P
F
B
DG
y
A
知识点四:利用垂直关系判断存在性
例4. 直 三 棱 柱ABC - A1B1C1中,底 面 是 以ABC
为直角的等腰直角三角形, AC 2, BB1 3,
D是A1C1的 中 点, 在 线 段AA1上 是 否 存在 点F ,
建系前先证OC,OB,OM 两两垂直
E(0,- 3,0),
D(1,0,1),
E
A(0, 3,2)
z
A
M
D
O
By
C x
A
知识点三:证明面面垂直
变式 :在正三棱锥P-ABC中, 三条侧棱两两相
互垂直,G为△PAB的重心 , 点E,F分别BC,
PB上,BE:EC=PF:FB=1:2,
求证:平面EFG ⊥平面PBC .
b
a
线面垂直
a
b
B
l
^
a,
l
^
b
l
^a
面面垂直
a
^
n
^
m
作业
《高效评价训练》 P143 T11 , P144 T7,8
使点A与点B之间的距离为AB 3,
求证: BA ^ 平面ACD. z
C
D(0,0,0),C(0,0, 2),
B(0,2,0), A( 3 , 1 ,0)Biblioteka 22 ADBy
x
A'
知识点三:证明面面垂直
例3 . 在四棱锥E-ABCD中, AB ⊥平面BCE , CD⊥面BCE , AB=BC=CE=2CD=2, ∠BCE=120°, 求证:平面ADE ⊥平面ABE .
向量法证明垂直
![向量法证明垂直](https://img.taocdn.com/s3/m/c4f09d63b84ae45c3b358cf6.png)
BD=AD-AB= b- a, 1 → → 1→ 1 1 OG=OC+CG= (AB+AD)+ CC1= (a+ b)- c, 2 2 2 2 1 1 1 ∴A1O·BD= (c+ a+ b)· (b- a)= c· (b- a)+ (a+ b)· (b- a) 2 2 2 1 2 2 1 2 = c· b- c· a+ (b - a )= (|b | - |a |2)= 0. 2 2 ∴A1O⊥BD,∴ Α1O⊥ BD. 同理可证,A1O⊥OG,∴ A1O⊥ OG. 又∵ OG∩ BD= O,且 A1O⊄面 GBD, ∴ A1O⊥面 GBD.
→
→
→
→
误区警示
审题不清致误
【示例】 在棱长为1的正方体ABCD-A1B1C1D1中,M为棱BB1
的中点,在棱DD1上是否存在点P,使MD⊥平面PAC?
[错解] 如图建立空间直角坐标系,则 A(1 , 0,0), C(0,1, 0), D(0, 0, 0), 1 M(1,1, ), 2 假设存在 P(0,0,x)满足条件, 则PA=(1,0,-x),AC=(-1,1,0).
→
→
题型三
证明面面垂直
在四面体ABCD中,AB⊥平面BCD,BC=CD,∠BCD= 【 例 3】 90°,∠ADB=30°,E、F分别是AC、AD的中点, 求证:平面BEF⊥平面ABC.
[规范解答 ]建系如图,取 A(0,0,a), 则易得 B(0,0,0),C( 3 3 a, a,0), 2 2
→
→
3 3 a, a, 0)= 0 2 2
→ ∴ n⊥CD,∴平面 BEF⊥平面 ABC.
【变式3】 在正棱锥P-ABC中,三条侧棱两两互相垂直,G是 △PAB的重心,E、F分别为BC、PB上的点,且BE∶EC= PF∶FB=1∶2. 求证:平面GEF⊥平面PBC; 证明 如图,以三棱锥的顶点P为原
用空间向量证明线线垂直与线面垂直
![用空间向量证明线线垂直与线面垂直](https://img.taocdn.com/s3/m/469f839f55270722182ef726.png)
第二节 用空间向量证明线线垂直与线面垂直一、空间向量及其数量积1、 在空间,既有大小又有方向的量称为空间向量。
用AB 或a 表示,其中向量的大小称为向量的长度或或a。
正如平面向量可用坐标(x,y.)表示,空间向量也可用坐标(x,y,z)表示。
若已知点A 坐标为(x 1,y 1,z 1),点B 坐标为(x 2,y 2,z 2) 则向量AB =(x 2 -x 1,y 2- y 1,z 2 -z 1在空间,知道向量=(x,y ,z2、 空间向量数量积① 已知两个非零向量a 、b a 与b 的夹角,记作<a ,b >规定,若0a ⊥。
② 已知空间两个向量、COS例1 1B 1、A 1C 1中点,若BC=CA=CC 1,C 1B 1 A1ACB D 1 E 1练习:已知正方体ABCD —1111D C B A 中,11E B =11F D =411B A ,求向量1BE 与1DF 所成角的余弦值。
二 、利用向量证线线垂直与线面垂直例2 在正方体ABCD —1111D C B A 中,求证A 1C ⊥平面AB 1D 1P 为DD 1的中点,例3 如图,PA ⊥矩形ABCD 所在平面,M, N 分别是AB ,PC 中点 (1)求证:M N ⊥CDE D A 1FD 1AB 1C BC 1 PN(2)若∠PDA=450,求证:MN ⊥平面PCD练习:正方体ABCD —1111D C B A 中,M 是棱D 1DP 为棱A 1B 1上任一点。
求证:NP ⊥AM作业:1.如图,正方体ABCD —1111D C B A 中,E 是BB 1中点,O 求证:O E ⊥平面D 1AC.2.如图,正方体ABCD —1111D C B A 中,O ,M 分别是BD 1, AA 1中点,求证:OM 是异面直线AA 1和BD 1的公垂线.3、如图,直三棱柱ABC-—A 1B 1C 1中,∠ACB=900,AC=1,CB=2,侧棱AA 1=1,,侧面AA 1B 1B 的两条对角线交点为D ,B 1C 1的中点为M 。
专题08 利用空间向量证明平行、垂直(解析版)
![专题08 利用空间向量证明平行、垂直(解析版)](https://img.taocdn.com/s3/m/51e0014948d7c1c708a145b6.png)
2020年高考数学立体几何突破性讲练08利用空间向量证明平行、垂直一、考点传真:能用向量语言表述线线、线面、面面的平行和垂直关系二、知识点梳理:证明平行、垂直问题的思路(1)恰当建立空间直角坐标系,准确表示各点与相关向量的坐标,是运用向量法证明平行和垂直的关键.(2)证明直线与平面平行,只需证明直线的方向向量与平面的法向量的数量积为零,或证直线的方向向量与平面内的不共线的两个向量共面,或证直线的方向向量与平面内某直线的方向向量平行,然后说明直线在平面外即可.这样就把几何的证明问题转化为向量运算.3其一证明直线与直线垂直,只需要证明两条直线的方向向量垂直;其二证明线面垂直,只需证明直线的方向向量与平面内不共线的两个向量垂直即可,当然,也可证直线的方向向量与平面的法向量平行;其三证明面面垂直:①证明两平面的法向量互相垂直;②利用面面垂直的判定定理,只要能证明一个平面内的一条直线的方向向量为另一个平面的法向量即可.三、例题:例1. (2019江苏卷)如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【解析】证明:(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC-A1B1C1中,AB∥A1B1,所以A 1B 1∥ED .又因为ED ⊂平面DEC 1,A 1B 1⊄平面DEC 1, 所以A 1B 1∥平面DEC 1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC . 因为三棱柱ABC-A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC . 又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .例2.(2016年北京卷) 如图,在四棱锥中,平面PAD ⊥平面,,,,,,(1)求证:平面;(2)求直线与平面所成角的正弦值;(3)在棱上是否存在点,使得平面?若存在,求的值;若不存在,说明理由.【解析】(1)∵面PAD面ABCD AD =,面PAD ⊥面ABCD ,∵AB ⊥AD ,AB ⊂面ABCD ,∴AB ⊥面PAD ,P ABCD -ABCD PA PD ⊥PA PD =AB AD ⊥1AB =2AD =AC CD ==PD ⊥PAB PB PCD PA M //BM PCD AMAP∵PD ⊂面PAD , ∴AB ⊥PD , 又PD ⊥PA ,∴PD ⊥面PAB , (2)取AD 中点为O ,连结CO ,PO ,∵CD AC == ∴CO ⊥AD , ∵PA PD =, ∴PO ⊥AD ,以O 为原点,如图建系易知(001)P ,,,(110)B ,,,(010)D -,,,(200)C ,,,则(111)PB =-,,,(011)PD =--,,,(201)PC =-,,,(210)CD =--,,, 设n 为面PDC 的法向量,令00(,1)n x y =,.011,120n PD n n PC ⎧⋅=⎪⎛⎫⇒=-⎨⎪⎝⎭⋅=⎪⎩,,则PB 与面PCD 夹角θ有,sin cos ,1n PB n PB n PBθ⋅=<>== (3)假设存在M 点使得BM ∥面PCD , 设AMAPλ=,()0,','M y z , 由(2)知()0,1,0A ,()0,0,1P ,()0,1,1AP =-,()1,1,0B ,()0,'1,'AM y z =- 有()0,1,AM AP M λλλ=⇒- ∴()1,,BM λλ=--∵BM ∥面PCD ,n 为PCD 的法向量, ∴0BM n ⋅=,即102λλ-++=,∴1=4λ∴综上,存在M 点,即当14AM AP =时,M 点即为所求. 例3.(2011安徽)如图,ABCDEFG 为多面体,平面ABED 与平面AGFD 垂直,点O 在线段AD 上,1,2,OA OD ==OAB ∆,OAC ∆,ODE ∆,ODF ∆都是正三角形. (Ⅰ)证明直线BC ∥EF ; (Ⅱ)求棱锥F OBED -的体积.【解析】(Ⅰ)(综合法)证明:设G 是线段DA 与EB 延长线的交点. 由于OAB ∆与ODE∆都是正三角形,所以OB ∥DE 21,OG=OD=2, 同理,设G '是线段DA 与线段FC 延长线的交点,有.2=='OD G O 又由于G 和G '都在线段DA 的延长线上,所以G 与G '重合.在GED ∆和GFD 中,由OB ∥DE 21和OC ∥DF 21,可知B 和C 分别是GE 和GF 的中点,所以BC 是GEF ∆的中位线,故BC ∥EF .(向量法)过点F 作AD FQ ⊥,交AD 于点Q ,连QE ,由平面ABED ⊥平面ADFC ,知FQ ⊥平面ABED ,以Q 为坐标原点,QE 为x 轴正向,QD 为y 轴正向,QF 为z 轴正向,建立如图所示空间直角坐标系. 由条件知).23,23,0(),0,23,23(),3,0,0(),0,0,3(--C B F E则有33(,0,),(3,0,BC EF =-=- 所以,2=即得BC ∥EF .(Ⅱ)由OB=1,OE=2,23,60=︒=∠EOB S EOB 知,而O E D ∆是边长为2的正三角形,故.3=OED S 所以.233=+=OED EOB OBED S S S过点F 作FQ ⊥AD ,交AD 于点Q ,由平面ABED ⊥平面ACFD 知,FQ 就是四棱锥F —OBED 的高,且FQ=3,所以.2331=⋅=-OBED OBED F S FQ V 例4.(2011江苏)如图,在四棱锥ABCD P -中,平面PAD ⊥平面ABCD ,AB AD =,BAD ∠=60°,E 、F 分别是AP 、AD 的中点. 求证:(Ⅰ)直线EF ∥平面PCD ;(Ⅱ)平面BEF ⊥平面PAD .【证明】(Ⅰ)在△PAD 中,因为E 、F 分别为AP ,AD 的中点,所以EF//PD .又因为EF ⊄平面PCD ,PD ⊂平面PCD ,所以直线EF//平面PCD .(Ⅱ)连结DB ,因为AB=AD ,∠BAD=60°,所以ABD ∆为正三角形,因为F 是AD 的中点,所以BF ⊥AD .因为平面PAD ⊥平面ABCD ,BF ⊂平面ABCD ,平面PAD 平面ABCD=AD ,所以BF ⊥平面PAD .又因为BF ⊂平面BEF ,所以平面BEF ⊥平面PAD .例5.(2010广东)如图,¼AEC 是半径为a 的半圆,AC 为直径,点E 为»AC 的中点,点B 和点C 为线段AD 的三等分点,平面AEC 外一点F 满足FB FD ==,EF =.(Ⅰ)证明:EB FD ⊥;(Ⅱ)已知点,Q R 为线段,FE FB 上的点,23FQ FE =,23FR FB =,求平面BED 与平面RQD 所成二面角的正弦值.【证明】:(Ⅰ)连结CF ,因为¼AEC 是半径为a 的半圆,AC 为直径,点E 为»AC 的中点,所以EB AC ⊥.在RT BCE ∆中,EC ===.在BDF ∆中,BF DF ==,BDF ∆为等腰三角形, 且点C 是底边BD 的中点,故CF BD ⊥.