整式的除法PPT课件

合集下载

《整式的除法》图文课件-北师大版初中数学一年级下册

《整式的除法》图文课件-北师大版初中数学一年级下册
你知道:多项式除以单项式的规律吗?
多项式除以单项式,先把这个多 项式的每一项分别除以单项式,再 把所得的商相加。
1 2 = (4abc)+ ( b ) + (2b) 1 27
7
b 2b
单项式 的 除法 法则
议一议
如何进行单项式除以单项式的运算?
单项式相除, 把系数、同底数的幂分别相除后,作为 商的因式;对于只在被除式里含有的字母,则连它的 指数一起作为商的一个因式。
理解 商式=系数 • 同底的幂 • 被除式里单独有的幂
⑴ (2) (60x3y5) (8x6y4z)
巩固练
÷(−12xy3)

2y2 − 5 x = ;
3 x5 y6z (3) ( 2 )÷(2x3y3 ) = 3 x 2 y 3 z ; 4
(4) 若 (ax3my12)÷(3x3y2n)=4x6y8 , 则 a = 12 , m = 3 ,n = 2
被除式的系数 除式的系数
底数不变, 指数相减。
保留在商里 作为因式。
多项式除以单项式的法则 议一议
( ad+bd )÷d =(ad)÷d + (bd)÷d。
你找到了 多项式除以单项式的规律 吗?
多项式除以单项式, 先把这个多项式的每一项分别除以单项式, 再把所得的商相加。
综合 ◣ ◢
1、计算填空:
ab+3b (2)(a2b+3ab)÷a=_____

2-2 y 3 3)(xy -2xy)÷(xy)=_______
你能找出 多项式除以单项式的规律吗?请说 出多项式除以单项式的运算法则。
怎样寻找多项式除以单项式的法则?
提示: 不妨从最简的多项式除以单项式入手,

整式的除法ppt课件

整式的除法ppt课件
2
=(-2x -2xy)÷(-2x)
=x+y.






当 x=- ,y=1 时,原式=- +1= .
解:(1)12a2b÷(-3a)=-4ab.
(2)(5x2y3)2÷25x4y5=25x4y6÷25x4y5=y.
(3)(x+y)3÷(x+y)=(x+y)2=x2+2xy+y2.
4.计算:
2
2
3
3 4
(1)(-3x y) ·6xy ÷9x y ;
3 4

2 2
3 2
(2)2a b c÷(-4ab ) ·( a b c).
=15x4y2÷(-3x2)-12x2y3÷(-3x2)-3x2÷(-3x2)
=-5x2y2+4y3+1.
[例1-2] 某小区为了便民购物,计划在小区外一块长方形空地上建一
座大型超市,已知长方形空地的面积为(6xy+2x2y2+y3) m2,宽为2y m,
求这块长方形空地的长.
解:由题意,得
2 2
= abc.


3-2+3
b
4-4+2
c
1+1
5.某中学新建了一栋科技楼,为了给该楼一间科技陈列室的顶棚装修,
计划用宽为x m、长为30x m的塑料扣板,已知这间陈列室的长为5ax m、
宽为3ax m,如果你是该校的采购人员,应该至少购买多少块这样的塑
料扣板?当a=4时,求出具体的扣板数.
2
2
2

4
(4)(2a-b) ÷ (2a-b) .
解:(1)12a3b2÷(-4a2)=-3ab2.

整式的除法课件人教版数学八年级上册(完整版)

整式的除法课件人教版数学八年级上册(完整版)

作业布置 【知识技能类作业】必做题:
1.计算:
(1)6a3÷2a2
(2)24a2b3÷3ab
(1) 6a3÷2a2 =(6÷2)(a3÷a2) =3a.
(2)24a2b3÷3ab =(24÷3)a2-1b3-1 =8ab2.
(3)-21a2b3c÷3ab
(3)-21a2b3c÷3ab =(-21÷3)a2-1b3-1c = -7ab2c.
作业布置 【知识技能类作业】选做题:
2.如果m(xayb)3÷(2x3y2)2= x3y2,求m,a,b的值.
作业布置 【综合拓展类作业】
3.若3x=5,3y=4,9z=2,求32x+y-4z的值.
解:∵9z=2,∴(32)z=2,即32z=2. 又3x=5,3y=4, ∴32x+y-4z=32x·3y÷34z =(3x)2·3y÷(32z)2 =52×4÷22 =25.
祝你学业有成
2024年5月3日星期五10时58分39秒
14.1.4.4 整式的除法
人教版八年级上册
教学目标
1.理解单项式除以单项式法则并能运用; 2.掌握多项式除以单项式法则; 3.会进行简单的乘除混合运算
新知导入
问题:一颗人造地球卫星的速度约为3×107米/小时,一架喷气式飞机的速 度约为2×106米/小时,这颗人造地球卫星的速度是这架喷气式飞机的速度 的多少倍?
验证:因为am-n ·an=am-n+n=am, 所以am ÷an=am-n.
归纳总结 同底数幂的除法
运算法则:
am÷an = am - n (a≠0,m,n 都是正整数,并且 m > n ).
文字说明: 同底数幂相除,底数_不__变__,指数_相__减__.

