双水相萃取PPT课件
双水相萃取详细资料PPT(44张)
(四)影响物质分配平衡的因素
主要有聚合物的分子量和浓度/pH/演的种类 和浓度/温度等。适当的选择各参数即在最 适条件下,可达到较高的分配系数和选择 性
成相聚合物的相对分子质 量
当聚合物相对分子质量降低时,蛋白质易 分配于富含该聚合物的相中。
例如:PEG/DX系统中当PEG的分子量降低时,会
双水相萃取
方盼 赵梅
目录
(一)两水相的形成 (二)相图 (三)分配理论 (四)影响分配的参数 (五)应用
Question
• 常用的溶液萃取法能用来提 取生物大分子如蛋白质吗?
Reason
大部分萃取采用一个是水相,另一个是有机相 蛋白质遇到有机溶剂,易变形失活 有些蛋白质有极强地亲水性,不能溶于有机溶剂。
作用力没有强烈的引力或斥力:完全互溶,形
成均相的高聚物水溶液
• 聚合物的不相容性:两种聚合物分子间存在斥力,在 达到平衡后,分成两相,两种聚合物分别进入到一相 中。
• 高聚物与高聚物形成两相是由于高聚物的不相容 性
• 高聚物与无机盐溶液也能形成两相,这是由于盐 析作用。
• 生化工程中,多应用聚乙二醇—-葡聚糖和聚乙二 醇-无机盐系统。
盐类的影响
在双水相聚合物系统中,加入电解质,首 先阴阳离子会有不同的分配。
盐的正负离子在两相间的分配系数不同, 由于各相应保持电中性,因而在两相中形 成电位差,这对带电生物大分子的分配, 产生很大的影响。
K->1 分配在上相 K+≈1 分配在下相
在pH6.9时溶菌酶带正 电,卵蛋白带负电。当 加入NaCl时,其浓度低 于50mmol/L时可见上 相电位低于下相电位, 使溶菌酶分配在。
只有当P和Q达到一定浓度才能形成两相
《双水相萃取技术》课件
03
双水相萃取技术的实验操作
实验准备
01
02
03
实验材料
准备双水相萃取所需的试 剂和材料,如蛋白质溶液 、双水相体系、离心管等 。
实验设备
确保实验所需的设备齐全 ,如离心机、天平、量筒 等。
安全措施
确保实验环境安全,穿戴 适当的实验服和护目镜, 避免试剂溅出。
实验步骤
加入蛋白质溶液
将待分离的蛋白质溶液加入离 心管中。
应用范围广泛
该技术在生物、医药、环保等领域有 广泛应用,可用于蛋白质、酶、细胞 等的分离和纯化。
操作简便高效
双水相萃取技术操作简单,分离速度 快,可实现大规模生产。
环境友好
该技术使用无毒或低毒性的物质,对 环境友好,符合绿色化学的发展趋势 。
技术展望
深入研究机理
进一步深入研究双水相萃取技术的机理,提高分 离效率和选择性。
蛋白质回收率测定
测定蛋白质的回收率,评估双水相萃取技术的效 果。
3
数据分析
对实验数据进行统计分析,了解双水相萃取技术 的分离效果和影响因素。
04
双水相萃取技术的优缺点
技术优势
高分离效率
双水相萃取技术能够实现高效率的分离过程,对于一些难以分离 的物质,如蛋白质、酶等,能够实现快速、准确的分离。
低成本
收集上清液
将上清液收集到适当的容器中 ,以便后续分析。
配制双水相体系
按照所需的浓度配制双水相体 系,确保比例准确。
离心分离
将离心管放入离心机中,设定 适当的转速和时间进行离心分 离。
清洗沉淀
清洗离心管中的沉淀,确保蛋 白质的纯度和回收率。
实验结果分析
1 2
萃取技术—双水相萃取技术(药物分离纯化课件)
内侧流 外侧 分配 萃取物
体 流体 系数
细胞色素 C 磷酸盐 PEG 0.18 肌红蛋白 磷酸盐 PEG 0.009 过氧化氢酶 磷酸盐 PEG 0.12 尿激酶 磷酸盐 PEG 0.65
内侧流 速,cm/s
16.3 4.0 16.3 16.3
外侧流 传质系 速,cm/s 数,cm/s
6.6 5.5?0 -6 5.0 7.5?0 -7 5.0 2.8?0 -5 5.0 2.0?0 -4
双水相萃取的应用--双水相萃取技术(萃取技术)
1.双水相萃取的应用