在CEF ∆中,222222)(2)6CE CF a a EF +=+==,所以CEF ∆为Rt ∆,且CF EC ⊥.因为CF BD ⊥,CF EC ⊥,且CE BD C =I ,所以CF ⊥平面BED , 而EB ⊂平面BED ,CF EB ∴⊥.因为EB AC ⊥,EB CF ⊥,且AC CF C =I ,所以EB ⊥平面BDF , 而FD ⊂平面BDF ,EB FD ∴⊥.(Ⅱ)设平面BED 与平面RQD 的交线为DG .由23FQ FE =,23FR FB =,知//QR EB . 而EB ⊂平面BDE ,∴//QR 平面BDE , 而平面BDE I 平面RQD = DG , ∴////QR DG EB .由(Ⅰ)知,BE ⊥平面BDF ,∴DG ⊥平面BDF , 而,DR DB ⊂平面BDF ,∴DG DR ⊥,DG DQ ⊥, ∴RDB ∠是平面BED 与平面RQD 所成二面角的平面角. 在Rt BCF ∆中,2CF a ===,sin FC RBD BF ∠===cos RBD ∠==. 在BDR ∆中,由23FR FB =知,133BR FB ==,由余弦定理得,RD== 由正弦定理得,sin sin BR RD RDB RBD=∠∠,即332sin RDB =∠,sin RDB ∠=故平面BED 与平面RQD 所成二面角的正弦值为29.为GC 的中点,FO =3,且FO ⊥平面ABCD .(1)求证:AE ∥平面BCF ; (2)求证:CF ⊥平面AEF .【解析】证明 取BC 中点H ,连接OH ,则OH ∥BD ,又四边形ABCD 为正方形, ∴AC ⊥BD ,∴OH ⊥AC ,故以O 为原点,建立如图所示的直角坐标系,则A (3,0,0),C (-1,0,0),D (1,-2,0),F (0,0,3),B (1,2,0).BC →=(-2,-2,0),CF →=(1,0,3),BF →=(-1,-2,3). (1)设平面BCF 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·BC →=0,n ·CF →=0,即⎩⎨⎧-2x -2y =0,x +3z =0,取z =1,得n =(-3,3,1). 又四边形BDEF 为平行四边形, ∴DE →=BF →=(-1,-2,3), ∴AE →=AD →+DE →=BC →+BF →=(-2,-2,0)+(-1,-2,3)=(-3,-4,3), ∴AE →·n =33-43+3=0,∴AE →⊥n , 又AE ⊄平面BCF ,∴AE ∥平面BCF .(2)AF →=(-3,0,3),∴CF →·AF →=-3+3=0,CF →·AE →=-3+3=0, ∴CF →⊥AF →,CF →⊥AE →, 即CF ⊥AF ,CF ⊥AE , 又AE ∩AF =A , AE ,AF ⊂平面AEF , ∴CF ⊥平面AEF .2.如图所示,在直三棱柱ABC -A 1B 1C 1中,侧面AA 1C 1C 和侧面AA 1B 1B 都是正方形且互相垂直,M 为AA 1的中点,N 为BC 1的中点.求证:(1)MN ∥平面A 1B 1C 1; (2)平面MBC 1⊥平面BB 1C 1C .【解析】证明 由题意知AA 1,AB ,AC 两两垂直,以A 为坐标原点建立如图所示的空间直角坐标系.不妨设正方形AA 1C 1C 的边长为2,则A (0,0,0),A 1(2,0,0),B (0,2,0),B 1(2,2,0),C (0,0,2),C 1(2,0,2),M (1,0,0),N (1,1,1).(1)因为几何体是直三棱柱,所以侧棱AA 1⊥底面A 1B 1C 1.因为AA 1→=(2,0,0),MN →=(0,1,1),所以MN →·AA 1→=0,即MN →⊥AA 1→.MN ⊄平面A 1B 1C 1,故MN ∥平面A 1B 1C 1.(2)设平面MBC 1与平面BB 1C 1C 的法向量分别为 n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2). 因为MB →=(-1,2,0),MC 1→=(1,0,2), 所以⎩⎪⎨⎪⎧n 1·MB →=0,n 1·MC 1→=0,即⎩⎪⎨⎪⎧-x 1+2y 1=0,x 1+2z 1=0,,令x 1=2,则平面MBC 1的一个法向量为n 1=(2,1,-1).同理可得平面BB 1C 1C 的一个法向量为n 2=(0,1,1).因为n 1·n 2=2×0+1×1+(-1)×1=0,所以n 1⊥n 2,所以平面MBC 1⊥平面BB 1C 1C . 3.如图,在多面体ABCDEF 中,底面ABCD 是边长为2的菱形,∠BAD =60°,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,DE =2,M 为线段BF 的中点.(1)求M 到平面DEC 的距离及三棱锥M -CDE 的体积; (2)求证:DM ⊥平面ACE .【解析】(1)设AC ∩BD =O ,以O 为原点,OB 为x 轴,OC 为y 轴,过O 作平面ABCD 的垂线为z 轴,建立空间直角坐标系,则C (0,3,0),D (-1,0,0),E (-1,0,2),M (1,0,1), DE →=(0,0,2),DC →=(1,3,0),DM →=(2,0,1), ∵DE →·DC →=0, ∴DE ⊥DC ,∴S △DEC =12×DE ×DC =12×2×2=2,设平面DEC 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·DE →=2z =0,n ·DC →=x +3y =0,取x =3,得n =(3,-1,0),∴M 到平面DEC 的距离h =|DM →·n ||n |=233+1=3,∴三棱锥M -CDE 的体积V =13×S △CDE ×h =13×2×3=233.(2)证明:A (0,-3,0),AC →=(0,23,0),AE →=(-1,3,2), AC →·DM →=0,AE →·DM →=-2+2=0, ∴AC ⊥DM ,AE ⊥DM ,∵AC ∩AE =A ,∴DM ⊥平面ACE .4.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,侧面P AD ⊥底面ABCD ,且P A =PD =22AD ,设E ,F 分别为PC ,BD 的中点.(1)求证:EF ∥平面P AD ; (2)求证:平面P AB ⊥平面PDC .【解析】证明 (1)如图,取AD 的中点O ,连接OP ,OF .因为P A =PD ,所以PO ⊥AD .因为侧面P AD ⊥底面ABCD ,平面P AD ∩平面ABCD =AD ,PO ⊂平面P AD , 所以PO ⊥平面ABCD .又O ,F 分别为AD ,BD 的中点, 所以OF ∥AB .又ABCD 是正方形,所以OF ⊥AD . 因为P A =PD =22AD , 所以P A ⊥PD ,OP =OA =a2.以O 为原点,OA ,OF ,OP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系, 则A ⎝⎛⎭⎫a 2,0,0,F ⎝⎛⎭⎫0,a 2,0,D ⎝⎛⎭⎫-a2,0,0, P ⎝⎛⎭⎫0,0,a 2,B ⎝⎛⎭⎫a 2,a ,0,C ⎝⎛⎭⎫-a2,a ,0. 因为E 为PC 的中点,所以E ⎝⎛⎭⎫-a 4,a 2,a4. 易知平面P AD 的一个法向量为OF →=⎝⎛⎭⎫0,a 2,0, 因为EF →=⎝⎛⎭⎫a 4,0,-a 4,且OF →·EF →=⎝⎛⎭⎫0,a 2,0·⎝⎛⎭⎫a4,0,-a 4=0, 又因为EF ⊄平面P AD , 所以EF ∥平面P AD .(2)因为P A →=⎝⎛⎭⎫a 2,0,-a 2,CD →=(0,-a,0), 所以P A →·CD →=⎝⎛⎭⎫a2,0,-a 2·(0,-a,0)=0, 所以P A →⊥CD →,所以P A ⊥CD . 又P A ⊥PD ,PD ∩CD =D , PD ,CD ⊂平面PDC , 所以P A ⊥平面PDC . 又P A ⊂平面P AB , 所以平面P AB ⊥平面PDC .5.如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)若点M 是线段AP 上一点,且AM =3.试证明平面AMC ⊥平面BMC .【解析】证明 如图所示,以O 为坐标原点,以射线OP 为z 轴的正半轴建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4).(1)∵AP →=(0,3,4),BC →=(-8,0,0),∴AP →·BC →=(0,3,4)·(-8,0,0)=0,AP →⊥BC →,即AP ⊥BC . (2)由(1)知|AP |=5,又|AM |=3,且点M 在线段AP 上, ∴AM →=35AP →=⎝⎛⎭⎫0,95,125. 又AC →=(-4,5,0),BA →=(-4,-5,0), ∴BM →=BA →+AM →=⎝⎛⎭⎫-4,-165,125, 则A P →·BM →=(0,3,4)·⎝⎛⎭⎫-4,-165,125=0, ∴AP →⊥BM →,即AP ⊥BM ,又根据(1)的结论知AP ⊥BC ,BM ∩BC =B , ∴AP ⊥平面BMC ,于是AM ⊥平面BMC . 又AM ⊂平面AMC ,故平面AMC ⊥平面BCM .6. 如图所示,已知四棱锥P -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .证明:(1)P A ⊥BD ;(2)平面P AD ⊥平面P AB .【解析】证明 (1)取BC 的中点O ,连接PO ,△PBC 为等边三角形,即PO ⊥BC , ∵平面PBC ⊥底面ABCD ,BC 为交线,PO ⊂平面PBC , ∴PO ⊥底面ABCD .以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO = 3.∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3). ∴BD →=(-2,-1,0),P A →=(1,-2,-3). ∵BD →·P A →=(-2)×1+(-1)×(-2)+0×(-3)=0, ∴P A →⊥BD →, ∴P A ⊥BD .(2)取P A 的中点M ,连接DM ,则M ⎝⎛⎭⎫12,-1,32.∵DM →=⎝⎛⎭⎫32,0,32,PB →=(1,0,-3),∴DM →·PB →=32×1+0×0+32×(-3)=0,∴DM →⊥PB →,即DM ⊥PB .∵DM →·P A →=32×1+0×(-2)+32×(-3)=0,∴DM →⊥P A →,即DM ⊥P A .又∵P A ∩PB =P ,P A ,PB ⊂平面P AB , ∴DM ⊥平面P AB . ∵DM ⊂平面P AD , ∴平面P AD ⊥平面P AB .7.如图所示,在四棱柱ABCD -A 1B 1C 1D 1中,A 1D ⊥平面ABCD ,底面ABCD 是边长为1的正方形,侧棱A 1A =2.(1)证明:AC ⊥A 1B ;(2)是否在棱A 1A 上存在一点P ,使得AP →=λP A 1→且面AB 1C 1⊥面PB 1C 1.【解析】 如图所示,以DA ,DC ,DA 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则D (0,0,0),A (1,0,0),C (0,1,0),A 1(0,0,3),B (1,1,0),D 1(-1,0,3),B 1(0,1,3),C 1(-1,1,3).(1)证明:AC →=(-1,1,0),A 1B →=(1,1,-3), ∴AC →·A 1B →=0,∴AC ⊥A 1B . (2)假设存在, ∵AP →=λP A 1→, ∴P ⎝⎛⎭⎪⎫11+λ,0,3λ1+λ. 设平面AB 1C 1的一个法向量为n 1=(x 1,y 1,z 1), ∵AB 1→=(-1,1,3),AC 1→=(-2,1,3), ∴⎩⎪⎨⎪⎧n 1·AB 1→=-x 1+y 1+3z 1=0,n 1·AC 1→=-2x 1+y 1+3z 1=0.令z 1=3,则y 1=-3,x 1=0.∴n 1=(0,-3,3).同理可求面PB 1C 1的一个法向量为n 2=⎝ ⎛⎭⎪⎫0,3λ+1,-1, ∴n 1·n 2=0.∴-331+λ-3=0,即λ=-4.∵P 在棱A 1A 上,∴λ>0,矛盾. ∴这样的点P 不存在.8.如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD .(1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1,若存在,求出点P 的位置,若不存在,请说明理由.【解析】(1)证明 设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,∴A 1O 2=AA 21+AO 2-2AA 1·AO cos 60°=3, ∴AO 2+A 1O 2=AA 21, ∴A 1O ⊥AO .由于平面AA 1C 1C ⊥平面ABCD ,且平面AA 1C 1C ∩平面ABCD =AC ,A 1O ⊂平面AA 1C 1C ,∴A 1O ⊥平面ABCD .以OB ,OC ,OA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3).由于BD →=(-23,0,0),AA 1→=(0,1,3), AA 1→·BD →=0×(-23)+1×0+3×0=0, ∴BD →⊥AA 1→,即BD ⊥AA 1.(2)解 假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1, 设CP →=λCC 1→,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3).从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ). 设平面DA 1C 1的法向量为n 3=(x 3,y 3,z 3), 则⎩⎪⎨⎪⎧n 3⊥A 1C 1→,n 3⊥DA 1→,又A 1C 1→=(0,2,0),DA 1→=(3,0,3),则⎩⎨⎧2y 3=0,3x 3+3z 3=0,取n 3=(1,0,-1),因为BP ∥平面DA 1C 1, 则n 3⊥BP →,即n 3·BP →=-3-3λ=0,得λ=-1, 即点P 在C 1C 的延长线上,且C 1C =CP .。