《整式的除法》课件

《整式的除法》课件

总结词
在整式除法中,利用代数公式可以简化 运算过程,提高计算的准确性。
VS
详细描述
在整式除法中,一些常用的代数公式如平 方差公式、完全平方公式等可以帮助我们 快速解决一些复杂的运算问题。例如,在 计算 (a+b)^2/(a-b) 时,可以利用平方 差公式进行化简,从而得到 (a+b)/(a-b) 的形式。
详细描述
设计一系列简单的整式除法题目,包 括单项式除以单项式、多项式除以单 项式等,旨在帮助学生熟悉整式除法 的基本概念和运算规则。
进阶练习题
总结词
提高运算能力和技巧
详细描述
设计一些稍具难度的整式除法题目,包括需要运用交换律、结合律、分配律等运算规则 的题目,旨在提高学生的运算能力和技巧。
综合练习题
04
整式除法的实际应用
在数学问题中的应用
代数方程求解
整式除法在代数方程求解中有着 广泛的应用,如一元二次方程、 一元高次方程等。通过整式除法 ,可以将方程化简,便于求解。
函数图像绘制
在数学函数图像绘制中,整式除法 可以用于计算函数值,从而绘制出 精确的函数图像。
数学分析
在数学分析中,整式除法可以用于 极限、导数和积分的计算,是数学 分析中重要的运算技巧之一。
整式除法运算
在数学中,整式除法运算是一种基本 的代数运算,用于简化代数表达式和 解决代数问题。
整式除法的运算顺序
01
02
03
04
先进行括号内的运算;
然后进行乘除运算,最后进行 加减运算;
同级运算按照从左到右的顺序 进行;
先进行乘方运算,再进行乘除 运算,最后进行加减运算。
整式除法的应用场景
01
02

整式的除法PPT教学课件

整式的除法PPT教学课件

=

3 2
ac
辨一辨:
以下二题的计算是否正确?若不正确, 应怎样改正: (1)(12a3b3c)÷(6ab2)=2ab (2)(p5q4)÷(2p3q)=2p2q3
(1) (10ab3)÷(5b2) (2) 3a3÷(6a6)·(-2a4) (3) (3a5b3c)÷(-12a2b)
(1) (625+125+50)÷25 =(625)÷(25 )+(125)÷2(5 )+5(0 )÷25( ) =(25 )+( 5 )+( 2 )=( 32 )
1、厌恶官场; 2、淡泊名利; 3、热爱自然; 4、热爱田园;
5、安贫乐道
隐逸 出世
云无心以出岫,鸟倦飞而 知还
陶渊明的诗歌,以歌咏田园生活的居多,后世称他为田园诗人。陶渊明的 田园诗主要见于他的组诗《饮酒》、《归园田居》、《拟古》、《和郭主簿》。 他的五言诗成就最高,诗歌的意境下平和、静穆、深远,在中国诗歌史上有着 重要的地位。他那种淡泊明志的人生态度,对读书人的影响很深。
通过虚构(
)一
个和平、美好、没有剥…削、没有压迫、人
赞语说:黔娄的妻子曾经说过这样的话:“不为贫贱而忧虑, 不热衷于发财做官。”从这话来看,他应是五柳先生一类人吧 ? 一 边喝酒一边做诗,用这种方式使自己的心志得到快乐,他大概是无 怀氏的子民吧?或者是葛天氏的子民吧?
板书
归去来兮,田园将芜胡不归,自以心为形役,奚惆怅而独归,悟已往之不谏,知 来者可追。实迷途其未远,觉今是而昨非。
②( )·(-2y)=4x2y-6xy2
补充:任意给
输入m
一个非零数,按
平方
下列程序计算下
去,m m2 m m 1 m