双水相分离条件 (1) 目的分子与细胞应分配在不同的相 (2) 分配系数应足够大 (3) 离心机容易分离
双水相萃取的应用
分离物质
举例
体系
NaDS-硫酸葡聚糖
酶 核酸 生长素 病毒 干扰素
细胞组织
过氧化氢酶的分离 分离有活性核酸DNA 人生长激素的纯化 脊髓病毒和线病毒纯化 分离β-干扰素
双水相萃取的应用--双水相萃取技术(萃取技术)
2.双水相萃取分离技术的发展方向 (1)廉价双水相体系的开发
优点: (1)蛋白质溶解度大。蛋白质在PPT浓度到15%以前没有沉淀,但在PEG浓度大于
5%时,溶解度显著地减小,在盐溶液中的溶解度更小。 (2)粘度小。PPT的粘度是粗dextran的1/2,传质好。 ⑶价格便宜。PPT几十$/kg,粗dex几百$/kg
系线
TMB:系线连接双节线上两点的 直线。
在临界点处,分配系数为1
临界点
药物分离与纯化技术课程
3.双水相相图
系线反映的信息:
(1)系线长度:衡量两相间相对差别的尺度。越长则两相间性质差 别越大,反之则越小;趋向于零时,(双节线上的点,临界点), 两相差别消失,成为均一相。
生物分工程双水相萃取 66页PPT文档
三、双水相体系的应用
应用:在生物化学、细胞生 物学、生物化工等有机物分 离提纯方面得到了较为广泛 的应用,如:分离提纯蛋白 质、生物酶、菌体、细胞、 氨基酸、抗生素以及亲水性 生物大分子等。
KS
Y2,3-BD(% ) Yacetoin(% ) Rglucose(% ) Rcells(% ) R protein(% )
1 9.88 10.19 0.031 318.7 93.0
93.5
94.9
99.6
85.5
2 9.65 10.06 0.030 321.7 93.0
93.5
94.8
99.5
28.3和98.1% 乙醇/碳酸钠体系 发酵液中2,3-丁二醇的分配系数和回收率分别可达
15.1和94.3% 异丙醇/硫酸铵体系 发酵液中2,3-丁二醇的分配系数和回收率分别可达
8.3和91.4%
乙醇/硫酸铵APTE放大实验
表2.3 体系放大过程中2,3-丁二醇分配的变化
分配系数(K)
4)外加电场的影响
当在两相分界的垂直方面上加上电场时由于 电位差增加而使分配系数发生改变 如用PEG8000 /DextranT 500体系分离肌红蛋白,在外加48.1 V/cm的电场强度40 min后,分配系数K从0.81变 为38.7,上相回收率从44.7%增高到98.0% 。
5) 温度的影响
ln m H(H F F H S )F F S Z
RT
影响分配平衡的因素
1)成相聚合物
成相聚合物的相对分子量降低、浓度升高 有利于增大溶质的分配系数。
南农 生物分离工程 双水相萃取课件
双水相萃取的原理
生物分子的分配系数取决于溶质与双水相系统间 的各种相互作用,主要有 静电作用 疏水作用 生物亲和作用 分配系数是各种相互作用的和:
lnm=lnme+lnmh+lnml
me,mh,ml
分别为静电作用、疏水作用和生物亲 和作用对溶质分配系数的贡献。
1.静电作用 非电解质型溶质的分配系数不受静电作用的影响, BrΦnsted方程推导下述分配系数表达式:
2.2%的葡聚糖水溶液与等体积的0.72%甲基纤维素 钠的水溶液相混合并静置后,可得到两个粘稠的液 层。
葡聚糖与甲基纤维素钠的双水相体系
双水相的形成
聚合物的不相溶性(incompatibility): 当两种高分子聚合物之间存在相互排斥 作用时,当达到平衡时,即形成分别富 含不同聚合物的两相。 除双聚合物系统外,聚合物与无机盐的 混合溶液也可形成双水相,
双水相的形成
PEG = 聚乙二醇(polyethylene glycol)
Kpi = 磷酸钾
DX = 葡聚糖(dextran)
Phase 1: 4% polyethylene glycol in water Phase 2 : 4% dextran in water