3.2.2 利用向量证明空间中的垂直关系
![3.2.2 利用向量证明空间中的垂直关系](https://img.taocdn.com/s3/m/5d4f962af18583d0496459b6.png)
垂直关系
一、基础知识
1、立体几何中如何证明两条直线垂直?
①利用定义:证明两直线所成角为 900; ②利用线面垂直的性质来证明线线垂直.
线面垂直的性质:如果一条直线垂直一个平面,那么这条直线 垂直该平面内的任一直线.
αA
l B
Q C
lα AB α
l
BB1,CD 的中点,求证:D1F⊥平面 ADE.
【解析】如图,以 O 为原点建立空间直角
z
D1
C1 坐标系.设棱长为 2,由题意可得
A1
D(0,0,0),D1(0,0,2),F(0,1,0),A(2,0,0),
B1
E(2,2,1)
D xA
E C
y
D1F (0,1,2),DE (2,2,1),DA (2,0,0)
C.l1⊥l2
D.不能确定
2.设平面α的法向量为a (1,2,2) ,平面β的法向量为
b (2,4,k),若α⊥β,则 k=( B )
A.2
B.-5
C.4
D.-2
3.已知平面α内的两个向量a (2,2,1),b (2,0,0),则平面的一个
法向量是( A )
A.(0,1,2) B.(1,0,2) C.(1, 2, 1) D.(0,0, 2)
(1)l⊥m
(2)l//m
答案: (1)α β
(2)α //β
设两个平面α,β的法向量分别为a ,b ,则
α β ab ab0
二、自我检测
C 1、直线 l1,l2 的方向向量分别为a (1,2,2),b (2,3,2) ,则( )
直线平面垂直判定定理向量法证明
![直线平面垂直判定定理向量法证明](https://img.taocdn.com/s3/m/03eb3744f342336c1eb91a37f111f18583d00cab.png)
直线平面垂直判定定理向量法证明直线平面垂直判定定理是解决几何问题中常用的一个定理,它判断了一条直线和一个平面是否垂直。
本文将使用向量法来证明这个定理。
我们需要了解一些基本概念和性质。
1. 向量的定义和性质向量是具有大小和方向的量,用箭头表示。
两个向量可以相加、相减,并且可以与实数相乘。
向量的长度称为模,方向由箭头指示。
2. 内积的定义和性质两个向量u和v的内积定义为:u·v = |u||v|cosθ,其中θ是两个向量之间的夹角。
内积满足交换律:u·v = v·u,并且对于任意实数k,有(ku)·v = u·(kv) = k(u·v)。
3. 垂直的定义和性质两个向量u和v垂直(或正交)当且仅当它们的内积为零:u·v = 0。
如果两个非零向量垂直,则它们互为对方在另一个方向上的单位向量。
4. 平行线与平面一条直线与一个平面垂直当且仅当该线上任意一点到该平面上任意一点的向量与该直线的方向向量垂直。
根据以上基本概念和性质,我们可以证明直线平面垂直判定定理。
证明如下:【第一部分:平行线与平面的垂直性质】假设有一条直线L和一个平面P,我们需要证明L与P垂直的条件。
1. 设L上有一点A,P上有一点B,并且从A到B的向量为u。
2. 设L的方向向量为v。
3. 设P上任意一点C,并且从A到C的向量为w。
根据定义,我们知道u·v = 0。
现在我们需要证明u·w = 0。
由于P是一个平面,所以AC在该平面上。
w是该平面上任意一点到A的向量。
根据定义,我们知道v与w垂直。
根据内积的性质(交换律),我们可以得到:(u + v)·w = u·w + v·w = 0由于v与w垂直,所以v·w = 0。
(u + v)·w = u·w + 0 = u·w = 0u与w也是垂直的。
高中数学第三章空间向量与立体几何3.2立体几何中的向量方法3.2.2利用向量解决平行、垂直问题讲义
![高中数学第三章空间向量与立体几何3.2立体几何中的向量方法3.2.2利用向量解决平行、垂直问题讲义](https://img.taocdn.com/s3/m/32a0f645168884868762d6f3.png)
3.2.2 利用向量解决平行、垂直问题1.用向量方法证明空间中的平行关系(1)证明线线平行设直线l,m的方向向量分别是a=(a1,b1,c1),b=(a2,b2,c2),则l∥m⇔□01a∥b⇔□02 a=λb⇔□03a1=λa2,b1=λb2,c1=λc2(λ∈R).(2)证明线面平行设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u=(a2,b2,c2),则l∥α⇔□04a⊥u⇔□05a·u=0⇔□06a1a2+b1b2+c1c2=0.(3)证明面面平行①设平面α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β⇔□07u∥v⇔u=λv⇔□08a1=λa2,b1=λb2,c1=λc2(λ∈R).②由面面平行的判定定理,要证明面面平行,只要转化为相应的线面平行、线线平行即可.2.用向量方法证明空间中的垂直关系(1)证明线线垂直设直线l1的方向向量u1=(a1,b1,c1),直线l2的方向向量u2=(a2,b2,c2),则l1⊥l2⇔□09u1⊥u2⇔□10u1·u2=0⇔□11a1a2+b1b2+c1c2=0.(2)证明线面垂直设直线l的方向向量是u=(a1,b1,c1),平面α的法向量v=(a2,b2,c2),则l⊥α⇔□12 u∥v⇔□13u=λv(λ∈R)⇔□14a1=λa2,b1=λb2,c1=λc2(λ∈R).(3)证明面面垂直若平面α的法向量u=(a1,b1,c1),平面β的法向量v=(a2,b2,c2),则α⊥β⇔□15u ⊥v⇔□16u·v=0⇔□17a1a2+b1b2+c1c2=0.1.判一判(正确的打“√”,错误的打“×”)(1)若两直线方向向量的数量积为0,则这两条直线一定垂直相交.( )(2)若一直线与平面垂直,则该直线的方向向量与平面内的所有直线的方向向量的数量积为0.( )(3)两个平面垂直,则其中一平面内的直线的方向向量与另一平面内的直线的方向向量垂直.( )答案 (1)× (2)√ (3)×2.做一做(请把正确的答案写在横线上)(1)若直线l 1的方向向量为u 1=(1,3,2),直线l 2上有两点A (1,0,1),B (2,-1,2),则两直线的位置关系是________.(2)若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则直线l 与平面α的位置关系为________.(3)已知两平面α,β的法向量分别为u 1=(1,0,1),u 2=(0,2,0),则平面α,β的位置关系为________.(4)若平面α,β的法向量分别为(-1,2,4),(x ,-1,-2),并且α⊥β,则x 的值为________.答案 (1)垂直 (2)垂直 (3)垂直 (4)-10探究1 利用空间向量解决平行问题例1 已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点,求证: (1)FC 1∥平面ADE ; (2)平面ADE ∥平面B 1C 1F .[证明] (1)如图所示,建立空间直角坐标系Dxyz ,则有D (0,0,0),A (2,0,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2), 所以FC 1→=(0,2,1),DA →=(2,0,0),AE →=(0,2,1).设n 1=(x 1,y 1,z 1)是平面ADE 的法向量,则n 1⊥DA →,n 1⊥AE →, 即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0,n 1·AE →=2y 1+z 1=0,得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1,令z 1=2,则y 1=-1,所以n 1=(0,-1,2). 因为FC 1→·n 1=-2+2=0,所以FC 1→⊥n 1.又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE . (2)因为C 1B 1→=(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量. 由n 2⊥FC 1→,n 2⊥C 1B 1→,得 ⎩⎪⎨⎪⎧n 2·FC 1→=2y 2+z 2=0,n 2·C 1B 1→=2x 2=0,得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2.令z 2=2,得y 2=-1,所以n 2=(0,-1,2), 因为n 1=n 2,所以平面ADE ∥平面B 1C 1F . 拓展提升利用向量法证明平行问题的两种途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的共线关系; (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行平行关系的证明.【跟踪训练1】 在长方体ABCD -A 1B 1C 1D 1中,AB =4,AD =3,AA 1=2,P ,Q ,R ,S 分别是AA 1,D 1C 1,AB ,CC 1的中点.求证:PQ ∥RS .证明 证法一:以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Dxyz .则P (3,0,1),Q (0,2,2),R (3,2,0),S (0,4,1), PQ →=(-3,2,1),RS →=(-3,2,1),∴PQ →=RS →,∴PQ →∥RS →,即PQ ∥RS . 证法二:RS →=RC →+CS →=12DC →-DA →+12DD 1→,PQ →=PA 1→+A 1Q →=12DD 1→+12DC →-DA →,∴RS →=PQ →,∴RS →∥PQ →,即RS ∥PQ . 探究2 利用空间向量解决垂直问题例2 如图,在四棱锥E -ABCD 中,AB ⊥平面BCE ,CD ⊥平面BCE ,AB =BC =CE =2CD =2,∠BCE =120°.求证:平面ADE ⊥平面ABE .[证明] 取BE 的中点O ,连接OC ,则OC ⊥EB , 又AB ⊥平面BCE .∴以O 为原点建立空间直角坐标系Oxyz .如图所示.则由已知条件有C (1,0,0),B (0,3,0),E (0,-3,0),D (1,0,1),A (0,3,2). 设平面ADE 的法向量为n =(a ,b ,c ),则n ·EA →=(a ,b ,c )·(0,23,2)=23b +2c =0,n ·DA →=(a ,b ,c )·(-1,3,1)=-a +3b +c =0.令b =1,则a =0,c =-3, ∴n =(0,1,-3).∵AB ⊥平面BCE ,∴AB ⊥OC ,又OC ⊥EB ,且EB ∩AB =B ,∴OC ⊥平面ABE , ∴平面ABE 的法向量可取为m =(1,0,0). ∵n ·m =(0,1,-3)·(1,0,0)=0, ∴n ⊥m ,∴平面ADE ⊥平面ABE . 