《整式的除法》课件

《整式的除法》课件

被除数
需要被另一个多项式除的多项 式。
商和余数
整式除法的结果,商是另一个 多项式,余数是带有余数的项

整式除法的运算顺序
先进行括号内的运算 ;
最后进行加减运算。
然后进行乘除运算;
整式除法的性质
01
02
03
整式除法的交换律
交换被除数和除数的位置 ,商不变。
整式除法的结合律
改变被除数和除数的组合 方式,商不变。
运算过程中的错误纠正
检查运算过程
在完成整式除法后,需要仔细检 查运算过程,确保没有出现计算
错误。
验算
可以通过验算来检查运算结果是否 正确。例如,将商乘以除数,看是 否等于被除数。
注意细节
在整式除法中,需要注意细节,避 免因为粗心大意而出现错误。例如 ,注意符号、括号等细节问题。
05
整式除法的练习题与解析
多项式除以多项式
总结词
转化为单项式除以单项式的形式
详细描述
多项式除以多项式时,可将其转化为单项式除以单项式的形式,然后逐一进行除法运算。例如,$frac{3a^2 + 2ab}{3b^2 + 2a} = frac{a(3a)}{b(3b)} + frac{b(2b)}{b(2a)} = frac{a}{b} + frac{2}{2} = frac{a}{b} + 1$。
乘除法与加减法的符号规则
在整式中,乘除法与加减法的符号规则不同,需要特别注意。
运算过程中的化简问题
化简步骤
在整式除法中,化简是非 常重要的步骤。通过化简 可以简化运算过程,提高 运算效率。
合并同类项
在化简过程中,可以将同 类项合并,简化表达式。

《整式的除法》整式的运算PPT课件

《整式的除法》整式的运算PPT课件
3 2 2 3 2 (3)(4c d -6c d )÷(-3c d)
练练 填空

① (
② [3a2-( ③(
)· 3ab2=-9ab5
)]÷(-a)=-3a+2b
)· (-2y)=4x2y-6xy2
辨别 正误

(1)(2x-4y+3)÷2=x-2y+3
(2)(8x2y-4xy2) ÷(-4xy)=-2x-2y
青少年励志名言 毕业班励志格言 1、为了最好的结果,让我们把疯狂进行到底。 2、当今之世,舍我其谁! 3、有志者,事竟成,破釜沉舟,百二秦关终属楚; 4、苦心人,天不负,卧薪尝胆,三千越甲可吞吴。 5、把命运掌握在自己手中。 6、机遇永远是准备好的人得到的。 7、无情岁月增中减,有味青春苦中甜。集雄心壮志,创锦绣前程。 关于勤奋学习的名言 1、人生在勤,不索何获。——张衡 2、业精于勤而荒于嬉,行成于思而毁于随。——韩愈 3、天才就是无止境刻苦勤奋的能力。——卡莱尔 4、聪明出于勤奋,天才在于积累。——华罗庚 5、好学而不勤问非真好学者。 6、书山有路勤为径,学海无涯苦作舟。 7、我未曾见过一个早起勤奋谨慎诚实的人抱怨命运不好。 8、世上无难事,只要肯攀登。——毛泽东 9、天才是不足恃的,聪明是不可靠的,要想顺手拣来的伟大科学发明是不可想象的。 坚持不懈的名言 1、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 2、公共的利益,人类的福利,可以使可憎的工作变为可贵,只有开明人士才能知道克服困难所需要的热忱。——佚名 3、在希望与失望的决斗中,如果你用勇气与坚决的双手紧握着,胜利必属于希望。——普里尼 4、坚持者能在命运风暴中奋斗。 5、锲而不舍,金石可镂。 6、有志者事竟成。 7、耐心之树,结黄金之果。 8、百败而其志不折。 9、失败是块磨刀石。 10、忍耐和坚持是痛苦的,但它会逐给你好处。 11、骆驼走得慢,但终能走到目的地。 12、耐心是一切聪明才智的基础。 13、伟大的作品,不是靠力量而是靠坚持才完成的。 14、勤勉。不浪费时间,该做就做。 15、如果相信自己能够做到,你就能够做到。