Dr = 0.2 g / cc s = 1.2 dyne / cm PEG Dextran
1 双水相中聚合物及其分子量的影响 降低聚合物的分子量,则蛋白质易分配于富含 该聚合物的相中 聚合物的疏水性按下列次序递增:
葡萄糖硫酸盐< 甲基葡萄糖< 葡萄糖<羟丙基葡聚糖 < 甲基纤维素< 聚乙烯醇<聚乙二醇< 聚丙三醇
同一聚合物的疏水性随分子量增加而增加
酶双水相萃取.pptx
形
互不相容的两相,两种聚合物分别溶于两
成
相中,即构成双水相系统。这主要是由于 聚合物分子的空间位阻作用,相互间无法
过
渗透,而且有强烈的相分离倾向,在一定
程
条件下即可分为两相。一般认为,聚合物
水溶液的疏水性差异是产生相分离的主要
推动力,且蔬水性差异越大,相分离倾向
也越大。
第3页/共21页
1.2、双水相系统中作用力的表现
substrate第15页/共21页
product
Enzymetic reaction with ATPS
enzyme enzyme
第16页/共21页
enzyme
5.1、蛋白质双水相萃取的优点
两相含水量均很
高,与蛋白质有
可用于蛋白质的
很好的相容性, 且不易使蛋白质
1
精制,经过几次
4 连续的双水相萃
作用力 为斥力
形成双水相系统
双水相
作用力 形成两相,一相为两 为引力 高聚物,一相为水相 均一相
作用力无 强烈引力
完全互溶,形成均一相
和斥力
两相
第4页/共21页
1.3、几种常见的双水相体系
类型
非离子型聚合物/ 非离子 型聚合物
高分子电解质/非离子型聚 合物 高分子电解质/高分子电解 质 聚合物/ 低分子量化合物
失活。
取,得到更高纯
度的蛋白质。
所需设备简 单,且处理 容量大,利 于大规模生 产。
2
3
分离纯化后
的蛋白质产
物纯度很高,
有很大使用
价值。
第17页/共21页
5.2、蛋白质双水相萃取的缺点
系统中水的含量 高,分离后的蛋 白质液浓度低, 需要浓缩以提高 产物的浓度。
双水相萃取ppt
天然植物药用有效成分的分离与提取
中草药是我国医药宝库中的瑰宝 ,已有数千 年的历史 ,但由于天然植物中所含的化合物 众多 ,特别是中草药有效成分的确定和提取 技术发展缓慢 ,使我国传统中药难以进军国 际市场。因此 ,采用具有较高选择性和专一 性的双水相萃取技术对中草药有效成分的 提取是一项很有意义的工作。利用双水相 萃取中草药有效成分具有代表性的工作是 对黄岑甙和黄岑素的分离。
抗生素的分离与提取
数抗生素都存在于发酵液中 ,提取工艺路线复杂 ,能耗 高 ,提取过程易变性失活。而双水相萃取在抗生素中具 有较大的应用价值 ,萃取提取涉及到各类抗生素。β 内酰胺类抗生素是抗生素家族中应用最多的一类 ,主要 由青霉素类和头孢菌素类构成。对青霉素进行工业化意 义的双水相萃取是结合传统工艺溶媒萃取法进行的。先 以 PEG2000/ (NH4) 2SO4系统将青霉素从发酵液中提取 到 PEG相 ,后用醋酸丁酯(BA)进行反萃 ,再结晶 ,处理 1000ml 青霉素发酵液 ,得青霉素晶体 7. 228g ,纯度 84. 15 % ,三步操作总收率 76. 56 %。
酶工程药物的分离与提取
酶在医药方面的应用一是作为药用酶 ,二是用作化学合 成药物中的酶催化剂。迄今 ,双水相萃取技术已广泛应 用于生物大分子、细胞、细胞器、蛋白质、核酸、病毒、 细菌、蓝藻、叶绿素、线粒体、 菌体等的分离与提取 , 几乎所有的酶均可用此技术仅通过调节 pH、合物和盐的 种类或浓度 ,选择合适的分离条件就可进行理想的分离 纯化。目前双水相萃取技术已成功应用于已较大规模提 取纯化的酶有几十种 。其中成功地实现从微生物细胞碎 片中提取纯化甲酸脱氢酶 ,其分离经 4 次连续萃取 ,已 达处理 50kg 湿细胞规模 ,处理的酶蛋白含量已高达 150g ,收率为 90 %~100 % ,由于工艺简单 ,原材料成 本较低 ,产品的价格也有大幅度降低。