拓展提升利用向量法证明几何中的垂直问题的两条途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的垂直关系. (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行证明.证明线面垂直时,只需直线的方向向量与平面的法向量平行或直线的方向向量与平面内两相交的直线的方向向量垂直.在判定两个平面垂直时,只需求出这两个平面的法向量,再看它们的数量积是否为0.【跟踪训练2】 如右图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,D 1B 1的中点.求证:EF ⊥平面B 1AC .证明 证法一:设AB →=a ,AD →=c ,AA 1→=b ,则EF →=EB 1→+B 1F →=12(BB 1→+B 1D 1→)=12(AA 1→+BD →)=12(AA 1→+AD →-AB →)=12(-a +b +c ),∵AB 1→=AB →+AA 1→=a +b .∴EF →·AB 1→=12(-a +b +c )·(a +b )=12(b 2-a 2+c ·a +c ·b ) =12(|b |2-|a |2+0+0)=0. ∴EF →⊥AB 1→,即EF ⊥AB 1,同理,EF ⊥B 1C . 又AB 1∩B 1C =B 1, ∴EF ⊥平面B 1AC .证法二:设正方体的棱长为2,以DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的直角坐标系,则A (2,0,0),C (0,2,0),B 1(2,2,2),E (2,2,1),F (1,1,2).∴EF →=(1,1,2)-(2,2,1) =(-1,-1,1).AB 1→=(2,2,2)-(2,0,0)=(0,2,2),AC →=(0,2,0)-(2,0,0)=(-2,2,0),∴EF →·AB 1→=(-1,-1,1)·(0,2,2)=(-1)×0+(-1)×2+1×2=0.EF →·AC →=(-1,-1,1)·(-2,2,0)=2-2+0=0, ∴EF →⊥AB 1→,EF →⊥AC →, ∴EF ⊥AB 1,EF ⊥AC . 又AB 1∩AC =A , ∴EF ⊥平面B 1AC .证法三:同法二得AB 1→=(0,2,2),AC →=(-2,2,0), EF →=(-1,-1,1).设面B 1AC 的法向量n =(x ,y ,z ), 则AB →1·n =0,AC →·n =0,即⎩⎪⎨⎪⎧2y +2z =0,-2x +2y =0,取x =1,则y =1,z =-1,∴n =(1,1,-1),∴EF →=-n ,∴EF →∥n ,∴EF ⊥平面B 1AC . 探究3 与平行、垂直有关的探索性问题例3 如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)在线段AP 上是否存在点M ,使得平面AMC ⊥平面BMC ?若存在,求出AM 的长;若不存在,请说明理由.[解] (1)证明:如图,以O 为原点,以射线OD 为y 轴的正半轴,射线OP 为z 轴的正半轴,建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4), AP →=(0,3,4),BC →=(-8,0,0),由此可得AP →·BC →=0,所以AP →⊥BC →,即AP ⊥BC .(2)假设存在满足题意的M ,设PM →=λPA →,λ≠1,则PM →=λ(0,-3,-4).BM →=BP →+PM →=BP →+λPA →=(-4,-2,4)+λ(0,-3,-4)=(-4,-2-3λ,4-4λ),AC →=(-4,5,0).设平面BMC 的法向量n 1=(x 1,y 1,z 1), 平面APC 的法向量n 2=(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧BM →·n 1=0,BC →·n 1=0,得⎩⎪⎨⎪⎧-4x 1-(2+3λ)y 1+(4-4λ)z 1=0,-8x 1=0,即⎩⎪⎨⎪⎧x 1=0,z 1=2+3λ4-4λy 1,可取n 1=⎝ ⎛⎭⎪⎫0,1,2+3λ4-4λ.由⎩⎪⎨⎪⎧AP →·n 2=0,AC →·n 2=0,即⎩⎪⎨⎪⎧3y 2+4z 2=0,-4x 2+5y 2=0,得⎩⎪⎨⎪⎧x 2=54y 2,z 2=-34y 2,可取n 2=(5,4,-3),由n 1·n 2=0,得4-3×2+3λ4-4λ=0,解得λ=25,故PM →=⎝ ⎛⎭⎪⎫0,-65,-85,AM →=AP →+PM →=⎝ ⎛⎭⎪⎫0,95,125,所以AM =3.综上所述,存在点M 符合题意,AM =3. 拓展提升利用向量解决探索性问题的方法对于探索性问题,一般先假设存在,利用空间坐标系,结合已知条件,转化为代数方程是否有解的问题,若有解满足题意则存在,若没有满足题意的解则不存在.【跟踪训练3】 如图,直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4.(1)求证:BC 1⊥平面AB 1C ;(2)在AB 上是否存在点D ,使得AC 1∥平面CDB 1.解 (1)证明:由已知AC =3,BC =4,AB =5,因而△ABC 是∠ACB 为直角的直角三角形,由三棱柱是直三棱柱,则CC 1⊥平面ABC ,以CA ,CB ,CC 1分别为x ,y ,z 轴建立空间直角坐标系,从而CA →=(3,0,0),BC 1→=(0,-4,4),则BC 1→·CA →=(0,-4,4)·(3,0,0)=0,则BC 1→⊥AC →,所以BC 1⊥AC .又四边形BCC 1B 1为正方形,因而BC 1⊥B 1C .又∵B 1C ∩AC =C ,∴BC 1⊥平面AB 1C .(2)假设存在点D (x ,y,0),使得AC 1∥平面CDB 1,CD →=(x ,y,0),CB 1→=(0,4,4), 设平面CDB 1的法向量m =(a ,b ,c ),则⎩⎪⎨⎪⎧m ·CD →=0,m ·CB 1→=0,即⎩⎪⎨⎪⎧xa +yb =0,4b +4c =0.令b =-x ,则c =x ,a =y ,所以m =(y ,-x ,x ),而AC 1→=(-3,0,4),则AC 1→·m =0,得-3y +4x =0.① 由D 在AB 上,A (3,0,0),B (0,4,0)得x -3-3=y4,即得4x +3y =12,② 联立①②可得x =32,y =2,∴D ⎝ ⎛⎭⎪⎫32,2,0,即D 为AB 的中点. 综上,在AB 上存在点D ,使得AC 1∥平面CDB 1,点D 为AB 的中点.1.利用向量证明线线平行的两种思路一是建立空间直角坐标系,通过坐标运算,利用向量平行的坐标表示证明;二是用基底思路,通过向量的线性运算,利用共线向量定理证明.2.向量法证明线线垂直的方法用向量法证明空间中两条直线相互垂直,其主要思路是证明两条直线的方向向量相互垂直.具体方法为:(1)坐标法:根据图形的特征,建立适当的空间直角坐标系,准确地写出相关点的坐标,表示出两条直线的方向向量,证明其数量积为0.(2)基向量法:利用向量的加减运算,结合图形,将要证明的两条直线的方向向量用基向量表示出来.利用数量积运算说明两向量的数量积为0.3.向量法证明线面垂直的方法(1)向量基底法,具体步骤如下:①设出基向量,用基向量表示直线的方向向量;②找出平面内两条相交直线的方向向量并分别用基向量表示;③分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.(2)坐标法,具体方法如下:方法一:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③将平面内任意两条相交直线的方向向量用坐标表示;④分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.方法二:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③求平面的法向量;④说明平面的法向量与直线的方向向量平行.4.证明面面垂直的两种思路一是证明其中一个平面过另一个平面的垂线,即转化为线面垂直;二是证明两平面的法向量垂直.1.已知线段AB的两端点坐标为A(9,-3,4),B(9,2,1),则线段AB与坐标平面( ) A.xOy平行B.xOz平行C.yOz平行D.yOz相交答案 C解析 因为AB →=(9,2,1)-(9,-3,4)=(0,5,-3),所以AB ∥平面yOz .2.若两个不同平面α,β的法向量分别为u =(1,2,-1),v =(-3,-6,3),则( ) A .α∥β B .α⊥βC .α,β相交但不垂直D .以上均不正确 答案 A解析 ∵v =-3u ,∴α∥β.3.已知直线l 与平面α垂直,直线l 的一个方向向量为u =(1,-3,z ),向量v =(3,-2,1)与平面α平行,则z 等于( )A .3B .6C .-9D .9 答案 C解析 ∵l ⊥α,v 与平面α平行,∴u ⊥v ,即u ·v =0,∴1×3+3×2+z ×1=0,∴z =-9.4.在三棱锥P -ABC 中,CP ,CA ,CB 两两垂直,AC =CB =1,PC =2,在如图所示的空间直角坐标系中,下列向量中是平面PAB 的法向量的是( )A.⎝⎛⎭⎪⎫1,1,12 B .(1,2,1) C .(1,1,1) D .(2,-2,1) 答案 A解析 PA →=(1,0,-2),AB →=(-1,1,0),设平面PAB 的一个法向量为n =(x ,y,1),则x -2=0,即x =2;-x +y =0,即y =x =2.所以n =(2,2,1).因为⎝⎛⎭⎪⎫1,1,12=12n ,所以A正确.5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为棱BB 1的中点,在棱DD 1上是否存在点P ,使MD ⊥平面PAC?解 如图,建立空间直角坐标系,则A (1,0,0),C (0,1,0),D (0,0,0),M ⎝⎛⎭⎪⎫1,1,12.假设存在P (0,0,x )满足条件,则PA →=(1,0,-x ),AC →=(-1,1,0).设平面PAC 的法向量为n =(x 1,y 1,z 1),则由⎩⎪⎨⎪⎧ PA →·n =0,AC →·n =0,得⎩⎪⎨⎪⎧ x 1-xz 1=0,-x 1+y 1=0.令x 1=1得y 1=1,z 1=1x ,即n =⎝ ⎛⎭⎪⎫1,1,1x , 由题意MD →∥n ,由MD →=⎝⎛⎭⎪⎫-1,-1,-12,得x =2, ∵正方体棱长为1,且2>1,∴棱DD 1上不存在点P ,使MD ⊥平面PAC .。
空间向量证明线面垂直
![空间向量证明线面垂直](https://img.taocdn.com/s3/m/c7795c613069a45177232f60ddccda38376be120.png)
空间向量证明线面垂直
在三维空间中,我们可以使用向量来证明线和面的垂直关系。
假设有一条直线 L,其方向向量为 a,过一点 P 的平面方程为 Ax
+ By + Cz + D = 0。
我们要证明直线 L 与平面的法向量垂直。
首先,我们知道直线 L 上的任意一点可以表示为 P = P0 + ta,其中 P0 是直线上的一个特定点,a 是直线的方向向量,t 是一个
实数。
假设直线 L 与平面的法向量为 n = (A, B, C)。
现在我们来证明直线 L 与平面的法向量垂直。
我们知道如果两
个向量垂直,它们的点积为零。
因此,我们可以计算直线的方向向
量与平面的法向量的点积:
a · n = Aa1 + Ba2 + Ca3。
其中,a1、a2 和 a3 是向量 a 的分量。
由于直线 L 上的任意
一点 P 可以表示为 P0 + ta,我们可以将 P 的坐标代入平面方程中:
A(P0x + tax) + B(P0y + tay) + C(P0z + taz) + D = 0。
展开并整理得到:
t(Aa1 + Ba2 + Ca3) + (AP0x + BP0y + CP0z + D) = 0。
由于上式对于直线 L 上的任意点成立,因此必须有 Aa1 + Ba2 + Ca3 = 0。
这意味着直线的方向向量与平面的法向量垂直,即直线和平面垂直。
因此,我们使用空间向量证明了直线和平面的垂直关系。
这种方法可以帮助我们在三维空间中分析线和面的相互关系,为我们理解空间中的几何关系提供了有力的工具。
第3章3.2 立体几何中的向量方法(二)垂直关系
![第3章3.2 立体几何中的向量方法(二)垂直关系](https://img.taocdn.com/s3/m/e32f6ff150e2524de5187e58.png)
高考调研 ·新课标 ·数学选修2-1
授人以渔
第6页
高考调研 ·新课标 ·数学选修2-1
题型一 利用空间向量证明线线垂直 例 1 已知正三棱柱 ABC-A1B1C1 的各棱 长都为 1,M 是底面上 BC 边的中点,N 是侧棱 CC1 上的点,且 CN=14CC1.求证:AB1⊥MN.