《整式的除法》课件

《整式的除法》课件
解:3.84×105 ÷( 8×102 ) = 0.48×103 =480(小时) =20(天) . 答:如果乘坐此飞机飞行这么远的距离, 大约需 要20天时间.
小结
通过本节课的内容,你有哪些收获? 在计算题时,要注意运算顺序和符号. 同底数幂相除是单项式除法的特例;
单项式除以单项式的法则的探求过程中我们使用 了观察、归纳的方法,这是数学发现规律的一种常 用方法。
新课
仔细观察一下,并分析与思考下列几点: 单项式除以单项式,其结果(商式)仍是 一个单项式;
商式的系数= (被除式的系数)÷ (除式的系数) (同底数幂)商的指数= (被除式的指数)—(除式的指数) 被除式里单独有的幂,写在商里面作 ?
因式。
新课 如何进行单项式除以单项式的运算?
单项式相除,把系数、同底数幂分别相除后, 作为商的因式;对于只在被除式里含有的字母,则 连同它的指数一起作为商的一个因式.
x5y x x x x x y
= x2 =
x x
= x·x·x·y
=x3y ;
把除法式子写成分数形式, 把幂写成乘积形式, 约分.
新课
被除式 除式
商式
(1) (x5y)÷ x2 = x5 − 2 ·y (2) (8m2n2) ÷ (2m2n) = (8÷2 )·m2−2·n2−1 ; (3) (a4b2c) ÷ (3a2b) = (1÷3 )·a4−2·b2−1·c .

新课
如何进行多项式除以单项式的运算? 多项式除以单项式,先把这个多项式的每一项分 别除以单项式,再把所得的商相加. (a+b+c) ÷m=a÷m+b÷m+c÷m (m≠0)
例题
例2 计算:
(1)( 6 ab + 8 b )÷2 b;

整式的除法(第1课时)(课件)七年级数学下册(北师大版)

整式的除法(第1课时)(课件)七年级数学下册(北师大版)
式子,再与等式右边的式子进行比较求解.
3 n 2
3 n 2
12 9
解:因为 (-3 x y ) ( x y ) ( 27 x y ) ( x y )
2
2
4
3 3
=18x12-ny7,
所以18x12-ny7=mx8y7.因此m=18,12-n=8.
所以n=4,所以n-m=4-18=-14.
(2) (8m2n2) ÷(2m2n) ;
(3) (a4b2c)÷(3a2b) .
可以用类似于
分数约分的方法
来计算.
探究新知
解:(1) (x5y)÷x2
5
= 2

∙∙∙∙∙
=

= x·x·x·y
=x3y
把除法式子写成分数形式
把幂写成乘积形式
约分
探究新知
被除式
除式
(x5y) ÷ x2
探究新知
例3:月球距离地球大约 3.84×105千米, 一架飞机的速度约为
8×102 千米/时. 如果乘坐此飞机飞行这么远的距离, 大约需要多
少时间 ?
解:3.84×105 ÷( 8×102 )
= 0.48×103
=480(小时) =20(天) .
答:如果乘坐此飞机飞行这么远的距离, 大约需要20天时间.
5
(2) 10a 4 b 3 c 2 5a 3 bc
(3) (2 x y ) ( 7 xy ) 14 x y
2
3
2
4
3
(4) (2a b)4 (2a b)2
分析:(1)(2)直接运用单项式除法的运算法则;
(3)要注意运算顺序:先乘方,再乘除;
(4)鼓励学生悟出:将(2a+b)视为一个整体来进行

《整式的除法》课件

《整式的除法》课件

《整式的除法》课件汇报人:2023-11-26contents •整式除法基本概念•单项式除以单项式方法论述•多项式除以单项式技巧总结•多项式之间相除算法剖析•整式除法在实际问题中应用举例•总结回顾与拓展延伸目录01研究整式之间相除的运算规则和方法。