第四章 萃取-双水相萃取.ppt.Convertor
第二节双水相萃取主要内容一、概述二、物质在两相中的分配三、双水相萃取工艺流程四、双水相萃取技术的应用一、概述过滤和离心技术(取决于分离颗粒的尺寸或密度差异)难于进行收集微生物的细胞器、分离除去细胞碎片、提取和浓缩胞内物质的操作。
萃取已广泛用于液液分离,但一般的有机溶剂萃取难于分离蛋白质:(1)许多蛋白质有极强的亲水性,不溶于有机溶剂;(2)蛋白质在有机溶剂相中易变性失活。
在一定条件下,水相也可形成两相甚至多相。
使将水溶性的酶、蛋白质等生物活性物质从一个水相转移到另一水相中成为可能。
1、最早的双水相萃取现象:1896年Be jerinck,把明胶与琼脂或把明胶和可溶性淀粉的水溶液混合,可分为两相(大部分明胶/大部分琼脂),聚合物的“不相溶性”。
多种不相溶的聚合物可得到多相体系。
原因?(1)聚合物的空间阻碍作用,相互间无法渗透。
(2)聚合物与无机盐可形成聚合物-盐双水相。
2、双水相萃取的优势(见表,有一系列数据说明问题)3、双水相萃取的特点:(1) 条件温和,保留产物活性;(2) 含水量高,表面张力低,耗能少(3) 大分子及小分子(红霉素、氨基酸等)萃取;(4) 易于放大(5) 影响因素复杂;(6) 成本高4、两水相体系形成聚合物混合时,是分层或成一相,取决于两种因素:一是体系熵增加,表明系统混沌程度的量,与分子数量有关;二是分子间作用力,与分子量有关,分子量越大,分间作用力也越大。
分子之间作用力:(1)A-A >A-B 相分离(2)A-A<A-B 混合(3)A-B>>A-A凝聚复合5、两水相体系类型两种都是非离子型高聚物(PEG / DEX、聚丙二醇/ DEX等)其中一种是离子型高聚物(羧甲基纤维素钠/葡聚糖DEX)两种都是离子型高聚物(羧甲基纤维素/羧甲基葡聚糖钠)其中一种是无机盐(磷酸盐、硫酸盐等)6、相图(见课件中图)理解:双结线(TKB);;结点(T/B);临界点(K);系线(TB)上相(T,轻相);下相(B,重相)当M点下移时,系线长度缩短,两相差别减小,到K点时,系线长度为0,两相差别消失而成为一相。
双水相萃取的原理及应用 ppt课件
ppt课件
ATPE 的基本原理
40
以蛋白质的分离为例说 明双水相分离过程的原 则流程: 包括三步双水相分离, 第一步:所选择的条件 应使蛋白质产物分配在 富PEG的上相中, 而细胞 碎片及杂质蛋白质等进 入下相。
ppt课件
ATPE 的基本原理
41
以蛋白质的分离为例说 明双水相分离过程的原 则流程: 包括三步双水相分离, 第二步:分相后上相中 再加入盐使再次形成双 水相体系,核酸和多糖则 分配入富盐的下相,杂质、 蛋白质也进入下相,而所 需的蛋白质再次进入富 含PEG的上相。
ppt课件
ATPE 的基本原理
32
双水相的特点
(6)大量杂质可与固体物质一同除去。 (7)易于工艺放大和连续操作,与后续提纯工序可直接相连 接,无需进行特殊处理。 (8)操作条件温和,在常温常压下进行。 (9)亲和双水相萃取技术可以提高分配系数和萃取的选择性。
ppt课件
ATPE 的基本原理
33
双水相的特点
ppt课件
ATPE 的基本原理
10
ATPE 的基本原理:
以上方法对蛋白质的分离纯化有不同的缺陷。
ppt课件
ATPE 的基本原理
11
ATPE 的基本原理:
到目前为止,双水相技术几乎在所有的生物物质 如: 氨基酸、多肽、核酸、细胞器、细胞膜、各类细胞、 病毒等的分离纯化中得到应用,
特别是成功地应用在蛋白质的大规模分离中。
离子环境对蛋白质在两相体系分配的影响: 在双水相聚合物系统中,加入电解质时,其阴
阳离子在两相间会有不同的分配。 同时,由于电中性的约束, 存在一穿过相界面的