第7页
第15页
高考调研 ·新课标 ·数学选修2-1
探究 2 如何利用向量法证明线面垂直? 用向量法证明线面垂直的方法步骤: (1)坐标法: ①建立空间直角坐标系,将直线的方向向量用坐标表示. ②求平面内任意两条相交直线的方向向量或平面的法向量. ③证明直线的方向向量与平面内两相交直线的方向向量垂 直或与平面的法向量平行.
高考调研 ·新课标 ·数学选修2-1
1.若两个不同平面 α,β 的法向量分别为 u=(2,1,-1),
v=(3,2,8),则( )
A.α ∥β
B.α ⊥β
C.α ,β 相交不垂直 答案 B
D.以上均不正确
解析 ∵v·u=6+2-8=0.
∴v⊥u,∴α⊥β.
第32页
高考调研 ·新课标 ·数学选修2-1
高考调研 ·新课标 ·数学选修2-1
【解析】 方法一:(基向量法) 设A→B=a,A→C=b,A→A1=c,则由已知条件和正三棱柱的性 质,得|a|=|b|=|c|=1,a·c=b·c=0. A→B1=a+c,A→M=12(a+b),A→N=b+14c, M→N=A→N-A→M=-12a+12b+14c, ∴A→B1·M→N=(a+c)·(-12a+12b+14c) =-12+12cos60°+14=0. ∴A→B1⊥M→N,∴AB1⊥MN.
a,0).
第23页
2010-12-22向量方法(二)平行和垂直
![2010-12-22向量方法(二)平行和垂直](https://img.taocdn.com/s3/m/3466ed8959f5f61fb7360b4c2e3f5727a5e9248b.png)
求得平面BDGH的法向
oD
量为 m (2,2,1)
A x
显然有 m n
故 平面AEH∥平面BDGF
H C1 B1
y C B
二、 用空间向量处理“垂直”问 题设直线 l, m 的方向向量分别为 a, b ,平面 ,
的法向量分别为 u, v ,则
线线垂直 l ⊥ m a ⊥ b a b 0 ; 线面垂直 l ⊥ a ∥ u a ku ; 面面垂直 ⊥ u ⊥ v u v 0.
22 MN DC ( 1 , 0, 1 ) (0,1, 0) 0 MN DC
22
又 PD DC D MN 平面PDC
练习1
已知ABCD是矩形,PD⊥平面ABCD,
PD=DC=a,AD= 2a ,M、N分别是
AD、PB的中点。
P
⑴求证:平面MNC⊥平面PBC;
⑵求点A到平面MNC的距离。
A1
平行四边形A1BCD1
D
A1B∥D1C
A
平行四边形DBB1D1 B1D1∥BD
于是平面A1BD∥平面CB1D1
C1 B1
C B
证明:建立如图所示的 空间直角坐标系o-xyz
z D1
C1
设正方形边长为1, A1
B1
则向量 DA1 (1,0,1)
DB (1,1,0)
oD
y C
设为平面nBD(Ax1,的y法, z向) 则量有x A
画出图形意会
二、 用空n
n
m
m
n
n•m0
例5 : 在正方体ABCD A' B 'C ' D '中.E,F分别是CC ', BD的中点.
求证:A' F 平面BDE.
空间向量线面和面面平行与垂直(周清)
![空间向量线面和面面平行与垂直(周清)](https://img.taocdn.com/s3/m/64efaec6e43a580216fc700abb68a98270feac6b.png)
图形语言
符号语言
PO ⊥ , A , a
PO = , a ⊥
OOA
a
⊥
PA
PO ⊥ , A , a
PO, a =⊥OPA
a
⊥
OA
2
3
m = n m ∥ n 直线 m ⊥平面
(1) 直线 m 方向向量 m ; m • AB =0 m ⊥AB
(2) 平面内两相交直线
的方向向量 AB , CD
m • CD =0 m ⊥CD m ⊥
AB,CD 且AB CD=P
(1) 平面的法向量 m (2) 平 面 的法向量 n
m•n=0 m⊥n
直线 m ∥平面
(1) 平面的法向量 m (2) 平 面 的法向量 n
m = n m ∥ n 平面∥平面
线线 垂直
垂 直 线面 的 垂直 证 明
面面 垂直
(1) 直线 m 方向向量 m ; (2) 直线 n 方向向量 n
m•n=0m⊥nm⊥ n
(1) 直线 m 方向向量 m ;
(2) 平面的法向量 n
条直线垂直于这个平面。
平面互相垂直。
个平面内的任意一条直线。
判 图形 定 语言 定 符号 理 语言
文字语言
a a
c
⊥
ab,=,cbP⊥b
c
⊥
三垂线定理
a a
⊥
⊥
b a ⊥ a ⊥ b
三垂线逆定理
在平面内的一条直线,如果它和这个平面内的一条 在平面内的一条直线,如果它和这个平面内的 一条斜线 斜线的射影垂直,那么它也和这条斜线垂直。 垂直,那么它也和这条斜线在平面内的 射影垂直。
有 两 条 相 交 直 线 分 别 条相交直线分别平行于另外
空间向量与垂直关系 课件
![空间向量与垂直关系 课件](https://img.taocdn.com/s3/m/204c1bd727d3240c8447efe9.png)
1.用向量法证明空间的线、面垂直关系的关键是什么? 提示:需要确定直线的方向向量和平面的法向量,然后把证明线、 面的垂直关系转化为向量的平行或垂直的关系.
2.与向量a=(1,2,3),b=(3,1,2)都垂直的向量为_______.
【解析】设n=(x,y,z),且n⊥a,n⊥b,则:
n n
a b
C(0,0,0), A( 2, 2,0), B(0, 2,0), D( 2,0,0), E(0,0,1), F( 2 , 2 ,1),
22 CF ( 2 , 2 ,1), BE (0, 2,1),
22 DE ( 2,0,1),
CF BE 0 11 0,CF DE 1 0 1 0,
DD1 (0,0, 2), AC ( 2, 2,0), DB (2, 2,0), DD1 AC 0 0 0 0, DB AC 4 4 0 0, DD1 AC, DB AC.
∴D1F⊥平面AEG.
方法三:以D为原点,DA,DC,DD1分别为x轴,y轴,z轴建立空间
直角坐标系,设正方体棱长为1,则
D1
0, 0,1 , F(1,
1 2
, 0),
A1,0,0,G( 1 ,1,0), E(1,1, 1 ).