除式、被除式、除数和商的概念在整式除法中,除式表示相除的运算,被除式是被除数,除数是进行除法运算的整式,商是除法运算的结果。

整式除以自身的商为1任何非零整式除以自身的结果都是1。

把单项式的系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。

单项式除以单项式的法则先把这个多项式的每一项分别除以单项式,再把所得的商相加。

多项式除以单项式的法则整式除法的运算法则02整式除法基本概念由常数、变量和代数运算(加、减、乘、乘方)构成的数学表达式。

整式定义包括整式的次数、系数、项等基本概念及其性质。

整式性质整式定义及性质回顾将多项式的每一项分别除以单项式,并将结果按降幂排列。

单项式除以多项式时,可将单项式拆分为多个多项式之和或差,再分别进行除法运算。

除法运算规则简介单项式除以多项式多项式除以单项式在进行整式除法时,需遵循先乘除后加减的原则,注意运算顺序。

忽视运算顺序系数处理不当未能合并同类项整式除法中,系数需要进行相应的运算,避免出现错误。

除法运算后,需对结果进行合并同类项,使表达式更简洁。

030201常见问题与误区提示03单项式除以单项式方法论述注意系数的符号当系数带有符号时,要注意符号的处理,遵循同号得正、异号得负的法则。

求解商的系数将系数的除法运算结果作为商的系数。

确定系数的除法运算在进行单项式除法时,首先要对两个单项式的系数进行除法运算。

系数之间相除步骤详解在进行单项式除法时,要比较两个单项式中相同字母的指数。

比较字母的指数将被除式中相同字母的指数减去除式中相同字母的指数。

减去指数将得到的指数作为商的字母部分的指数。

整式的除法课件

整式的除法课件

01
确定商的符号
整式除法结果的符号由被除式和除式的符号共同决定。如果被除式和除
式的符号相同,则商为正;如果被除式和除式的符号不同,则商为负。
02 03
处理多项式除以多项式的情况
当被除式和除式均为多项式时,需要按照多项式除以单项式的规则进行 计算,即把被除式的每一项分别除以除式的每一项,再把所得的商相加 。
整式的除法运算性质
03
整式的除法具有交换律和结合律。
整式除法的难点解析
整式的除法运算步骤
在进行整式的除法时,需要先将被除数和除数相乘,再减去余数 。
整式的除法运算技巧
在计算过程中,需要注意符号的变化和运算顺序的正确性。
整式的除法运算注意事项
在进行整式的除法时,需要注意结果的符号和余数的正确性。
整式除法的练习题
运用分配律
在整式除法中,可以运用分配律将复杂的表达式转化为简单的形式 ,便于计算。
逐步化简
对于复杂的整式除法问题,可以逐步化简,逐步计算,最终得到结 果。
05
复习与总结
整式除法的重点回顾
整式的除法法则
01
整式的除法遵循乘法分配律,将除数与被除数相乘,再减去余
数。
整式的除法运算顺序
02
先进行乘法运算,再进行减法运算。
例题2
$(3x^3 + 5x^2 - 4x + 7) div (3x - 1)$

$3x^3 + 5x^2 - 4x + 7 div (3x - 1) = 3x^3 + x^2 - x + x^2 + x - 1 = 3x^3 + 2x^2 - x + 1$
整式除法的练习题

《整式的除法》整式的运算PPT课件

《整式的除法》整式的运算PPT课件

(3)(3x2y-3xy2+x)
÷x=3xy-3y2
感受 体验

(1)(5x3-2x2+6x) ÷3x
(2)(2x2y3)(-7x2y2) ÷(14x4y3)
(3)-x.(3xy-6x2y2) ÷(3x2)
阅读 体验

输入m m
平方
任意给一个非零数, 按下列程序计算下去,
+大约需要多少时间?
(3.8×108)÷(1.12×104)
(3.8×108)÷(1.12×104)
3.8 10 解:原式 4 1.12 10
8
3.8 10 4 1.12 10
8
3.39 10
4
答:到达月球大约需要3.39×104秒。
你能计算吗?
(1) ( 3)
÷m -2
输出
m
2
m m 2 m