电势差(Donnan电势) ,它是影响荷电大分子,如蛋 白质和核酸等分配的主要因素。
《两水相萃取法》PPT课件
精选ppt
17
当系线向下移动时,长度逐渐减小,这说明两相的差别 减小,当达到K点时,系线的长度为0,两相间差别消失, 点K称为临界点或褶点。
精选ppt
18
双节线的位置形状与聚合物的分子量有关。分子量越高, 相分离所需的浓度越低;两种聚合物的分子量相差越大,双 节线的形状越不对称。
精选ppt
19
三、分配理论
精选ppt
46
如果产品是蛋白质,并且分配在盐相,则盐可以在错流 过程操作方法下,用超滤或渗析的膜过滤回收。
膜分离是分离和浓缩被纯化的蛋白质并同步去除聚合物 的最佳方法。
精选ppt
47
如果蛋白质积聚在聚乙二醇中,可以通过加入盐来精 制,加入的盐导致蛋白质在盐相中重新分配。
PEG的分离同样可以用膜分离来实现,即用选择性孔 径较大的半透膜来截留蛋白质,同时排除PEG进行回收。
精选ppt
30
如上所述,影响分配系数的因素很多,而且这些 因素相互间又有影响,因此,目前尚不可能定量地关 联分配系数与能独立测定的蛋白质的一些分子性质之 间的关系。适宜的操作条件,只能通过实验得到。
实验可很方便地在10 ml有刻度的离心试管中进 行。如检定工作跟得上,则在几天内就可求得所需的 萃取条件。但有时液体粘度比较大,用吸管操作时容 易引起误差,需要注意。
精选ppt
43
(五)、温度
温度影响相图,特别在临界点附近,尤为显著,因而 也影响分配系数。但是在离临界点较远时,这种影响较小。
大生产中,总采用常温,可节约冷冻费用,这是由于 聚合物对蛋白质有稳定作用,不会引起损失。同时,温度 高时,粘度较低,有利于相的分离操作。
精选ppt
44
(六)、荷电PEG作为成相聚合物
双水相萃取法PPT课件( 57页)
该式较全面地描述了双水相系统的疏水性和相间电
位、蛋白质的疏水性和净电荷数对分配系数的影响, 同时也间接地通过盐对蛋白质表面疏水性和相间电位 的影响表现了盐对蛋白质分配系数的作用。
3. 影响物质分配平衡的因素
影响物质在双水相系统中分配的因素主要有双水相 系统的聚合物组成(包括聚合物类型、平均分子量),盐 类(包括离子的类型和浓度、离子强度、pH值),溶质的 物理化学性质(包括分子量、等电点)以及体系的温度等。 然而,这些参数并不是独立地起作用。所以要预测溶质 在双水相系统间的分配系数是困难的。这些系统复杂性 表现在如下的一些例子中:在一相中引入疏水性基团会 影响离子的分配和电位,在大分子(亲水聚合物或蛋白 质溶质)结构中构象的变化,能使另一些原子暴露在微 环境中。这些事实导致只能用实验的方法来确定满足分 配要求的操作条件。
2.疏水作用
一般蛋白质表面均存在疏水区,疏水区占总表 面积的比例越大,疏水性越强。所以,不同蛋白质 具有不同的相对疏水性。在pH为等电点的双水相中, 蛋白质主要根据表面疏水性的差异产生各自的分配 平衡。同时,疏水性一定的蛋白质的分配系数受双 水相系统疏水性的影响。因此,有必要确定双水相 系统的疏水性尺度,以便在萃取操作时调整和设计 蛋白质的分配系数。PEG/Dx和PEG/无机盐等双水相 系统的上相(PEG相)疏水性较大,相间的疏水性差用 疏水性因子HF (hydrophobic factor)表示。HF可通 过测定疏水性已知的氨基酸在其等电点处的分配系 数maa测算
已有的大量研究表明,生物分子的分配系数取决于溶 质与双水相系统间的各种相互作用,其中主要有静电 作用、疏水作用和生物亲和作用等。因此,分配系数 是各种相互作用的和:
lnm=lnme+lnmh+lnml
双水相萃取与应用课件
• 溶剂对目标组分选择性强,大量杂质能与所有固体物质一同除去,使分离过程简化,易于工业放大和连续操作。
• 分相时间短,常温常压下自然分相时间一般为5-10min。