2
2
D1F
(1,
1 2
,
1),
AG
(
1 2
,1,
0),
AE
(0,1,
0,
0,1
,
F(1,
1 2
,
0),
A
1,
0,
0
,
G
(
1 2
,1,
0),
E(1,1,
1 2
),
ቤተ መጻሕፍቲ ባይዱ
证明平面与平面垂直(空间向量)
![证明平面与平面垂直(空间向量)](https://img.taocdn.com/s3/m/5ee5d751a45177232e60a202.png)
1.利用空间向量证明面面垂直通常可以有两个途径:一是利用两个平面垂直的判定定理将面面垂直问题转化为线面垂直进而转化为线线垂直;二是直接求解两个平面的法向量,由两个法向量垂直,得面面垂直.2.向量法证明面面垂直的优越性主要体现在不必考虑图形的位置关系,恰当建系或用基向量表示后,只需经过向量运算就可得到要证明的结果,思路方法“公式化”,降低了思维难度..用向量证明垂直的方法(1)线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零.(2)线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示.(3)面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示.4.若平面α与β的法向量分别是a=(4,0,-2),b=(1,0,2),则平面α与β的位置关系是( )A.平行 B.垂直C.相交不垂直 D.无法判断解析:∵a·b=4×1+0+(-2)×2=0.∴a⊥b,∴α⊥β.答案:B面面垂直.在正方体ABCD-A1B1C1D1中,E为CC1的中点,证明:平面B1ED⊥平面B1BD.【证明】 以DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系.设正方体的棱长为1,则D (0,0,0),B 1(1,1,1),E (0,1,12),DB 1→=(1,1,1),DE →=(0,1,12),设平面B 1DE 的法向量为n 1=(x ,y ,z ),则x +y +z =0且y +12z =0,令z =-2,∴n 1=(1,1,-2).同理求得平面B 1BD 的法向量为n 2=(1,-1,0),由n 1·n 2=0,知n 1⊥n 2,∴平面B 1DE ⊥平面B 1BD .图3-2-124.在正方体ABCD -A 1B 1C 1D 1中,E 为CC 1的中点,证明:平面B 1ED ⊥平面B 1BD .[证明] 以DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系.设正方体的棱长为1,则D (0,0,0),B 1(1,1,1),E ⎝ ⎛⎭⎪⎫0,1,12,DB 1→=(1,1,1),DE →=⎝ ⎛⎭⎪⎫0,1,12,设平面B 1DE 的法向量为n 1=(x ,y ,z ),则x +y +z =0且y +12z =0,令z =-2,则y =1,x =1,∴n 1=(1,1,-2).同理求得平面B 1BD 的法向量为n 2=(1,-1,0),由n 1·n 2=0,知n 1⊥n 2,∴平面B 1DE ⊥平面B 1BD .例3:如图3-2-12,在直三棱柱ABC -A 1B 1C 1中,AB ⊥BC ,AB =BC =2,BB 1=1,E 为BB 1的中点,求证:平面AEC 1⊥平面AA 1C 1C .【解答】 由题意得AB ,BC ,B 1B 两两垂直,以B 为原点,分别以BA ,BC ,BB 1所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系,则A (2,0,0),A 1(2,0,1),C (0,2,0),C 1(0,2,1),E (0,0,12),则AA 1→=(0,0,1),AC →=(-2,2,0),AC 1→=(-2,2,1),AE →=(-2,0,12).设平面AA 1C 1C 的一个法向量为n 1=(x ,y ,z ),则⎩⎪⎨⎪⎧n 1·AA 1→=0n 1·AC →=0⇒⎩⎪⎨⎪⎧z =0,-2x +2y =0.令x =1,得y =1,∴n 1=(1,1,0).设平面AEC 1的一个法向量为n 2=(x ,y ,z ), 则⎩⎪⎨⎪⎧ n 2·AC 1→=0n 2·AE →=0⇒⎩⎪⎨⎪⎧-2x +2y +z =0,-2x +12z =0. 令z =4,得x =1,y =-1.∴n 2=(1,-1,4).∵n 1·n 2=1×1+1×(-1)+0×4=0, ∴n 1⊥n 2.∴平面AEC 1⊥平面AA 1C 1C .如图所示,在直三棱柱ABC -A 1B 1C 1中,AB ⊥BC ,AB =BC =2,BB 1=1,E 为BB 1的中点,证明:平面AEC 1⊥平面AA 1C 1C .思路探究:要证明两个平面垂直,由两个平面垂直的条件,可证明这两个平面的法向量垂直,转化为求两个平面的法向量n 1,n 2,证明n 1·n 2=0.[解] 由题意得AB ,BC ,B 1B 两两垂直.以B 为原点,BA ,BC ,BB 1分别为x ,y ,z 轴,建立如图所示的空间直角坐标系.则A (2,0,0),A 1(2,0,1),C (0,2,0),C 1(0,2,1),E ⎝ ⎛⎭⎪⎫0,0,12,则AA 1→=(0,0,1),AC →=(-2,2,0),AC 1→=(-2,2,1),AE →=(-2,0,12). 设平面AA 1C 1C 的一个法向量为n 1=(x 1,y 1,z 1). 则⎩⎨⎧n 1·AA 1→=0,n 1·AC →=0⇒⎩⎪⎨⎪⎧z 1=0,-2x 1+2y 1=0.令x 1=1,得y 1=1.∴n 1=(1,1,0).设平面AEC 1的一个法向量为n 2=(x 2,y 2,z 2). 则⎩⎨⎧n 2·AC 1→=0,n 2·AE →=0⇒⎩⎨⎧-2x 2+2y 2+z 2=0,-2x 2+12z 2=0, 令z 2=4,得x 2=1,y 2=-1.∴n 2=(1,-1,4). ∵n 1·n 2=1×1+1×(-1)+0×4=0. ∴n 1⊥n 2,∴平面AEC 1⊥平面AA 1C 1C .如图在正方体ABCD -A 1B 1C 1D 1中,E 为BB 1的中点,F 为CD 的中点,G 为AB 的中点.求证:平面ADE ⊥平面A 1FG .证明:连结D 1F ,以D 为原点,DA ,DC ,DD 1所在的直线分别为x ,y ,z 轴建立空间直角坐标系D -xyz ,设正方体棱长为1.∴D (0,0,0),E (1,1,12),A (1,0,0),A 1(1,0,1),G (1,12,0),F (0,12,0).∴AE →=(0,1,12),A 1G →=(0,12,-1),GF →=(-1,0,0).∴AE →·A 1G →=0+12-12=0,AE →·GF →=0+0+0=0. ∴AE →⊥A 1G →,AE →⊥GF →, ∵A 1G ∩GF =G , ∴AE ⊥平面A 1GF . 又AE ⊂平面ADE , ∴平面ADE ⊥平面A 1GF .6.如图, 正四棱柱ABCD -A 1B 1C 1D 1中,底面边长为22,侧棱长为4,E 、F 分别是棱AB 、BC 的中点,EF ∩BD =G .求证:平面B 1EF ⊥平面BDD 1B 1.[证明] 以D 为原点,DA 、DC 、DD 1分别为x 轴、y 轴、z 轴建立空间直角坐标系,由题意知:D (0,0,0)、B 1(22,22,4)、E (22,2,0)、F (2,22,0),B 1E →=(0,-2,-4)、EF →=(-2,2,0). 设平面B 1EF 的一个法向量为n =(x ,y ,z ). 则n ·B 1E →=-2y -4z =0,n ·EF →=-2x +2y =0. 解得x =y ,z =-24y ,令y =1得n =(1,1,-24), 又平面BDD 1B 1的一个法向量为AC →=(-22,22,0), 而n ·AC →=1×(-22)+1×22+(-24)×0=0,即n ⊥AC →.∴平面B 1EF ⊥平面BDD 1B 1. 10.如图在正方体ABCD -A 1B 1C 1D 1中,E 为BB 1的中点,F 为CD 的中点,G 为AB 的中点.求证:平面ADE ⊥平面A 1FG .证明:连结D 1F ,以D 为原点,DA ,DC ,DD 1所在的直线分别为x ,y ,z 轴建立空间直角坐标系D -xyz ,设正方体棱长为1.∴D (0,0,0),E (1,1,12),A (1,0,0),A 1(1,0,1),G (1,12,0),F (0,12,0).∴AE →=(0,1,12),A 1G →=(0,12,-1),GF →=(-1,0,0).∴AE →·A 1G →=0+12-12=0,AE →·GF →=0+0+0=0.∴AE →⊥A 1G →,AE →⊥GF →, ∵A 1G ∩GF =G , ∴AE ⊥平面A 1GF . 又AE ⊂平面ADE , ∴平面ADE ⊥平面A 1GF .11.在正四棱柱ABCD -A 1B 1C 1D 1中,底面边长为2,侧棱长为3,E 、F 分别是AB 1、CB 1的中点,求证:平面D 1EF ⊥平面AB 1C .证明:把正四棱柱如图放置在坐标系中,则各点坐标为A (2,0,0),C (0,2,0),B 1(2,2,3),D 1(0,0,3),E (2,22,32),F (22,2,32). 假设平面AB 1C 的法向量为n 1=(1,λ1,u 1),则n 1应垂直于AC →和AB 1→, 而AC →=(-2,2,0),AB 1→=(0,2,3),∴n 1·AC →=-2+2λ1=0, n 1·AB 1→=2λ1+3u 1=0. ∴λ1=1,u 1=-63. ∴n 1=(1,1,-63).再设平面D 1EF 的法向量为n 2=(1,λ2,u 2),则n 2应垂直于D 1E →、D 1F →. 而D 1E →=(2,22,-32),D 1F →=(22,2,-32),n 2·D 1E →=2+22λ2-32u 2=0,∴n 2·D 1F →=22+2λ2-32u 2=0.∴λ2=1,u 2= 6. ∴n 2=(1,1,6). 由于n 1·n 2=1+1-63·6=0, ∴n 1⊥n 2.∴平面D 1EF ⊥平面AB 1C .2.三棱锥被平行于底面ABC 的平面所截得的几何体如图所示,截面为三角形A 1B 1C 1,∠BAC =90°,A 1A ⊥平面ABC .A 1A =3,AB =AC =2A 1C 1=2,D 为BC 中点.证明:平面A 1AD ⊥平面BCC 1B 1.[证明] 如图,建立空间直角坐标系.则A (0,0,0),B (2,0,0),C (0,2,0), A 1(0,0,3),C 1(0,1,3),因为D为BC的中点,所以D点坐标为(1,1,0),所以BC→=(-2,2,0),AD→=(1,1,0),AA1→=(0,0,3),因为BC→·AD→=-2+2+0=0,BC→·AA1→=0+0+0=0,所以BC→⊥AD→,BC→⊥AA1→,所以BC⊥AD,BC⊥AA1,又AD∩AA1=A,所以BC⊥平面ADA1,而BC⊂平面BCC1B1,所以平面A1AD⊥平面BCC1B1.三棱锥被平行于底面ABC的平面所截得的几何体如图所示,截面为A1B1C1,∠BAC=90°,A1A⊥平面ABC,A1A=3,AB=2,AC=2,A1C1=1,BDDC=12.证明:平面A1AD⊥平面BCC1B1.证明:如图,建立空间直角坐标系,则A(0,0,0),B(2,0,0),C(0,2,0),A1(0,0,3),C1(0,1,3).∵BD∶DC=1∶2,∴BD→=13BC→,∴D点坐标为(223,23,0),∴AD→=(223,23,0),BC→=(-2,2,0),AA1→=(0,0,3).∵BC→·AA1→=0,BC→·AD→=0,∴BC⊥AA1,BC⊥AD.又A1A∩AD=A,∴BC⊥平面A1AD.又BC⊂平面BCC1B1,∴平面A1AD⊥平面BCC1B1.中等难度建系10.如图3-2-16所示,△ABC 是一个正三角形,EC ⊥平面ABC ,BD ∥CE ,且CE =CA =2BD .图3-2-16求证:平面DEA ⊥平面ECA .【答案】建立如图所示的空间直角坐标系Cxyz ,不妨设CA =2, 则CE =2,BD =1,C (0,0,0),A (3,1,0),B (0,2,0),E (0,0,2),D (0,2,1).所以EA →=(3,1,-2),CE →=(0,0,2),ED →=(0,2,-1).