综合 练习

已知-5xm+2ny3m-n ÷(-2x3ny2m+n) 的商与-2x3y2是同类项,求m+n的值。
作业
• 作业本和课后作业题
1、不要做刺猬,能不与人结仇就不与人结仇,谁也不跟谁一辈子,有些事情没必要记在心上。 2、相遇总是猝不及防,而离别多是蓄谋已久,总有一些人会慢慢淡出你的生活,你要学会接受而不是怀念。 3、其实每个人都很清楚自己想要什么,但并不是谁都有勇气表达出来。渐渐才知道,心口如一,是一种何等的强大! 4、有些路看起来很近,可是走下去却很远的,缺少耐心的人永远走不到头。人生,一半是现实,一半是梦想。 5、没什么好抱怨的,今天的每一步,都是在为之前的每一次选择买单。每做一件事,都要想一想,日后打脸的时候疼不疼。 6、过去的事情就让它过去,一定要放下。学会狠心,学会独立,学会微笑,学会丢弃不值得的感情。 7、成功不是让周围的人都羡慕你,称赞你,而是让周围的人都需要你,离不开你。 8、生活本来很不易,不必事事渴求别人的理解和认同,静静的过自己的生活。心若不动,风又奈何。你若不伤,岁月无恙。 9、与其等着别人来爱你,不如自己努力爱自己,对自己好点,因为一辈子不长,对身边的人好点,因为下辈子不一定能够遇见。 10、你迷茫的原因往往只有一个,那就是在本该拼命去努力的年纪,想得太多,做得太少。 11、有一些人的出现,就是来给我们开眼的。所以,你一定要禁得起假话,受得住敷衍,忍得住欺骗,忘得了承诺,放得下一切。 12、不要像个落难者,告诉别人你的不幸。逢人只说三分话,不可全抛一片心。 13、人生的路,靠的是自己一步步去走,真正能保护你的,是你自己的选择。而真正能伤害你的,也是一样,自己的选择。 14、不要那么敏感,也不要那么心软,太敏感和太心软的人,肯定过得不快乐,别人随便的一句话,你都要胡思乱想一整天。 15、不要轻易去依赖一个人,它会成为你的习惯,当分别来临,你失去的不是某个人,而是你精神的支柱;无论何时何地,都要学会独立行走 ,它会让你走得更坦然些。 16、在不违背原则的情况下,对别人要宽容,能帮就帮,千万不要把人逼绝了,给人留条后路,懂得从内心欣赏别人,虽然这很多时候很难 。 17、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭 18、不要太高估自己在集体中的力量,因为当你选择离开时,就会发现即使没有你,太阳照常升起。 19、时间不仅让你看透别人,也让你认清自己。很多时候,就是在跌跌拌拌中,我们学会了生活。 20、命运要你成长的时候,总会安排一些让你不顺心的人或事刺激你。 21、你的假装努力,欺骗的只有你自己,永远不要用战术上的勤奋,来掩饰战略上的懒惰。 22、成长是一场和自己的比赛,不要担心别人会做得比你好,你只需要每天都做得比前一天好就可以了。 23、你没那么多观众,别那么累。做一个简单的人,踏实而务实。不沉溺幻想,更不庸人自扰。 24、奋斗的路上,时间总是过得很快,目前的困难和麻烦是很多,但是只要不忘初心,脚踏实地一步一步的朝着目标前进,最后的结局交给 时间来定夺。 25、你心里最崇拜谁,不必变成那个人,而是用那个人的精神和方法,去变成你自己。 26、运气是努力的附属品。没有经过实力的原始积累,给你运气你也抓不住。上天给予每个人的都一样,但每个人的准备却不一样。不要羡 慕那些总能撞大运的人,你必须很努力,才能遇上好运气。 27、时间只是过客,自己才是主人,人生的路无需苛求,只要你迈步,路就在你的脚下延伸,只要你扬帆,便会有八面来风,启程了,人的 生命才真正开始。 28、每个人身上都有惰性和消极情绪,成功的人都是懂得管理自己的情绪和克服自己的惰性,并像太阳一样照亮身边的人,激励身边的人。 29、最终你相信什么就能成为什么。因为世界上最可怕的二个词,一个叫执着,一个叫认真,认真的人改变自己,执着的人改变命运。只要 在路上,就没有到不了的地方。 30、人生,就要活得漂亮,走得铿锵。自己不奋斗,终归是摆设。无论你是谁,宁可做拼搏的失败者,也不要做安于现状的平凡人。 31、不管做什么都不要急于回报,因为播种和收获不在同一个季节,中间隔着的一段时间,我们叫它为坚持。 32、知人者智,自知者明。胜人者有力,自胜者强。——老子

14.1.4整式的除法--公开课.ppt

14.1.4整式的除法--公开课.ppt

(3)a3÷a=a3; a2 (4)(-c)4÷(-c)2=-c2. (-c)2=c2
备选提高练习题: (1)已知ax=2 ay=3 则a2x-y= (2)x4n+1÷x 2n-1·x2n+1= (3)已知ax=2 ay=3 则ax-y= (4)已知am=4 an=5 求a3m-2n的值。 (5)若10a=20 10b=1/5,试求9a÷32b的值。 (6)已知2x-5y-4=0,求4x÷32y的值。
同底数幂的 除法法则
am÷an= am–)
同底数幂相除,底数_不__变__, 指数_相__减___.
证明:
幂的定义:
m 个a
am÷an=
am an