• 目标产物的分配系数一般大于3,大部分情况下目标产物的收率较高。
• 聚合物的浓度、无机盐的种类和浓度,以及体系的pH值等多种因素都可以对被萃取物质在两相的分配产生影响,因此 可以利用多种手段来使反应达到最佳条件。
双节线
葡聚糖(%) PEG/葡聚糖系统相图
相图中TCB连线为一双节线,双节线下方为单相区; 双节线上方为两相区。如果系统组成处于该区,如M点时, 系统分为两相,而上相和下相的组成分别为通过M点与双 节线相交的T和B点相对应的组成。上相主要含有PEG,下 相主要含有葡聚糖或盐。两相平衡时,符合杠杆规则。 当用υ T代表上相体积,υ B代表下相体积时,则
A
聚乙二醇(PEG)
几种典型双水相系统
B C
硫酸葡聚糖酸钠 羧甲基葡聚糖酸钠 羧甲基葡聚糖酸钠
D
聚乙二醇
A, B, C, D, E,
聚乙二醇 葡聚糖 两者均为非离子性聚合物, 一种非离子性聚合物,另一种为带电荷的聚电解质 两者均为聚电解质, 一种聚合物,另一种为盐。 一种聚合物,另一种为有机小分子
E
某些水溶性聚合物溶液与某些盐溶液混合,两者浓度达到一定值时, 也会分为两相,形成聚合物-盐双水相系统。机理不清楚。一种解释为“ 盐析”作用。 无机盐和简单的有机盐均可,其成相相对能力与其盐析能力次序基 本一致。阴离子作用比阳离子重要,多原子离子比单原子离子更有效, 成相浓度低。大而电荷密度低的单原子阴离子容易与PEG分子中 的氧 偶极子发生作用,成相浓度高,无法使用。但它们可以作为中性盐添加 组分加入聚合物/聚合物和聚合物/盐系统中,用于改变分配系数。 对于聚合物/盐系统,因盐比葡聚糖便宜得多,使得聚乙二醇(PEG)/ 盐系统具有工业上应用优势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 改变体系的pH和电解质浓度可进行反萃取
应用范围: 胞内酶的提取(双水相系统可用于除去细胞破碎后 的匀浆液中的碎片以及酶的进一步精制)
(四)影响物质分配平衡的因素
主要有聚合物的分子量和浓度/pH/演的种类 和浓度/温度等。适当的选择各参数即在最 适条件下,可达到较高的分配系数和选择 性
当聚合物相对分子质量降低时,蛋白质易 分配于富含该聚合物的相中。
例如:PEG/DX系统中当PEG的分子量降低时,会
使蛋白质易分配于富含该PEG的相中,使分配系数 增大,而葡聚糖的分子量减小,会使分配系数降 低,这是一条普遍规律
➢ 作用力没有强烈的引力或斥力:完全互溶,形
成均相的高聚物水溶液
• 聚合物的不相容性:两种聚合物分子间存在斥力,在 达到平衡后,分成两相,两种聚合物分别进入到一相 中。
• 高聚物与高聚物形成两相是由于高聚物的不相容 性
• 高聚物与无机盐溶液也能形成两相,这是由于盐 析作用。
• 生化工程中,多应用聚乙二醇—-葡聚糖和聚乙二 醇-无机盐系统。
只有当P和Q达到一定浓度才能形成两相
双节线
系线
(具体的证明过程省略)
系线的长度是衡量两相间差别的尺度, 系线越长两相间的差别越大,反之越 小。
当系线向下移动时,长度逐渐减小, 这说明两相的差别减小,当达到K点 时,系线的长度为0,两相间差别消 失,点s成为临界点。
(三)分配理论
和溶剂萃取法一样,蛋白质在两水相间的分 配,有分配系数
两种亲水性聚合物混合
1 混合熵的增加 —自发进行—分子的数目 2 分子间作用力 —分子间各基团相互作用之
和——分子的大小 • 对大分子而言,由于相对分子质量较大,
分子间作用力与熵增加相比占主导地位。
➢ 作用力为斥力:形成两个水相,两种高聚物分 别富集于上、下两相。
➢ 作用力为引力:也形成两个水相,但两种高聚 物都分配于一相,另一相几乎为溶剂。
目录
(一)两水相的形成 (二)相图 (三)分配理论 (四)影响分配的参数 (五)应用
Question
• 常用的溶液萃取法能用来提 取生物大分子如蛋白质吗?