分别设平面CEA 与平面DEA 的法向量是n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n 1·EA →=0,n 1·CE →=0,即⎩⎨⎧3x 1+y 1-2z 1=0,2z 1=0,解得⎩⎨⎧y 1=-3x 1,z 1=0,⎩⎪⎨⎪⎧n 2·EA →=0,n 2·ED →=0,即⎩⎨⎧3x 2+y 2-2z 2=0,2y 2-z 2=0, 解得⎩⎨⎧x 2=3y 2,z 2=2y 2.不妨取n 1=(1,-3,0), n 2=(3,1,2),因为n 1·n 2=0,所以n 1⊥n 2. 所以平面DEA ⊥平面ECA .2017·开封模拟)如图,已知AB ⊥平面ACD ,DE ⊥平面ACD ,△ACD 为等边三角形,AD =DE =2AB .图7-7-4求证:平面BCE ⊥平面CDE . 【导学号:97190251】[证明] 设AD =DE =2AB =2a ,建立如图所示的空间直角坐标系Axyz ,则A (0,0,0),C (2a,0,0),B (0,0,a ),D (a ,3a,0),E (a ,3a,2a ).所以BE →=(a ,3a ,a ),BC →=(2a,0,-a ),CD →=(-a ,3a,0),ED →=(0,0,-2a ). 设平面BCE 的法向量为n 1=(x 1,y 1,z 1), 由n 1·BE →=0,n 1·BC →=0可得 ⎩⎪⎨⎪⎧ax 1+3ay 1+az 1=0,2ax 1-az 1=0, 即⎩⎪⎨⎪⎧x 1+3y 1+z 1=0,2x 1-z 1=0.令z 1=2,可得n 1=(1,-3,2). 设平面CDE 的法向量为n 2=(x 2,y 2,z 2), 由n 2·CD →=0,n 2·ED →=0可得 ⎩⎪⎨⎪⎧-ax 2+3ay 2=0,-2az 2=0,即⎩⎪⎨⎪⎧-x 2+3y 2=0,z 2=0.令y 2=1,可得n 2=(3,1,0). 因为n 1·n 2=1×3+1×(-3)=0. 所以n 1⊥n 2,所以平面BCE ⊥平面CDE .底面是梯形如图所示,已知四棱锥P -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .证明:(1)P A ⊥BD ;(2)平面P AD ⊥平面P AB .证明 (1)取BC 的中点O ,连接PO ,∵平面PBC ⊥底面ABCD ,△PBC 为等边三角形, ∴PO ⊥底面ABCD .以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO = 3.∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3). ∴BD →=(-2,-1,0),P A →=(1,-2,-3). ∵BD →·P A →=(-2)×1+(-1)×(-2)+0×(-3)=0, ∴P A →⊥BD→,∴P A ⊥BD . (2)取P A 的中点M ,连接DM ,则M ⎝ ⎛⎭⎪⎫12,-1,32.∵DM →=⎝ ⎛⎭⎪⎫32,0,32,PB →=(1,0,-3),∴DM →·PB →=32×1+0×0+32×(-3)=0, ∴DM→⊥PB →,即DM ⊥PB . ∵DM →·P A →=32×1+0×(-2)+32×(-3)=0,∴DM →⊥P A →,即DM ⊥P A .又∵P A ∩PB =P ,∴DM ⊥平面P AB .∵DM ⊂平面P AD ,∴平面P AD ⊥平面P AB .9.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .证明:平面PQC ⊥平面DCQ .证明 如图,以D 为坐标原点,线段DA 的长为单位长,射线DA ,DP ,DC 分别为x 轴、y 轴、z 轴的正半轴建立空间直角坐标系D -xyz .依题意有Q (1,1,0),C (0,0,1),P (0,2,0),则DQ→=(1,1,0),DC →=(0,0,1),PQ →=(1,-1,0). ∴PQ →·DQ →=0,PQ →·DC→=0. 即PQ ⊥DQ ,PQ ⊥DC ,又DQ ∩DC =D ,∴PQ ⊥平面DCQ ,又PQ ⊂平面PQC ,∴平面PQC ⊥平面DCQ .[跟踪训练] 如图7-7-5所示,已知四棱锥P -ABCD 的底面是直角梯形,∠ABC =∠BCD =90°,AB =BC =PB =PC =2CD ,侧面PBC ⊥底面ABCD .图7-7-5证明:(1)P A ⊥BD ;(2)平面P AD ⊥平面P AB .[证明] (1)取BC 的中点O ,连接PO ,∵平面PBC ⊥底面ABCD ,△PBC 为等边三角形,∴PO ⊥底面ABCD .以BC 的中点O 为坐标原点,以BC 所在直线为x 轴,过点O 与AB 平行的直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,如图所示.不妨设CD =1,则AB =BC =2,PO = 3.∴A (1,-2,0),B (1,0,0),D (-1,-1,0),P (0,0,3).∴BD →=(-2,-1,0),P A →=(1,-2,-3).∵BD →·P A →=(-2)×1+(-1)×(-2)+0×(-3)=0,∴P A →⊥BD →,∴P A ⊥BD .(2)取P A 的中点M ,连接DM ,则M ⎝ ⎛⎭⎪⎫12,-1,32. ∵DM →=⎝ ⎛⎭⎪⎫32,0,32,PB →=(1,0,-3), ∴DM →·PB →=32×1+0×0+32×(-3)=0, ∴DM →⊥PB →,即DM ⊥PB .∵DM →·P A →=32×1+0×(-2)+32×(-3)=0,∴DM →⊥P A →,即DM ⊥P A .又∵P A ∩PB =P ,∴DM ⊥平面P AB .∵DM ⊂平面P AD ,∴平面P AD ⊥平面P AB .4.在正三棱锥P-ABC 中,三条侧棱PA,PB,PC 两两垂直,G 是△PAB 的重心,E,F 分别为BC 、PB 上的点,且BE∶EC=PF∶FB=1∶2.(1)求证:平面GEF ⊥平面PBC.(2)求证:EG ⊥BC,PG ⊥EG.【证明】(1)如图,以三棱锥的顶点P 为原点,以PA 、PB 、PC 所在直线分别作为x 轴、y 轴、z 轴建立空间直角坐标系.设PA=PB=PC=3,则A(3,0,0),B(0,3,0),C(0,0,3),E(0,2,1),F(0,1,0),G(1,1,0),P(0,0, 0), 方法一:可得=(3,0, 0),=(1,0,0),故=3,所以PA ∥FG.而PA ⊥平面PBC,所以FG ⊥平面PBC.又FG ⊂平面GEF,所以平面GEF ⊥平面PBC.方法二:可得=(0,-1,-1),=(1,-1,-1).设平面GEF 的法向量是n =(x,y,z), 则有n ⊥,n ⊥,所以{y +z =0,x -y -z =0.令y=1,得z=-1,x=0,即n =(0,1,-1).显然=(3,0,0)是平面PBC的一个法向量.又n·=0,所以n⊥.所以平面GEF⊥平面PBC.(2)因为=(1,-1,-1),=(1,1,0),=(0,-3,3),所以·=1-1=0,·=3-3=0.所以EG⊥PG,EG⊥BC.。
空间向量证明线面垂直
![空间向量证明线面垂直](https://img.taocdn.com/s3/m/9ea3f389d4bbfd0a79563c1ec5da50e2524dd1fe.png)
空间向量证明线面垂直
空间向量是描述空间中的位置和方向的工具。
线面垂直是指一
条直线与一个平面垂直相交。
现在我们来利用空间向量来证明线面
垂直的性质。
假设有一条直线上的两个点A和B,以及一个平面上的一个点C。
我们可以用空间向量来表示这三个点的位置。
假设向量OA表示点A
的位置,向量OB表示点B的位置,向量OC表示点C的位置。
那么
向量AB可以表示直线AB的方向,而向量AC和向量BC可以表示平
面ABC的法向量。
现在我们来证明线AB与平面ABC垂直。
根据向量的性质,如果
两个向量的点积为0,则它们垂直。
所以我们可以计算向量AB与向
量AC的点积,以及向量AB与向量BC的点积。
如果它们都等于0,
那么我们就证明了线AB与平面ABC垂直。
点积的计算公式为,向量a·向量b = |a||b|cos(θ),其中
|a|和|b|分别表示向量a和向量b的模长,θ表示向量a和向量b
之间的夹角。
假设向量AB为a,向量AC为b,向量BC为c。
那么我们可以计算点积:
a·b = |a||b|cos(θ1)。
a·c = |a||c|cos(θ2)。
如果θ1和θ2都是90度(即cos(θ1)和cos(θ2)都等于0),那么a·b和a·c都等于0,根据点积的性质,我们就可以得出结论,线AB与平面ABC垂直。
通过空间向量的方法,我们成功地证明了线面垂直的性质。
这种方法可以很好地应用于空间几何中的各种问题,为我们理解空间中的几何关系提供了一种有效的工具。
11专题38-空间中直线、平面垂直位置关系证明方法(解析版)
![11专题38-空间中直线、平面垂直位置关系证明方法(解析版)](https://img.taocdn.com/s3/m/e99fce3bec630b1c59eef8c75fbfc77da26997da.png)
专题十一:空间中直线、平面垂直位置关系的证明方法【高考地位】立体几何是高考的重点内容之一,每年高考大题必有立体几何题,尤其是第一问主要考查证明线面垂直、平行,面面垂直等问题,解决这类问题的方法主要有:几何法和空间向量法. 在高考中其难度属中档题.【方法点评】 方法一 几何法使用情景:转化的直线或平面比较容易找到解题模板:第一步 按照线线垂直得到线面垂直,进而得出面面垂直的思路分析解答;第二步 找到关键的直线或平面; 第三步 得出结论.例1、如图,在边长为4的菱形ABCD 中,60DAB ∠= ,点,E F 分别是边CD ,CB 的中点,AC EF O = ,沿EF 将CEF ∆翻折到PEF ∆,连接,,PA PB PD ,得到如图的五棱锥P ABFED -,且10PB =.求证:BD ⊥平面POA ;试题解析:(1) 点,E F 分别是边,CD CB 的中点,BD EF ∴ ,菱形ABCD 的对角线互相垂直,,,,.BD AC EF AC EF AO EF PO AO ∴⊥∴⊥∴⊥⊥⊂ 平面,POA PO ⊂平面,,POA AO PO O EF =∴⊥ 平面,POA BD ∴⊥平面POA .考点:线面垂直判定定理,利用空间向量求二面角【思路点睛】利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.例2、如图所示,在四棱锥P ABCD -中,底面四边形ABCD 为等腰梯形,E 为PD 中点,PA ⊥平面ABCD ,//,,24AD BC AC BD AD BC ⊥==.证明:平面EBD⊥平面PAC;考点:面面垂直判定定理【变式演练1】如图,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面, 平面ABCD 平面ABPE AB=,且2,1,AB BP AD AE AE AB====⊥,且AE BP.设点M为棱PD中点,在面ABCD内是否存在点N,使得MN⊥平面ABCD若存在,请证明, 若不存在,说明理由。
3.2立体几何中的向量方法 第2课时 空间向量与垂直关系 课件
![3.2立体几何中的向量方法 第2课时 空间向量与垂直关系 课件](https://img.taocdn.com/s3/m/0616a423ed630b1c58eeb509.png)
研一研· 问题探究、课堂更高效
3.2 第2课时
例 2 如图所示, 在正方体 ABCD—A1B1C1D1 中,O 为 AC 与 BD 的交点,G 为 CC1 的中 点.求证:A1O⊥平面 GBD.
证明 方法一 如图取 D 为坐标原点, DA、DC、DD1 所在的直线分别作 x 轴, y 轴,z 轴建立空间直角坐标系. 设 正 方 体 棱 长 为 2 , 则 O(1,1,0) , A1(2,0,2),G(0,2,1),B(2,2,0),D(0,0,0), → → → ∴OA1=(1,-1,2),OB=(1,1,0),BG=(-2,0,1), → → → → 而OA1· OB=1-1+0=0,OA1· BG=-2+0+2=0. → → → → ∴OA1⊥OB,OA1⊥BG,即 OA1⊥OB,OA1⊥BG, 而 OB∩BG=B,∴OA1⊥平面 GBD.