a a
a a

a a
m–n 个a
n 个a

a

a
1
a
=
am–n
【例】计算: 例题解析
6x – 9 6x – 3
–6
商式为 x2 + 2x + 3
余式为–6
还可以写作 : 3x 2 4x 9 2x3 (2x 1)( x2 2x 3) 6
变式探究
().( x3 1) (x2 x 1)
(B).( x4 x3 x2 2x 6) (x2 2)
思维!
探究:下面填空题你会解吗?
8x3 ·5x2y=( 40x5y ) 40x5y÷5x2y=( 8x3 )
被除式÷除式=商式
4a2x3·3ab2=12a3b2x3 12a3b2x3÷3ab2=4a2x3
观察下列等式:
40x5y÷5x2y=8x3
12a3b2x3÷3ab2=4a2x3
想一想
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二引入:想一想,我们怎么计算单项式的除法运算?不 妨看看下列各题! ⑴(x5y) ÷x2
⑵(8m2n2) ÷(2m2n)
分数线具有括 Biblioteka 的作用⑶(a4b2c) ÷(3a2b)
8m 2 n 2 ⑵原式= 2m 2 n

4n
注:以上的单项式除法方法只提供我们参考,想一想还有其他方法吗?
2 2 a 4b 2 c a 2 a 2 b 2 c abc ⑶原式= = = 2 2 3a b 3b 3a b
第⑴个刘正勇同学做
⑶ (3m2n3)÷(mn)2 ⑷ (2x2y)3÷(6x3y2)
第⑶个唐利萍同学做 第⑷个张磊同学做
单项式除法的基本步骤
单项式除以单项式,就是把它们的系数,相同字母,结合在一起分别相 除.再把所得的商相乘 教科书41页第2,3两题
旧教材146页1,2两题目
你能说出a÷b在现实生活中表示的意义吗? 试一试!

2 原式=(10÷5 )( · a4÷a3 )( · b3÷b )( · c ÷c ) 4- b3- c2-1 2ab2c = 2a 2 1
单项式相除的方法:
单项式除以单项式,就是把它们的系数,相同 字母,结合在一起分别相除.再把所得的商相乘
=
③(2x2y)3.(-7xy2) ÷(14x4y3)
解:
(3· 84×105 ) ÷ ( 8×102)
原式= (3· ) × (105÷102 ) 84÷8 = 0· 48×103 =480(小时) = 20天
答:如果要乘坐这架飞机到月球大约需要20的时间
真是不可 思议,原 来需要这 么长时间 呀!
教课书40页随堂练习第1题
⑴ (2a6b3) ÷(a3b2)
红庙中学理科教研组教师
红庙中学数学教师李瑞
红庙中学数学教师李 瑞
红庙中学七年级(五)学生
2006年三月28日制作

x y x 2 x3 y ⑴原式= = 2 2 x x
5
x y
3
三:例题精讲 例1:计算
- ①(
可以先看看课本 上介绍的方法呀
X2y2) ÷(3x2y)
②(10a4b3c2) ÷(5a3bc)
③(2x2y)3.(-7xy2) ÷(14x4y3)
④(2a+b)4÷(2a+b)2
3 . x2÷x2)( . y2÷y ) 3 )( 解①原式=(- ÷ 1 0 y1 1 1 5 2-2 2-1 x · =y · X · Y =- · =5 5 5
= ( 8x6y3 ) .(-7xy2)
= 4a2+b2+4ab 现在让我 们共同来 听一首歌 曲吧!
好了,我 们继续进 行我们的 数学之行 吧!
2 月球距离地球大约3· 84×105千米,一架飞机的
速度约为8×102千米/小时.如果乘坐此飞机飞 行这么远的距离,你知道大约需要多长时间吗?
时间=距离÷速度
④(2a+b)4÷(2a+b)2 这两道题,和刚才的 有不同点吗?注意整 体思想!
.(-7xy2) ÷(14x4y3) (x2)3 · y3 〕 ③原式〔 = 23 ·
÷(14x4y3) = (-56x7y5) ÷(14x4y3) ( ( y5÷y3 ) = ( -56÷14 ) · x 7 ÷ x5 ) · = -4 x7-5 y5-3 = -4 x2y2 2 4- 2 + b2 +2×2a×b = (2a+b) = (2a)2 ④原式= (2a+b)
相关文档
最新文档