Reason
➢大部分萃取采用一个是水相,另一个是有机相 ➢蛋白质遇到有机溶剂,易变形失活 ➢有些蛋白质有极强地亲水性,不能溶于有机溶剂。
so
K=C1/C2 C1代表上相浓度,C2代表下相浓度。当相
系统固定时,分配系数为一常数只取决于 被分离物质本身的性质和特定的双水相体 系,与蛋白质的浓度无关。
当物质进入双水体系后,由于表面性质/电 荷作用和各种力(如憎水键/氢键和离子键) 的存在和环境的影响,物质在上相和下相 间进行选择性分配,
双水相系统
PEG = 聚已二醇 Kpi = 磷酸钾 DX = 葡聚糖
双水相萃取:
利用生物大分子在两种水相之间的分配比 例不同而达到分离纯化生物大分子的目的。
(二)相图
两种高聚物的水溶液,当它们以不同的比例 混合时,可形成均相或两相,这种水性两相 的形成条件和定量关系,常用相图来表示, 它是一条双节线。
pH的微小变化会使蛋白质的分配系数 改变2~3个数量级。
温度影响相图,特别在临界点附近,因而 也影响分配系数,
温度越高发生相分离所需的高聚物浓度越 高
工业方面
小分子分离和纯化 技术的新发展
双水相萃取系统的优点
• 直接从cell碎片匀浆中萃取prot、而无需将细胞 碎片分离
• 双水相系统平衡时间短,含水量高,界面张力低 ,成相聚合物对蛋白质有稳定作用,为生物活性 物质提供了温和的分离环境
在双水相聚合物系统中,加入电解质,首 先阴阳离子会有不同的分配。
盐的正负离子在两相间的分配系数不同, 由于各相应保持电中性,因而在两相中形 成电位差,这对带电生物大分子的分配, 产生很大的影响。
K->1 分配在上相 K+≈1 分配在下相
在pH6.9时溶菌酶带正 电,卵蛋白带负电。当 加入NaCl时,其浓度低 于50mmol/L时可见上 相电位低于下相电位, 使溶菌酶分配在上相, 从而分配系数增大。 而卵蛋白的分配系数减 小,。
•通常的溶剂萃取法应用于提取生物大分子是有 困难的; •但双水相萃取法含水量高,接近生理的环境中 进行萃取,不会引起生物活性物质失活或变性
双水相Байду номын сангаас系简介
• 1896年Beijerinck观察到当把明胶与琼脂和 可溶性淀粉的水溶液混合时先得到一个混 不透明的溶液,随之分为两相,上相富含 明胶,下相富含琼脂(或淀粉),这种现 象被称之为聚合物的不相溶性,从而产生 了双水相体系。
双水相系统
• 是指某些高聚物之间或高聚物 与无机盐之间在水中以适当的 浓度溶解会形成互不相溶的两 水相或多水相系统
• 葡聚糖(Dextran)与聚乙二醇(PEG) 按一定比例与水混合,溶液混浊,静置平 衡后,分成互不相溶的两相,上相富含 PEG、下相富含葡聚糖,见下图
(一)两水相的形成 原理
这是因为成相聚合物的疏水性对酶等亲 水性物质的分配产生较大的影响。
同一聚合物的疏水性随分子量的增大而 增大,当PEG的分子量增加是,在质量浓 度不变的情况下,其两端羟基数减少,疏 水性增加,亲水性的蛋白质不再向富含 PEG相中聚集,而转向另一相。 那么,分子量降低时,蛋白质就易分配 于富含PEG的相了
当接近临界点时,上相和下相的组成相同蛋白 质均匀的分配于两相中,分配系数接近于1。
当成相系统的总浓度增大时,系统远离临 界点,系线长度增加,两相性质的差别增 大,蛋白质分子的分配系数(分配系数为一常数只
取决于被分离物质本身的性质和特定的双水相体系,与蛋白质的浓度
无关。)就会偏离临界点的值(=1),即大 于1或小于1。
结论:加入适当的 盐类,会大大促进 带相反电荷的生物 大分子的分离。
pH值对分配的影响源于两个方面的原因: (一)pH值会影响蛋白质中可以解离基团
的解离度,因而改变蛋白质所带的电荷和 分配系数。
lnKlnK0R FT Z
(二)pH值会影响磷酸盐的解离程度, 改变H2PO4-和HPO42-之间的比例, 而影响分配系数。