角坐标系.则 C(0,0,0),A(3,0,0),C1(0,0,4),B(0,4,0), → → ∵AC=(-3,0,0),BC1=(0,-4,4), → → ∴AC· BC1=0.∴AC⊥BC1.
小结 证明两直线垂直的基本步骤:建立空间直角坐标系 →写出点的坐标→求直线的方向向量→证明向量垂直→得 到两直线垂直.
解析 ∵(1,2,0)· (2,-1,0)=0,∴两法向量垂直,从 而两平面垂直.
练一练· 当堂检测、目标达成落实处
3.2 第2课时
4.如图,在四棱锥 P- ABCD 中,底面 ABCD 是矩形,PA⊥平面 ABCD,AP=AB= 2, BC=2 2, E, F 分别是 AD, PC 的中点. 证 明: PC⊥平面 BEF.
练一练· 当堂检测、目标达成落实处
3.2 第2课时
又 E,F 分别是 AD,PC 的中点,
利用空间向量证明平行、垂直问题 课件
![利用空间向量证明平行、垂直问题 课件](https://img.taocdn.com/s3/m/9175c032b84ae45c3b358cba.png)
答案:(1)l1⊥l2 (2)α∥β (3)l与α斜交 (4)l⊂α或l∥α
题型二 平面法向量的求法
例 2 若 A0,2,189,B1,-1,58,C-2,1,58 是平面 α 内的三点,设平面 α 的法向量 a=(x,y,z),
6.证明两条直线平行,只要证明这两条直线的 方向向量是平__行__(_或__共__线__)_.
7.证明两条直线垂直,只要证明这两条直线的 方向向量_垂__直___.
1.若直线l1,l2的方向向量分别为a=(1,2,-2), b=(-2,3,2),则( )B
A.l1∥l2
B.l1⊥l2
C.l1、l2相交但不垂直 D.不能确定
2.若平面α、β的法向量分别为u=(2,-3,5), v=(-3,1,-4),则( ) C
A.α∥β B.α⊥β
C.α、β相交但不垂直 D.以上均不正确
自测 自评
3.平面 α 的法向量 u=(x,1,-2),平面 β 的法向
量 v=-1,y,12,已知 α∥β,则 x+y=(
)
A.
13 4
B.145
(2)①u=(1,-1,2),v=3,2,-12, ∴u·v=3-2-1=0,∴u⊥v,∴α⊥β. ②∵u=(0,3,0),v=(0,-5,0),∴u=-35v, ∴u∥v,∴α∥β. ③∵u=(2,-3,4),v=(4,-2,1), ∴u 与 v 不共线,也不垂直, ∴α 与 β 相交但不垂直. (3)①∵u=(2,2,-1),a=(-3,4,2),
①a=(2,3,-1),b=(-6,-9,3); ②a=(5,0,2),b=(0,4,0); ③a=(-2,1,4),b=(6,3,3). (2)设 u,v 分别是不同的平面 α,β 的法向量,根据下列条 件判断 α,β 的位置关系: ①u=(1,-1,2),v=3,2,-12; ②u=(0,3,0),v=(0,-5,0);
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节 用空间向量证明线线垂直与线面垂直
一、空间向量及其数量积
1、 在空间,既有大小又有方向的量称为空间向量。
用AB 或表示,其中向量的大小称为向量的长度或
或a。
正如平面向量a 可用坐标(x,y.)表示,空间向量a 也可用坐标(x,y,z)表示。
若已知点A 坐标为(x 1,y 1,z 1),点B 坐标为(x 2,y 2,z 2) 则向量AB =(x 2 -x 1,y 2- y 1,z 2 -z 1)即是终点坐标减起点坐标。
在空间,知道向量a =(x ,y ,z
222z y x 2、 空间向量数量积
① 已知两个非零向量、,在空间任取一点O ,作=,=,则角∠AOB 叫向量与的
夹角,记作<,>规定,若0≤<,>≤ ,若<,>=2
,称与垂直,记作⊥。
② 已知空间两个向量、
COS <,>叫向量、的数量积,记作a
COS
<a ,b >若a ⊥b b a
=0
③ 若已知空间向量=(x 1,y 1,z 1), =(x 2,y 2,z 2) 则•=x 1x 2+y 1y 2+z 1z 2 , COS <a ,
2
2
2
22
22
12
12
12
12121z y x z y x z z y y x x
例1 如图,已知直三棱柱ABC-A 1B 1C 1中,∠BCA=900,D 1、E 1分别为A 1B 1、A 1C 1中点,若BC=CA=CC 1,求向量1BD 与1AE 所成角的余弦值。
C 1
B 1 A1
A
C
B D 1 E 1
E
D A 1
F D 1 A
B 1
C
B
C 1
1111D C B A 中,11E B =11F D =
4
1
1B A ,求向量1BE 与1DF 所成角的余弦值。
二 、利用向量证线线垂直与线面垂直
例2 在正方体ABCD —1111D C B A 中,求证A 1C ⊥平面AB 1D 1
练习:在正方体ABCD —1111D C B A 中,O 为底面ABCD 的中心,P 为DD 1的中点, 求证:B 1O ⊥平面PAC 。
例3 如图,PA ⊥矩形ABCD 所在平面,M, N 分别是AB ,PC 中点 (1)求证:M N ⊥CD
(2)若∠PDA=450
,求证:MN ⊥平面PCD
B
A D C
B A
C D B 1 A 1 D C B A C 1
D 1 O P C
D
P
N
练习:正方体ABCD —1111D C B A 中,M 是棱D 1D 中点,N 是AD 中点, P 为棱A 1B 1上任一点。
求证:NP ⊥AM
作业:
1.如图,正方体ABCD —1111D C B A 中,E 是BB 1中点,O 是底面ABCD 中心,
求证:O E ⊥平面D 1AC.
2.如图,正方体ABCD —1111D C B A 中,O ,M 分别是BD 1, AA 1中点,求证:OM 是异面直线AA 1和BD 1的公垂线.
3、如图,直三棱柱ABC-—A 1B 1C 1中,∠ACB=900
,AC=1,CB=2,侧棱AA 1=1,,侧面AA 1B 1B 的两
条对角线交点为D ,B 1C 1的中点为M 。
求证:CD ⊥平面BDM
D
A 1
A
B
N A
C
D A 1
B 1
D 1
M P C 1
E
O
B 1 A 1 D
C B A
C 1
D 1
O
M
B 1
A 1
D
C
B
A
C 1
D 1
4在棱长为a 的正方体ABCD —1111D C B A 中,E , F 分别为棱AB 和BC 的中点,M 为棱B 1B
上任一点,当
MB
M
B 1值为多少时能使D 1M ⊥平面EFB 1
5、如图, ABC 为正三角形,AE 和CD 都垂直于平面ABC ,且AE=AB=2a , CD=a ,F 为BE 中点,求证:A F ⊥BD
6、如图,已知直三棱柱ABC-A 1B 1C 1中B 1C 1=A 1C 1,A 1B ⊥AC 1。
求证:A 1B ⊥B 1C
第三节 利用空间向量求二面角及证明面面垂直
一、二面角
A A
M
C
B
B
C
D 1
E
F D F
E D C B A
C 1
A1 A
C
B
二面角 l ,若 的一个法向量为m , 的一个法向量为n ,则|
|||,cos n m n m
,二面角的
大小为 n m ,或 n m ,
例1.如图,正三棱柱111C B A ABC 中,E 为1BB 的中点,111B A AA ,求平面EC A 1与平面111C B A 所成锐角的大小。
例2.(05年全国)如图,在四棱锥V-ABCD
V AD 是正三角形,平面V AD ⊥底面ABCD . (1)证明AB ⊥平面V AD ;
(2)求面V AD 与面VBD 所成的二面角的大小.
练习:如图,棱长为1的正方体
1111D C B A ABCD 中,E 是1CC 的中点,
求二面角D E
B B 1的余弦值。
二.证面面垂直
若平面 的一个法向量为m ,平面 的一个法向量为n ,且n m ,则 。
例3.在四棱锥P-ABCD 中,侧面PCD 是正三角形,且与底面ABCD 垂直,已知底面是面积为32的菱形,
060 ADC ,M 是PB 的中点。
(1)求证:CD PA
(2)求二面角D AB P 的度数; (3)求证:平面 PAB 平面CDM 。
练习:(04年辽宁)已知四棱锥P-ABCD 中,底面ABCD 是菱形, PD DAB ,60平面ABCD ,PD=AD ,点E 为AB 的中点,点F 为 PD 的中点。
(1)证明平面PED ⊥平面PAB ;
(2)求二面角P-AB-F 的平面角的余弦值.
作业:
1.(04年广东)如图,在长方体1111D C B A ABCD 中,
已知F E AA AD AB ,,2,3,41 分别是线段BC AB ,上的点,且1 FB EB 。
(Ⅰ)求二面角C-DE-C 1的正切值;
(Ⅱ)求直线EC 1与FD 1所成角的余弦值。
D
A
A
C
A
M
A
B
P
A
F E
P
D
C
B
A
2.(05年全国)已知四棱锥P-ABCD 的底面为直角梯形,AB ∥DC , PA DAB ,90
底面ABCD ,且PA=AD=DC=
2
1
AB=1,M 是PB 的中点。
(1)证明:面PAD ⊥面PCD ; (2)求AC 与PB 所成的角;
(3)求面AMC 与面BMC 所成二面角的大小。
3.已知四棱锥P-ABCD 的底面是边长为2的正方形,侧棱 PA 底面ABCD ,PA =2,M 、N 分别是AD 、BC 的中点,PD MQ 于Q
(1)求证:平面PMN 平面PAD ;
(2)求PM 与平面PCD 所成角的正弦值; (3)求二面角Q MN P 的余弦值。
4.(06年全国)如图,在直三棱柱ABC -A 1B 1C 1中,AB =BC , D 、E 分别为BB 1、AC 1的中点.
(1)证明:ED 为异面直线BB 1与AC 1的公垂线; (2)设AA 1=AC =2AB ,求二面角A 1-AD -C 1的大小.
A
B
C
D
E
A 1
B 1
C 1
N N
M
Q
A
P
D
C
B
5. (04年浙江)如图,已知正方形ABCD 和矩形ACEF 所在的平面互
相垂直,AB =2,AF =1,M 是线段EF 的中点。
(1)求证:AM //平面BDE ; (2)求二面角A DF B 的大小;
(3)试在线段AC 上确定一点P ,使得PF 与BC 所成的角是60 。
6.(05年湖南)如图1,已知ABCD 是上.下底边长分别为2和6,高为3的等腰梯形,将它沿对称轴OO 1折成直二面角,如图2.
(1)证明:AC ⊥BO 1;
(2)求二面角O-AC-O 1的大小。
7.(06年山东)如图,已知四棱锥P-ABCD 的底面ABCD 为 等腰梯形,AB ∥DC,AC ⊥BD,AC 与BD 相交于点O ,且顶点 P 在底面上的射影恰为点O ,又BO=2,PO=2,PB ⊥PD. (1)求异面直线PD 与BC 所成角的余弦值; (2)求二面角P -A B-C 的大小;
A
D
E
F
M
B
C
B A 图1 O O 1 D C
O 1
C
O
D
A
B
图2 M
用空间向量证明线线垂直与线面垂直
14 / 11 (3)设点M 在棱PC 上,且,PM MC
问为何值时, PC ⊥平面BMD.。